Programming in C http://mww.cs.cf.ac.uk/Dave/

Programming in C
UNIX System Calls and Subroutines using C.

(©) A. D. Marshall 1994-2005

Substantially Updated March 1999

MNext] Up] Previous
Next: Copyright

Search for Keywords in C Notes

Keyword Searcher

Download Postscript Version of Notes

Click Here to DownloadCourse Noted.ocal Students Only.

Algorithm Animations

Direct link to Java Algorithm Animations (C related)

C COURSEWARE

Lecture notes + integrated exercises, solutions and marking

e Contents
e The Common Desktop Environment
o The front panel
o The file manager
o The application manager
o The session manager
Other CDE desktop tools
Application development tools
o Application integration
o Windows and the Window Manager
o The Root Menu
o Exercises

(@]

(@]

10f9 8/4/2008 5:38uy

Programming in C http://mww.cs.cf.ac.uk/Dave/

e C/C++ Program Compilation
o Creating, Compiling and Running Your Program
= Creating the program
= Compilation
= Running the program
o The C Compilation Model
m The Preprocessor
= C Compiler
Assembler
Link Editor
Some Useful Compiler Options
Using Libraries
UNIX Library Functions
Finding Information about Library Functions
o Lint -- A C program verifier
o Exercises
e C Basics
o History of C
Characteristics of C
C Program Structure
Variables
» Defining Global Variables
» Printing Out and Inputting Variables
Constants
Arithmetic Operations
Comparison Operators
Logical Operators
Order of Precedence
o Exercises
Conditionals
o Theif statement
o The ? operator
o Theswi t ch statement
o Exercises
Looping and Iteration
o Thefor statement
o The whi | e statement
o The do- whi | e statement
o break andconti nue
o Exercises
Arrays and Strings
o Single and Multi-dimensional Arrays
o Strings
o Exercises
Functions
o voi d functions
o Functions and Arrays
o Function Prototyping
o Exercises
Further Data Types
o Structures
m Defining New Data Types
o Unions
o Coercion or Type-Casting

(@]

@)

@)

O O O O

(@]

2 0f 9 8/4/2008 5:38uy

Programming in C http://mww.cs.cf.ac.uk/Dave/

o Enumerated Types
o Static Variables
o Exercises
e Pointers
o What is a Pointer?
Pointer and Functions
Pointers and Arrays
Arrays of Pointers
Multidimensional arrays and pointers
Static Initialisation of Pointer Arrays
Pointers and Structures
Common Pointer Pitfalls
= Not assigning a pointer to memory address before using it
m |llegal indirection
o Exercise
Dynamic Memory Allocation and Dynamic Structures
Malloc, Sizeof, and Free
Calloc and Realloc
Linked Lists
Full Program: queue. ¢
Exercises
Advanced Pointer Topics
o Pointers to Pointers
o Command line input
o Pointers to a Function
o Exercises
Low Level Operators and Bit Fields
o Bitwise Operators
o Bit Fields
» Bit Fields: Practical Example
= A note of caution: Portability
o Exercises
The C Preprocessor
o #define
o #undef
o #include
o #if -- Conditional inclusion
o Preprocessor Compiler Control
o Other Preprocessor Commands
o Exercises
C, UNIX and Standard Libraries
o Advantages of using UNIX with C
o Using UNIX System Calls and Library Functions
Integer Functions, Random Number, String Conversion, Searching and Sortingstdl i b. h>
Arithmetic Functions
Random Numbers
String Conversion
Searching and Sorting
o Exercises
Mathematics: <nat h. h>
o Math Functions
o Math Constants
Input and Output (I/O): stdi 0. h
o Reporting Errors

(@]

O O O O O O

o O O O O

@)

@)

(@]

(@]

30f9 8/4/2008 5:38uy

Programming in C http://mww.cs.cf.ac.uk/Dave/

u [Zel‘ ror 4)
= €rmo
moexit()
Streams
» Predefined Streams
m Redirection
Basic I/O
Formatted 1/0O
m Printf
scanf
Eiles
» Reading and writing files
sprintf and sscanf
m Stream Status Enquiries
o Low Level I/0O
o Exercises
e String Handling: <stri ng. h>
o Basic String Handling Functions
m String Searching
o Character conversions and testinget ype. h
o Memory Operations: <nenory. h>
o Exercises
e File Access and Directory System Calls
o Directory handling functions: <uni st d. h>
= Scanning and Sorting Directories:<sys/ t ypes. h>, <sys/dir. h>
o File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h
m File Access
= €rmno
= File Status
= File Manipulation:stdio.h, unistd.h
s Creating Temporary Flles:<stdio.h>
o Exercises
Time Functions
o Basic time functions
o Example time applications
s Example 1: Time (in seconds) to perform some computation
» Example 2: Set a random number seed
o Exercises
Process Control:i<stdl i b. h>, <uni std. h>
o Running UNIX Commands from C
execl

(@]

(@]

(@]

(0]

@)

(0]

ait

<

@)
@)
@)
@)

ﬁ
x.
=

o Exerises
Interprocess Communication (IPC), Pipes
o Piping in a C program: <st di 0. h>
o popen() -- Formatted Piping
o pi pe() -- Low level Piping
o Exercises
IPC:Interrupts and Signals: <si gnal . h>
o Sending Signals -ki I | (), raise()
o Signal Handling --si gnal ()
o sig tal k. c -- complete example program

4 of 9 8/4/2008 5:38uy

Programming in C http://mww.cs.cf.ac.uk/Dave/

o Other signal functions
e |IPC:Message Queuessys/ nsg. h>
Initialising the Message Queue
IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>
Controlling message queues
Sending and Receiving Messages
POSIX Messages: squeue. h>
Example: Sending messages between two processes
® nessage send. ¢ -- creating and sending to a simple message queue
® message_rec. ¢ -- receiving the above message
Some further example message queue programs
® nsgget . c: Simple Program to illustrate nsget ()
m nsgct | . cSample Program to lllustratensgct | ()
® nsgop. ¢: Sample Program to Illlustrate nsgsnd() andnsgrcv()
o Exercises
e |PC:Semaphores
Initializing a Semaphore Set
Controlling Semaphores
Semaphore Operations
POSIX Semaphores: <semaphore.h>
semaphor e. c: lllustration of simple semaphore passing
Some further example semaphore programs
m senget . c: lllustrate the senget () function
m senct ! . c: lllustrate the senct ! () function
m senop() Sample Program to lllustratesenop()
o Exercises
e |PC:Shared Memory
o Accessing a Shared Memory Segment
= Controlling a Shared Memory Segment
o Attaching and Detaching a Shared Memory Segment
o Example two processes comunicating via shared memorghm ser ver. c,
shmclient.c
B shm server.c
m shmclient.c
o POSIX Shared Memory
o Mapped memory
= Address Spaces and Mapping
= Coherence
= Creating and Using Mappings
s Other Memory Control Functions
o Some further example shared memory programs
® shnget . c:Sample Program to lllustrate shmget()
® shnctl . c: Sample Program to lllustrate shnct | ()
m shnop. ¢c: Sample Program to Illustrate shmat () and shnt ()
o Exercises
e |PC:Sockets
Socket Creation and Naming
Connecting Stream Sockets
Stream Data Transfer and Closing
Datagram sockets
Socket Options
Example Socket Programssocket server. c, socket client
m socket server.c

O O O O O O

@)

O O O O O O

O O O O O O

m socket client.c

5 of 9 8/4/2008 5:38uy

Programming in C http://mww.cs.cf.ac.uk/Dave/

o Exercises
e Threads: Basic Theory and Libraries
o Processes and Threads
» Benefits of Threads vs Processes
s Multithreading vs. Single threading
s Some Example applications of threads
o Thread Levels
m User-Level Threads (ULT)
m Kernel-Level Threads (KLT)
= Combined ULT/KLT Approaches
o Threads libraries
o The POSIX Threads Library:! i bpt hr ead, <pthread.h>
Creating a (Default) Thread
Wait for Thread Termination
A Simple Threads Example
Detaching a Thread
Create a Key for Thread-Specific Data
Delete the Thread-Specific Data Key
Set the Thread-Specific Data Key
Get the Thread-Specific Data Key
Global and Private Thread-Specific Data Example
Getting the Thread Identifiers
Comparing Thread IDs
Initializing Threads
Yield Thread Execution
Set the Thread Priority
Get the Thread Priority
Send a Signal to a Thread
Access the Signal Mask of the Calling Thread
s Terminate a Thread
o Solaris Threads: < hr ead. h>
» Unique Solaris Threads Functions
Suspend Thread Execution
Continue a Suspended Thread
Set Thread Concurrency Level
Readers/Writer Locks
Readers/Writer Lock Example
» Similar Solaris Threads Functions
= Create a Thread
Get the Thread ldentifier
Yield Thread Execution
Signals and Solaris Threads
Terminating a Thread
Creating a Thread-Specific Data Key
s Example Use of Thread Specific Data:Rethinking Global Variables
o Compiling a Multithreaded Application
m Preparing for Compilation
= Debugging a Multithreaded Program
e Further Threads Programming:Thread Attributes (POSIX)
o Attributes
o |Initializing Thread Attributes
o Destroying Thread Attributes
o Thread's Detach State
o Thread's Set Scope

6 of 9 8/4/2008 5:38uy

Programming in C

o Thread Scheduling Policy
» Thread Inherited Scheduling Policy
m Set Scheduling Parameters
o Thread Stack Size
= Building Your Own Thread Stack
e Further Threads Programming:Synchronization
o Mutual Exclusion Locks
Initializing a Mutex Attribute Object
Destroying a Mutex Attribute Object
The Scope of a Mutex
Initializing a Mutex
Locking a Mutex
» Lock with a Nonblocking Mutex
Destroying a Mutex
Mutex Lock Code Examples
s Mutex Lock Example

m Using Locking Hierarchies: Avoiding Deadlock

» Nested Locking with a Singly Linked List
m Solaris Mutex Locks
o Condition Variable Attributes
Initializing a Condition Variable Attribute
Destoying a Condition Variable Attribute
The Scope of a Condition Variable
Initializing a Condition Variable
Block on a Condition Variable
Destroying a Condition Variable State
Solaris Condition Variables
o Threads and Semaphores
» POSIX Semaphores
» Basic Solaris Semaphore Functions
e Thread programming examples
o Usingthr create() andthr join()
Arrays
Deadlock
Signal Handler
Interprocess Synchronization
The Producer / Consumer Problem
A Socket Server
Using Many Threads
Real-time Thread Example
POSIX Cancellation
Software Race Condition
Tgr ep: Threadeds version of UNIXgr ep
o Multithreaded Quicksort
e Remote Procedure Calls (RPC)
o What Is RPC
o How RPC Works
o RPC Application Development
= Defining the Protocol
» Defining Client and Server Application Code
s Compliling and running the application
o Qverview of Interface Routines
» Simplified Level Routine Function
= Top Level Routines

O 0 0O O 0 0 0O O O o0 O©o

7 of 9

http://mww.cs.cf.ac.uk/Dave/

8/4/2008 5:38uy

Programming in C

8 of 9

o Intermediate Level Routines

m Expert Level Routines

= Bottom Level Routines

o The Programmer's Interface to RPC

Simplified Interface

Passing Arbitrary Data Types

Developing High Level RPC Applications
= Defining the protocol

@)

e Protocol Compiling and Lower Level RPC Programming

Sharing the data

m The Server Side

m The Client Side

Exercise

@)

@)

o Passing Complex Data Structures
o Preprocessing Directives

o Recommended Reading

@)

What is r pcgen
An rpcgen Tutorial

m Converting Local Procedures to Remote Procedures

= cpp Directives

m Compile-Time Flags

m Client and Server Templates

» Exampler pcgen compile options/templates

Exercises

e Writing Larger Programs

(@]

o External variables and functions

= Scope of externals

o Advantages of Using Several Files

How to Divide a Program between Several Files
Organisation of Data in each File

o O O O O O

@)

Header files

The Make Utility
Make Programming
Creating a makefile
Make macros
Running Make

e Program Listings

@)

O 0O 0O O O 0O 0O O O ©°o

@)

hello.c
printf.c

212
SnQJ
O l5

E
L
o

average.c
cio.c
factorial
power.c

ptr_arr.c
Modular Example

= main.c

s WriteMyString.c

» header.h

s Makefile
static.c

o malloc.c

http://mww.cs.cf.ac.uk/Dave/

8/4/2008 5:38uy

Programming in C

= plotter.c
m externals.h

o random.c
o time.c
o timer.c

http://mww.cs.cf.ac.uk/Dave/

Online Marking of C Programs --- CEILIDH

e Ceilidh - On Line C Tutoring System
o Why Use CEILIDH ?
o Introduction
Using Ceilidh as a Student
» The course and unit level
m The exercise level
» |nterpreted language exercises
m Question/answer exercises
The command line interface (TEXT CEILIDH ONLY)
s Advantages of the command line interface
» General points
o Conclusions

@)

@)

@)

@)

References

e About this document ...

How Ceilidh works, Ceilidh Course Notes, User Guides etc.

Dave Marshall
29/3/1999

9 of 9

8/4/2008 5:38uy

C Basics

1 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

Subsections

History of C
Characteristics of C

C Program Structure
Variables
o Defining Global Variables
o Printing Out and Inputting Variables
Constants
Arithmetic Operations
Comparison Operators
Logical Operators
Order of Precedence
Exercises

C Basics

Before we embark on a brief tour of C's basic syntax and structure we offer astoef i C and
consider the characteristics of the C language.

In the remainder of the Chapter we will look at the basic aspects of C programs €ugtogeam
structure, the declaration of variables, data types and operators. We will assurtezlgaat/a high
level language, such as PASCAL.

It is our intention to provide a quick guide through similar C principles to most high levehliges)
Here the syntax may be slightly different but the concepts exactly the same.

C does have a few surprises:

e Many High level languages, like PASCAL, are highly disciplined and structured.

e However beware-- C is much more flexible and free-wheeling. This freedom gives C much
power that experienced users can employ. The above example balstary(c) illustrates how
bad things could really get.

History of C

Themilestonesin C's development as a language are listed below:

e UNIX developed c. 1969 -- DEC PDP-7 Assembly Language

e BCPL -- a user friendly OS providing powerful development tools developed from BCPL.
Assembler tedious long and error prone.

e A new language "B" a second attempt. c. 1970.

¢ A totally new language "C" a successor to "B". c. 1971

e By 1973 UNIX OS almost totally written in ~"C".

Characteristics of C

We briefly list some of C's characteristics that define the languagesantaale lead to its popularity
a programming language. Naturally we will be studying many of these aspecighbut the course.

e Small size

8/4/2008 11:24

C Basics

2 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

Extensive use of function calls

Loose typing -- unlike PASCAL

Structured language

Low level (BitWise) programming readily available

Pointer implementation - extensive use of pointers for memory, array, struegrésnctions.

C has now become a widely used professional language for various reasons.

It has high-level constructs.

It can handle low-level activities.

It produces efficient programs.

It can be compiled on a variety of computers.

Its main drawback is that it has poor error detection which can make it off putting t@ihedse
However diligence in this matter can pay off handsomely since having learned shef1@leve can
break them. Not many languages allow this. This if done properly and carefully lebdgptmter of C
programming.

As an extreme example the following C coabgsfery.c) is actuallylegal C code.

#include <stdio.h>

main(t, ,a)

char *a;

{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,

main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,mai n (-94,-27+t, a
)&&t==2? <13 ?main (2, _+1, "%s %d %d\n"):9:16 1<0?t<-72?main(_,
t,"@n'+ # {fw+iwHcdnr/+,{Jrixde}+, **+, w{%+,/w# g#n+,/#{l,+,/n{n+\
JHEN+ RN+ [+Hk#+ [d* 3 Hw+K WK+ e # ;dg#'| g#'+d'K#IN
+k#;q# r}eKK#W' rte KK{nl] /#;#g#n" Y)# W)){nl]'/+ #n';dprw' i;# }{n\
IYn{n#"; r{#wW'r nc{nl]'/#{,+'K {rw" iK{;[{nl]'/w #o#\

n'wk nw' iwk{KK{nI//w{%'l##w#" i; {nl]'/*{g#'ld;r "Hnlwb!/*de}'c \

s{nl-{rw]'/+ H ¥ Hine, ' #nw]'/+kd'+e}+;\
#rdg#w! nr'/) HHriE{n' YY)

:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a =="/)+t,_,a\
+1):0<t?main (2, 2, "%s"):*a=="/"||main(0,main(- 61,*a, "lek;dc\
i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCe ghiry"),a+1);}

It will compile and run and produce meaningful output. Try this program out. Try to compile and r
yourself.Alternatively you may run it from here and see the output

Clearly nobody ever writes code like or at least should never. This piece of codey acteah

international Obfuscated C Code Contasgp://reality.sgi.com/csp/iocthe standard for C programs
was originally the features set by Brian Kernighan. In order to make the langaegetarnationally
acceptable, an international standard was developed, ANSI C (American Nataorddr8s Institute).

C Program Structure

A C program basically has the following form:

e Preprocessor Commands

e Type definitions

e Function prototypes -- declare function types and variables passed to function.
e Variables

e Functions

We must have main() function.

8/4/2008 11:24

C Basics http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.
A function has the form:
t ype function_name (par anmet ers)
| ocal variabl es
C Statenents
}
If the type definition is omitted C assumes that function returmstager type.NOTE: This can be a
source of problems in a program.
So returning to our first C program:
/* Sample program */
main()
printf(I Like C \n");
exit (0);
}
NOTE:
® C requires a semicolon at the end of every statement.
® printfis a st andar d C function -- called from main.
(] \n signifies newline. For matt ed out put -- more later.
® exit() is also a standard function that causes the program to terminate. Strictly speaking
it is not needed here as it is the last line of mai n() and the program will terminate
anyway.
Let us look at another printing statement:
printf("". \n.l \n..2 \n...3 \n");
The output of this would be:
A
.2
3
C has the following simple data types:
C type Size (bytas) | Lower bound | Upper bound
char 1 — —
unsigned char 1 0 255
short int 2 —32768 +32767
unsigned short int 2 0 66036
[lang] int 4 —a 428 _1
float 4 —3.2x 10 | 13.2 x 1%
double B —L.7 X 1A% | 41.7 x 19
3 of 10 8/4/2008 11:24

C Basics http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

The Pascal Equivalents are:

C type Pascal equivalent
char char
unsigned char —

short int integer
unsigned short int —

long int longint
foat real
double extendad

On UNIX systems alht s arelongint s unless specified asortint explicitly.

NOTE: There iSNO Boolean type in C -- you should userr, int or (better)unsigned char
Unsigned can be used with athar andint types.

To declare a variable in C, do:

var_type list variables;

e.g. intijk;
float x,y,z;
char ch;

Defining Global Variables

Global variables are defined abawan() in the following way:-

short number,sum;
int bignumber,bigsum;
char letter;

main()

}
It is also possible to pre-initialise global variables using-thyrator for assignment.
NOTE: The = operator is the same as := is Pascal.

For example:-

float sum=0.0;
int bigsum=0;
char letter="A";

main()

}

This is the same as:-

float sum;

4 of 10 8/4/2008 11:24

C Basics

5 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

int bigsum;
char letter;

main()
sum=0.0;
bigsum=0;
letter="A";
}

...but is more efficient.

C also allows multiple assignment statements using =, for example:

a=b=c=d=3;

...which is the same as, but more efficient than:

a=3

3;
3;
3

b
C
d ’

This kind of assignment is only possible if all the variable types in the statement
are the same.

You can define your own types use typedef. This wil | have greater relevance later in
the course when we learn how to create more complex data structures.

As an example of a simple use let us consider how w e may define two new types real
and letter. These new types can then be used in the same way as the pre-defined C
types:

typedef real float;
typedef letter char;

Vari abl es decl ar ed:
real sum=0.0;
letter nextletter;

Printing Out and Inputting Variables

C uses formatted output. Thentf function has a special formatting character (%) -- a character
following this defines a certain format for a variable:

%c -- characters
%d -- integers
%f -- floats

€.9. printf(""%c %d %f",ch,i,x);

AN

NOTE: Format statement enclosed in "...", variables follow after. Make sure ordemaf fomnd
variable data types match up.

scanf() is the function for inputting values to a data structure: Its format is simipantto :
i.e. scanf("%c %d %f",&ch,&i,&x);

NOTE: & before variables. Please accept this for nowrantember to include it. It is to do with
pointers which we will meet later (Secti@ii.4.]).

8/4/2008 11:24

C Basics

6 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

Constants

ANSI C allows you to declareonstants. When you declare a constant it is a bit like a variable
declaration except the value cannot be changed.

Theconst keyword is to declare a constant, as shown below:

intconsta =1;
constinta =2;

Note:

e You can declare thenst before or after the type. Choose one an stick to it.
e It is usual to initialise aonst with a value as it cannot get a vahrey other way.

The preprocessawefine is another more flexible (see Preprocessor Chapters) method to define
constantsin a program.

You frequently see const declaration in function parameters. This says simphethaiction isnot
going to change the value of the parameter.

The following function definition used concepts we have not met (see chapters on functiays, str
pointers, and standard libraries) but for completenes of this section it is is inclueed he

void strcpy(char *buffer, char const *string)

The second argimeastiing is a C string that will not be altered by the string copying standard libr:
function.

Arithmetic Operations

As well as the standard arithmetic operaterst() found in most languages, C provides some mq
operators. There are some notable differences with other languages, suchlas Pasca

Assignment is .e.i = 4;ch =y’

Increment ++, Decrement -- which are more efficient than their long hand equsy&berexample:--
x++ is faster tham=x+1 .

The++ and-- operators can be either in post-fixed or pre-fixed. With pre-fixed the value is campt
before the expression is evaluated whereas with post-fixed the value is compmrtdteadkpression is
evaluated.

In the example below+z is pre-fixed and the-- is post-fixed:

int X,y,w;

main()

x=((++2)-(w--)) % 100;
}

This would be equivalent to:

int X,y,w;

main()

8/4/2008 11:24

C Basics

7 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

{

Z++;
x=(z-w) % 100;
W--;

}

The % (modulus) operator only works with integers.

Division / is for both integer and float division. So be careful.

The answer to: x =3/2is1even if x is declared a float!!

RULE: If both arguments of / are integer then do integer division.

So make sure you do this. The correct (for division) answer to the above is x=3.0/
2or x=3/2.0 or (better) x =3.0/2.0.

There is also a convenient shor t hand way to express computations in C.

It is very common to have expressions like: i = i +3or X= X*(y+2)

This can written in C (generally) in a short hand form like this:

BLpr, 0p — eIpr,
which is equivalent to (but more efficient than):
2P — eXpr| op eIpr,

So we can rewrite i = i +3as i +=3
and Xx= x*(y+2)as X*= y+2

NOTE: that x*= y+2means Xx= x*(y+2)and NOT x = x*y+2.

Comparison Operators

To test for equality is ==

_n

A warning: Beware of using =" instead of ~==", such as writing accidentally
if(i=j) ..

This is a perfectf.EGAL C statement (syntactically speaking) which copies the value in "}" into "i
and delivers this value, which will then be interpreted as TRWHEsiihon-zero. This is called
assignment by value- a key feature of C.

Not equals is: =

Other operators < (less than) , > (grater than), <= (less than or equals),ater(tjran or equals) are a
usual.

Logical Operators

Logical operators are usually used with conditional statements which we sbalhrtiee next Chapter.

The two basic logical operators are:

8/4/2008 11:24

C Basics

8 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

&& for logical AND, || for logical OR.

Beware & and | have a different meaning for bitwise AND and OQRofe on this later in Chapterl?2).

Order of Precedence

It is necessary to be careful of the meaning of such expressiansiasc
We may want the effect as either
(a+b)*c
or
a+(b*c)
All operators have a priority, and high priority operators are evaluated before |dovéy pines.
Operators of the same priority are evaluated from left to right, so that
a-b-c
is evaluated as
(a-b)-c
as you would expect.

From high priority to low priority the order for all C operators (we have not met dlkai yet) is:

Of1->.

! ~ - * & sizeof cast ++ -
(these are right->left)
* %

&&
|
?: (right->left)

= += -= (right->left)
, (comma)

Thus
a<l0o&&2*b<c

is interpreted as
(a<10)&& ((2*b)<c)

and
a=
b=
spokes / spokes_pe r_wheel
+ spares;
as

8/4/2008 11:24

C Basics

9 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

b=
((spokes / spokes__ per_wheel)
+ spares
);
Exercises

Write C programs to perform the following tasks.

Exercise 12270

Input two numbers and work out their sum, average and sum of the squares of the numbers.
Exercise 12271

Input and output your name, address and age to an appropriate structure.

Exercise 12272

Write a program that works out the largest and smallest values from a set of 1€dimoutibers.
Exercise 12273

Write a program to read a "float" representing a number of degrees Celsiushaiad prifloat” the
equivalent temperature in degrees Fahrenheit. Print your results in a form such as

100.0 degrees Celsius converts to 212.0 degrees Fahrenheit.
Exercise 12274

Write a program to print several lines (such as your name and address). You mayeuseesral
printf instructions, each with a newline character in it, or one printf with sevevéihes in the string.

Exercise 12275

Write a program to read a positive integer at least equal to 3, and print out all possiiigations of
three positive integers less or equal to than this value.

Exercise 12276

Write a program to read a number of units of length (a float) and print out the areactd afdinat
radius. Assume that the value of pi is 3.14159 (an appropriate declaration will be given ydullby ce
select setup).

Your output should take the form: The area of a circle of radius ... units is units.

If you want to be clever, and have looked ahead in the notes, print the message Error: Nagatve
not permitted. if the input value is negative.

Exercise 12277

Given as input a floating (real) number of centimeters, print out the equivalent numéetr (@fteger)
and inches (floating, 1 decimal), with the inches given to an accuracy of one decimal plac

Assume 2.54 centimeters per inch, and 12 inches per foot.

8/4/2008 11:24

C Basics

10 of 10

http://www.cs.cf.ac.uk/Dave/C/node4.html#SECTION0O0E000000.

If the input value is 333.3, the output format should be:
333.3 centimeters is 10 feet 11.2 inches.
Exercise 12278

Given as input an integer number of seconds, print as output the equivalent time in hours, minut
seconds. Recommended output format is something like

7322 seconds is equivalent to 2 hours 2 minutes 2 seconds.
Exercise 12279
Write a program to read two integers with the following significance.

The first integer value represents a time of day on a 24 hour clock, so that 1245 represent aquer
mid-day, for example.

The second integer represents a time duration in a similar way, so that 345 repheseritours and 4!
minutes.

This duration is to be added to the first time, and the result printed out in the same notdtisicaset
1630 which is the time 3 hours and 45 minutes after 12.45.

Typical output might be Start time is 1415. Duration is 50. End time is 1505.
There are a few extra marks for spotting.

Start time is 2300. Duration is 200. End time is 100.

Dave Marshall
1/5/1999

8/4/2008 11:24

Conditionals http://www.cs.cf.ac.uk/Dave/C/node5.html#SECTIONO0S000000.
Subsections
e Theif statement
e The? operator
e Theswitch statement
e Exercises
Conditionals
This Chapter deals with the various methods that C can contrfdbthef logic in a program. Apart from slight syntactic variation they are similahier ot
languages.
As we have seen following logical operations exist in C:
==, 15|, &&
One other operator is the unitary - it takes only one argunmat -
These operators are used in conjunction with the following statements.
Theif statement
Theif statement has the same function as other languages. It has three basic forms:
if (expr essi on)
st at enent
...or:
if (expr essi on)
st at ement 1
else
statenent 2
...or:
if (expr essi on)
statenent 1
else if (expr essi on)
st at ement 2
else
statement 3
For example:-
int x,y,w;
main()
if (x>0)
zZ=w
else
{
z=y
e
}
The 2 operator
The? (ternary condition) operator is a more efficient form for expressing siniplstatements. It has the following form:
expressi on; ? expressiony: expressions
It simply states:
if expressions then EXpPressiony else €xpressions
For example to assign the maximunmacindb toz:
z=(a>b)?a:b;
which is the same as:
if (a>b)
zZ=a;
else
z=b;
1of2 8/4/2008 11:2%u

Conditionals http://www.cs.cf.ac.uk/Dave/C/node5.html#SECTIONO0S000000.

The swi t ch statement

The Cswitch is similar to Pascalsse statement and it allows multiple choice of a selection of items at one levebnélgional where it is a far neater way of
writing multipleif statements:

switch (expression){

case item:
statenent 1;
br eak;
case itenp:
stat ement 2;
br eak;
H case it
stat ement p;
br eak;
default:
statenment;
br eak;
}

In each case the valueit¢dm; must be a constant, variables areaitmwed.

Thebreak is needed if you want to terminate théch after execution of one choice. Otherwise the next case would get evaN@ted his is unlike most othe
languages.

We can also haveull statements by just including a ; or let the switch statefalirthrough by omitting any statements (seg. below).
Thedefault case is optional and catches any other cases.

For example:-

switch (letter)

case ‘A"
case 'E"
case I
case 'O"
case ‘U"
nu mberofvowels++;
br eak;
case "
nu mberofspaces++;
br eak;
default:
nu mberofconstants++;
br eak;
}
In the above example if the valuelafer is “A', *E', *I', "0’ or ‘U’ then numberofvo wels is incremented.
If the value of letter is * ' then numberofspaces i s incremented.
If none of these is true then the default condition is executed, that is numberofconstants is incremen ted.

Exercise 12304

Write a program to read two characters, and print their value when interpretedi@gt d&a@xadecimal number. Accept upper case letters for values from 10 to
Exercise 12305

Read an integer value. Assume it is the number of a month of the year; print out the natmaaftfha

Exercise 12306

Given as input three integers representing a date as day, month, year, print out the nymimertdand year for the following day's date.

Typical input: 28 2 1992 Typical output: Date following 28:02:1992 is 29:02:1992

Exercise 12307

Write a program which reads two integer values. If the first is less than tredsecint the message up. If the second is less than the first, print the message
If the numbers are equal, print the message equal If there is an error reading thentlataygssage containing the word Error and perform exit(0);

Dave Marshall
1/5/1999

2 of 2 8/4/2008 11:2%u

Looping and Iteration

1of6

Subsections

Thefor statement
Thewhile statement
Thedo-while statement
break andcontinue
Exercises

Looping and lteration

This chapter will look at C's mechanisms for controlling looping and iteration. Even thomgho$
these mechanisms may look familiar and indeed will operate in standard fashion thedirog.
NOTE: some non-standard features are available.

Thefor statement
The Cfor statement has the following form:

for (expressi ony; 2; expressiong)
st at ement ;
or {bl ock of statenents}

expression; initialises;expression? is the terminate tesgxpressions is the modifier (which may be
more than just simple increment);

NOTE: C basically treat®r statements aghile type loops

For example:
int x;
main()
for (x=3;x>0;x-)
pr intf("x=0%d \ n",x);
}
}
...outputs:
x=3
X=2
x=1
...to the screen
All the following are legal for statements in C. Th e practical application of such
statements is not important here, we are just tryin g to illustrate peculiar features

of C for that may be useful:-

for (x=0;((x>3) && (x<9)); X++)

for (x=0,y=4;((x>3) && (y<9)); x++ y+=2)

8/4/2008 11:2%u

http://www.cs.cf.ac.uk/Dave/C/node6.html#SECTION0O0B000000.

Looping and Iteration http://www.cs.cf.ac.uk/Dave/C/node6.html#SECTION0O0B000000.

2 of 6

for (x=0,y=4,z=4000;z; z/=10)
The second example shows that multiple expressions can be separated a ,.

In the third example the loop will continue to iter ate until z becomes 0;

The whi | e statement

Thewnhile statement is similar to those used in other languages although more can be done with
expression Statement -- a standard feature of C.

Thewhile has the form:

while (expressi on)

st at ement
For example:
int x=3;
main()
{ while (x>0)
{ printf("x=%d \ n",x);
X-,
}
}
...outputs:
x=3
X=2
x=1
...to the screen.
Because the while loop can accept expressions, not just conditions, the following are
all legal:-
while (x-);
while (x=x+1);
while (x+=5);
Using this type of expression, only when the result of x-, x=x+1, or x+=5, evaluates
to O will the while condition fail and the loop be exited.
We can go further still and perform complete operat ions within the while expressi on:
while (i++ < 10);
while ((ch = getchar()) = °q’)
putchar(ch);
The first example counts i up to 10.
The second example uses C standard library function s (See Chapter 18) getchar() -
reads a character from the keyboard - and putchar() - writes a given char to screen.
The while loop will proceed to read from the keyboa rd and echo characters to the
screen until a 'q' character is read. NOTE: This type of operation is used a lotin C
and not just with character reading!! (See Exercise s).

8/4/2008 11:2%u

Looping and Iteration http://www.cs.cf.ac.uk/Dave/C/node6.html#SECTION0O0B000000.

3 of 6

The do- whi | e Statement

C'sdo-while statement has the form:

do
st at enent ;
while (expr essi on);

It is similar to PASCAL'Sepeat ...untl excepido while expression is true.

For example:
int x=3;
main()
{do{
pr intf("x=%d \n",x-);
, }
while (x>0);
..outputs:-
x=3
X=2
x=1
NOTE: The postfix x- operator which uses the current val ue of x while printing and

t hen decrements x.

br eak andconti nue

C provides two commands to control how we loop:

e break -- exit form loop or switch.
e continue -- skip 1 iteration of loop.

Consider the following example where we read in integer values and process thetingdo the
following conditions. If the value we have read is negative, we wish to print an errageesxl
abandon the loop. If the value read is great than 100, we wish to ignore it and continue to the ne
in the data. If the value is zero, we wish to terminate the loop.

while (scanf(~"%d", &value) == 1 && value != 0) {

if (value < 0) {
pr intf(""lllegal value \n");
br eak;
* Abandon the loop */

}

if (value > 100) {
pr intf(""Invalid value \n");
co ntinue;
[* Skip to start loop again */

}

8/4/2008 11:2%u

Looping and Iteration http://www.cs.cf.ac.uk/Dave/C/node6.html#SECTION0O0B000000.

4 of 6

/* Process the val ue read */
[* guaranteed be tween 1 and 100 */

} /* end while value 1= 0 */

Exercises

Exercise 12327
Write a program to read in 10 numbers and compute the average, maximum and minimum value
Exercise 12328

Write a program to read in numbers until the number -999 is encountered. The sum of all nuinbe
until this point should be printed out.

Exercise 12329

Write a program which will read an integer value for a base, then read a posites atigten to that
base and print its value.

Read the second integer a character at a time; skip over any leading non-valid (icegihdeaween
zero and "base-1") characters, then read valid characters until an invalidrwwiigtered.

Input Output
10 1234 1234
8 77 63 (the value of 77 in base 8, octal)
2 1111 15 (the value of 1111 i n base 2, binary)

The base will be less than or equal to 10.
Exercise 12330

Read in three values representing respectively
a capital sum (integer number of pence),

a rate of interest in percent (float),

and a number of years (integer).

Compute the values of the capital sum with compound interest added over the given period of ye
Each year's interest is calculated as

interest = capital * interest_rate / 100;

and is added to the capital sum by

capital += interest;

Print out money values as pounds (pence / 100.0) accurate to two decimal places.

Print out a floating value for the value with compound interest for each year up to the end abthe |

Print output year by year in a form such as:

Original sum 30000.00 at 12.5 percent for 20 years

8/4/2008 11:2%u

Looping and Iteration

5 of 6

Year Interest Sum
3750.00 33750.00
4218.75 37968.75
4746.09 42714.84
5339.35 48054.19
6006.77 54060.96
6757.62 60818.58
7602.32 68420.90
8552.61 76973.51
9621.68 86595.19

10 10824.39 97419.58

O©CO~NOUOA~AWNE

Exercise 12331

http://www.cs.cf.ac.uk/Dave/C/node6.html#SECTION0O0B000000.

Read a positive integer value, and compute the following sequence: If the number is evan,ihidikve
odd, multiply by 3 and add 1. Repeat this process until the value is 1, printing out each value. Fir

print out how many of these operations you performed.

Typical output might be:

Inital value is 9
Next value is 28
Next value is 14
Next valueis 7
Next value is 22
Next value is 11
Next value is 34
Next value is 17
Next value is 52
Next value is 26
Next value is 13
Next value is 40
Next value is 20
Next value is 10
Next value is 5
Next value is 16
Next value is 8
Next value is 4
Next value is 2
Final value 1, number of steps 19

If the input value is less than 1, print a message containing the word

Error
and perform an

exit(0);

Exercise 12332

Write a program to count the vowels and letters in free text given as standard igouteRe

character at a time until you encounter end-of-data.

Then print out the number of occurrences of each of the vowels a, e, i, 0 and u in the text, the tot
number of letters, and each of the vowels as an integer percentage of the letter tota

Suggested output format is:

Numbers of characters:

a 3;e 2;i 0;o0 1;u O;res t 17
Percentages of total:
a 13%;e 8%;i 0%;0 4%;u 0%;res t 73%

Read characters to end of data using a construct such as

char ch;

8/4/2008 11:2%u

Looping and Iteration http://www.cs.cf.ac.uk/Dave/C/node6.html#SECTION0O0B000000.

6 of 6

while(
(ch=getchar())>=0

[* ch is the next character */

}

to read characters one at a time ugitghar() until a negative value is returned.
Exercise 12333

Read a file of English text, and print it out one word per line, all punctuation and non-alphsechare
being omitted.

For end-of-data, the program loop should read until "getchar" delivers a value <= 0. Whelmniyping
end the data by typing the end-of-file character, usually control-D. When reading fitepigetchar"
will deliver a negative value when it encounters the end of the file.

Typical output might be

Read
a
file
of
English
text
and
print
it
out
one

etc.

Dave Marshall
1/5/1999

8/4/2008 11:2%u

Arrays and Strings

1of3

http://www.cs.cf.ac.uk/Dave/C/node7.html#SECTIONOOG@O00000.

Subsections

¢ Single and Multi-dimensional Arrays

e Strings
e EXxercises

Arrays and Strings

In principle arrays in C are similar to those found in other languages. As we sh&yl stmarrays are
defined slightly differently and there are many subtle differences due thdiolobetween array and
pointers. We will look more closely at the link between pointer and arrays later ppe€Cha

Single and Multi-dimensional Arrays
Let us first look at how we define arrays in C:

int listofnumbers[50];

BEWARE: In C Array subscripts start @tand end one less than the array size. For example, in the
above case valid subscripts range from 0 to 49. Thi8lS&adifference between C and other languag
and does require a bit of practice to gethiaright frame of mind.

Elements can be accessed in the following ways:-

thirdnumber=listofnumbers[2];
listofnumbers[5]=100;

Multi-dimensional arrays can be defined as follows:

int tableofnumbers[50][50];
for two dimensions.

For further dimensions simply add more []:

int bigD[50][50][40][30]......[50];

Elements can be accessed in the following ways:

anumber=tableofnumbers[2][3];
tableofnumbers[25][16]=100;

Strings

In C Strings are defined as arrays of characters. For example, the followimesdestring of 50
characters:

char name[50];

C has no string handling facilities built in and so the following are all ilegal

8/4/2008 11:2%

Arrays and Strings http://www.cs.cf.ac.uk/Dave/C/node7.html#SECTIONOOG@O00000.

char firstname[50],lasthname[50],fullname[100];

firsthame= "Arnold"; /* lllegal */

lastname= "Schwarznegger"; /* llle gal */
fullname= "Mr"+firstname
+lastname; /* llle gal */
However, there is a special library of string handl ing routines which we will come

across later.
To print a string we use printf with a special % control character:
printf(""%s",name);

NOTE: We just need to give the name of the string.

In order to allow variable length strings the \0 character is used to indicate the

end of a string.

So we if we have a string, char NAME[50]; and we st ore the "DAVE" in it its
contents will look like:

NﬁME:|D|A|v|E|~u| | | | | |
a 49

Exercises

Exercise 12335

Write a C program to read through an array of any type. Write a C program to scan thioagtay to
find a particular value.

Exercise 12336

Read ordinary text a character at a time from the program's standard input, andvihreéach line
reversed from left to right. Read until you encounter end-of-data (see below).

You may wish to test the program by typing
prog5rev | progsrev

to see if an exact copy of the original input is recreated.

To read characters to end of data, use a loop such as either

char ch;

while(ch = getchar(), ch>=0) /*ch <0 indicates end-of-data */
or

char ch;

while(scanf("%c", &ch) == 1) /* one cha racter read */

Exercise 12337

Write a program to read English text to end-of-data (type control-D to indicate dathadt a terminal,
see below for detecting it), and print a count of word lengths, i.e. the total number of wordgloflle
which occurred, the number of length 2, and so on.

Define a word to be a sequence of alphabetic characters. You should allow for word lengths up t

2 of 3 8/4/2008 11:2%

Arrays and Strings

30f3

http://www.cs.cf.ac.uk/Dave/C/node7.html#SECTIONOOG@O00000.

letters.

Typical output should be like this:

length 1 : 10 occurrences
length 2 : 19 occurrences
length 3 : 127 occurrences
length 4 : 0 occurrences
length 5 : 18 occurrences

To read characters to end of data see above question.

Dave Marshall
1/5/1999

8/4/2008 11:2%

Functions

1of5

http://www.cs.cf.ac.uk/Dave/C/node8.html#SECTIONO08000000.

Subsections

void functions
Functions and Arrays
Function Prototyping
Exercises

Functions

C provides functions which are again similar masiguages. One difference is that C regaras() as function. Also unlike
some languages, such as Pascal, C does nophaoeglures -- it uses functions to service both requirements.

Let us remind ourselves of the form of a function:

returntype fn_name(1, paraneterdefyp, ==-=-)

| ocal vari abl es

functioncode
}

Let us look at an example to find the average af inegers:

float findaverage(float a, float b)
{ float average;

> average=(at+b)/2;
re turn(average);
}
We would cal | the function as follows:
main()
fl oat a=5,b=15,result;
re sult=findaverage(a,b);
pr intf("average=%f \ n",result);
}
Not e: The return statement passes the result back to the main program.

voi d functions

Thevoid function provide a way of emulating PASCAL typ®gedures.

If you do not want to return a value you must deereturn typeoid and miss out theturn statement:

void squares()

{int loop;
fo r (loop=1;loop<10;loop++);
printf("%d \ n",loop*loop);
}
main()
i > uares();

NOTE: We must have () even for no parameters unlike danguages.

Functions and Arrays

Single dimensional arrays can be passed to fureagrfollows:-

8/4/2008 11:30cu

Functions http://www.cs.cf.ac.uk/Dave/C/node8.html#SECTIONO08000000.

float findaverage(int size,float list[])

{inti;
fl oat sum=0.0;
fo r (i=0;i<size;i++)
sum+=list[i];
re turn(sum/size);
}
Here the declaratioffioat list[] tells C that list is an array of floa t. Not e we do not specify the
dimension of the array when itis a par anet er of a function.

Multi-dimensional arrays can be passed to
functions as follows:

void printtable(int xsize,int ysize,

float table[][5])
{intx.y;
fo r (x=0;x<xsize;x++)
{ for (y=0;y<ysize;y++)
printf(" \ 1%f" table[][y]
printf(" \ n");
}
}
Here float table[][5] tells C that table is an arra y of dimension N X 5 of float. Not e we must specify
the second (and subsequent) dimension of the array BUTnot the first dimension.

Function Prototyping

Before you use a function C must h&wmwledge about the type it returns and the parameter tifeefunction expects.

The ANSI standard of C introduced a new (bettery efadoing this than previous versions of C. (N@t#:new versions of C
now adhere to the ANSI standard.)

The importance of prototyping is twofold.

¢ |t makes for more structured and therefore easiezdd code.
¢ |t allows the C compiler to check tlsgntax of function calls.

How this is done depends on the scope of the fon¢Bee Chapte4). Basically if a functions has been definesfore it is
used (called) then you are ok to merely use thetfom.

If NOT then you mustleclare the function. The declaration simply states thpetthe function returns and the type of
parameters used by the function.

It is usual (and therefoigood) practice to prototype all functions at the stdrthe program, although this is not strictly
necessary.

To declare a function prototype simply state the type thecfion returns, the function name and in bracketsthie type of
parameters in the order they appear in the functeimition.

eg.

int strlen(char []);

This states that a function callselen returns an integer value and accepts a singlegysais a parameter.

NOTE: Functions can be prototyped and variables defomethe same line of code. This used to be morelpopupre-ANSI
C days since functions are usually prototyped sephrat the start of the program. This is stilffpetly legal though: order
they appear in the function definition.

eg.

int length, strlen(char []);

2 of 5 8/4/2008 11:30cu

Functions http://www.cs.cf.ac.uk/Dave/C/node8.html#SECTIONO08000000.

Herelength is a variablestrlen the function as before.

Exercises

Exercise 12346

Write a function ““replace" which takes a poinitea string as a parameter, which replaces allespimcthat string by minus

signs, and delivers the number of spaces it reglace

Thus

char *cat = "The cat sat";
n = replace(cat);

should set
cat to "The-cat-sat"
and

nto 2.

Exercise 12347

Write a program which will read in the source & @arogram from its standard input, and print olthe starred items in the
following statistics for the program (all as integje (Note the comment on tab characters at theoetids specification.)

Print out the following values:

Lines:
* The total number of lines
* The total number of blank lines
(Any lines consisting entirely of white spa
considered as blank lines.)
The percentage of blank lines (100 * blank_lin

Characters:
* The total number of characters after tab expan
* The total number of spaces after tab expansion
* The total number of leading spaces after tab e
(These are the spaces at the start of a line,
character; ignore them if there are no visi
The average number of
characters per line
characters per line ignoring leading spaces
leading spaces per line
spaces per line ignoring leading spaces

Comments:
* The total number of comments in the program
* The total number of characters in the comments
excluding the "/*" and "*/" thenselves
The percentage of number of comments to total |
The percentage of characters in comments to cha

Identifiers:

We are concerned with all the occurrences of "i
program where each part of the text starting
and continuing with letter, digits and unders
to be an identifier, provided that it is not

in a comment,
or in a string,
or within primes.
Note that
"abc\"def"
the internal escaped quote does not close t
Also, the representation of the escape char
W
and of prime is
A\
Do not attempt to exclude the fixed words of
treat them as identifiers. Print
* The total number of identifier occurrences.
* The total number of characters in them.
The average identifier length.

Indenting:
* The total number of times either of the follow
a line containing a "}" is more indented than
a line is preceded by a line containing a "{"
indented than it.
The "{" and "}" must be ignored if in a comme
primes, or if the other line involved is en
A single count of the sum of both types of erro

30of5

ce should be

es / lines)

sion

Xpansion
before any visible
ble characters.)

in the program

ines
racters

dentifiers" in the
with a letter,
cores is considered

he string.
acter is

the language,

ing occurs:
the preceding line
and is less

nt or string or
tirely comment.
ris required.

8/4/2008 11:30cu

Functions http://www.cs.cf.ac.uk/Dave/C/node8.html#SECTIONO08000000.

NOTE: All tab characters (") on input should beerpreted as multiple spaces using the rule:

"move to the next modulo 8 column”
where the first column is numbered column 0.
col before tab | col after tab

| 8
| 8
| 8
| 16
| 16
| 16
| 24

=
Shoo~Nro

To read input a character at a time the skeletsrchede incorporated to read a line at a time forysing

char ch;
ch = getchar();

Which will deliver each character exactly as reHue "getline" function then puts the line just réadhe global array of
characters "linec", null terminated, and delivérs iength of the line, or a negative value if ehdata has been encountered.

You can then look at the characters just read (fdthexample)

switch(linec[0]) {
case '" [* space */

break;

case '\t': /* tab character */
break;

case '\n": /* newline ... */
break;

}/* end switch */

End of data is indicated by scanf NOT delivering #alue 1.

Your output should be in the following style:

Total lines 126

Total blank lines 3

Total characters 3897
Total spaces 1844
Total leading spaces 1180
Total comments 7
Total chars in comments 234

Total number of identifiers 132
Total length of identifiers 606
Total indenting errors 2

You may gather that the above program (togethdr thi¢ unstarred items) forms the basis of parbof ynarking system! Do
the easy bits first, and leave it at that if sorsgests worry you. Come back to me if you think mlgson (or the specification)
is wrong! That is quite possible!

Exercise 12348

It's rates of pay again!

Loop performing the following operation in your gram:

Read two integers, representing a rate of pay @pechour) and a number of hours. Print out the tmay, with hours up to 4(
being paid at basic rate, from 40 to 60 at rateahalf, above 60 at double-rate. Print the payamds to two decimal places

Terminate the loop when a zero rate is encountéethe end of the loop, print out the total pay.
The code for computing the pay from the rate andt$és to be written as a function.

The recommended output format is something like:

Pay at 200 pence/hr for 38 hours is 76.00 p ounds

Pay at 220 pence/hr for 48 hours is 114.40 pounds
Pay at 240 pence/hr for 68 hours is 206.40 pounds
Pay at 260 pence/hr for 48 hours is 135.20 pounds
Pay at 280 pence/hr for 68 hours is 240.80 pounds
Pay at 300 pence/hr for 48 hours is 156.00 pounds

Total pay is 928.80 pounds

The “program features" checks that explicit valsiech as 40 and 60 appear only once #asfiae or initialised variable
value. This represents good programming practice.

4 of 5 8/4/2008 11:30cu

Functions http://www.cs.cf.ac.uk/Dave/C/node8.html#SECTIONO08000000.

Dave Marshall
1/5/1999

50f5 8/4/2008 11:30cu

Further Data Types http://www.cs.cf.ac.uk/Dave/C/node9.html#SECTIONO09000000.

Subsections

e Structures

o Defining New Data Types
Unions
Coercion or Type-Casting
Enumerated Types
Static Variables
Exercises

Further Data Types

This Chapter discusses how more advanced data types and structures can be creatdhaa€use
program.

Structures

Structures in C are similar to records in Pascal. For example:

struct gun
char name[50];
int magazinesize;
float calibre;

h

struct gun arnies;

defines a new structug@n and makes arnies an instance of it.

NOTE: thatgunis a t ag for the structure that serves as shorthand for fut ure

declarations. We now only need to say struct gun an d the body of the structure is

implied as we do to make the arnies variable. The t agis optional.

Variables can also be declared between the } and ; of a struct declaration, i.e.:
struct gun

char name[50];
int magazinesize;
float calibre;
} arnies;
struct's can be pre-initialised at declaration:
struct gun arnies={"Uzi",30,7};
which gives arnie a 7mm. Uzi with 30 rounds of ammu nition.

To access a member (or field) of a struct, C provid es the . operator. For example, to
give arnie more rounds of ammunition:

arnies.magazineSize=100;

Defining New Data Types

typedef can also be used with structures. The following creates a newagtyp&vhich is of type

1of5 8/4/2008 11:3Z

Further Data Types http://www.cs.cf.ac.uk/Dave/C/node9.html#SECTIONO09000000.

structgun and can be initialised as usual:

typedef struct gun

char name[50];
int magazinesize;
float calibre;
}agun;

agun arnies={"Uzi",30,7};

Heregun still acts as a t ag to the struct and is optional. Indeed since we hav e
defined a new data type it is not really of much us e,
agun is the new data type. arnies is a variable of type agun which is a structure.

C also allows arrays of structures:

typedef struct gun

char name[50];
int magazinesize;
float calibre;
}agun;

agun arniesguns[1000];

This gives arniesguns a 1000 guns. This may be used in the following way:

arniesguns[50].calibre=100;

gives Arnie's gun number 50 a calibre of 2100mm, and

itscalibre=arniesguns|0].calibre;

assigns the calibre of Arnie's first gun to itscali bre.

Unions

A union is a variable which may hold (at different times) objects of differerg aize types. C uses th
union Statement to create unions, for example:

union number

short shortnumber;

long longnumber;

double floatnumber ;
} anumber

defines a union callegimber and an instance of it called anumber. number is a union t ag
and acts in the same way as a tag for a structure.

Members can be accessed in the following way:

printf("%ld \ n",anumber.longnumber);
This clearly displays the value of longnumber.

When the C compiler is allocating memory for unions it will always reserve enough
room for the largest member (in the above example t his is 8 bytes for the double).

2 of 5 8/4/2008 11:3Z

Further Data Types http://www.cs.cf.ac.uk/Dave/C/node9.html#SECTIONO09000000.

In order that the program can keep track of the typ e of union variable being used at
a given time it is common to have a structure (with union embedded in it) and a
variable which flags the union type:

An example is:

typedef struct
{ int maxpassenger S;
}iet;

typedef struct
{ int liftcapacity ;
} helicopter;

typedef struct
{ int maxpayload;
} cargoplane;

typedef union
{jetjetu;
he licopter helicopteru;
ca rgoplane cargoplaneu;
} aircraft;
typedef struct
{ aircrafttype kin d;
in t speed;
ai rcraft description;

} an_aircraft;

This example defines a base union aircraft which ma y either be jet, helicopter, or
cargoplane.
In the an_aircraft structure there is a kind member which indicates which structure

is being held at the time.

Coercion or Type-Casting

C is one of the few languages to allogercion, that is forcing one variable of one type to be anothe
type. C allows this using the cast operatarSo:

int integernumber;
float floatnumber=9.87;

integernumber=(int)floatnumber;

assigns 9 (the fractional part is thrown awayht@ernumber.

And:

int integernumber=10;
float floatnumber;

floatnumber=(float)integernumber;

assigns 10.0 to floatnumber.

Coercion can be used with any of the simple data ty pes including char, so:

30of5 8/4/2008 11:3Z

Further Data Types

4 of 5

http://www.cs.cf.ac.uk/Dave/C/node9.html#SECTIONO09000000.

int integernumber;
char letter="A’;

integernumber=(int
assigns 65 (the ASCII code for "A') to integernumbe
Some typecasting is done automatically -- this is m
A good rule to follow is: If in doubt cast.

Another use is the make sure division behaves as re
internumber and anotherint and we want the answer t

e.g.
floatnumber =
(float) internumber / (float) anot

ensures floating point division.

Enumerated Types

)letter;
r.

ainly with integer compatibility.

quested: If we have two integers
0 be a float then :

herint;

Enumerated types contain a list of constants that can be addressed in integer values.

We can declare types and variables as follows.
enum days {mon, tues, ..., sun} week;

enum days week1, week2;

NOTE: As with arrays first enumerated name has index value fofbas value Opes 1, and so on.

weekl andweek2 are variables.

We can define other values:

enum escapes { bell =~ \a‘,
backspace = \b', tab =" \t',
newline =" \n', vtab =" \v',

return = \r‘};

We can also override the O start value:

enum months {jan = 1, feb, mar, , dec};

Here it is implied that feb = &c.

Static Variables

8/4/2008 11:3Z

Further Data Types http://www.cs.cf.ac.uk/Dave/C/node9.html#SECTIONO09000000.

A static variable is locato particular function. However, it is only initialised once (on the first call
function).

Also the value of the variable on leaving the function remaiast. On the next call to the function tt
thestatic variable has the same value as on leaving.

To define astatic variable simply prefix the variable declaration with ¢heic keyword. For
example:

void stat(); /* prototype fn */

main()
{inti;
for (i=0;i<5;++ i)
st at();
}
stat()
int auto_var = 0;
static int static__ var = 0;
printf(“"auto = % d, static = %d \n
au to_var, static_var);
++auto_var;
++static_var;
}
Output is:

auto_var = 0, static_ var=0
auto_var = 0, static_ var=1
auto_var = 0, static_var =2
auto_var = 0, static_var =3
auto_var = 0, static_var =4

Clearly the auto_var variable is created each time. The static_var is created once
and remembers its value.

Exercises

Exercise 12386

Write program using enumerated types which when given today's date will print outderaatate in
the for 31st January, for example.

Exercise 12387

Write a simple database program that will store a persons details such datagé birth, addrestc.

Dave Marshall
1/5/1999

50f5 8/4/2008 11:3Z

Pointers http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

Subsections

e What is a Pointer?
e Pointer and Functions
Pointers and Arrays
Arrays of Pointers
Multidimensional arrays and pointers
Static Initialisation of Pointer Arrays
Pointers and Structures
Common Pointer Pitfalls
o Not assigning a pointer to memory address before using it
o lllegal indirection
Exercise

Pointers

Pointer are a fundamental part of C. If you cannot use pointers properly then you havey hasticdill
the power and flexibility that C allows. The secret to C is in its use of pointers.

C usexointers a lot Why?:

e It is the only way to express some computations.
e It produces compact and efficient code.
e It provides a very powerful tool.

C uses pointers explicitly with:
e Arrays,
e Structures,

e Functions.

NOTE: Pointers are perhaps the most difficult part of C to understand. C's implementaligintlig
different DIFFERENTfrom other languages.

What is a Pointer?

A pointer is a variable which contains the address in memory of another variable. Weecarpbanter
to any variable type.

Theunary or monadic operato& gives the “address of a variable".
Theindirection or dereference operatogives the ““contents of an objgcinted to by a pointer".
To declare a pointer to a variable do:

int *pointer;

NOTE: We must associate a pointer to a particular type: You can't assign the addr&ssroird to a
long int, for instance.

Consider the effect of the following code:

1of11 8/4/2008 11:33u

Pointers

2 of 11

http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

intx=1,y=2;
int *ip;
ip = &X;
y =*ip;
X =ip;
*ip=3;

It is worth considering what is going on at thachine level in memory to fully understand how pointe

work. Consider Fig9.1 Assume for the sake of this discussion that variakdgdes at memory

location 100, y at 200 and ip at 1000. Not e A pointer is a variable and thus its
values need to be stored somewhere. It is the natur e of the pointers value that is
new.
mtx=1 y=2;
int *ip;
lp = &K.
X 1 v 2 ip 100
10a 200 100
¥= *IP.
X 1 v 1 ip 100
10a 200 100
x=ip,
b 100 y 2 ip 100
10a 200 100
*lp =5
X 3 v 2 ip 100
10a 200 100

Fig. 9.1 Pointer, Variables and Menory Now the assignments x = 1 and y = 2 obviously

load these values into the variables. ip is declare dto bea poi nter to an integer
and is assigned to the address of x (&x). So ip get s loaded with the value 100.

Next y gets assigned to the cont ents of ip. In this example ip currently poi nt s to
memory location 100 -- the location of x. So y gets assigned to the values of x --

which is 1.

We have already seen that C is not too fussy about assigning values of different

type. Thus it is perfectly | egal (although not all that common) to assign the curre nt
value of ip to x. The value of ip at this instant i s 100.

Finally we can assign a value to the contents of a pointer (*ip).

| MPORTANT: When a pointer is declared it does not point anyw here. You must set it to

point somewhere before you use it.

So ...

int *ip;
*ip = 100;
will generate an error (program crash!!).

The correct use is:

8/4/2008 11:33u

Pointers http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.
int *ip;
int x;

ip = &X;
*ip = 100;

We can do integer arithmetic on a pointer:

float *flp, *flq;
*flp = *flp + 10;
++*flp;
(*flp)++;
flg = flp;

NOTE: A pointer to any variable type is an address in m emory -- which is an integer
address. A pointer is definitely NOT an integer.

The reason we associate a pointer to a data type is so that it knows how many bytes
the data is stored in. When we increment a pointer we increase the pointer by one
““block" memory.

So for a character pointer ++ch_ptr adds 1 byte to the address.
For an integer or float ++ip or ++flp adds 4 bytes to the address.
Consider a float variable (fl) and a pointer to a f loat (flp) as shown in Fig. 9.2.

1 float {dbyies)
-

ALl
flp
+Hlp flp+2
Fig. 9.2 Pointer Arithnetic Assume that flp points to fl then if we increment the
pointer (++flp) it moves to the position shown 4 b ytes on. If on the other hand we
added 2 to the pointer then it moves 2 float positions i.e8bytes asshowninthe
Figure.

Pointer and Functions

Let us now examine the close relationship between pointers and C's other major @avit sWrt with
functions.

When C passes arguments to functions it passes them by value

There are many cases when we may want to alter a passed argument in the functioceianthe new
value back once to function has finished. Other languages de.thiga(parameters in PASCAL). C
uses pointers explicitly to do this. Other languages mask the fact that poisteusidérpin the
implementation of this.

The best way to study this is to look at an example where we must be able to receied chang
parameters.

Let us try and write a function to swap variables around?
The usual functiorall:

swap(a, b) WON'T WORK.

3of11 8/4/2008 11:33u

Pointers http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

Pointers provide the solutioRass the address of the variables to the functions and access address of
function.

Thus our function call in our program would look like this:
swap(&a, &b)

The Code to swap is fairly straightforward:

void swap(int *px, int *py)
{int temp;

temp = *px;
[* contents of poi nter */

*pX = *py;
*py = temp;
}

We can return pointer from functions. A common example is when passing back streaures.

typedef struct {float x,y,z;} COORD;

main()
{ COORD p1, *coord_fn();
[* declare fn to return ptr of
CO ORD type */
51 = *coord_fn(...);
[* assign contents of address returned */
}
COORD *coord_fn(...)
{ COORD p;
p =
I* assign structure values */
re turn &p;
* return address of p */
}
Here we return a pointer whose contents are immedia tely unw apped into a variable. We
must do this straight away as the variable we point ed to was local to a function that
has now finished. This means that the address space is free and can be overwritten.
It will not have been overwritten straight after th e function ha squit though so this

is perfectly safe.

Pointers and Arrays

Pointers and arrays are very closely linked in C.
Hint: think of array elements arranged in consecutive memory locations.

Consider the following:

int a[10], x;

4 of 11 8/4/2008 11:33u

Pointers

5o0f 11

http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

int *pa;
pa = &a[0]; /* pa pointer to addr

X = *pa,
[* x = contents of pa (a[0] in thi

[9

al LTI T

pa +pa pati

Fig. 9.3 Arrays and Pointers

ess of a[0] */

s case) */

To get somewhere in the array (Fg3) using a pointer we could do:

pa+i = a|i]

WARNI NG There is no bound checking of arrays and pointers

beyond array memory and overwrite other things.
C however is much more subtle in its link between a

For example we can just type

pa=a;
instead of

pa = &al[0]
and

a[i] can be written as *(a + i).
i.e. &[] =a+i.

We also express pointer addressing like this:

pali] = *(pa +1).

However pointers and arrays are different:

® A pointer is a variable. We can do
pa =a and pat++.

S0 you can easily go

rrays and pointers.

® An Array is not a variable. a = pa and a++ ARE ILLEGAL.

This stuff is very important. Make sure you underst
this.

We can now understand how arrays are passed to func

When an array is passed to a function what is actua
location in memory.

So:

strlen(s) = strlen(&s[0])
This is why we declare the function:
int strlen(char s[]);

An equivalent declaration is : int strlen(char *s);
since char s[] = char *s.

strlen() is a standard |i brary function (Chapter
string. Let's look at how we may write a function:

and it. We will see a lot more of

tions.

lly passed is its initial elements

18) that returns the length of a

8/4/2008 11:33u

Pointers http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.
int strlen(char *s)
{char*p =s;

while (*p 1= \Oy;

p++;
return P-S;

}

Now lets write a function to copy a string to anoth er string. strcpy() is a standard
library function that does this.

void strcpy(char *s, char *t)

{ while ((s++ = *t++) 1= ° \ O

This uses pointers and assignment by value.
Very Neat!!

NOTE: Uses of Null statements with while.

Arrays of Pointers

We can have arrays of pointers since pointers are variables.
Example use

Sort lines of text of different length.

NOTE: Text can't be moved or compared in a single operation.

Arrays of Pointers are a data representation that will cope efficiently and conveniently witlohearia
length text lines.

How can we do this?:

e Store lines end-to-end in one kigr array (Fig9.4). '\n will delimit lines.

e Store pointers in a different array where each pointer points to 1st char of eachenew li
e Compare two lines usirgremp() standard library function.
e If 2 lines are out of order -- swap pointer in pointer array (noj.text

TEXT: ABC. .\nDEF..... MCAT. A

F[0] P[] P[]

3

__—--| LB |
[——m=[DEF | 1] ><Z{CAT |
2[f——mfcaT | 2 DEF |

Fig. 9.4 Arrays of Pointers (String Sorting Example)

a _——h-|ABC | 0

6 of 11 8/4/2008 11:33u

Pointers

7 of 11

http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

This eliminates:

e complicated storage management.
¢ high overheads of moving lines.

Multidimensional arrays and pointers

We should think of multidimensional arrays in a different way in C:
A 2D arrayisreally a 1D array, each of whose elementsisitself an array
Hence

a[n][m] notation.
Array elements are stored row by row.

When we pass a 2D array to a function we must specify the number of columns -- the numbgiliof
irrelevant.

The reason for this is pointers again. C needs to know how many columns in order that it caarjur
row to row in memory.

Consideint a[5][35] to be passed in a function:
We can do:

f(int a[l[35]) {.....}
or even:

f(int (*a)[35]) {.....}

We need parenthesis (*a) since [] have a higher precedence than *

So:
int (*a)[35] ; declares a pointer to an array ofi@5s.
int *a[35]; declares an array of 35 pointersnios.

Now lets look at the (subtle) difference between pointers and arrays. Strirrgsamenon application
of this.

Consider:
char *name[10];

char Aname[10][20];
We can legally deame[3][4] andAname[3][4] in C.
However

® Anameis a true200 element 2D char array.
e access elements via
20*row + col + base address
in memory.

8/4/2008 11:33u

Pointers

8 of 11

http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

¢ name has 10 pointer elements.

NOTE: If each pointer imame is set to point to a 20 element array then and onlywhé&00 chars be

set aside (+ 10 elements).

The advantage of the latter is that each pointer can point to arrays be of difiegémt le

Consider:

char *name[] = { “'no month", “jan",

“feb”, ..}
char Aname[][15] = { “'no month", “jan",
“feb”, .)
ANA e 15 Elements
i -
i nio roondhid
janyd
feb'd
15
¥
Iarne
o[mone
1 ___....
e —T

Fig. | 2D Arrays and Arrays of Pointers

Static Initialisation of Pointer Arrays

Initialisation of arrays of pointers is an ideal application for an internad staity.

some_fn()
{ static char *months = { “"'no mo nth",
h jan", “feb",

}

static reserves a private permanent bit of memory.

Pointers and Structures

These are fairly straight forward and are easily defined. Consider the fajtowi

struct COORD {float x,y,z;} pt;
struct COORD *pt_ptr;

pt_ptr = &pt; /* assigns pointer to pt */

8/4/2008 11:33u

Pointers

9 of 11

http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

the — > operator lets us access a member of the structure pointed to by aipminter.

pt ptr — Z>x=1.0;

ptptr — >y=ptptr —>y-3.0;

Example: Linked Lists

typedef struct { int value;

EL EMENT *next;
} ELEMENT;
ELEMENT n1, n2;
nl.next = &n2;
ralue *hext ralue et
RSN
nl n2

Fig. I Linking Two NodesNOTE: We can only declareext as a pointer to ELEMENT. We
cannot have a element of the variable type as this would set up a recursive
definition which is NOT ALLOWED. We are allowed to set a pointer reference since 4

bytes are set aside for any pointer.

The above code links a node nl to n2 (Fig. 9.6) we will look at this matter further
in the next Chapter.

Common Pointer Pitfalls

Here we will highlight two common mistakes made with pointers.

Not assigning a pointer to memory address before using it

int *x;
*x = 100;
we need a physical location say: int y;
X = &y;
*x = 100;
This may be hard to spddO COMPILER ERROR . Also x could some random address at
initialisation.

lllegal indirection

Suppose we have a functiealloc() which tries to allocate memory dynamically (at run time) and
returns a pointer to block of memory requested if successfuliorigpointer

8/4/2008 11:33u

Pointers

10 of 11

http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

otherwise.
char *malloc() -- a standard library function (see later).

Let us have a pointethar *p

Consider:
*p = (char *) malloc(100); /* request 100 bytes of memory */
P=Ys

There is mistake above. What is it?

No *in

*p = (char *) malloc(100);
Malloc returns a pointer. Alspdoes not point to any address.
The correct code should be:

p = (char *) malloc(100);

If code rectified one problem is if no memory is available@reNULL Therefore we can't do:
P=YS

A good C program would check for this:

p = (char *) malloc(100);

if (p == NULL)
{ printf(""Error: Out of Memory .\n");
ex it(1);
)
P=Y,
Exercise

Exercise 12453

Write a C program to read through an array of any type using pointers. Write a C progican
through this array to find a particular value.

Exercise 12454

Write a program to find the number of times that a given word(i.e. a short string) mcawgentence
(i.e. a long string!).

Read data from standard input. The first line is a single word, which is followed bylgexéon the
second line. Read both up to a newline character, and insert a terminating null befosermroces

Typical output should be:

The word is "the".
The sentence is "the cat sat on the mat".
The word occurs 2 times.

8/4/2008 11:33u

Pointers http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTIONO00000000.

Exercise 12455

Write a program that takes three variable (a, b, b) in as separate parantetetatas the values store
so that value a goes to be, b, to c and c to a.

Dave Marshall
1/5/1999

11 of 11 8/4/2008 11:33u

Dynamic Memory Allocation and Dynamic Structures phttvww.cs.cf.ac.uk/Dave/C/nodel1.htmi#SECTIONOCIA@O0O..

1of5

Subsections

Malloc, Sizeof, and Free
Calloc and Realloc
Linked Lists

Full Programygueue.c
Exercises

Dynamic Memory Allocation and Dynamic
Structures

Dynamic allocation is a pretty unique feature to C (amongst high level languagesdples us to creat
data types and structures of any size and length to suit our programs neetheighrisgram.

We will look at two common applications of this:

e dynamic arrays
e dynamic data structueeg. linked lists

Malloc, Sizeof, and Free

The Functiommalloc is most commonly used to attempt to “"grab" a continuous portion of memon
defined by:

void *malloc(size_t number_of_bytes)

That is to say it returns a pointer of typ& * that is the start in memory of the reserved portion of
sizenumber_of_bytes . If memory cannot be allocatedvaLL pointer is returned.

Since avoid * is returned the C standard states that this pointer can be converted to any type. Tl
size_t argument type is defined sdlib.n and is arunsigned type.

So:

char *cp;
cp = malloc(100);

attempts to get 100 bytes and assigns the start addigss to

Also it is usual to use the sizeof() function to sp ecify the number of bytes:

int *ip;

ip = (int *) malloc(100*sizeof(int);

Some C compilers may require to cast the type of co nversion. The (int *) means
coercion to an integer pointer. Coercion to the cor rect pointer type is very
important to ensure pointer arithmetic is performed correctly. | personally use it as
a means of ensuring that | am totally correct in my coding and use cast all the time.
It is good practice to use sizeof() even if you kno w the actual size you want -- it

makes for device independent (portable) code.

8/4/2008 11:34

Dynamic Memory Allocation and Dynamic Structures phttvww.cs.cf.ac.uk/Dave/C/nodel1.htmi#SECTIONOCIA@O0O..

2 of 5

sizeof can be used to find the size of any data typ e, variable or structure. Simply
supply one of these as an argument to the function.

SO:
inti;
struct COORD f{float x,y,z};
typedef struct COORD PT;
sizeof(int), sizeof(i),
sizeof(struct COORD) and
sizeof(PT) are all ACCEPTABLE
In the above we can use the link between pointers a nd arrays to treat the reserved
memory like an array. i . e we can do things like:
ip[0] = 100;
or

for(i=0;i<100;++i) scanf("%d",ip++);

When you have finished using a portion of memory yo u should always free() it. This
allows the memory f r eed to be aavailable again, possibly for further mallo c() calls
The function free() takes a pointer as an argument and frees the memory to which the

pointer refers.

Calloc and Realloc

There are two additional memory allocation functiaripc() andRealloc() . Their prototypes are
given below:

void *calloc(size_t num_elements, size_t element_si ze};

void *realloc(void *ptr, size_t new_size);

Malloc does not initialise memory (@ro) in any way. If you wish to initialise memory then use
calloc . Calloc there is slightly more computationally expensive but, occasionally, mrorergent thar

malloc. Also note the different syntax betweetbc andmalloc in thatcalloc takes the number of
desired elementaym_elements , and element_sizelement_size , as two individual arguments.

Thus to assign 100 integer elements that are all initially zero you would do:

int *ip;
ip = (int *) calloc(100, sizeof(in t));

Realloc is a function which attempts to change the size of a previous allocated block
of memory. The new size can be larger or smaller. | f the block is made larger then
the old contents remain unchanged and memory is add ed to the end of the block. If the
size is made smaller then the remaining contents ar e unchanged.
If the original block size cannot be resized then r ealloc will attempt to assign a
new block of memory and will copy the old block con tents. Note a new pointer (of
different value) will consequently be returned. You nmust use this new value. If new
memory cannot be reallocated then realloc returns N ULL.
Thus to change the size of memory allocated to the *ip pointer above to an array

block of 50 integers instead of 100, simply do:

ip = (int *) calloc(ip, 50);

8/4/2008 11:34

Dynamic Memory Allocation and Dynamic Structures

30of5

Linked Lists

Let us now return to our linked list example:

typedef struct { int value;
E
} ELEMENT;

We can now try to grow the list dynamically:

link = (ELEMENT *) malloc(sizeof(ELEMENT));

This will allocate memory for a new link.

If we want to deassign memory from a pointer use th

free(link)

phttvww.cs.cf.ac.uk/Dave/C/nodel1.htmi#SECTIONOCIA@O0O..

LEMENT *next;

e free() function:

See Exanpl e prograns (queue.c) below and try exercises for further practice.

Full Program: queue. c

A gueue is basically a special case of a linked list where one data elementgdistat the left end

and leaves in a ordered fashion at the other end.

The full listing forqueue.c is as follows:

/*
/* queue.c
/* Demo of dynamic data structures in C

#include <stdio.h>

#define FALSE O
#define NULL O

typedef struct {

int dataitem;

struct listelement *link;
} listelement;

void Menu (int *choice);

listelement * AddItem (listelement * listpointer, i
listelement * Removeltem (listelement * listpointer
void PrintQueue (listelement * listpointer);

void ClearQueue (listelement * listpointer);

main () {
listelement listmember, *listpointer;
int data,
choice;

listpointer = NULL;
do {
Menu (&choice);
switch (choice) {
case 1:
printf ("Enter data item value to a
scanf ("%d", &data);
listpointer = AddItem (listpointer,
break;
case 2:
if (listpointer == NULL)

*/
*/

nt data);
);

dd "),

data);

8/4/2008 11:34

Dynamic Memory Allocation and Dynamic Structures

printf ("Queue empty\n");
else
listpointer = Removeltem (listp
break;
case 3:
PrintQueue (listpointer);
break;

case 4.
break;

default:
printf ("Invalid menu choice - try
break;

} while (choice = 4);
ClearQueue (listpointer);
/* main */

void Menu (int *choice) {
char local;

printf ("\nEnter\tl to add item,\n\t2 to remove
\t3 to print queue\n\t4 to quit\n™);
do {
local = getchar ();
if ((isdigit (local) == FALSE) && (local !=
printf ("\nyou must enter an integer.\n
printf ("Enter 1 to add, 2 to remove, 3

}
} while (isdigit ((unsigned char) local) == FAL
*choice = (int) local - '0';

listelement * AddItem (listelement * listpointer, i
listelement * Ip = listpointer;

if (listpointer = NULL) {

while (listpointer -> link '= NULL)
listpointer = listpointer -> link;

listpointer -> link = (struct listelement

listpointer = listpointer -> link;

listpointer -> link = NULL,;

listpointer -> dataitem = data;

return Ip;

else {
listpointer = (struct listelement *) mallo
listpointer -> link = NULL,;
listpointer -> dataitem = data;
return listpointer;
}
}

listelement * Removeltem (listelement * listpointer

listelement * tempp;

printf ("Element removed is %d\n", listpointer
tempp = listpointer -> link;

free (listpointer);

return tempp;

}

void PrintQueue (listelement * listpointer) {

if (listpointer == NULL)
printf ("queue is empty\n");
else
while (listpointer '= NULL) {
printf ("%d\t", listpointer -> dataitem
listpointer = listpointer -> link;

3
printf ("\n");

4 of 5

phttvww.cs.cf.ac.uk/Dave/C/nodel1.htmi#SECTIONOCIA@O0O..

ointer);

again\n");

item\n\

"')_n')) {
té print, 4 to quit\n™);

SE);

nt data) {

*) malloc (sizeof (listelement));

c (sizeof (listelement));

)

-> dataitem);

8/4/2008 11:34

Dynamic Memory Allocation and Dynamic Structures phttvww.cs.cf.ac.uk/Dave/C/nodel1.htmi#SECTIONOCIA@O0O..

50f5

}

void ClearQueue (listelement * listpointer) {

while (listpointer '= NULL) {
listpointer = Removeltem (listpointer);
}

}

Exercises

Exercise 12456

Write a program that reads a number that says how many imiegprers are to be stored in an array,
creates an array to fit the exatze of the data and then reads in that many numbers into the array.

Exercise 12457
Write a program to implement the linked list as described in the notes above.
Exercise 12458

Write a program to sort a sequence of numbers using a binary tree (Using PoinbangyyAree is a
tree structure with only two (possible) branches from each nodel(Fily. Each branch then represen
a false or true decision. To sort numbers simply assign the left branch to take nesgtdrar the nod
number and the right branch any other number (greater than or equal to). To obtain a sartgaist
search the tree in a depth first fashion.

EG BORT 21125361

11

3 &

Fig. 10.1 Example of a binary tree sortYour program should: Create a binary tree structure. Creal
routines for loading the tree appropriately. Read in integer numbers terminatedrby &art numbers
into numeric ascending order. Print out the resulting ordered values, printing ten numhbeesgsefar
as possible.

Typical output should be

The sorted values are:
24667910111111
151617 18202021 212324
27 2829 30

Dave Marshall
1/5/1999

8/4/2008 11:34

Advanced Pointer Topics http://www.cs.cf.ac.uk/Dave/C/node12.html#SECTIONRO000000.

1of5

Subsections

Pointers to Pointers
Command line input
Pointers to a Function
Exercises

Advanced Pointer Topics

We have introduced many applications and techniques that use pointers. We have introduced sc
advanced pointer issues already. This chapter brings together some topics we figvedniiened
and others to complete our study C pointers.

In this chapter we will:

e Examine pointers to pointers in more detail.
e See how pointers are used in command line input in C.
e Study pointers to functions

Pointers to Pointers

We introduced the concept of a pointer to a pointer previously. You can have a pointer to a point
any type.

Consider the following:

char ch; /* a character */
char *pch; /* a pointer to a character */
char **ppch; /* a pointer to a pointer to a charact er*/

We can visualise this in Figufiel.1 Here we can see thappch refers to memory address*péh
which refers to the memory address of the variabldut what does this mean in practice?

ppch pch ch

Fig. 11.1 Pointers to pointersRecall thathar * refers to aNULL terminated string. So one common
and convenient notion is to declare a pointer to a pointer to a string (Eigdre

— - | E— L

ppch pch

Fig. 11.2Pointer to String Taking this one stage further we can have several strings being pointe
the pointer (Figurd 1.3

8/4/2008 11:36ru

Advanced Pointer Topics http://www.cs.cf.ac.uk/Dave/C/node12.html#SECTIONRO000000.

2 of 5

ppch Y

pch

Fig. 11.3Pointer to Several StringsWe can refer to individual strings bych[0], ppch[1],
Thus this is identical to declarirgar *ppch[]

One common occurrence of this type is in C command line argument input which we now consid

Command line input

C lets read arguments from the command line which can then be used in our programs.

We can type arguments after the program name when we run the program.

We have seen this with the compiler for example
c89 -0 prog prog.c

c89 is the programp prog prog.c the arguments.

In order to be able to use such arguments in our code we must define them as follows:
main(int argc, char **argv)

So ourmain function now has its own arguments. These are the only arguments main accepts.

e argc is the number of arguments typed -- including the program name.
e argv is an array of strings holding each command line argument -- including the progranmn;
the first array element.

A simple program example:

#include<stdio.h>

main (int argc, char **argv)
{ /* program to print arguments

from command line */
inti;
printf(""argc = %d \n \n",argc);
for (i=0;i<argc;++ i)
pr intf(""argv[%d]: %s \n

i, argvli]);

Assume it is compiled to run it as args.

8/4/2008 11:36ru

Advanced Pointer Topics http://www.cs.cf.ac.uk/Dave/C/node12.html#SECTIONRO000000.

30of5

So if we type:

args f1 “f2" f3 4 stop!

The output would be:

argc =6
argv[0] = args
argv[l]=f1
argv[2] = f2
argv[3] =13
argv[4] =4

argv[5] = stop!

NOTE: w argv[0] is program name.
argc counts program name

® Embedded ™ " are ignored.
Blank spaces delimit end of argume nts.
Put blanks in ™" " if needed.

Pointers to a Function

Pointer to a function are perhaps on of the more confusing uses of pointers in C. Pointersotwsfunc
are not as common as other pointer uses. However, one common use is in a passing pointers to
function as a parameter in a function call. (Yes this is getting confusing, hold on to yofar lzat
moment).

This is especially useful when alternative functions maybe used to perforrargasks on data. You
can pass the data and the function to be used to@mrtrel function for instance. As we will see
shortly the C standard library provided some basic sortgagrt() and searchingéearch) functions
for free. You can easily embed your own functions.

To declare a pointer to a function do:

int (*pf) ();

This simply declares a pointgif to function that returns anat . No actual function ipointed to yet.
If we have a functiomt f() then we may simply (!!) write:

pf = &f;

For compiler prototyping to fully work it is better to have full function prototypes fonthetion and
the pointer to a function:

int f(int);
int (*pf) (int) = &f;

Nowf() returns amt and takes onet as a parameter.

You can do things like:

ans = f(5);
ans = pf(5);

which are equivalent.

8/4/2008 11:36ru

Advanced Pointer Topics http://www.cs.cf.ac.uk/Dave/C/node12.html#SECTIONRO000000.

4 of 5

Thegsort standard library function is very useful function that is designed to sort an arr&gpy a
value ofany type into ascending order, as long as the elements of the array are of fixed type.

gsort is prototyped irs(dlib.n):

void gsort(void *base, size_t num_elements, size t element_size,
int (*compare)(void const *, void const *));

The argumenihase points to the array to be sortedm_elements indicates how long the array is,
element_size IS the size in bytes of each array element and the final arguongmnte is a pointer to a
function.

gsort calls thecompare function which is user defined to compare the data when sorting. Note tha
gsort Maintains it's data type independence by giving the comparison responsibility tortAenase
compare function must return certaimeger) values according to the comparison result:

less than zero

- if first value is less than the second value
zero

- if first value is equal to the second value
greater than zero

- if first value is greater than the second value

Some quite complicated data structures can be sorted in this manner. For exampléhedatowing
structure bynteger key:

typedef struct {
int key;
struct other_data;
} Record;

We can write a compare functiaBgord_compare

int record_compare(void const *a, void const *a)
{ return (((Record *)a)->key - ((Record *)b)->k ey);
}

Assuming that we have armay of array_length Record s suitably filled with date we can calort
like this:

gsort(array, arraylength, sizeof(Record), record_c ompare);

Further examples of standard library and system calls that use pointers tonsinadly be found in
Chapterdsl5.4and19.1

Exercises

Exercise 12476

Write a program last that prints the last n lines of its text input. By default rdshe®, but your
program should allow an optional argument so that

last -n

prints out the last n lines, where n is any integer. Your program should make the best usstd ava
storage. (Input of text could be by reading a file specified from the command or reétirfgoan
standard input)

Exercise 12477

8/4/2008 11:36ru

Advanced Pointer Topics http://www.cs.cf.ac.uk/Dave/C/node12.html#SECTIONRO000000.

50f5

Write a program that sorts a list of integers in ascending order. Howevelflhg is present on the
command line your program should sort the list in descending order. (You may use any sortiag r
you wish)

Exercise 12478

Write a program that reads the following structure and sorts the data by keywordstising

typedef struct {
char keyword[10];

int other_data;
} Record;

Exercise 12479

An insertion sort is performed by adding values to an array one by one. The first value is simply s
at the beginning of the array. Each subsequent value is added by finding its ordered positiarramy,t
moving data as needed to accommodate the value and inserting the value in this position.

Write a function callechsort that performs this task and behaves in the same mangertasi.e it
can sort an array bylkaey value ofany type and it has similar prototyping.

Dave Marshall
1/5/1999

8/4/2008 11:36ru

Low Level Operators and Bit Fields http://www.cs.cf.ac.uk/Dave/C/node13.html#SECTIONB80000000.

Subsections

e Bitwise Operators
e Bit Fields
o Bit Fields: Practical Example
o A note of caution: Portability
e EXxercises

Low Level Operators and Bit Fields

We have seen how pointers give us control over low level memory operations.

Many programse.g. systems type applications) must actually operate at a low level where intividl
bytes must be operated on.

NOTE: The combination of pointers and bit-level operators makes C useful for many low level
applications and can almost replace assembly code. (Only about 10 % of UNIX is gssetalihe res
is C!l.)

Bitwise Operators

Thebitwise operators of C a summarised in the following table:

Table: Bitwise operators

& AND

| OR

A XOR

~ One's Compliment
0—1
1—-0

<< Left shift
>> Right Shift

DO NOT confuse & with &&: & is bitwise AND, && logicalAND. Similarly for | and||.

m~ IS @ unary operator -- it only operates on one argument to right of the operator.

The shift operators perform appropriate shift by operator on the right to the operatorest el
right operator mudbe positive. The vacated bits are filled with zera There iSNO wrap around).

For examplex << 2 shifts the bits i by 2 places to the left.
So:

1of5 8/4/2008 11:38

Low Level Operators and Bit Fields http://www.cs.cf.ac.uk/Dave/C/node13.html#SECTIONB80000000.

2 of 5

if x=00000010 (binary) or 2 (decimal)
then:

T >>= 2= 3 = 00000000 or 0 (decimal)

Also: if x = 00000010 (binary) or 2 (decimal)

T <<= 2 = 2 = 00001000 or 8 (decimal)

Therefore a shift left is equivalent to a multiplication by 2.
Similarly a shift right is equal to division by 2

NOTE: Shifting is much faster than actual multiplication (*) or division (/) by 2. So if yout Veest
multiplications or division by 2ise shifts.

To illustrate many points of bitwise operators let us write a funasiaiount , that counts bits set to 1
in an 8 bit numberufsigned char) passed as an argument to the function.

int bitcount(unsigned char x)

{int count;
for (count=0; x != 0; x>>=1);
if (x &01)
count++;

return count;

This function illustrates many C program points:

for loop not used for simple counting operation

x>m»=1=x=x>>1

for loop will repeatedly shift right x until x beco mes 0
use expression evaluation of x & 01 to control if
x & 01 masks of 1st bit of x if this is 1 then count++

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when memorg or dat
storage is at a premium. Typical examples:

e Packing several objects into a machine wergl.1 bit flags can be compacted -- Symbol table:
compilers.
e Reading external file formats -- non-standard file formats could be reBd)ir2 bit integers.

C lets us do this in a structure definition by puttibig length after the variable.e.

struct packed_struct {
unsigned int f1:1;
unsigned int f2:1;
unsigned int f3:1;
unsigned int f4:1;
unsigned int type:4;

8/4/2008 11:38

Low Level Operators and Bit Fields http://www.cs.cf.ac.uk/Dave/C/node13.html#SECTIONB80000000.

30of5

unsigned int funny_int:9;

} pack;

Here thepacked_struct contains 6 members: Four 1 bit fl ags f1..f3, a 4 bit type and a

9 bit funny_int.

C automatically packs the above bit fields as compa ctly as possible, provided that

the maximum length of the field is less than or equ al to the integer word length of

the computer. If this is not the case then some com pilers may allow memory overlap
for the fields whilst other would store the next fi eld in the next word (see comments

on bit fiels portability below).

Access members as usual via:

pack.type = 7;
NOTE:

® Only n lower bits will be assigned to an n bit number. So type cannot take
values larger than 15 (4 bits long).

e Bit fields are always converted to integer type for computation.

® You are allowed to mix ““normal” types with bit fi elds.

® The unsigned definition is important - ensures that no bits are used as a +
flag.

Bit Fields: Practical Example

Frequently device controllers.g. disk drives) and the operating system need to communicate at a
level. Device controllers contain severedisters which may be packed together in one integer
(Figurel2.1).

White Protecton
Ermmor
¢ l Ermor Code Track Sector Cormrnand
/1] 1] 11 g bits 3 bits 5 bits 5 hits
Feady
Head Loaded
Disk S
B pinning,

Fig. 12.1 Example Disk Controller RegisterWe could define this register easily with bit fields:

struct DISK_REGISTER {
unsigned ready:1;
unsigned error_occured:1;
unsigned disk_spinning:1;
unsigned write_protect:1;
unsigned head_loaded:1;
unsigned error_code:8;
unsigned track:9;
unsigned sector:5;
unsigned command:5;

3

To access values stored at a particular memory adegSREGISTER_ MEMORWe can assign a pointe
of the above structure to access the memory via:

struct DISK_REGISTER *disk_reg = (struct DISK_REGIS TER *) DISK_REGISTER_MEMORY;

8/4/2008 11:38

Low Level Operators and Bit Fields http://www.cs.cf.ac.uk/Dave/C/node13.html#SECTIONB80000000.

4 of 5

The disk driver code to access this is now relatively straightforward:

/* Define sector and track to start read */
disk_reg->sector = new_sector;
disk_reg->track = new_track;
disk_reg->command = READ;

/* wait until operation done, ready will be true */
while (! disk_reg->ready) ;

[* check for errors */

if (disk_reg->error_occured)

{ I* interrogate disk_reg->error_code for error t ype */
switch (disk_reg->error_code)

A note of caution: Portability

Bit fields are a convenient way to express many difficult operations. Howevaeldst do suffer from &
lack of portability between platforms:

integers may be signed or unsigned

Many compilers limit the maximum number of bits in the bit field to the size oteglar which
may be either 16-bit or 32-bit varieties.

Some bit field members are stored left to right others are stored rightitortemory.

If bit fields too large, next bit field may be stored consecutively in memory &pgeng the
boundary between memory locations) or in the next word of memory.

If portability of code is a premium you can use bit shifting and masking to achieve theesarts but
not as easy to express or read. For example:

unsigned int *disk_reg = (unsigned int *) DISK_REG ISTER_MEMORY;
/* see if disk error occured */

disk_error_occured = (disk_reg & 0x40000000) >> 31;

Exercises

Exercise 12507
Write a function that prints out an 8-bit (unsigned char) number in binary format.
Exercise 12514

Write a function setbits(x,p,n,y) that returns x with the n bits that begin at positibhogtise rightmost
n bits of an unsigned char variable y (leaving other bits unchanged).

E.g. ifx=10101010 (170 decimal) agd= 10100111 (167 decimal) and= 3 andp = 6 say then you
need to strip off 3 bits of y (111) and put them in x at positioocxd010 to get answer 10111010.

Your answer should print out the result in binary form (see Exel@idaalthough input can be in
decimal form.

Your output should be like this:

x = 10101010 (binary)

8/4/2008 11:38

Low Level Operators and Bit Fields http://www.cs.cf.ac.uk/Dave/C/node13.html#SECTIONB80000000.

50f5

y =10100111 (binary)
setbits n = 3, p = 6 gives x = 10111010 (binary)

Exercise 12515
Write a function that inverts the bits of an unsigned char x and stores answer in y.

Your answer should print out the result in binary form (see Exel@idalthough input can be in
decimal form.

Your output should be like this:

x = 10101010 (binary)
X inverted = 01010101 (binary)

Exercise 12516

Write a function that rotate®NQT shifts) to the right by n bit positions the bits of an unsigned char
no bits are lost in this process.

Your answer should print out the result in binary form (see Exel@idaalthough input can be in
decimal form.

Your output should be like this:

x = 10100111 (binary)
X rotated by 3 =11110100 (binary)

Note: All the functions developed should be as concise as possible

Dave Marshall
1/5/1999

8/4/2008 11:38

The C Preprocessor http://www.cs.cf.ac.uk/Dave/C/node14.html#SECTIONM0000000.

Subsections

o #define

o #undef

e #include

#if -- Conditional inclusion
Preprocessor Compiler Control
Other Preprocessor Commands
Exercises

The C Preprocessor

Recall that preprocessing is the first step in the C program compilation-stiigefeature is unique tc
C compilers.

The preprocessor more or less provides its own language which can be a very powerfuhéool to t
programmer. Recall that all preprocessor directives or commands begin with a #.

Use of the preprocessor is advantageous since it makes:

programs easier to develop,

easier to read,

easier to modify

C code more transportable between different machine architectures.

The preprocessor also lets us customise the language. For example to replace { ...thtelosnss
delimiters by PASCAL likevegin ... end we can do:

#define begin {
#define end }

During compilation all occurrences igdgin and end get replaced by corresponding { or }
and so the subsequent C compilation stage does not know any difference!!!.

Lets look at #define in more detail

#define

Use this to define constants or any macro substitution. Use as follows:

#define <macro> <replacement name>
For Exanpl e

#define FALSE 0
#define TRUE !FALSE

We can also define small ““functions” usiagfine. For example max. of two variables:

#define max(A,B) ((A) > (B) ? (A):(B))

10f5 8/4/2008 12:01u

The C Preprocessor http://www.cs.cf.ac.uk/Dave/C/node14.html#SECTIONM0000000.

? is the ternary operator in C.

Note: that this does not define a proper function max.
All it means that wherever we place max(C 'i',D 'i') the text gets replaced by the
appropriate definition. ['i' = any variable names - not necessarily C and D]

So if in our C code we typed something like:
X = max(qg+r,s+t);

after preprocessing, if we were able to look at the code it would appear like this:
X = ((q+r) > (r+s) ? (q+r) : (s+1));

Other examples of #define could be:

#define Deg_to_Rad(X) (X*M_P1/180.0)
[* converts degrees to radians, M_PI is the value
of pi and is defined in math.h library */

#define LEFT_SHIFT_8 <<8

NOTE: The last macro LEFT_SHIFT_8 is only
valid so long as replacement context is valid i.e.
x =y LEFT_SHIFT_8.

#undef

This commands undefinedmacro. A macrmust be undefined before being redefined to a different
value.

#include

This directive includes a file into code.

It has two possible forms:

#include <file>

or
#include ™file"

<file> tells the compiler to look where system incl ude files are held. Usually UNIX

systems store files in \usr \i ncl ude\ directory.

“file" looks for a file in the current directory (where program was run from)

I ncl uded files usually contain C prototypes and declaration s from header files and

not (algorithmic) C code (SEE next Chapter for reasons)

#if -- Conditional inclusion

2 0f 5 8/4/2008 12:01u

The C Preprocessor http://www.cs.cf.ac.uk/Dave/C/node14.html#SECTIONM0000000.

30of5

#f evaluates a constant integer expression. You amegd atendif to delimit end of statement.
We can havelse etc. as well by usingelse and#elif -- else if.
Another common use @ff is with:

#i f def

-- if defined and
#i f ndef

-- if not defined

These are useful for checking if macros are set -- perhaps from differentnprogGules and header
files.

For example, to set integer size for a portable C program between TurboC (on M&1IQ8)ix (or
other) Operating systems. Recall that TurboC uses 16 bits/integer and UNIX/iB2eigjés.

Assume that if TurboC is running a magrerBoawill be defined. So we just need to check for this:

#ifdef TURBOC
#define INT_SIZE 16
#else
#define INT_SIZE 32
#endif

As another example if running program on MSDOS machine we want to include file msdosaliseth
a default.h file. A macreYSTEM is set (by OS) to type of system so check fo r this:

#if SYSTEM == MSDOS
#include <msdos.h>
#else
#include "““defaul t.h"
#endif

Preprocessor Compiler Control

You can use thec compiler to control what values are set or defined from the command line. This
gives some flexibility in setting customised values and has some other usefiarfsnthed compiler
option is used. For example:

cc -DLINELENGTH=80 prog.c -0 prog
has the same effect as:
#define LINELENGTH 80
Note that any:define or#undef within the programgdrog.c above)override command line settings.
You can also set a symbol without a value, for example:
cc -DDEBUG prog.c -0 prog
Here the value is assumed to be 1.

The setting of such flags is useful, especially for debugging. You can put commands like:

8/4/2008 12:01u

The C Preprocessor http://www.cs.cf.ac.uk/Dave/C/node14.html#SECTIONM0000000.

4 of 5

#ifdef DEBUG

print("Debugging: Program Version 1\");
#else

print("Program Version 1 (Production)\');
#endif

Also since preprocessor command can be written anywhere in a C program you caut filterables
etc for printingetc. when debugging:

X =Yy *3;

#ifdef DEBUG
print("Debugging: Variables (x,y) = \",x,y);
#endif

The-E command line is worth mentioning just for academic reasons. It is not that practaaimand.
The-E command will force the compiler to stop after the preprocessing stage and output the daitee!
of your program. Apart from being debugging aid for preprocessor commands and also asimitiede
learning tool (try this option out with some of the examples above) it is not that commeadly us

Other Preprocessor Commands

There are few other preprocessor directives available:

#error
text of error message -- generates an appropriate Compiler error messdape.

#ifdef OS_MSDOS
#include <msdos.h>
#elifdef OS_UNIX

#include “defaul t.h"
#else
#error Wrong OS!!
#endif
line
number "string" -- informs the preprocessor that th e number is the next number
of line of input. "string" is optional and names th e next line of input. This is
most often used with programs that translate other languages to C. For example,
error messages produced by the C compiler can refer ence the file name and line
numbers of the original source files instead of the intermediate C (translated)
source files.
Exercises

Exercise 12529

Define a preprocessor mach@ap(t, x, y) that will swap two argumenisandy of a given type .
Exercise 12531

Define a preprocessor macro to select:

e the least significant bit from amsigned char
e thenth (assuming least significant is 0) bit fromuakigned char

Dave Marshall

8/4/2008 12:01u

The C Preprocessor http://www.cs.cf.ac.uk/Dave/C/node14.html#SECTIONM0000000.

1/5/1999

50f 5 8/4/2008 12:01u

C, UNIX and Standard Libraries http://www.cs.cf.ac.uk/Dave/C/node15.html#SECTIONSB0000000.

1of2

Subsections

e Advantages of using UNIX with C
e Using UNIX System Calls and Library Functions

C, UNIX and Standard Libraries

There is a very close link between C and most operating systems that run our C pragrasisthe
whole of the UNIX operating system is written in C. This Chapter will look at how C &g U

interface together.
We have to use UNIX to maintain our file space, edit, compile and run progiams

However UNIX is much more useful than this:

Advantages of using UNIX with C

e Portability -- UNIX, or a variety of UNIX, is available on many machines. Programs written
standard UNIX and C should run on any of them with little difficulty.

e Multiuser / Multitasking -- many programs can share a machines processing power.

e File handling -- hierarchical file system with many file handling routines.

e Shell Programming-- UNIX provides a powerful command interpreter that
understands over 200 commands and can also run UNIX and user-defined programs.

¢ Pipe -- where the output of one program can be made the input of another. This can done f
command line or within a C program.

e UNIX utilities -- there over 200 utilities that let you accomplish many routines without writin
new programse.g. make, grep, diff, awk, more

e System calls- UNIX has about 60 system calls that are at#set of the operating system or tt
kernel of UNIX. The calls are actually written in C. All of them can be accessed from C
programs. Basic I/0, system clock access are examples. The fupetign is an example of a
system call.

e Library functions -- additions to the operating system.

Using UNIX System Calls and Library
Functions

To use system calls and library functions in a C program we simply call the apprdpfunction.

Examples of standard library functions we have met include the higher level I/@ffisnctprintf() :
malloc()

Aritmetic operators, random number generatorsngom(), srandom(), Irand48(), drand48()
et c. and basic C types to string conversion are memebers gfith@ standard library.

All math functions such asn(), cos(), sqrt() are standard math librampdth.h) functions and
others follow in a similar fashion.

8/4/2008 12:02uu

C, UNIX and Standard Libraries http://www.cs.cf.ac.uk/Dave/C/node15.html#SECTIONSB0000000.

2 of 2

For most system calls and library functions we have to include an appropriate Headgr $idio.h,
math.h

To use a function, ensure that you have made the requritedes in your C file. Then the function
can be called as though you had defined it yourself.

It is important to ensure that your arguments have the expected types, otherwisettba twill
probably produce strange resuliig. is quite good at checking such things.

Some libraries require extra options before the compiler can support their useariptegxo compile
a program including functions from theth.h library the command might be

cc mathprog.c -o mathprog -Im

The final-im is an instruction to link the maths library with the program. The manual page for eac
function will usually inform you if any special compiler flags are required.

Information on nearly all system calls and library functions is available in rhpages. These are
available on line: Simply typ@an function name.

€.0. man drand48
would give information about this random number generator.

Over the coming chapters we will be investigating in detail many aspects ofStamdard Library and
also other UNIX libraries.

Dave Marshall
1/5/1999

8/4/2008 12:02uu

Integer Functions, Random Number, String Converss@arching and... http://www.cs.cf.ac.uk/Dave/Célgihtml#SECTION0016000000

1of5

Subsections

Arithmetic Functions
Random Numbers
String Conversion
Searching and Sorting
Exercises

Integer Functions, Random Number, String
Conversion, Searching and Sortingsstdl i b. h>

To use all functions in this library you must:
#include <stdlib.h>
There are three basic categories of functions:

e Arithmetic
e Random Numbers
e String Conversion

The use of all the functions is relatively straightforward. We only consider thefly Ion turn in this
Chapter.

Arithmetic Functions

There are 4 basic integer functions:

int abs(int number);
long int labs(long int number);

div_t div(int numerator,int denominator);
Idiv_t Idiv(long int numerator, long int denominato r;

Essentially there are two functions with integer and long integer compwtibilit

abs
functions return the absolute value ofritisnber arguments. For example, abs(2) returns 2 as «
abs(-2).

div
takes two argumentsymerator anddenominator and produces a quotient and a remainder o
the integer division. Theiv_t structure is defined (istdlib.n) as follows:

typedef struct {
int quot; /* quotient */
int rem; /* remainder */
}div_t;

(idiv_t is similarly defined).

Thus:

#include <stdlib.h>

8/4/2008 12:02uu

Integer Functions, Random Number, String Converss@arching and... http://www.cs.cf.ac.uk/Dave/Célgihtml#SECTION0016000000

2 of 5

int num = 8, den = 3;
div_t ans;

ans = div(nhum,den);

printf("Answer:\n\t Quotient = %d\n\t Remainder = % d\n",\
ans.quot,ans.rem);

Produces the following output:

Answer:
Quotient = 2
Remainder = 2

Random Numbers

Random numbers are useful in programs that need to simulate random events, such as games,
simulations and experimentations. In practice no functions produce truly random daggprothee
pseudo-random numbers. These are computed form a given formula (different generators usatdiff
formulae) and the number sequences they produce are repeatsdse isfusually set from which the
sequence is generated. Therefore is you set the same seed all the time 8et saliieze be computed.

One common technique to introduce further randomness into a random number generator is to
time of the day to set the seed, as this will always be changing. (We will stustarldard library time
functions later in Chapt&0).

There are many (pseudo) random number functions in the standard library. They all opérateaomet
basic idea but generate different number sequences (based on different genetaios faver
different number ranges.

The simplest set of functions is:

int rand(void);
void srand(unsigned int seed);

rand() returns successive pseudo-random numbers in the range from 0 to (2°15)-1.
srand() IS used to set the seed. A simple example of using the time of the day to initeddsa\sa
the call:

srand((unsigned int) time(NULL));

The following prograntard.c illustrates the use of these functions to simulate a pack of cards bei
shuffled:

/*

** Use random numbers to shuffle the "cards" in the deck. The second
** argument indicates the number of cards. The fir st time this
** function is called, srand is called to initializ e the random

** number generator.
*/

#include <stdlib.h>
#include <time.h>
#define TRUE 1
#define FALSE O

void shuffle(int *deck, int n_cards)

t
int i
static int first_time = TRUE;
/*
** Seed the random number generator with th e current time
** of day if we haven't done so yet.

8/4/2008 12:02uu

Integer Functions, Random Number, String Converss@arching and... http://www.cs.cf.ac.uk/Dave/Célgihtml#SECTION0016000000

30of5

*/
if(first_time){
first_time = FALSE;
srand((unsigned int)time(NULL)) ;

/*

** "Shuffle” by interchanging random pairs of cards.
*/
for(i=n_cards-1;i>0;i-=1){

int where;

int temp;

where = rand() % i;
temp = deck[where];
deck[where] = deck[i];
deck[i]=temp;

}

There are several other random number generators available in the standard library

double drand48(void);

double erand48(unsigned short xsubi[3]);

long Irand48(void);

long nrand48(unsigned short xsubi[3]);

long mrand48(void);

long jrand48(unsigned short xsubi[3]);

void srand48(long seed);

unsigned short *seed48(unsigned short seed[3]);
void Icong48(unsigned short param[7]);

This family of functions generates uniformly distributed pseudo-random numbers.

Functions drand48() and erand48() return non-negative double-precision floating-point valuesiyr
distributed over the intervéd.o, 1.0)

Functions Irand48() and nrand48() return non-negative long integers uniformly distributeldeover t
interval[o, 2**31)

Functions mrand48() and jrand48() return signed long integers uniformly distributed oveethal i
[-2++31, 2**31)

Functions srand48(), seed48(), and lcong48() set the seeds for drand48(), Irand48(), or mrand48
one of these should be called first.

Further examples of using these functions is given is Chater

String Conversion

There are a few functions that exist to convert strings to integer, long intebftoa values. They are:

double atof(char *string) -- Convert string to floating point value.

int atoi(char *string) -- Convert string to an integer value

int atol(char *string) -- Convert string to a long integer value.

double strtod(char *string, char *endptr) -- Convert string to a floating point value.

long strtol(char *string, char *endptr, int radix) -- Convert string to a long integer using .
given radix.

unsigned long strtoul(char *string, char *endptr, i nt radix) -- Convert string to unsigned
long.

Most of these are fairly straightforward to use. For example:

8/4/2008 12:02uu

Integer Functions, Random Number, String Converss@arching and... http://www.cs.cf.ac.uk/Dave/Célgihtml#SECTION0016000000

4 of 5

char *strl = "100";

char *str2 = "55.444";
char *str3 =" 1234";
char *str4 = "123four";
char *str5 = "invalid123";

inti;
float f;

i = atoi(strl); /*i=100*

f = atof(str2); /*f=155.44%/
[

[

[

atoi(str3); /*i=1234"*/
atoi(str4); /*i=123*/
atoi(str5); *i=0%*

Note:

e Leading blank characters are skipped.

e Trailing illegal characters are ignored.

e If conversion cannot be made zero is returnedeand (See Chaptel?) is set with the value
ERANGE

Searching and Sorting

Thestdlib.n provides 2 useful functions to perform general searching and sorting of data on ar
In fact we have already introduced tizert) function in Chaptet1.3 For completeness we list the
prototype again here but refer the reader to the previous Chapter for an example.

Thegsort standard library function is very useful function that is designed to sort an arr&gpy a
value ofany type into ascending order, as long as the elements of the array are of fixed type.
gsort is prototyped (igtdlib.h):

void gsort(void *base, size_t num_elements, size t element_size,
int (*compare)(void const *, void const *));

Similarly, there is a binary search functiosearch() which is prototyped (iatdiib.n) as:

void *bsearch(const void *key, const void *base, si ze_tnel,
size_t size, int (*compare)(const void *, ¢ onst void *));

Using the samBecord structure anécord_compare function as thgsort() example (in
Chapterll.3:

typedef struct {
int key;
struct other_data;
} Record;

int record_compare(void const *a, void const *a)
{ return (((Record *)a)->key - ((Record *)b)->k ey);
}

Also, Assuming that we have amay of array_length Record s suitably filled with date we can call
bsearch() like this:

Record key;
Record *ans;

key.key = 3; /* index value to be searched for */
ans = bsearch(&key, array, arraylength, sizeof(Reco rd), record_compare);

The functionbsearch() return a pointer to the field whose key filed is filled with the matched value
NULL if no match found.

8/4/2008 12:02uu

Integer Functions, Random Number, String Converss@arching and... http://www.cs.cf.ac.uk/Dave/Célgihtml#SECTION0016000000

Note that the type of they argumeninmust be the same as the array elemerésdrd above), even
though only the&ey.key element is required to be set.

Exercises

Exercise 12534
Write a program that simulates throwing a six sided die
Exercise 12535

Write a program that simulates the UK National lottery by selecting eceht whole numbers in the
range 1 - 49.

Exercise 12536

Write a program that read a number from command line input and generates a randoghdtoati
number in the range O - the input number.

Dave Marshall
1/5/1999

50f 5 8/4/2008 12:02uu

Mathematics: <math.h> http://www.cs.cf.ac.uk/Dave/C/nodel7.html#SECTION®0000000.

1of2

Subsections

e Math Functions
e Math Constants

Mathematics: <mat h. h>

Mathematics is relatively straightforward library to use again. iviast #include <math.h> and must
rememberto link in the math library at compilation:

cc mathprog.c -o mathprog -Im

A common source of error is in forgetting to include ¢lmath.h> file (and yes experienced
programmers make this error also). Unfortunately the C compiler does not help mucte€onsi

double x;
X = sqrt(63.9);

Having not seen the prototype tafit the compiler (by default) assumes that the function returns a
int and converts the value taleuble with meaningless results.

Math Functions

Below we list some common math functions. Apart from the note above they should be easydtb L
we have already used some in previous examples. We give no further examples here:

double acos(double x) -- Compute arc cosine of x.

double asin(double x) -- Compute arc sine of x.

double atan(double x) -- Compute arc tangent of x.

double atan2(double y, double x) -- Compute arc tangent of y/x.

double ceil(double x) -- Get smallest integral value that exceeds x.

double cos(double x) -- Compute cosine of angle in radians.

double cosh(double x) -- Compute the hyperbolic cosine of x.

div_t div(int number, int denom) -- Divide one integer by another.

double exp(double x -- Compute exponential of x

double fabs (double x) -- Compute absolute value of x.

double floor(double x) -- Get largest integral value less than x.

double fmod(double x, double y) -- Divide x by y with integral quotient and return remainder.
double frexp(double x, int *expptr) -- Breaks down x into mantissa and exponent of no.
labs(long n) -- Find absolute value of long integer n.

double Idexp(double x, int exp) -- Reconstructs x out of mantissa and exponent of two.
Idiv_t Idiv(long number, long denom) -- Divide one long integer by another.

double log(double x) -- Compute log(x).

double log10 (double x) -- Compute log to the base 10 of x.

double modf(double x, double *intptr) -- Breaks x into fractional and integer parts.
double pow (double x, double y) -- Compute x raised to the powery.

double sin(double x) -- Compute sine of angle in radians.

double sinh(double x) - Compute the hyperbolic sine of x.

double sqrt(double x) -- Compute the square root of x.

void srand(unsigned seed) -- Set a new seed for the random number generator (rand).
double tan(double x) -- Compute tangent of angle in radians.

double tanh(double x) -- Compute the hyperbolic tangent of x.

8/4/2008 12:07uu

Mathematics: <math.h> http://www.cs.cf.ac.uk/Dave/C/nodel7.html#SECTION®0000000.

Math Constants

Themath.h library defines many (often neglected) constants. It is always advisabletteesse
definitions:

HUGE-- The maximum value of a single-precision floating-point number.
M_E-- The base of natural logarithms (e).

M_LOG2E- The base-2 logarithm of e.
M_LOG10E- The base-10 logarithm of e.
M_LN2-- The natural logarithm of 2.
M_LN10-- The natural logarithm of 10.
M_PI --1T.

M_PI2 --1/2.

M_PI_4 - /4,
M 1 Pl -- 14T,
M_2 Pl -- 2fT.

M_2_SQRTPI-- 2/4/7r .

M_SQRT2- The positive square root of 2.

M_SQRT1_2-- The positive square root of 1/2.

MAXFLOAT-- The maximum value of a non-infinite single- precision floating point number.
HUGE_VAL-- positive infinity.

There are also a number a machine dependent values defietlite <value.h> -- Seeman value
or listvalue.h for further details.

Dave Marshall
1/5/1999

2 of 2 8/4/2008 12:07uu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

1 of 10

Subsections

e Reporting Errors

© perror()

© €rrno

o exit()
e Streams

o Predefined Streams

m Redirection

e Basic I/O
e Formatted 1/O

o Printf
* scanf
e Files

o Reading and writing files
e sprintf and sscanf

o Stream Status Enquiries
e Low Level I/O
e EXxercises

Input and Output (I1/O): st dio. h

This chapter will look at many forms of I1/0. We have briefly mentioned some forme véfblook at
these in much more detail here.

Your programs will need to include the standardhé&ader file so do:

#include <stdio.h>

Reporting Errors

Many times it is useful to report errors in a C program. The standard Igeraiy) IS an easy to use
and convenient function. It is used in conjunction witho and frequently on encountering an error
you may wish to terminate your program early. Whilst not strictly part oftdleen library we
introduce the concept efrno and the functiorxit) here. We will meet these concepts in other p
of the Standard Library also.

perror ()

The functionperror() is prototyped by:

void perror(const char *message);

perror() produces a message (on standard error output -- see $&@idn describing the last error
encountered, returned éano (see below) during a call to a system or library function. The argume
stringmessage is printed first, then a colon and a blank, then the message and a newi#eadt is a
NULL pointer or points to a null string, the colon is not printed.

errno

errno IS a special systemwariable that is set if a system call cannot perform its set task. It iedefi

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

#include <errno.h>
To useerro in a C program it must be declared via:
extern int errno;

It can be manually reset within a C program (although this is uncommon practica)isghiesimply
retains its last value returned by a system call or library function.

exit()

The functionexit) is prototyped irtinclude <stdlib> by:

void exit(int status)

Exit simply terminates the execution of a program and returns theeaexdét value to the operating
system. Thetatus Vvalue is used to indicate if the program has terminated properly:

e it exist with aEXIT_SUCCESSvalue on successful termination
e it exist with aEXIT_FAILURE value on unsuccessful termination.

On encountering an error you may frequently calbaEXIT_FAILURE) to terminate an errant
program.

Streams

Streams are a portable way of reading and writing data. They provide a flexible and effi@ant of
/0.

A Stream is a file oa physical devicee(g. printer or monitor) which is manipulated witlpainter to
the stream.

There exists an internal C data structeres , which represents all streams and is definegdio.h
We simply need to refer to timeLE structure in C programs when performing I/O with streams.

We just need to declare a variable or pointer of this type in our programs.
We do not need to know any more specifics about this definition.

We must opem stream before doing any I/O,

then access

and then closé.

Stream 1/O IBUFFERED: That is to say a fixed “"chunk" is read from or written to a file via some
temporary storage area (the buffer). This is illustrated inlFid. NOTE the file pointer actually points
to this buffer.

2 of 10 8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

3 of 10

Crperating 5vstem Side
Dide
AT o
ase of Buffer
(Initial file pointer)
Btorage Device

E.g. File on Disk

Fig.|—l Stream 1/0 Model This leads to efficient I/O biteware data written to a buffer does not
appear in a file (or device) until the buffer is flushed or written 1\n.c(oes this). Any abnormal exit

code can cause problems.

Predefined Streams

UNIX defines 3 predefined streams §itlio.h):
stdin, stdout, stderr
They all use text a the method of 1/O.

stdin andstdout can be used with files, programs, 1/O devices such as keyboard, ceftsoielerr
alwaysgoes to the console or screen.

The console is the default feiout andstderr . The keyboard is the default fatin

Predefined stream are automatically open.

Redirection

This how we override the UNIX default predefined I/O defaults.

This is not part of C but operating system dependent. We will do redirection from the rdimmea

> -- redirectstdout to a file.

So if we have a programyt , that usually prints to the screen then
out > filel

will send the output to a filgije1

< -- redirectstdin from a file to a program.

So if we are expecting input from the keyboard for a progiranae can read similar input from a file
in < file2

| -- pipe: putsstdout from one program texdin - of another

progl | prog2

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

e.g. Sent output (usually to console) of a program direct to printer:

out | lpr

Basic I/O

There are a couple of function that provide basic I/O facilities.

probably the most common arggichar() andputchar() . They are defined and used as follows:

e int getchar(void) -- reads a char fromdin
e int putchar(char ch) -- writes a char tetdout , returns character written.
int ch;

ch = getchar();
(void) putchar((char) ch);

Related Functions:

int getc(FILE *stream),
int putc(char ch,FILE *stream)

Formatted I/O

We have seen examples of how C uses formatted 1/O already. Let's look at this detaire

Printf

The function is defined as follows:

int printf(char *format, arg list ...) --
prints tostdout the list of arguments according specified format string. Returns number ofteharac
printed.

Theformat string has 2 types of object:

e ordinary characters -- these are copied to output.
e conversion specifications -- denoted by % and listed in Taldlé.l

4 of 10 8/4/2008 1:5Qu

Input and Output (1/0):stdio.h

http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

Table: Printf/scanf format characters

Format Spec (%

) Type

Result

C char single character
I,d int decimal number
0 int octal number
X, X int hexadecimal number
lower/uppercase notatic
u int unsigned int
S char * print string
terminated b\ 0
f double/float format -m.ddd...
e,E " Scientific Format
-1.23e002
9,G " e or f whichever
is most compact
% - print % character

n

Between % and format char we can put:

- (minus sign)

-- left justify.
integer number

-- field width.

m.d

-- m = field width, d = precision of number of digits after decimal poimtuwnber of chars from :

string.

So:

printf("%-2.3f

\ n",17.23478);

The output on the screen is:

17.235

and:

printf("VAT=17.5%% \n");

5 of 10

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

6 of 10

...outputs:

VAT=17.5%

scanf

This function is defined as follows:

int scanf(char *format, args....) -- reads from stdin and puts input in address of variable
specified inargs list. Returns number of chars read.

Format control string similar t@intf
Note: The ADDRES®f variable or a pointer to one is requiredstynf .
scanf(""%d",&i);

We can just give the name of an array or string to scanf since this correspondsax duelgtss of the
array/string.

char string[80];
scanf(" %s",string);

Files

Files are the most common form of a stream.
The first thing we must do @pen a file. The functioriopen() does this:
FILE *fopen(char *name, char *mode)

fopen returns a pointer to a FILE. Theme string is the name of the file on disc that we wish to acce
Themode string controls our type of access. If a file cannot be accessed for any reasarmpainter is
returned.

Modes include: “r" -- read,
“w" -- write and
a" -- append.

To open a file we must have a stream (file pointer)biaits to aFILE structure.

So to open a file, calleahyfile.dat for reading we would do:
FILE *stream, *fopen();
[* declare a stream and prototype fopen */

stream = fopen(" "myfile.dat",”’r')

it is good practice to to check file is opened
correctly:

if ((stream = fopen(~“myfile.dat
r ")) == NULL)

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

7 of 10

{ printf("Can't open %s \n

myfile.dat");
exit(1);

Reading and writing files

The functionsprintt andfscanf a commonly used to access files.

int fprintf(FILE *stream, char *format, args..)
int fscanf(FILE *stream, char *for mat, args..)

These are similar tgrintf and scanf except that data is read from the st r eamthat must
have been opened with fopen().

The stream pointer is automatically incremented wit h ALL file read/write functions.
We do not have to worry about doing this.

char *string[80]
FILE *stream, *fopen();

if ((stream = fopen(...)) '= NULL
fscanf(stream, %s ", string);

Other functions for files:

int getc(FILE *stream), int fgetc(FILE *stream)

int putc(char ch, FILE *s), int fputc(char ch, FILE *s)
These are like getchar, putchar.

getc is defined as preprocessor MACRO in stdio.h. f getc is a C library function. Both
achieve the same result!!

fflush(FILE *stream) -- flushes a stream.
fclose(FILE *stream) -- closes a stream.

We can access predefined streams with fprintf etc.

fprintf(stderr,” Cannot Compute!! \n“);

fscanf(stdin, " %s",string);

sprintf and sscanf

These are likgrintt andfscanf except they read/write to a string.

int sprintf(char *string, char *format, args..)
int sscanf(char *string, char *format, args..)

For Example:

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

8 of 10

float full_tank = 47.0; /* litres */
float miles = 300;
char miles_per _litre[80];

sprintf(miles_per _litre,” Miles p er litre
= %2.3f", miles/f ull_tank);

Stream Status Enquiries

There are a few useful stream enquiry functions, prototyped as follows:

int feof(FILE *stream);

int ferror(FILE *stream);
void clearerr(FILE *stream);
int fileno(FILE *stream);

Their use is relatively simple:

feof ()
-- returns true if the stream is currently at the end of the file. So to readmstrdine by line
you could do:

while ('feof(fp))
fscanf(fp,"%s" line);

ferror()
-- reports on the error state of the stream and returns true if an error has occurred.

clearerr()
-- resets the error indication for a given stream.

fileno()
-- returns the integer file descriptor associated with the named stream.

Low Level I/O

This form of /0 is UNBUFFERED- each read/write request results in accessing disk (or device)
directly to fetch/put a specific numbermftes

There are no formatting facilities -- we are dealing with bytes of infoomat
This means we are now using binary (andtagt) files.

Instead of file pointers we usew level file handle or file descriptors which give a unique
integer number to identify each file.

To Open a file use:
int open(char *filename, int flag, int perms) -- this returns a file descriptor or -1 fofaal.
Theflag controls file access and has the following predefinechirn

O_APPEND, O_CREAT, O_EXCL, O_RDONLY, O_RDWR, O_WRONY + others see onlinean pages or
reference manuals.

perms -- best set to 0 for most of our applications.

The function:

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h

9 of 10

creat(char *filename, int perms)
can also be used to create a file.

int close(int handle) -- close a file

int read(int handle, char *buffer,
unsigned length)

int write(int handle, char *buffer, unsigned length

http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

)

are used to read/write a specific number of bytes from/to a file (handle) stdoeldeoput in the

memory location specified pffer

Thesizeof() function is commonly used to specify thegth

read and write return the number of bytes read/written or -1 if they fail.

/* program to read a list of floats from a binary
[* first byte of file is an integer saying how many
/* floats in file. Floats follow after it, File nam

/* command line */

#include<stdio.h>
#include<fcntl.h>

float bigbuff[1000];
main(int argc, char **argv)

{ intfd;
int bytes_read;
int file_length;

if ((fd = open(argv[1],0_RDONLY))
{ I* error file no
pe
ex

}
if ((bytes_read = read(fd,&file_|
si
{ I* error reading
ex

}
if (file_length > 999) {/*file
if ((bytes_read = read(fd,bigbuff
fil
{ I* error reading
ex
}

Exercises

Exercise 12573

file */
*/
e got from */

= -1)

t open */....
rror("Datafile™);
it(1);

ength,
zeof(int))) == -1)
file /...

it(1);

too big */}
e_length*sizeof(float))) == -1)

open */...
it(1);

Write a program to copy one named file into another named file. The two file namésaragthe

first two arguments to the program.

Copy the file a block (512 bytes) at a time.

Check: that the program has two arguments
or print "Program need two argume
that the first name file is readabl
or print "Cannot open file f

nts"
e
or reading"

8/4/2008 1:5Qu

Input and Output (1/0):stdio.h http://www.cs.cf.ac.uk/Dave/C/node18.html#SECTIONB80000000.

10 of 10

that the second file is writable
or print "Cannot open file for writing"

Exercise 12577

Write a program last that prints the ladines of a text file, by and the file name should be specifiec
form command line input. By defaultshould be 5, but your program should allow an optional
argument so that

last -n file.txt

prints out the last n lines, where n is any integer. Your program should make the best ussbtd ava
storage.

Exercise 12578

Write a program to compare two files and print out the lines where they differldtiktup appropriate
string and file handling library routines. This should not be a very long program.

Dave Marshall
1/5/1999

8/4/2008 1:5Qu

String Handling: <string.h> http://www.cs.cf.ac.uk/Dave/C/node19.html#SECTION90000000.

1of5

Subsections

e Basic String Handling Functions
o String Searching
e Character conversions and testiagpe.h
e Memory Operationsmemory.h>
e Exercises

String Handling: <string. h>

Recall from our discussion of arrays (Chagbethat strings are defined as an array of characters o
pointer to a portion of memory containing ASCII charactersridg in C is a sequence of zero or
more characters followed bynaLL (\[J)character:

NﬁME:|D|A|V|E|~n| | | | | |
a 43

It is important to preserve thaJLL terminating character as it is how C defines and manages variat
length stringsAll the C standard library functions require this for successful operation.

In general, apart from sonhength-restricted functions (strncat(), strncmp, () andstrncpy()),
unless you create strings by hand you should not encounter any such problems, . You should us
many useful string handling functions and not really neggttgour hands dirty dismantling and
assembling strings.

Basic String Handling Functions

All the string handling functions are prototyped in:

#include <string.h>

The common functions are described below:

char *stpcpy (const char *dest,const char *src) -- Copy one string into another.

int strcmp(const char *string1,const char *string2) - Compare stringl and string2 to
determine alphabetic order.

char *strcpy(const char *string1,const char *string 2) -- Copy string2 to stringl.

char *strerror(int errnum) -- Get error message corresponding to specified error number.

int strlen(const char *string) -- Determine the length of a string.

char *strncat(const char *string1, char *string2, s ize_tn) -- Append n characters from
string2 to stringl.

int strncmp(const char *string1, char *string2, siz e_tn) -- Compare first n characters of
two strings.

char *strncpy(const char *string1,const char *strin g2, size_tn) -- Copy first n characters
of string2 to stringl .

int strcasecmp(const char *s1, const char *s2) -- case insensitive version @fcmp()

int strncasecmp(const char *s1, const char *s2, int n) -- case insensitive version of
strncmp()

The use of most of the functions is straightforward, for example:

char *strl = "HELLO";

8/4/2008 1:5Qu

String Handling: <string.h> http://www.cs.cf.ac.uk/Dave/C/node19.html#SECTION90000000.

2 of 5

char *str2;
int length;

length = strlen("HELLQO"); /* length = 5 */
(void) strcpy(str2,strl);

Note that bothstrcat() andstrcopy() both return a copy of their first argument which is the
destination array. Note the order of the argumerdsdsnation array followed bysource array which
IS sometimes easy to get the wrong around when programming.

Thestremp() functionlexically compares the two input strings and returns:

Less than zero

-- if stringl s lexically less thastring2
Zero

--if stringl andstring2 are lexically equal
Greater than zero

-- if stringl is lexically greater thastring2

This can also confuse beginners and experience programmers forget this too.

Thestrncat(), strncmp,() andstrncpy() copy functions are string restricted version of their mo
general counterparts. They perform a similar task but only up to the instracters. Note the theLL
terminated requirement may get violated when using these functions, for example:

char *strl = "HELLO";
char *str2;
int length = 2;

(void) strcpy(str2,strl, length); /* str2 = "HE" */

str2 is NOT NULL TERMINATED!! -- BEWARE

String Searching

The library also provides several string searching functions:

char *strchr(const char *string, int c) -- Find first occurrence of characterin string.

char *strrchr(const char *string, int c) -- Find last occurrence of characten string.

char *strstr(const char *s1, const char *s2) -- locates the first occurrence of the strsagn
strings1.

char *strpbrk(const char *s1, const char *s2) -- returns a pointer to the first occurrence in
string s1 of any character from strismg or a null pointer if no character frosp exists ins1

size_t strspn(const char *s1, const char *s2) -- returns the number of characters at the
begining ofs1 that matchs2.

size_t strcspn(const char *s1, const char *s2) -- returns the number of characters at the
begining ofs1 thatdo not matchs2.

char *strtok(char *s1, const char *s2) -- break the string pointed to by into a sequence of
tokens, each of which is delimited by one or more characters from the string pointed to by
char *strtok_r(char *s1, const char *s2, char **las ts) -- has the same functionality as

strtok() except that a pointer to a string placeholder lasts must be supplied Hiethe ca

strchr() andstrrchr() are the simplest to use, for example:

char *strl = "Hello";
char *ans;

ans = strchr(strd,'l";

8/4/2008 1:5Qu

String Handling: <string.h> http://www.cs.cf.ac.uk/Dave/C/node19.html#SECTION90000000.

After this executionans points to the locatiostr1 + 2

strpbrk() IS @ more general function that searches for the first occurrence of any of a group of
characters, for example:

char *strl = "Hello";
char *ans;

ans = strpbrk(strl,'aeiou’);
Here,ans points to the locatiosr1 + 1, the location of the firsi.

strstr() returns a pointer to the specified search string or a null pointer ifitigeis not found. If s2
points to a string with zero length (that is, the string ™), the function returns slxdfople,

char *strl = "Hello";
char *ans;

ans = strstr(strl,'l0";
will yield ans =str + 3

strtok() IS a little more complicated in operation. If the first argument is not NULL teefunction
finds the position of any of the second argument characters. However, the position ibeegdeand
any subsequent calls ¢otok() will start from this position if on these subsequent calls the first
argument isNULL. For example, If we wish to break up the sting at each space and print each
token on a new line we could do:

char *strl = "Hello Big Boy";
char *t1;

for (t1 = strtok(strl," ");
t1 1= NULL;
t1 = strtok(NULL, " "))

printf("%s\n",t1);
Here we use the for loop in a non-standard counting fashion:

e The initialisation callstrtok() loads the function with the strirg1

e We terminate when t1 isULL

e We keep assigning tokenssflL. totl until termination by callingtrtok() with aNULL first
argument.

Character conversions and testingct ype. h

We conclude this chapter with a related libranglude <ctype.h> which contains many useful
functions to convert and teshgle characters. The common functions are prototypes as follows:

Character testing

int isalnum(int c) -- True if c is alphanumeric.

int isalpha(int c) -- True if c is a letter.

int isascii(int c) -- True if cis ASCII .

int iscntrl(int c) -- True if c is a control character.
int isdigit(int c) -- True if c is a decimal digit

int isgraph(int c) -- True if c is a graphical character.
int islower(int c) -- True if c is a lowercase letter

int isprint(int c) -- True if c is a printable character

30f5 8/4/2008 1:5Qu

String Handling: <string.h> http://www.cs.cf.ac.uk/Dave/C/node19.html#SECTION90000000.

4 of 5

int ispunct (int c) -- True if c is a punctuation character.
int isspace(int c) -- True if c is a space character.

int isupper(int c) -- True if c is an uppercase letter.

int isxdigit(int c) -- True if c is a hexadecimal digit

Character Conversion

int toascii(int c) -- Convertc to ASCII .
tolower(int c) -- Convert c to lowercase.
int toupper(int c) -- Convert c to uppercase.

The use of these functions is straightforward and we do not give examples here.

Memory Operations: <menory. h>

Finally we briefly overview some basic memory operations. Although not stridtlg $unctions the
functions are prototyped HKinclude <string.h>

void *memchr (void *s, int ¢, size_t n) -- Search for a character in a buffer .

int memcmp (void *s1, void *s2, size_t n) -- Compare two buffers.

void *memcpy (void *dest, void *src, size_t n) -- Copy one buffer into another .

void *fmemmove (void *dest, void *src, size_t n) -- Move a number of bytes from one buffer |
another.

void *memset (void *s, int ¢, size_t n) -- Set all bytes of a buffer to a given character.

Their use is fairly straightforward and not dissimilar to comparable strimgtogres (except the exact
length () of the operations must be specified as there is no natural termination here).

Note that in all case toytes of memory are copied. Theeof() function comes in handy again here
for example:

char src[SIZE],dest[SIZE];
int isrc[SIZE],idest[SIZE];

memcpy(dest,src, SIZE); /* Copy chars (bytes) ok */

memcpy(idest,isrc, SIZE*sizeof(int)); /* Copy array s of ints */

memmove() behaves in exactly the same waynasicpy() except that the source and destination
locations may overlap.

memcmp() iS similar tostrcmp() except her@insigned bytes are compared and returns less than zerc
s1 is less thar2 etc.

Exercises

Exercise 12584

Write a function similar to strlen that can handle unterminated strings. Hint:iffmeed to know and
pass in the length of the string.

Exercise 12585

Write a function that returns true if an input string is a palindrome of each otherndrpaiie is a word
that reads the same backwards as it does forveaydsBBA.

8/4/2008 1:5Qu

String Handling: <string.h> http://www.cs.cf.ac.uk/Dave/C/node19.html#SECTION90000000.

Exercise 12586
Suggest a possible implementation ofdiwek() function:

1.

using other string handling functions.
2.

from first pointer principles

How is the storage of the tokenised string achieved?

Exercise 12587

Write a function that converts all characters of an input string to upper casdeaisarac
Exercise 12591

Write a program that will reverse the contents stored in memory in bytes. Thatigif we have
bytes in memory byta becomes byte 0, bytel becomes byte éic.

Dave Marshall
1/5/1999

50f 5 8/4/2008 1:5Qu

File Access and Directory System Calls http:/wwvetac.uk/Dave/C/node20.html#SECTION002000000

1of5

Subsections

e Directory handling functionsiunistd.h>

o Scanning and Sorting Directoriesysitypes.h> <sys/dir.h>
¢ File Manipulation Routines: unistd.h, sys/typesys/stat.h

o File Access

= €rrno

o File Status

o File Manipulation:stdio.h, unistd.h

o Creating Temporary Flles:<stdio.h>
e Exercises

File Access and Directory System Calls

There are many UNIX utilities that allow us tomyaulate directories and filesd, Is, rm, cp, mkdir etc. are examples
we have (hopefully) already met.

We will now see how to achieve similar tasks froithim a C program.

Directory handling functions: <uni st d. h>

This basically involves calling appropriate fuoos to traverse a directory hierarchy or inquibew a directories contents
int chdir(char *path) -- changes directory to specified path string.

Example: C emulation of UNIX's1 command:

#include<stdio.h>
#include<unistd.h>

main(int argc,char **argv)

if (argc < 2)
{ printf(""Usage: %s

<pathname >\ n"argv[0);
exit(1);
}
if (chdir(argv[1]) 1=0)
{p rintf(""Error in chdir \n");
exit(1);
}
}
char *getwd(char *path) -- get the full pathname of the current working directory. path is a pointer to
a string where the pathname will be returned. getwd returns a pointer to the string or NULL if an erro r

occurs.

Scanning and Sorting Directories: <sys/ t ypes. h>, <sys/ dir. h>

Two useful functions (On BSD platforms aN@T in multi-threaded application) are available

scandir(char *dirname, struct direct **namelist, in t (*select)(),
int (*compar)()) -- reads the directory dirname and builds an aofgyointers to directory entries or -1 for an erro
namelist IS @ pointer to an array of structure pointers.

(*select))() is a pointer to a function which is called witp@inter to a directory entry (defined in <sys/typ@sd should
return a non zero valuetifie directory entry should be includiecthe array. If this pointer is NULL, then allettdirectory
entries will be included.

The last argument is a pointer to a routine whicpassed tgsort (seeman gsort) -- a built in function which sorts the
completed array. lthis pointer is NULL, the array is nebrted.

alphasort(struct direct **d1, **d2) -- alphasort() is a built in routine which willgghe array alphabetically.

8/4/2008 2:0%up

File Access and Directory System Calls

2 of 5

Example - a simple C version of UNIX utility

#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>
#include <stdio.h>

#define FALSE 0
#define TRUE !FALSE

extern int alphasort();
char pathname[MAXPATHLEN];

main() {int count,i;
struct direct **fil
int file_select();
if (getwd(pathname)

{p

}
printf("Current Wor

count =
scandir(pathname,

/* If no files foun
if (co

{

}
printf("Number of

for (i=1;i<count+1;
pr
printf("

int file_select(struct direct *entry)

{if ((strcmp(entry->d_name, *.")
(st
re
else

scandir returns the current directory (.) and the d
need to check for these and return FALSE so that th

Note: scandir and alphasort have definitions in sys
MAXPATHLEN and getwd definitions in sys/param.h

We can go further than this and search for specific
file_select() that only scans for files with a .c,

int file_select(struct direct *entry)

{char *ptr;
char *rindex(char

if ((strcmp(entry->
(st
re

/* Check for filen

ptr = rindex(entry

if ((ptr !I= NULL)
(¢

http:/wwvetac.uk/Dave/C/node20.html#SECTION002000000

es;

==NULL)
rintf("Error getting path \n");

exit(0);

king Directory = %s \n",pathname);

&files, file_select, alphasort);

d, make a non-selectable menu item */
unt <= 0)

printf("No files in this directory
exit(0);

files = %d \n",count);

++i)

intf(""%s " files[i-1]->d_name);
\n"); /* flush buffer */

rcmp(entry->d_name, “..") == 0))
turn (FALSE);

return (TRUE);

irectory above this (..) as well as all files so we

ey are not included in our list.

Itypes.h and sys/dir.h.

files: Let's write a modified
.0 or .h suffix:

*s, char c);

d_name, ".")==10) ||
rcmp(entry->d_name, “..") == 0))
turn (FALSE);

ame extensions */
->d_name, ")

&&

stremp(ptr, *".c") == 0)

| | (stremp(ptr, .h") == 0)

| | (stremp(ptr, “".0") ==0)))
return (TRUE);

\n"):

8/4/2008 2:0%up

File Access and Directory System Calls http://wwvetac.uk/Dave/C/node20.htmIi#SECTION00200000C

30of5

else
re turn(FALSE);
}
NOTE: rindex() is a string handling function that r eturns a pointer to the last occurrence of characte r
cin string s, or a NULL pointer if c does not occu rin the string. (index() is similar function but

assigns a pointer to 1st occurrence.)

The function struct direct *readdir(char *dir) also exists in <sys/dir.h>> to return a given directory
dir listing.

File Manipulation Routines: unistd.h, sys/types.h,
sys/stat.h

There are many system calls that can applied dlirexfiles stored in a directory.

File Access

int access(char *path, int mode) -- determine accessibility of file.

path points to a path name naming a fdecess() checks the named file for accessibility accordmgode, defined in
#include <unistd.h>

R_OK
- test for read permission
W_OK
- test for write permission
X_OK
- test for execute or search permission
F_OK
- test whether the directories leading to thedde be searched and the file exists.

access() returns: 0 on success, -1 on failure andsets to indicate the error. Seen pages for list of errors.

erro

errno IS a special systerariable that is set if a system call cannot penfds set task.
To useermo in a C program it must be declared via:
extern int errno;
It can be manually reset within a C program othisevit simply retains its last value.
int chmod(char *path, int mode) change the mode of access of a file. specifieghtby to the givermode.
chmod() returns 0 on success, -1 on failure and sets to indicate the error. Errors are definediitlude <sys/stat.h>

The access mode of a file can be set using prestefitacros iBys/stath ~ -- seeman pages -- or by setting the mode in a
digit octal number.

The rightmost digit specifies owner privileges, diggroup privileges and the leftmost other useisleges.

For each octal digit think of it a 3 bit binary niner. Leftmost bit = read access (on/off) middlevige, right is executable.
So 4 (octal 100) = read only, 2 (010) = write, &qL= read and write, 1 (001) = execute.

so for access mode 600 gives user read and widesaothers no access. 666 gives everybody reselAugess.

NOTE: a UNIX commandhmod also exists

File Status

Two useful functions exist to inquire about thedilcurrent status. You can find out how large iflbed (st_size) when it
was createds{_ctime) etc. (seestat structure definition below. The two functions @retotyped ircsys/stat.h>

int stat(char *path, struct stat *buf),
int fstat(int fd, struct

8/4/2008 2:0%up

File Access and Directory System Calls

4 of 5

stat *buf)

http://wwvetac.uk/Dave/C/node20.htmIi#SECTION00200000C

stat() obtains information about the file named by p&bad, write or execute permission of the namedditet required,
but all directories listed in the path name leadmmthe file must be searchable.

fstat() ~ Obtains the same information about an open fiieremced by the argument descriptor, such as wmeilobtained by

anopen call (Low level I/O).

stat(), and fstat()
#include <sys/stat.h>

return 0 on success, -1 on failure and sets to indicate the error. Errors are again defined in

buf is a pointer to a stat structure into which infation is placed concerning the file. A stat struetis define intinclude

<sys/types.h> , as follows

struct stat {

mode_t st_mode; /* File mode (type,
ino_t st_ino; /* Inode number */
dev_t st _dev; /*ID of device con

/* a directory entr
dev_t st rdev; /*ID of device */

/* This entry is de

[* char special or
nlink_t st_nlink; /* Number of links
uid_t st_uid; /* User ID of the f
gid_t st_gid; /* Group ID of the
off t st_size; /*File size in byt
time_t st_atime; /* Time of last acc
time_t st_mtime; /* Time of last dat
time_t st_ctime; /* Time of last fil

/* Times measured i

/*00:00:00 UTC, Ja
long st_blksize; /* Preferred 1/O bl
blkent_t st_blocks; /* Number of 512 by

File Manipulation:stdio.h, unistd.h

perms) */

taining */
y for this file */

fined only for */
block special files */
*/

ile's owner */

file's group */

es*/

ess */

a modification */

e status change */

n seconds since */
n. 1, 1970 %/

ock size */

te blocks allocated*/

There are few functions that exist to delete amaumee files. Probably the most common way is totlisetdio.h functions:

int remove(const char *path);
int rename(const char *old, const char *new);

Two system calls (defined imistd.h) which are actually used lymove() andrename() also exist but are probably hard

to remember unless you are familiar with UNIX.

int unlink(cons char *path)

-- removes the directory entry namedphth

unlink() returns O on success, -1 on failure and gets to indicate the error. Errors listed#include <sys/stat.h>

A similar functionlink(const char *path1, const char *path2)
to a new entr)bach

Creating Temporary Flles:<stdio.h>

creates a linking from an existing directory emiy1

Programs often need to create files just for tleedf the program. Two convenient functions (plame variants) exist to
assist in this task. Management (deletion of #&3 is taken care of by the Operating System.

The functionFILE *tmpfile(void)
deleted when all references to the file are closed.

The functionchar *tmpnam(char *s)
*tmpnam_r(char *s)

creates a temporary file and opens a corresporstiegm. The file will automatically b

generate file names that can safely be usedtiemporary file. Variant functionsar
andchar *tempnam(const char *dir, const char *pfx)

also exist

NOTE: There are a few more file manipulation routineslisted here seman pages.

Exercises

Exercise 12675

Write a C program to emulate tkel UNIX command that prints all files in a currenteditory and lists access privileges

etc. DO NOT simplyexec s -I from the program.

8/4/2008 2:0%up

File Access and Directory System Calls http://wwvetac.uk/Dave/C/node20.htmIi#SECTION00200000C

50f5

Exercise 12676

Write a program to print the lines of a file whicbntain a word given as the program argument (alsinersion ofyrep
UNIX utility).

Exercise 12677

Write a program to list the files given as argursestopping every 20 lines until a key is hit.(@glie version ofnore UNIX
utility)

Exercise 12678

Write a program that will list all files in a curredirectory and all files in subsequent sub doses.
Exercise 12679

Write a program that will only list subdirectorigsalphabetical order.

Exercise 12680

Write a program that shows the user all his/heo@cae programs and then prompts interactively aghtether others should
be granted read permission; if affirmative suchpssion should be granted.

Exercise 12681

Write a program that gives the user the opportuoitsemove any or all of the files in a current log directory. The name
of the file should appear followed by a prompt@svhether it should be removed.

Dave Marshall
1/5/1999

8/4/2008 2:0%up

Time Functions http://www.cs.cf.ac.uk/Dave/C/node21.html#SECTIORD0000000.

Subsections

e Basic time functions

e Example time applications
o Example 1: Time (in seconds) to perform some computation
o Example 2: Set a random number seed

e EXxercises

Time Functions

In this chapter we will look at how we can access the clock time with UNIX systiésn

There are many more time functions than we consider herenas@ages and standard library functic
listings for full details. In this chapter we concentrate on applications of tifmnugions in C

Uses of time functions include:

e telling the time.
e timing programs and functions.
e setting number seeds.

Basic time functions

Some of thge basic time functions are prototypes as follows:

time_t time(time_t *tloc) -- returns the time sin@®:00:00 GMT, Jan. 1, 1970 , measured in
seconds.

If tloc is not NULL, the return value is also stored in the location to which tloc points.
time() returns the value of time on success.

On failure, it returngtime_t) -1 . time_t is typedefed to a long (int) in <sys/types.h> and
<sys/time.h> header files.

int fime(struct timeb *tp) -- fills in a structure pointed to hy , as defined in <sys/timeb.h>:

struct timeb

{time_t time;
un signed short millitm;
sh ort timezone;
sh ort dstflag;
%

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of nsere pre
interval, the local time zone (measured in minutes of time westward from Gebgrand a flag that, if
nonzero, indicates that Day light Saving time applies locally during the apprqmaraef the year.

On successtime() returns no useful value. On failure, it ret urns -1.
Two other functions defined et c. in #include <time.h>

char *ctime(time_t *clock),

10f3 8/4/2008 2:46uy

Time Functions

2 of 3

http://www.cs.cf.ac.uk/Dave/C/node21.html#SECTIORD0000000.

char *asctime(struct tm *tm)

ctime() converts a long integer, pointed to by cloc k, to a 26-character string of the
form produced by asctime(). It first breaks down cl ock to a tm structure by calling
localtime(), and then calls asctime() to convert th at tm structure to a string.
asctime() converts a time value contained inatm s tructure to a 26-character string
of the form:

Sun Sep 16 01:03:52 1973

asctime() returns a pointer to the string.

Example time applications

we mentioned above three possible uses of time functions (there are many more) lauethese
common.

Example 1: Time (in seconds) to perform some computation

This is a simple program that illustrates that calling the time functiost@icimoments and noting th
different times is a simple method of timing fragments of code:

/* timer.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
{ inti;
time_t t1,t2;
(void) time(&t1);
for (i=1;i<=300;++ i)
printf(""%d %d % d \n",i, i*1, i*i*i);
(void) time(&t2);
printf("* \n Time to do 300 squares and

cubes= %d seconds \n (int) t2-t1);

Example 2: Set a random number seed

We have seen a similar example previously, this time we userts() function to generate of
number sequence:

/* random.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
{inti;
time_tt1;

8/4/2008 2:46.

Time Functions http://www.cs.cf.ac.uk/Dave/C/node21.html#SECTIORD0000000.

(void) time(&tl);
srand48((long) t1) ;
/* use time in sec onds to set seed */

printf(""5 random numbers
(Seed = %(d): \ n",(int) t1);
for (i=0;i<5;++i)
printf("*%d ", Irand48());
printf(™ \n'\n"); /* flush print buffer *
}
Irand48() returns non-negative long integers unifor mly distributed over the interval
(0, 2**31).
A similar function drand48() returns double precisi on numbers in the range [0.0,1.0).
srand48() sets the seed for these random number gen erators. It is important to have
different seeds when we call the functions otherwis e the same set of pseudo-random
numbers will generated. time() always provides a un ique seed.

Exercise 12708
Write a C program that times a fragment of code in milliseconds.
Exercise 12709

Write a C program to produce a series of floating point random numbers in the ranges 1) (b} -
0.0 - n where n is any floating point value. The seed should be set so that a unique sequence is
guaranteed.

Dave Marshall
1/5/1999

3 0f 3 8/4/2008 2:46uy

Process Control: <stdlib.h>,<unistd.h> http://mwwetsic.uk/Dave/C/node22.htmlI#SECTION002200000

1of5

Subsections

e Running UNIX Commands from C

Process Control:<stdl i b. h>, <uni std. h>

A process is basically a single running program. It may be a "“system" progrghodin, update, csh)
or program initiated by the user (textedit, dbxtool or a user written one).

When UNIX runs a process it gives each process a unique number - a progass ID,
The UNIX commanags will list all current processes running on your machine and will list the pid.
The C functionnt getpid() will return the pid of process that called this function.

A program usually runs as a single process. However later we will see how wal@pnegrams run
as several separatemmunicating processes.

Running UNIX Commands from C

We can run commands from a C program just as if they were from the UNIX command lisiadpyhe
system() function.NOTE: this can save us a lot of time and hassle as we can run other (proven)
programs, scriptstc. to do set tasks.

int system(char *string) -- where string can be the name of a unix utility, an executable shel
script or a user program. System returns the exit status of the shell. Sypretotiyped irxstdlib.h>

Example: Calls from a program

main()
{ printf(""Files in Directory are: \n“);
system("’lIs -I");
}
system is a call that is made up of 3 other system calls: execl(), wait() and fork()

(which are prototyed in <unistd>)

execl()

execl has 5 other related functions -- & pages.

execl stands foexecute andleave which means that a process will get executed and then terminat
execl .

It is defined by:

8/4/2008 2:47u

Process Control: <stdlib.h>,<unistd.h> http://mwwetsic.uk/Dave/C/node22.htmlI#SECTION002200000

2 of 5

execl(char *path, char *arg0,...,char *argn, 0);

The last parameter must always be 0. ItNA_L terminator. Since the argument list is variable we
must have some way of telling C when it is to end. The NULL terminator does this job.

wherepath points to the name of a file holding a command that is to be exeatgiedoints to a string
that is the same as path (or at least its last component.

argl ... argn are pointers to arguments for the command and 0 simply marks the end of the (v:
list of arguments.

So our above example could look like this also:

main()

{ printf(""Files in Directory are: \n");
execl('/bin/ls",”Is", ~*-I",0) ;

}

fork()

int fork() turns a single process into 2 identical processes, known partém and thechild. On
success, fork() returns 0 to the child process and returns the process ID of the chilltpriteeparent
process. On failure, fork() returns -1 to the parent process, sets errno to indicater tlameé no child
process is created.

NOTE: The child process will have its own unique PID.

The following program illustrates a simple use of fork, where two copies are maderetogether
(multitasking)

main()
{int return_value;

printf(""Forking process \n“);

fork();
printf(""The process id is %d
and return value is %d \n
getpid(), return_value);
execl("/bin/ls/","1s",-I",0);
printf(""This line is not printed \n");

The Output of this would be:

Forking process

The process id is 6753 and return value is 0

The process id is 6754 and return value is 0

two lists of files in current directory

NOTE: The processes have unique ID's which will be diffe rent at each run.

8/4/2008 2:47u

Process Control: <stdlib.h>,<unistd.h> http://mwwetsic.uk/Dave/C/node22.htmlI#SECTION002200000

30of5

It also impossible to tell in advance which process will get to CPU's time -- so one
run may differ from the next.

When we spawn 2 processes we can easily detect (in each process) whether it is the
child or parent since fork returns 0 __to the child . We can trap any errors if fork
returns a -1. i.e.:

int pid; /* process identifier */

pid = fork();
if (pid<0)
{ printf(""Cannot fork!! .\n");
exit(1);
o }
if (pid==0)

{ /* Child process */ }
else
{ I* Parent process pid is child's pid */

wait()

int wait (int *status_location) -- will force a parent process to wait for a child process to sto
terminatewait() return the pid of the child or -1 for an error. The exit status of the child is returne
status_location

exit()
void exit(int status) -- terminates the process which calls this function and returns theaexit

value. Both UNIX and C (forked) programs can read the status value.

By convention, a status of 0 mear@®mal termination any other value indicates an error or unusual
occurrence. Many standard library calls have errors defined wydket.h header file. We can
easily derive our own conventions.

A complete example of forking program is originally titfedk.c

[* fork.c - example of a fork in a program */

/* The program asks for UNIX commands to be typed a nd inputted to a string*/
/* The string is then "parsed" by locating blanks e tc. */

/* Each command and sorresponding arguments are put in a args array */

[* execvp is called to execute these commands in ch ild process */

/* spawned by fork() */
/* cc -o fork fork.c */
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

main()

char buf[1024];
char *args[64];

for (;7) {
/*
* Prompt for and read a command.

*/
printf("Command: ");

8/4/2008 2:47u

Process Control: <stdlib.h>,<unistd.h>

4 of 5

if (gets(buf) == NULL) {

printf("\n");
exit(0);
}
/*
* Split the string into arguments.
*/
parse(buf, args);
/*
* Execute the command.
*/
execute(args);
}
}
/*
* parse--split the command in buf into
* individual arguments.
*/
parse(buf, args)
char *buf;

char **args;

while (*buf != NULL) {
/*
* Strip whitespace. Use nulls, so
* that the previous argument is terminated
* automatically.
*/
while ((*buf =="") || (*buf =="\t"))
*buf++ = NULL;

/*

* Save the argument.
*/

*args++ = buf;

/*
* Skip over the argument.
*/
while ((*buf = NULL) && (*buf I="") && (
buf++;
}

*args = NULL;
}

/*

* execute--spawn a child process and execute
* the program.

*/

execute(args)

char **args;

{

int pid, status;

/~k

* Get a child process.

*/

if ((pid = fork()) < 0) {
perror(“fork");
exit(1);

[* NOTE: perror() produces a short error
error describing the last error encounte
a system or library function.
*/
}

/~k

* The child executes the code inside the if.
*/

if (pid ==0) {

http://mwwetsic.uk/Dave/C/node22.htmlI#SECTION002200000

*puf 1= \t))

message on the standard
red during a call to

8/4/2008 2:47u

Process Control: <stdlib.h>,<unistd.h>

50f5

execvp(*args, args):
perror(*args);
exit(1);

/* NOTE: The execv() vnd execvp versions of
number of arguments is unknown in advan
The arguments to execv() and execvp() ar
of the file to be executed and a vector o
ing the arguments. The last argument
lowed by a 0 pointer.

execlp() and execvp() are called with the

execl() and execv(), but duplicate the

searching for an executable file in a lis

The directory list is obtained from the e
*/

}
/~k
* The parent executes the wait.
*
while (wait(&status) != pid)
[* empty */;

http://mwwetsic.uk/Dave/C/node22.htmlI#SECTION002200000

execl() are useful when the
ce;

e the name

f strings contain-

string must be fol-

same arguments as
shell's actions in

t of directories.
nvironment.

Exerises

Exercise 12727

Usepopen() to pipe thewho (UNIX command) output intemore (UNIX command) in a C program.

Dave Marshall
1/5/1999

8/4/2008 2:47u

Interprocess Communication (IPC), Pipes http://mnvevetac.uk/Dave/C/node23.htmI#SECTION00230000C

1of5

Subsections

Piping in a C program:stdio.h >
popen() -- Formatted Piping
pipe() -- Low level Piping
Exercises

Interprocess Communication (IPC), Pipes

We have now began to see how multiple processes may be running on a machine and maybe be
controlled (spawned krgrk() by one of our programs.

In numerous applications there is clearly a need for these processes to comnattticseh
exchanging data or control information. There are a few methods which can accompliabkthive
will consider:

Pipes

Signals

Message Queues
Semaphores
Shared Memory
Sockets

In this chapter, we will study the piping of two processes. We will study the others in subsequent
chapters.

Piping in a C program: <st di 0. h>

Piping is a process where the input of one process is made the input of another. We havengdes ¢
of this from the UNIX command line usii|3

We will now see how we do this from C programs.
We will have two (or morefprked processes and will communicate between them.
We must first open pipe

UNIX allows two ways of opening a pipe.

popen() -- Formatted Piping

FILE *popen(char *command, char *type) -- opens a pipe for I/O where the command is the pro
that will be connected to the calling process thus creatingipeeThe type is either “'r" - for reading,
“w" for writing.

popen() returns is a stream pointer or NULL for any errors.
A pipe opened byopen() should always be closed bylose(FILE *stream)

We uséhprintf() andfscanf() to communicate with the pipegseam .

8/4/2008 2:5Qu

Interprocess Communication (IPC), Pipes http://mnvevetac.uk/Dave/C/node23.htmI#SECTION00230000C

2 of 5

pi pe() -- Low level Piping

int pipe(int fd[2]) -- creates a pipe and returns two file descripto)d, fd[1] .fd[0o] IS
opened for readingg[1] for writing.

pipe() returns 0 on success, -1 on failure and sets accordingly.

The standard programming model is that after the pipe has been set up, two (or moredw®opera
processes will be created by a fork and data will be passedreif)g andwrite()

Pipes opened withipe() should be closed wittiose(int fd)

Example: Parent writes to a child

int pdes[2];
pipe(pdes);
if (fork() == 0)
{ * child */
close(pdes[1]); /* not required */
read(pdes|[0]); /* read from parent */
}
else
{ close(pdes|[0]); /* not required */
write(pdes[1]); / * write to child */
}

An futher example of piping in a C progranpi&.c and subroutines and it performs as
follows:

® The program has two modules plot.c (main) and plott er.c.

® The program relies on you having installed the free ly gnupl ot graph drawing
program in the directory /usr/local/bin/ (in the li sting below at least) -- this
path could easily be changed.

® The program plot.c calls ghupl ot

® Two Data Stream is generated from Plot
O y= sin(x)
oy= sin(l/ x)
® 2 Pipes created -- 1 per Data Stream.
® ° CGnupl ot produces “live" drawing of output.

The code listing for plot.c is:

/* plot.c - example of unix pipe. Calls gnuplot gra ph drawing package to draw
graphs from within a C program. Info is piped to gnuplot */

/* Creates 2 pipes one will draw graphs of y=0.5 an dy=random 0-1.0 */

/* the other graphs of y = sin (1/x) and y = sin x */

/* Also user a plotter.c module */
[* compile: cc -o plot plot.c plotter.c */

#include "externals.h"
#include <signal.h>

#define DEG_TO_RAD(x) (x*180/M_PI)

double drand48();
void quit();

FILE *fpl, *fp2, *fp3, *fp4, *fopen();

8/4/2008 2:5Qu

Interprocess Communication (IPC), Pipes

30of5

main()
{ floati;

float y1,y2,y3,y4;

/* open files which will store plot data */
if (((fpl = fopen("plotll.dat","w")) == NULL)
((fp2 = fopen("plotl2.dat","w")) == NULL
((fp3 = fopen("plot21.dat","w")) == NUL
((fp4 = fopen("plot22.dat","w")) == NU
{ printf("Error can't open one or mor
exit(1);

signal(SIGINT,quit); /* trap ctrl-c call quit f

StartPlot();

yl =0.5;

srand48(1); /* set seed */

for (i=0;;i+=0.01) /* increment i forever use ¢
{y2 = (float) drand48();

if (i ==0.0)
y3 =0.0;
else

y3 = sin(DEG_TO_RAD(1.0/i));
y4 = sin(DEG_TO_RAD(i));

/* load files */

fprintf(fpl,"%f %f\n",i,y1);
fprintf(fp2,"%f %f\n",i,y2);
fprintf(fp3,"%f %f\n",i,y3);
fprintf(fp4,"%f %f\n",i,y4);

/* make sure buffers flushed so that gnuplo
[* reads up to data file */

fflush(fpl);

fflush(fp2);

fflush(fp3);

fflush(fp4);

[* plot graph */
PlotOne();
usleep(250); /* sleep for short time */

}

void quit()
{ printf("\nctrl-c caught:\n Shutting down pipes\n

StopPlot();

printf("closing data files\n");
fclose(fpl);
fclose(fp2);
fclose(fp3);
fclose(fp4);

printf("deleting data files\n");
RemoveDat();

The plotter.c module is as follows:

/* plotter.c module */
/* contains routines to plot a data file produced b
/* 2d data plotted in this version

/**

#include "externals.h"

static FILE *plot1,

*plot2,
*ashell;

static char *startplotl = "plot [] [0:1.1]'plot11.d

'plot12.dat’ with lines\n";

http://mnvevetac.uk/Dave/C/node23.htmI#SECTION00230000C

L)l
LL))

e data files\n");

trl-c to quit prog */

y another program */
*/

********************/

at' with lines,

8/4/2008 2:5Qu

Interprocess Communication (IPC), Pipes http://mnvevetac.uk/Dave/C/node23.htmI#SECTION00230000C

static char *startplot2 = "plot 'plot21.dat’ with | ines,
'plot22.dat’ with lines\n";

static char *replot = "replot\n";

static char *command1= "/usr/local/bin/gnuplot> dum pl";
static char *command2= "/usr/local/bin/gnuplot> dum p2";
static char *deletefiles = "rm plotll.dat plotl2.da t plot21.dat plot22.dat";

static char *set_term = "set terminal x11\n";

void

StartPlot(void)

{ plotl = popen(commandl, "w");
fprintf(plotl, "%s", set_term);

fflush(plotl);
if (plotl == NULL)
exit(2);

plot2 = popen(command2, "w");
fprintf(plot2, "%s", set_term);

fflush(plot2);
if (plot2 == NULL)
exit(2);
void

RemoveDat(void)
{ ashell = popen(deletefiles, "w");
exit(0);

void

StopPlot(void)

{ pclose(plotl);
pclose(plot2);

void

PlotOne(void)

{ fprintf(plotl, "%s", startplotl);
fflush(plotl);

fprintf(plot2, "%s", startplot2);
fflush(plot2);

void

RePlot(void)

{ fprintf(plotl, "%s", replot);
fflush(plotl);

}

The header file externals.h contains the following:

/* externals.h */
#ifndef EXTERNALS
#define EXTERNALS

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

[* prototypes */

void StartPlot(void);
void RemoveDat(void);
void StopPlot(void);
void PlotOne(void);

void RePlot(void);
#endif

Exercises
Exercise 12733

4 0f 5 8/4/2008 2:5Qu

Interprocess Communication (IPC), Pipes http://mnvevetac.uk/Dave/C/node23.htmI#SECTION00230000C

Setup a two-way pipe between parent and child processes in a C program. i.e. both can sesigan
signals.

Dave Marshall
1/5/1999

50f 5 8/4/2008 2:5Qu

IPC:Interrupts and Signals: <signal.h> http://mwuctsc.uk/Dave/C/node24.htmli#SECTION002400000

Subsections

Sending Signals ill(), raise()

Signal Handling -signal()

sig_talk.c -- complete example program
Other signal functions

IPC:Interrupts and Signals: <si gnal . h>

In this section will look at ways in which two processes can communicate. When a peooésates
abnormally it usually tries to send a signal indicating what went wrong. C pro¢mach&/NIX) can
trap these for diagnostics. Also user specified communication can take placenaythis

Signals are software generated interrupts that are sent to a process wherhagpens. Signals can k
synchronously generated by an error in an application, suglBEEE andSIGSEGV, but most signals ar
asynchronous. Signals can be posted to a process when the system detects a saftysueleas a
user entering an interrupt or stop or a kill request from another process. Sighasodana@me
directly from the OS kernel when a hardware event such as a bus error or an iltegetionsis
encountered. The system defines a set of signals that can be posted to a proceseliBaypad
analogous to hardware interrupts in that a signal can be blocked from being deliveredturéhd/fost
signals cause termination of the receiving process if no action is taken by the pnoesponse to the
signal. Some signals stop the receiving process and other signals can be ignoragnBlacassa
default action which is one of the following:

e The signal is discarded after being received

e The process is terminated after the signal is received
e A core file is written, then the process is terminated

e Stop the process after the signal is received

Each signal defined by the system falls into one of five classes:

Hardware conditions
Software conditions
Input/output notification
Process control
Resource control

Macros are defined igsignal.h> header file for common signals.

These include:

SIGHUP 1 /* hangup */ SIGINT 2 /* interrupt */
SIGQUIT 3 /* quit */ SIGILL 4 /* illegal instruction */
SIGABRT 6 /* used by abort */ SIGKILL 9 /* hard kill */

SIGALRM 14 /* alarm clock */
SIGCONT 19 /* continue a stopped process */
SIGCHLD 20 /* to parent on child stop or exit */

Signals can be numbered from O to 31.

10f5 8/4/2008 3:16up

IPC:Interrupts and Signals: <signal.h> http://mwuctsc.uk/Dave/C/node24.htmli#SECTION002400000

2 of 5

Sending Signals -ki I I (), raise()

There are two common functions used to send signals

int kill(int pid, int signal) - a system call that sendignal to a processid . If pid is greater
than zero, the signal is sent to the process whose process ID is equal to pid. If pid igfathe sent
to all processes, except system processes.

kill() returns O for a successful call, -1 otherwise andes@ts accordingly.

int raise(int sig) sends the signal sig to the executing prograise() actually usesill() to
send the signal to the executing program:

kill(getpid(), sig);

There is also a UNIX command called kill that can be used to send signals from tharcbhima - see
man pages.

NOTE: that unless caught or ignored, #iile signal terminates the process. Therefore protection is
built into the system.

Only processes with certain access privileges can be killed off.
Basic rule:only processes that have the same user can send/receive messages.

ThesIGKILL signal cannot be caught or ignored and will always terminate a process.

For exampleili(getpid(),SIGINT); would send the interrupt signal to the id of the calling proces

This would have a similar effect &ait) command. Alsatrl-c typed from the command sends a
SIGINT to the process currently being.

unsigned int alarm(unsigned int seconds) -- sends the signalGALRMto the invoking process
after seconds seconds.

Signal Handling --si gnal ()

An application program can specify a function called a signal handler to be invoked wheifia spec
signal is received. When a signal handler is invoked on receipt of a signal, it is sgchtthe signal.
A process can deal with a signal in one of the following ways:

e The process can let the default action happen
e The process can block the signal (some signals cannot be ignored)
¢ the process can catch the signal with a handler.

Signal handlers usually execute on the current stack of the process. This lgjsahkasidler return to
the point that execution was interrupted in the process. This can be changed on a persssgstal et
a signal handler executes on a special stack. If a process must resume iera diffgiext than the
interrupted one, it must restore the previous context itself

Receiving signals is straighforward with the function:

int (*signal(int sig, void (*func)()))() -- that is to say the functiamnal() will call the

8/4/2008 3:16up

IPC:Interrupts and Signals: <signal.h> http://mwuctsc.uk/Dave/C/node24.htmli#SECTION002400000

func functions if the process receives a sigmgal. Signal returns a pointer to functiamc if
successful or it returns an errorettno and -1 otherwise.

func() can have three values:

Sl G_DFL
-- a pointer to a system default functiei»_DFL() , which will terminate the process upon rece
of sig .

SIG IGN
-- a pointer to system ignore functieré_IGN() which will disregard theig action (UNLESSt
IS SIGKILL).

A function address
-- a user specified function.

SIG_DFL and SIG_IGN are defined imignal.n (standard library) header file.
Thus to ignore atrl-c command from the command line. we could do:
signal(SIGINT, SIG_IGN);
TO reset system so thailGINT causes a termination at any place in our program, we would do:

signal(SIGINT, SIG_DFL);

So lets write a program to tragtd-c but not quit on this signal. We have a functé@proc() that
is executed when we trag@-c . We will also set another function to quit the program if it traps tt
SIGQUIT signal so we can terminate our program:

#include <stdio.h>
void sigproc(void);
void quitproc(void);

main()

{ signal(SIGINT, sigproc);
signal(SIGQUIT, quitproc);
printf(""ctrl-c disabled use ctrl- \ \ to quit \n“);

for(;;); /* infinite loop */}

void sigproc()
signal(SIGINT, sigproc); /* */

30of5

/* NOTE some versions of UNIX will
after each call. So for portabilit

printf("you have pressed ctrl-c

reset signal to default
y reset signal each time */

\n");

}

void quitproc()

{ printf("ctrl- \ \ pressed to quit \n");
exit(0); /* normal exit status */

}

8/4/2008 3:16up

IPC:Interrupts and Signals: <signal.h> http://mwuctsc.uk/Dave/C/node24.htmli#SECTION002400000

4 of 5

si g_tal k. ¢ -- complete example program

Let us now write a program that communicates between child and parent processies)usitng
signal()

fork() creates the child process from the parent.plthecan be checked to decide whether it is the
child (== 0) or the parent (pid = child process id).

The parent can then send messages to child using the piglgand.
The child picks up these signals witbnal() and calls appropriate functions.

An example of communicating process using signadig_isalk.c

/* sig_talk.c --- Example of how 2 processes can ta Ik */
/* to each other using kill() and signal() */
/* We will fork() 2 process and let the parent send afew */

/* signals to it’s child */
[* cc sig_talk.c -o sig_talk */

#include <stdio.h>
#include <signal.h>

void sighup(); /* routines child will call upon sig trap */
void sigint();
void sigquit();

main()
{int pid;

/* get child process */

if ((pid = fork()) < 0) {
perror(“fork");
exit(1);

if (pid == 0)
{ I* child */
signal(SIGHUP,sighup); /* set function calls */
signal(SIGINT,sigint);
signal(SIGQUIT, sigquit);
for(;;); /* loop for ever */

else /* parent */

{ /* pid hold id of child */
printf("\nPARENT: sending SIGHUP\n\n");
kill(pid, SIGHUP);
sleep(3); /* pause for 3 secs */
printf("\NPARENT: sending SIGINT\n\n");
kill(pid,SIGINT);
sleep(3); /* pause for 3 secs */
printf("\NPARENT: sending SIGQUIT\n\n");
kill(pid, SIGQUIT);
sleep(3);

}

void sighup()

{ signal(SIGHUP,sighup); /* reset signal */
printf("CHILD: I have received a SIGHUP\n");

void sigint()

{ signal(SIGINT,sigint); /* reset signal */
printf("CHILD: | have received a SIGINT\n");

8/4/2008 3:16up

IPC:Interrupts and Signals: <signal.h> http://mwuctsc.uk/Dave/C/node24.htmli#SECTION002400000

void sigquit()

{ printf("My DADDY has Killed me!'!\n");
exit(0);

Other signal functions

There are a few other functions definedigmal.h

int sighold(int sig) -- addssig to the calling process's signal mask

int sigrelse(int sig) -- removesig from the calling process's signal mask

int sigignore(int sig) -- sets the disposition eig to SIG_IGN

int sigpause(int sig) -- removesig from the calling process's signal mask and suspends the

calling process until a signal is received

Dave Marshall
1/5/1999

50f 5 8/4/2008 3:16up

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

1of14

Subsections

Initialising the Message Queue
IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>
Controlling message queues
Sending and Receiving Messages
POSIX Messages:mgueue.h >
Example: Sending messages between two processes
o message_send.c -- creating and sending to a simple message queue
o message_rec.c _-- receiving the above message
Some further example message queue programs
o msgget.c : Simple Program to illustratesget()
o msget.c Sample Program to lllustraibesgctl()
o msgop.c : Sample Program to lllustratésgsnd() andmsgrev()
Exercises

IPC:Message Queuessys/ nsg. h>

The basic idea of message queue is a simple one.

Two (or more) processes can exchange information via access to a common sysstage meeue. The
sending process places via some (OS) message-passing module a message onto a queae behict
read by another process (Figaee1). Each message is given an identificationye¢ so that processes
can select the appropriate message. Process must share a ¢egnimaoorder to gain access to the
gueue in the first place (subject to other permissions -- see below).

sending T Feceiving
Pmcess Process
Meszage- passing Message-passing
hodule hlodule
| Tupe | Meszmge |

Mesmge Ouens
geQ -

Fig. 24.1Basic Message PassingC messaging lets processes send and receive messages, and
messages for processing in an arbitrary order. Unlike the file byte-stréaffoslaof pipes, each IPC
message has an explicit length. Messages can be assigned a specificciypse Béthis, a server
process can direct message traffic between clients on its queue by usingnihgroliess PID as the
message type. For single-message transactions, multiple server reeesa@rk in parallel on
transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be initializddt(tbregget

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

2 of 14

function see below) Operations to send and receive messages are performeasimntdge and
msgrev() functions, respectively.

When a message is sent, its text is copied to the message quemegshhg andmsgrev() functions
can be performed as either blocking or non-blocking operations. Non-blocking operations allow f
asynchronous message transfer -- the process is not suspended as a result of sendinmgar
message. In blocking or synchronous message passing the sending process cannot coritireue un
message has been transferred or has even been acknowledged by a receiver. 12l p¢mad
mechanisms can be employed to implement such transfer. A blocked message opgrainsn re
suspended until one of the following three conditions occurs:

e The call succeeds.
e The process receives a signal.
e The queue is removed.

Initialising the Message Queue

Themsgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queuenfifl) of the queue corresponding to the key argument. Thi
value passed as thegfly argument must be an octal integer with settings for the queue’'s permiss
and control flags.

The following code illustrates thesgget() function.

#include <sys/ipc.h>;
#include <sys/msg.h>;

key _t key; /* key to be passed to msgget() */
int msgflg /* msgflg to be passed to msgget() */
int msqid; /* return value from msgget() */

key = ...
msgflg = ...
if ((msqid = msgget(key, msgflg)) == –1)
{
perror("msgget: msgget failed");
exit(1);

} else
(void) fprintf(stderr, “msgget succeeded");

IPC Functions, Key Arguments, and Creation
Flags: <sys/ipc.h>

Processes requesting access to an IPC facility must be able to identfdd.tfis, functions that
initialize or provide access to an IPC facility useyatkey argument.Key_t is essentially amt
type defined in <sys/types.h>

Thekey is an arbitrary value or one that can be derived from a common seed at run time. One w;
with ftok() , which converts a filename to a key value that is unique within the system. Function:

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

3 of 14

initialize or get access to messages (also semaphores or shared mentaigr)seeturn an ID number ¢
type int. IPC functions that perform read, write, and control operations use this IDkdfythegument
is specified as,C_PRIVATE, the call initializes a new instance of an IPC facility that is private to the
creating process. When tiree_CREATflag is supplied in the flags argument appropriate to the call,
function tries to create the facility if it does not exist already. Whendcaild both thepc_cREATand
IPC_EXCL flags, the function fails if the facility already exists. This can be usdfahvnore than one
process might attempt to initialize the facility. One such case might invehesad server processes
having access to the same facility. If they all attempt to create thgyfautih IPC_EXCL in effect, only
the first attempt succeeds. If neither of these flags is given and the/falcéedy exists, the functions
get access simply return the ID of the facilityPif_CREATIs omitted and the facility is not already
initialized, the calls fail. These control flags are combined, using logidaligk) OR, with the octal
permission modes to form the flags argument. For example, the statement béhtzemia new
message queue if the queue does not exist.

msqid = msgget(ftok("/tmp",
key), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates ta@eg based on the string ("/tmp"). The second argument evaluates 1
combined permissions and control flags.

Controlling message queues

Themsgctl) function alters the permissions and other characteristics of a message quewendre
or creator of a queue can change its ownership or permissionsngsiag Also, any process with
permission to do so can usegctl() for control operations.

Themsgcetl() function is prototypes as follows:

int msgctl(int msqid, int cmd, struct msqid_ds *buf)
Themsgid argument must be the ID of an existing message queuemitaggument is one of:

| PC_STAT
-- Place information about the status of the queue in the data structure pointeditoTiye
process must have read permission for this call to succeed.

| PC_SET
-- Set the owner's user and group ID, the permissions, and the size (in number of bytes) of
message queue. A process must have the effective user ID of the owner, creatorusesiqrer
this call to succeed.

| PC_RM D
-- Remove the message queue specified bynsh@ argument.

The following code illustrates thesgctl() function with all its various flags:

#include<sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

if (msgcti(msaqid, IPC_STAT, &buf) == -1) {
perror("msgctl: msgctl failed");

exit(1);

}

if (msgcti(msgid, IPC_SET, &buf) == -1) {
perror("msgctl: msgctl failed");
exit(1);

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

4 of 14

Sending and Recelving Messages

Themsgsnd() andmsgrev() functions send and receive messages, respectively:

int msgsnd(int msqid, const void *msgp, size_t msgs z,
int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, lon g msgtyp,
int msgflg);

Themsgid argumentnust be the ID of an existing message queue.nidyp argument is a pointer to a
structure that contains the type of the message and its text. The structurestaiexample of what
this user-defined buffer might look like:

struct mymsg {

long mtype; /* message type */

char mtextfMSGSZ]; /* message text of length MSGSZ */
}

Themsgsz argument specifies the length of the message in bytes.
The structure membaetsgtype is the received message's type as specified by the sending process
The argumeninsgflg specifies the action to be taken if one or more of the following are true:

e The number of bytes already on the queue is equadaybytes .
¢ The total number of messages on all queues system-wide is equal to the systegdilimit.

These actions are as follows:

e If (msgflg & IPC_NOWAIT) is non-zero, the message will not be sent and the calling process
return immediately.
o If (msgflg & IPC_NOWAIT) is O, the calling process will suspend execution until one of the
following occurs:
o The condition responsible for the suspension no longer exists, in which case the mes
sent.
o The message queue identifiesgid is removed from the system; when this occensp is
set equal t&iIDRMand -1 is returned.
o The calling process receives a signal that is to be caught; in this case shgerissiot sen
and the calling process resumes execution.

Upon successful completion, the following actions are taken with respect to thewulztaest
associated witlmsqid :

o msg_gnumis incremented by 1.
o msg_lspid Is set equal to the process ID of the calling process.
o msg_stime IS set equal to the current time.

The following code illustratessgsnd() andmsgrev()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buff er*/
int msgsz; /* message size */

long msgtyp; /* desired message type */

int msqid /* message queue ID to be used */

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

5 of 14

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(st ruct msgbuf)
- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages. \n",
"could not allocate message buffer for", maxmsgsz);

exit(1);

msgsz = ...
msgflg = ...

if (msgsnd(msqid, msgp, msgsz, msgflg) == -1)
perror("msgop: msgsnd failed");

msgsz = ...

msgtyp = first_on_queue;
msgfig = ...
if (rtrn = msgrev(msqid, msgp, msgsz, msgtyp, msgfl g) ==-1)

perror("msgop: msgrcv failed");

POSIX Messages: sgueue. h>

The POSIX message queue functions are:
mg_open() -- Connects to, and optionally creates, a named message queue.
mg_close() -- Ends the connection to an open message queue.

mq_unlink() -- Ends the connection to an open message queue and causes the queue to be ren
when the last process closes it.

mq_send() -- Places a message in the queue.

mq_receive() -- Receives (removes) the oldest, highest priority message from the queue.
ma_notify() ~ -- Notifies a process or thread that a message is available in the queue.
mq_setattr() -- Set or get message queue attributes.

The basic operation of these functions is as described above. For full function prototypethand fur
information see the UNIXhan pages

Example: Sending messages between two
processes

The following two programs should be compiled andattie same time to illustrate basic principle o
message passing:

nessage_send. c

-- Creates a message queue and sends one message to the queue.
nmessage_rec.c

-- Reads the message from the queue.

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h>

6 of 14

http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

message_send. ¢ -- creating and sending to a simple message

queue

The full code listing fomessage_send.c is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <string.h>

#define MSGSZ 128

/*
* Declare the message structure.
*/

typedef struct msgbuf {
long mtype;
char mtextiMSGSZ];
} message_buf;

main()

int msqid;

int msgflg = IPC_CREAT | 0666;
key t key;

message_buf sbuf;

size_t buf_length;

/~k
* Get the message queue id for the
* "name" 1234, which was created by
* the server.
*
key = 1234;
(void) fprintf(stderr, "\nmsgget: Calling msgget(%#
%7#o)\n",
key, msgflg);
if ((msqid = msgget(key, msgflg)) < 0) {
perror("msgget");
exit(1);
else
(void) fprintf(stderr,"msgget: msgget succeede

/*

* We'll send message type 1

*/

sbuf.mtype = 1;

(void) fprintf(stderr,"msgget: msgget succeeded
(void) strcpy(sbuf.mtext, "Did you get this?");

(void) fprintf(stderr,"msgget: msgget succeeded

buf_length = strlen(sbuf.mtext) + 1 ;

/*
* Send a message.
*

if (msgsnd(msqid, &sbuf, buf_length, IPC_NOWAIT

printf ("%d, %d, %s, %d\n", msqid, sbuf.mtyp
perror("msgsnd");

Ix,\

d: msqid = %d\n", msqid);

: msqid = %d\n", msqid);

: msqid = %d\n", msqid);

)<0){
e, sbuf.mtext, buf_length);

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.
exit(1);

else
printf("Message: \"%s\" Sent\n", sbuf.mtext);

exit(0);

The essential points to note here are:

e The Message queue is created with a bagsiand message flagsgflg = IPC_CREAT | 0666 --
create queue and make it read and appendable by all.
e A message of typetfuf.mtype) 1 is sent to the queue with the messag@ you get this?

message_rec. ¢ -- receiving the above message

The full code listing fomessage_send.c 's companion processessage rec.c is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>

#define MSGSZ 128

/*
* Declare the message structure.
*

typedef struct msgbuf {
long mtype;
char mtextiMSGSZ];
} message_buf;

main()

int msqid;
key t key;
message_buf rbuf;

/*

* Get the message queue id for the
*"name" 1234, which was created by
* the server.

*/

key = 1234;

if ((msqid = msgget(key, 0666)) < 0) {
perror("msgget");
exit(1);

/*

* Receive an answer of message type 1.

*/

if (msgrev(msqid, &rbuf, MSGSZ, 1, 0) < 0) {
perror("msgrcv");
exit(1);

/*

* Print the answer.

*

printf("%s\n", rbuf.mtext);
exit(0);

7 of 14 8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h>

The essential points to note here are:

http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

e The Message queue is opened witlgget (Mmessage flageee) and thesamekey as

message_send.c

e A message of theametype 1 is received from the queue with the messageyou get

this? " stored inbuf.mtext

Some further example message queue program

The following suite of programs can be used to investigate interactively ay\afrassage passing

ideas (see exercises below).

The message queunaust be initialised with thensgget.c

program. The effects of controlling the que

and sending and receiving messages can be investigatedsgittc andmsgop.c respectively.

nmsgget . c: Simple Program to illustrate nsget ()

/*

* msgget.c: lllustrate the msgget() function.

* This is a simple exerciser of the msgget() funct
* for the arguments, makes the call, and reports t
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

extern void exit();
extern void perror();

main()

key t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() *
msqid; /* return value from msgget() */

(void) fprintf(stderr,

"All numeric input is expected to follow C conven
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\tO... is interpreted as o
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#Ix\n", IP
(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

(void) fprintf(stderr, "\nExpected flags for msgfi
are:\n");

(void) fprintf(stderr, "\tIPC_EXCL =\t%#8.80\n", |
(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.80\n",
(void) fprintf(stderr, "\towner read =\t%#8.80\n",
(void) fprintf(stderr, "\towner write =\t%#8.80\n"
(void) fprintf(stderr, "\tgroup read =\t%#8.80\n",
(void) fprintf(stderr, "\tgroup write =\t%#8.80\n"
(void) fprintf(stderr, "\tother read =\t%#8.80\n",
(void) fprintf(stderr, "\tother write =\t%#8.80\n"
(void) fprintf(stderr, "Enter msgflg value:);
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "\nmsgget: Calling msgget(%
%*#o)\n",

key, msgflg);

if ((msqid = msgget(key, msgflg)) == -1)

{

perror("msgget: msgget failed");
exit(1);
}else{

ion. It prompts
he results.

tions:\n");

ctal,\n");

C_PRIVATE);

g argument

PC_EXCL);
IPC_CREAT);
0400);

, 0200);

040);

, 020);

04);

, 02);

#IX,

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h>

9 of 14

(void) fprintf(stderr,
"msgget: msgget succeeded: msqid = %d\n", msqid)
exit(0);

}

}

msgct | . cSample Program to lllustratensgct | ()

/*

* msgctl.c: lllustrate the msgctl() function.

*

* This is a simple exerciser of the msgctl() funct

* you to perform one control operation on one mess
* gives up immediately if any control operation fa
careful

* not to set permissions to preclude read permissi
be

* able to reset the permissions with this code if

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <time.h>

static void do_msgctl();
extern void exit();
extern void perror();
static char warning_message[] = "If you remove read
for\
yourself, this program will fail frequently!";

main()

struct msqid_ds buf; /* queue descriptor buffe
and IP_SET commands */
int cmd, /* command to be given to msgctl() */
msqid; /* queue ID to be given to msgctl() */

(void fprintf(stderr,

"All numeric input is expected to follow C conven
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as o
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqid and cmd arguments for the msgctl(
(void) fprintf(stderr,

"Please enter arguments for msgctls() as requeste
(void) fprintf(stderr, "\nEnter the msqid: ");

(void) scanf("%i", &msqid);

(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RM
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_ST
(void) fprintf(stderr, "\nEnter the value for the

(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_SET:

/* Modify settings in the message queue control
*/

(void) fprintf(stderr, "Before IPC_SET, get curr
values:");

[* fall through to IPC_STAT processing */

case IPC_STAT:

/* Get a copy of the current message queue contr

* structure and show it to the user. */

do_msgctl(msqid, IPC_STAT, &buf);

(void) fprintf(stderr,]

"msg_perm.uid = %d\n", buf.msg_perm.uid);

(void) fprintf(stderr,

"msg_perm.gid = %d\n", buf.msg_perm.gid);

(void) fprintf(stderr,

ion. It allows
age queue. It
ils, so be

on; you won't

you do.

permission

r for IPC_STAT

tions:\n");
ctal,\n");
) call. */
d.”);

ID);

)i

AT);
command: ");
structure.
ent

ol

http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

8/4/2008 3:17u

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

"msg_perm.cuid = %d\n", buf.msg_perm.cuid);
(void) fprintf(stderr,
"msg_perm.cgid = %d\n", buf.msg_perm.cgid);
(void) fprintf(stderr, "msg_perm.mode = %#o, ",
buf.msg_perm.mode);
(void) fprintf(stderr, "access permissions = %#o \n",
buf.msg_perm.mode & 0777);
(void) fprintf(stderr, "msg_cbytes = %d\n",
buf.msg_cbhytes);
(void) fprintf(stderr, "msg_gbytes = %d\n",
buf.msg_qgbytes);
(void) fprintf(stderr, "msg_gnum = %d\n", buf.ms g_gnum);
(void) fprintf(stderr, "msg_Ispid = %d\n",
buf.msg_Ispid);
(void) fprintf(stderr, "msg_Irpid = %d\n",
buf.msg_lIrpid);

(void) fprintf(stderr, "msg_stime = %s", buf.msg _stime ?
ctime(&buf.msg_stime) : "Not Set\n");
(void) fprintf(stderr, "msg_rtime = %s", buf.msg _rtime ?

ctime(&buf.msg_rtime) : "Not Set\n");

(void) fprintf(stderr, "msg_ctime = %s",
ctime(&buf.msg_ctime));

if (cmd == IPC_STAT)

break;

/* Now continue with IPC_SET. */

(void) fprintf(stderr, "Enter msg_perm.uid: ");

(void) scanf ("%hi", &buf.msg_perm.uid);

(void) fprintf(stderr, "Enter msg_perm.gid: ");

(void) scanf("%hi", &buf.msg_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);

(void) fprintf(stderr, "Enter msg_perm.mode: ");

(void) scanf("%hi", &buf.msg_perm.mode);

(void) fprintf(stderr, "Enter msg_gbytes: ");

(void) scanf("%hi", &buf.msg_qbytes);

do_msgctl(msqid, IPC_SET, &buf);

break;
case IPC_RMID:
default:
/* Remove the message queue or try an unknown co mmand. */
do_msgctl(msqgid, cmd, (struct msqgid_ds *)NULL);
break;
Iy
exit(0);
/*
* Print indication of arguments being passed to ms gctl(), call
* msgctl(), and report the results. If msgctl() fa ils, do not
* return; this example doesn't deal with errors, i t just reports
* them.
*/
static void
do_msgctl(msqid, cmd, buf)
struct msqid_ds *buf; /* pointer to queue descr iptor buffer */

int cmd, /* command code */
msqid; /* queue ID */

register int rtrn; /* hold area for return value from msgctl()
*/

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(% d, %d,
%s)\n",
msqid, cmd, buf ? "&buf" : "(struct msqgid_ds *)N ULL";
rtrn = msgctl(msqid, cmd, buf);
if (rtrn ==-1) {
perror("msgctl: msgctl failed");
exit(1);
}else{
(void) fprintf(stderr, "msgctl: msgctl returned % d\n",
rtrn);
}
}

msgop. ¢. Sample Program to lllustrate negsnd() andnsgrcv()

10 of 14 8/4/2008 3:17wu

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

/*

* msgop.c: lllustrate the msgsnd() and msgrcv() fu nctions.

*

* This is a simple exerciser of the message send a nd receive

* routines. It allows the user to attempt to send and receive as
many

* messages as wanted to or from one message queue.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

static int ask();
extern void exit();
extern char *malloc();
extern void perror();

char first_on_queue[] = "-> first message on queue"

full_buf[] = "Message buffer overflow. Extra messa i;e text\
discarded.”;

main()

registerint c; /* message text input */

int choice; /* user's selected operation code * /

register int i; /* loop control for mtext */

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the messag e buffer */

int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqid, /* message queue ID to be used */

maxmsgsz, /* size of allocated message buffer */
rtrn; /* return value from msgrcv or msgsnd * /
(void) fprintf(stderr,
"All numeric input is expected to follow C conven tions:\n");

(void) fprintf(stderr,
"\tOx... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as o ctal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Get the message queue ID and set up the message buffer. */

(void) fprintf(stderr, "Enter msqid: ");
(void) scanf("%i", &msqid);
/*
* Note that <sys/msg.h> includes a definition of struct
msgbuf
* with the mtext field defined as:
* char mtext[1];

* therefore, this definition is only a template, not a
structure

* definition that you can use directly, unless yo u want only
to

* send and receive messages of 0 or 1 byte. To ha ndle this,

* malloc an area big enough to contain the templa te - the size

* of the mtext template field + the size of the m text field

* wanted. Then you can use the pointer returned b y malloc as a

* struct msgbuf with an mtext field of the size y ou want. Note

* also that sizeof msgp->mtext is valid even thou gh msgp
isn't

* pointing to anything yet. Sizeof doesn't derefe rence msgp,
but

* uses its type to figure out what you are asking about.

*/

(void) fprintf(stderr,
"Enter the message buffer size you want:");
(void) scanf("%i", &maxmsgsz);
if (maxmsgsz < 0) {
(void) fprintf(stderr, "msgop: %s\n",

"The message buffer size must be >=0.");
exit(1);

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(s truct

msgbuf)
- sizeof msgp->mtext + maxmsgsz));

11 of 14 8/4/2008 3:17wu

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte message s.\n",
“"could not allocate message buffer for", maxmsg sz);

exit(1);

/* Loop through message operations until the user is ready to

quit. */

while (choice = ask()) {
switch (choice) {

case 1: /* msgsnd() requested: Get the arguments, make the
call, and report the results. */
(void) fprintf(stderr, "Valid msgsnd message %s\ n",

"types are positive integers.");

(void) fprintf(stderr, "Enter msgp->mtype: ");
(void) scanf("%li", &msgp->mtype);

if (maxmsgsz) {

[* Since you've been using scanf, you need the loop
below to throw away the rest of the input on the
line after the entered mtype before you star t

reading the mtext. */
while ((c = getchar()) = \n' && ¢ |= EOF);
(void) fprintf(stderr, "Enter a %s:\n",
"one line message");
for (i = 0; ((c = getchar()) '="\n"); i++) {
if (i >= maxmsgsz) {
(void) fprintf(stderr, "\n%s\n", full_buf);
while ((c = getchar()) '=\n";
break;

}

msgp->mtext[i] = c;

msgsz = i;

} else

msgsz = 0;

(void) fprintf(stderr,"\nMeaningful msgsnd flag is:\n");
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.80\n "
IPC_NOWAIT);

(void) fprintf(stderr, "Enter msgflg: ");

(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %#0)\n"
"msgop: Calling msgsnd", msqid, msgsz, msgflg);
(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);

(void) fprintf(stderr, "msgp->mtext =\"");
for (i=0; i < msgsz; i++)

(void) fputc(msgp->mtext[i], stderr);

(void) fprintf(stderr, "\"\n");

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);

if (rtrn == -1)
perror("msgop: msgsnd failed");
else

(void) fprintf(stderr,
"msgop: msgsnd returned %d\n", rtrn);
break;
case 2: /* msgrcv() requested: Get the arguments, make the
call, and report the results. */
for (msgsz = -1; msgsz < 0 || msgsz > maxmsgsz;
(void) scanf("%i", &msgsz))
(void) fprintf(stderr, "%s (0 <= msgsz <= %(d):
"Enter msgsz", maxmsgsz);
(void) fprintf(stderr, "msgtyp meanings:\n");
(void) fprintf(stderr, "\t 0 %s\n", first_on_que ue);
(void) fprintf(stderr, "\t>0 %s of given type\n"
first_on_queue);
(void) fprintf(stderr, "\t<0 %s with type <= |ms gtyp|\n",
first_on_queue);
(void) fprintf(stderr, "Enter msgtyp: ");
(void) scanf("%li", &msgtyp);
(void) fprintf(stderr,
"Meaningful msgrcv flags are:\n");
(void) fprintf(stderr, "\tMSG_NOERROR =\t%#38.80\ n",
MSG_NOERROR);
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.80\n "
IPC_NOWAIT);
(void) fprintf(stderr, "Enter msgflg: ");

12 of 14 8/4/2008 3:17wu

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

(void) scanf("%i", &msgflg);
(void) fprintf(stderr, "%s(%d, msgp, %d, %Id, %# 0);\n",
"msgop: Calling msgrcv", msqid, msgsz,
msgtyp, msgflg);
rtrn = msgrcv(msgid, msgp, msgsz, msgtyp, msgflg);
if (rtrn == -1)
perror("msgop: msgrcyv failed");
else {
(void) fprintf(stderr, "msgop: %s %d\n",
"msgrcv returned", rtrn);
(void) fprintf(stderr, "msgp->mtype = %ld\n",
msgp->mtype);
(void) fprintf(stderr, "msgp->mtext is: \"");
for (i=0;i<rtrn; i++)
(void) fputc(msgp->mtext[i], stderr);
(void) fprintf(stderr, "\"\n");
}

break;
default:
(void) fprintf(stderr, "msgop: operation unknown \n");
break;
}
.
exit(0);
/*
* Ask the user what to do next. Return the user's choice code.
* Don't return until the user selects a valid choi ce.
*/
static
ask()
{
int response; /* User's response. */
do{
(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\tExit =\t0 or Control-D\ n");

(void) fprintf(stderr, "\tmsgsnd =\t1\n");

(void) fprintf(stderr, "\tmsgrcv =\t2\n");

(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so ""D" will be interpreted as exit. */
response = 0;

(void) scanf("%i", &response);

} while (response < 0 || response > 2);

return(response);

Exercises

Exercise 12755
Write a 2 programs that will both send and messages and construct the following diankieéem

e (Process 1) Sends the message "Are you hearing me?"
e (Process 2) Receives the message and replies "Loud and Clear".
e (Process 1) Receives the reply and then says "I can hear you too".

Exercise 12756
Compile the programasgget.c , msgctl.c andmsgop.c and then

e investigate and understand fully the operations of the flags (access, cetafpmmmissions) you
can set interactively in the programs.
e Use the programs to:
o Send and receive messages of two different mesgags.

13 of 14 8/4/2008 3:17wu

IPC:Message Queues:<sys/msg.h> http://www.cs.cf.ac.uk/Dave/C/node25.html#SECTIORB0000000.

o Place several messages on the queue and inquire about the state of the queue with
msgctl.c . Add/delete a few messages (usisgop.c and perform the inquiry once more.

o Usemsgctl.c to alter a message on the queue.

o Usemsgctl.c to delete a message from the queue.

Exercise 12757

Write aserver program and twalient programs so that trserver can communicate privately &ach
client individually via asingle message queue.

Exercise 12758

Implement ablocked or synchronous method of message passing using signal interrupts.

Dave Marshall
1/5/1999

14 of 14 8/4/2008 3:17wu

IPC:Semaphores

1of 12

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

Subsections

Initializing a Semaphore Set
Controlling Semaphores
Semaphore Operations
POSIX Semaphores: <semaphore.h>
semaphore.c : lllustration of simple semaphore passing
Some further example semaphore programs
o semget.c : lllustrate thesemget() function

o semctl.c : lllustrate thesemctl) function
o semop() Sample Program to Illustrasemop()
e Exercises

IPC:Semaphores

Semaphores are a programming construct designBdW. Dijkstra in the late 1960s. Dijkstra's mbdes the operation of
railroads: consider a stretch of railroad in whilslre is a single track over which only one trdia eime is allowed. Guarding
this track is a semaphore. A train must wait be@rering the single track until the semaphore is state that permits travel.
When the train enters the track, the semaphoregesastate to prevent other trains from enterindrtek. A train that is
leaving this section of track must again changesthte of the semaphore to allow another traimtereln the computer
version, a semaphore appears to be a simple int&geocess (or a thread) waits for permissionrtxped by waiting for the
integer to become 0. The signal if it proceedsagthat this by performing incrementing the integge1. When it is finished,
the process changes the semaphore's value byirgrane from it.

Semaphores let processes query or alter statusrafmn. They are often used to monitor and coritrelavailability of system
resources such as shared memory segments.

Semaphores can be operated on as individual units elements in a set. Because System V IPC seamegpban be in a large
array, they are extremely heavy weight. Much lighteight semaphores are available in the thre&dari (seenan semaphore
and also Chapte30.3) and POSIX semaphores (see below briefly). Thrébdsy semaphores must be used with mapped
memory . A semaphore set consists of a controttstre and an array of individual semaphores. Aoseemaphores can
contain up to 25 elements.

In a similar fashion to message queues, the semagledb must be initialized usisgmget() ; the semaphore creator can char
its ownership or permissions usisgnctl() ; and semaphore operations are performed viaethep() function. These are noy
discussed below:

Initializing a Semaphore Set

The functionsemget() initializes or gains access to a semaphore ptasotyped by:
int semget(key_t key, int nsems, int semflg);

When the call succeeds, it returns the semapho(sehid).

Thekey argument is a access value associated with thepesre ID.

Thensems argument specifies the number of elements in aphore array. The call fails whesems is greater than the
number of elements in an existing array; when tireect count is not known, supplying 0 for thiswargent ensures that it will
succeed.

Thesemfly argument specifies the initial access permissamuscreation control flags.

The following code illustrates the semget() funetio

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass tosemget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

8/4/2008 4:06.u

IPC:Semaphores

2 of 12

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

if ((semid = semget(key, nsems, semflg)) == -1) {
perror("semget: semget failed");
exit(1); }

else

Controlling Semaphores

semctl) changes permissions and other characteristicsefrephore set. It is prototyped as follows:

int semctl(int semid, int semnum, int cmd, union se mun arg);

It must be called with a valid semaphore ¢Emid . Thesemnumvalue selects a semaphore within an array by@ex. Theecmd
argument is one of the following control flags:

GETVAL
-- Return the value of a single semaphore.
SETVAL
-- Set the value of a single semaphore. In this,caig is taken as arg.val, an int.
GETPI D
-- Return theriD of the process that performed the last operatiothe semaphore or array.
GETNCNT
-- Return the number of processes waiting for thlee of a semaphore to increase.
GETZCNT
-- Return the number of processes waiting for thlee of a particular semaphore to reach zero.
GETALL
-- Return the values for all semaphores in a sethik casearg is taken aarg.array , a pointer to an array of unsigned
shorts (see below).
SETALL
-- Set values for all semaphores in a set. Indagearg is taken aarg.array , a pointer to an array of unsigned shorts
| PC_STAT
-- Return the status information from the conttalisture for the semaphore set and place it ird#die structure pointed
to byarg.buf , a pointer to a buffer of typ@mid_ds .

| PC_SET

-- Set the effective user and group identificationl permissions. In this casg is taken aarg.buf
I PC_RM D

-- Remove the specified semaphore set.

A process must have an effective user identificatibowner, creator, or superuser to performPanSET or IPC_RMID
command. Read and write permission is requiredashé other control commands. The following cdtesiratessemctl ()

The fourth argumentnion semun arg is optional, depending upon the operation reqades$teequired it is of typanion
semun, which must bexplicitly declared by the application program as:

union semun {
int val;
struct semid_ds *buf;
ushort *array;

} arg;

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {
int val;
struct semid_ds *buf;
ushort *array;

}arg;
inti;
int semnum =;
int cmd = GETALL; /* get value */

i = semctl(semid, semnum, cmd, arg);
if (i==-1){
perror("semctl: semctl failed");
exit(1);

else

8/4/2008 4:06.u

IPC:Semaphores

3 of 12

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

Semaphore Operations

semop() performs operations on a semaphore set. It iofy@ed by:

int semop(int semid, struct sembuf *sops, size_t ns ops);

Thesemid argument is the semaphore ID returned by a pregieanget() call. Thesops argument is a pointer to an array of
structures, each containing the following informatabout a semaphore operation:

e The semaphore number
e The operation to be performed
e Control flags, if any.

Thesembuf structure specifies a semaphore operation, asatefn sys/sem.h >.

struct sembuf {

ushort_t sem_num; /* semaphor e number */
short sem_op; /* semaphor e operation */
short sem_flg; /* operatio n flags */

b

Thensops argument specifies the length of the array, theimam size of which is determined by teemopPnonfiguration
option; this is the maximum number of operatiorievetd by a single semop() call, and is set to 1@dfault. The operation to
be performed is determined as follows:

e A positive integer increments the semaphore vajuhdét amount.

e A negative integer decrements the semaphore valtiealh amount. An attempt to set a semaphore lwevess than
zero fails or blocks, depending on whethrer NOWAITIs in effect.

¢ A value of zero means to wait for the semaphoraeséd reach zero.

There are two control flags that can be used weittop() :

| PC_NOWAI T
-- Can be set for any operations in the array. idke function return without changing any semaphatue if any
operation for whichPC_NOWAITis set cannot be performed. The function failstifies to decrement a semaphore mor
than its current value, or tests a nonzero semapidse equal to zero.

SEM_UNDO
-- Allows individual operations in the array to bedone when the process exits.

This function takes a pointefgps , to an array of semaphore operation structuresh EBaucture in the array contains data ab
an operation to perform on a semaphore. Any proséhsread permission can test whether a semagfasa zero value. To
increment or decrement a semaphore requires weitaipsion. When an operation fails, none of the piroies is altered.

The process blocks (unless the_NowaAITflag is set), and remains blocked until:

¢ the semaphore operations can all finish, so tHesuateeds,
¢ the process receives a signal, or
e the semaphore set is removed.

Only one process at a time can update a semagBianaltaneous requests by different processes aferped in an arbitrary
order. When an array of operations is given byn@p() call, no updates are done until all operationshenarray can finish
successfully.

If a process with exclusive use of a semaphore tet®s abnormally and fails to undo the operatiofne® the semaphore, the
semaphore stays locked in memory in the staterteeps left it. To prevent this, tiem_uND@ontrol flag makesemop()
allocate an undo structure for each semaphore tperavhich contains the operation that returnssmaphore to its previou
state. If the process dies, the system appliesgkeations in the undo structures. This preven@bamted process from leavin
a semaphore set in an inconsistent state. If pseseshare access to a resource controlled by gkereaoperations on the
semaphore should not be made véiEm_UNDaN effect. If the process that currently has colnf the resource terminates
abnormally, the resource is presumed to be inctargisAnother process must be able to recognizetthiestore the resource
to a consistent state. When performing a semapipeeation withsEM_UNDAn effect, you must also have it in effect for the
call that will perform the reversing operation. \WWihtee process runs normally, the reversing operatfmlates the undo
structure with a complementary value. This enstirat unless the process is aborted, the valudiedp the undo structure
are cancel to zero. When the undo structure reazgresit is removed.

NOTE: UsingSEM_UNDdnconsistently can lead to excessive resourcewropson because allocated undo structures might
be freed until the system is rebooted.

The following code illustrates themop() function:

#include <sys/types.h>
#include <sys/ipc.h>

8/4/2008 4:06.u

IPC:Semaphores

4 of 12

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.
#include <sys/sem.h>

|nt i

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

struct sembuf *sops; /* ptr to operations to perfor m */

if ((semid = semop(semid, sops, nsops)) == -1)

perror("semop: semop failed");
exit(1);
}

else
(void) fprintf(stderr, "semop: returned %d\n", i);

POSIX Semaphores: <semaphore.h>

POSIX semaphores are much lighter weight than gste8 V semaphores. A POSIX semaphore structureeded single
semaphore, not an array of up to twenty five seroggsh The POSIX semaphore functions are:

sem_open() -- Connects to, and optionally creates, a namethphore
sem_init() -- Initializes a semaphore structure (internah calling program, so not a named semaphore).

sem_close() -- Ends the connection to an open semaphore.

sem_unlink() -- Ends the connection to an open semaphore amtsdhe semaphore to be removed when the lagigsroc
closes it.

sem_destroy() -- Initializes a semaphore structure (internahi® calling program, so not a named semaphore).
sem_getvalue() -- Copies the value of the semaphore into theipednteger.

sem_wait(), sem_trywait() -- Blocks while the semaphore is held by otheccpsses or returns an error if the semaphore

held by another process.
sem_post() -- Increments the count of the semaphore.

The basic operation of these functions is essdreedme as described above, except note there aeesperialised functions,
here. These are not discussed further here anéalder is referred to the onlinan pages for further details.

semaphor e. c: lllustration of simple semaphore passing

/* semaphore.c --- simple illustration of dijkstra’ s semaphore analogy
*

* We fork() a child process so that we have two processes running:

* Each process communicates via a semaphore.

* The respective process can only do its work (n ot much here)

* When it notices that the semaphore track is fr ee when it returns to 0
* Each process must modify the semaphore accordi ngly

*

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {
int val;
struct semid_ds *buf;
ushort *array;

I

main()
{inti];
int pid;
int semid; /* semid of semaphore set */
key_t key = 1234; /* key to pass to semget() */
int semflg = IPC_CREAT | 0666; /* semflg to pass to semget() */
int nsems = 1; /* nsems to pass to semget() */
int nsops; /* number of operations to do */
struct sembuf *sops = (struct sembuf *) malloc(2* sizeof(struct sembuf));
[* ptr to operations to perform */

/* set up semaphore */

8/4/2008 4:06.u

IPC:Semaphores

5 of 12

(void) fprintf(stderr, "\nsemget: Setting up seam
%#0)\n",key, nsems, semflg);

if ((semid = semget(key, nsems, semflg)) == -1)
perror("semget: semget failed");
exit(1);
} else

(void) fprintf(stderr, "semget: semget succ
%d\n", semid);

/* get child process */

if ((pid = fork()) < 0) {
perror(“fork");
exit(1);

}

if (pid == 0)
{/* child */
i=0;

while (i < 3) {/* allow for 3 semaphore set
nsops = 2;
/* wait for semaphore to reach zero */

sops[0].sem_num = 0; /* We only use one trac
sops[0].sem_op = 0; /* wait for semaphore fl
sops[0].sem_flg = SEM_UNDO; /* take off sema

sops[1].sem_num = 0;
sops[1].sem_op = 1; /* increment semaphore -
sops[1l].sem_flg = SEM_UNDO | IPC_NOWAIT; /*

/* Recap the call to be made. */

(void) fprintf(stderr,"\nsemop:Child Callin
for (j = 0; j < nsops; j++)

(void) fprintf(stderr, "\n\tsops[%d].sem_
(void) fprintf(stderr, "sem_op = %d, ", s
(void) fprintf(stderr, "sem_flg = %#o\n",

/* Make the semop() call and report the resu
if ((j = semop(semid, sops, nsops)) == -1)
perror("semop: semop failed");

else
(void) fprintf(stderr, "\tsemop: se

(void) fprintf(stderr, "\n\nChild P
sleep(5); /* DO Nothing for 5 secon

nsops = 1;

/* wait for semaphore to reach zero
sops[0].sem_num = 0;

sops[0].sem_op = -1; /* Give UP COn
sops[0].sem_flg = SEM_UNDO | IPC_NO

if ((j = semop(semid, sops, nsops))
perror("semop: semop failed

}

else
(void) fprintf(stderr, "Child
sleep(5); /* halt process to allow

++i;

else /* parent */
{ /* pid hold id of child */

i=0;

while (i < 3) {/* allow for 3 semaphore se
nsops = 2;

/* wait for semaphore to reach zero */
sops[0].sem_num = 0;

sops[0].sem_op = 0; /* wait for semaphore fl
sops[0].sem_flg = SEM_UNDO,; /* take off sema

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

aphore: semget(%#lx, %\

{

eeded: semid =\

k */
ag to become zero */
phore asynchronous */

- take control of track */
take off semaphore */

g semop(%d, &sops, %d) with:", semid, nsops);

num = %d, ", j, sops[j].sem_num);
opsl[j].sem_op);
sops[j].sem_flg);

Its. */
{

mop returned %d\n", j);

rocess Taking Control of Track: %d/3 times\n", i+1) ;
ds */

*

trol of track */
WAIT; /* take off semaphore, asynchronous */

==

Process Giving up Control of Track: %d/3 times\n", i+1)
parent to catch semaphor change first */

ts */

ag to become zero */
phore asynchronous */

8/4/2008 4:06.u

IPC:Semaphores

6 of 12

sops[1].sem_num = 0;
sops[1l].sem_op = 1; /* increment semaphore -
sops[1l].sem_flg = SEM_UNDO | IPC_NOWAIT; /*

/* Recap the call to be made. */

(void) fprintf(stderr,"\nsemop:Parent Callin
for (j = 0; j < nsops; j++)

(void) fprintf(stderr, "\n\tsops[%d].sem_
(void) fprintf(stderr, "sem_op = %d, ", s
(void) fprintf(stderr, "sem_flg = %#o\n",

/* Make the semop() call and report the resu
if ((j = semop(semid, sops, nsops)) == -1)
perror("semop: semop failed");

else
(void) fprintf(stderr, "semop: semo

(void) fprintf(stderr, "Parent Proc
sleep(5); /* Do nothing for 5 secon

nsops = 1;

/* wait for semaphore to reach zero
sops[0].sem_num = 0;

sops[0].sem_op = -1; /* Give UP COn
sops[0].sem_flg = SEM_UNDO | IPC_NO

if ((j = semop(semid, sops, nsops))
perror("semop: semop failed

else
(void) fprintf(stderr, "Paren
sleep(5); /* halt process to allow

++i;

}

}

The key elements of this program are as follows:

- take control of track */
take off semaphore */

g semop(%d, &sops, %d) with:", semid, nsops);

num = %d, ", j, sops[j].sem_num);
opslj].sem_op);
sops[j].sem_flg);

Its. */

{

p returned %d\n", j);

ess Taking Control of Track: %d/3 times\n", i+1);
ds ¥/

*

trol of track */
WAIT; /* take off semaphore, asynchronous */

==-1){
")

t Process Giving up Control of Track: %d/3 times\n"

child to catch semaphor change first */

o After a semaphore is created with as simpleilzey, two prcesses are forked.
e Each process (parent and child) essentially perfohesame operations:
o Each process accesses the same semaiphcke sops[l.sem_num=0).
o Each process waits for teack to become free and then attempts to take controhok

This is achieved by setting appropriadesf.sem_op Vvalues in the array.

[¢]

simple illustration)

[¢]

[¢]

The process then gives up control of tteek sops[1].sem_op = -1
an additional sleep operation is then performeghture that the other process has time to accesethaphore

before a subsequent (same process) semaphore read.

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

L i+l

Once the process has control it sleeps for 5 sec@ndeality some processing would take placeace of this

Note: There is no synchronisation here in this simpkeneple an we have no control over how the OS whieslule

the processes.

Some further example semaphore programs

The following suite of programs can be used to $tigate interactively a variety of semaphore idsag exercises below).

The semaphormust be initialised with theemget.c program. The effects of controlling the semaplpreue and sending an
receiving semaphore can be investigated wétlhct.c andsemop.c respectively.

senget . c: lllustrate the senget () function
/~k
* semget.c: lllustrate the semget() function.

ion. It prompts
he results.

* This is a simple exerciser of the semget() funct

* for the arguments, makes the call, and reports t
*/

8/4/2008 4:06.u

IPC:Semaphores http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/sem.h>

extern void exit();
extern void perror();

main()

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n")
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as o ctal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#Ix\n", IP C_PRIVATE);

(void) fprintf(stderr, "Enter key: "),
(void) scanf("%li", &key);

(void) fprintf(stderr, "Enter nsems value: ");
(void) scanf("%i", &nsems);

(void) fprintf(stderr, "\nExpected flags for semfl g are:\n");
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.80\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.80\n",

IPC_CREAT);

(void) fprintf(stderr, "\towner read = \t%#8.80\n" , 0400);
(void) fprintf(stderr, "\towner alter = \t%#8.80\n ", 0200);
(void) fprintf(stderr, "\tgroup read = \t%#8.80\n" , 040);
(void) fprintf(stderr, "\tgroup alter = \t%#8.80\n ", 020);
(void) fprintf(stderr, "\tother read = \t%#8.80\n" , 04);

(void) fprintf(stderr, "\tother alter = \t%#8.80\n ", 02);

(void) fprintf(stderr, "Enter semflg value:);
(void) scanf("%i", &semflg);

(void) fprintf(stderr, "\nsemget: Calling semget(% #Ix, %
%#0)\n",key, nsems, semflg);
if ((semid = semget(key, nsems, semflg)) ==-1) {
perror("semget: semget failed");
exit(1);
} else
(void) fprintf(stderr, "semget: semget succeeded: semid =
%d\n",
semid);
exit(0);
}
}

senct | . c: lllustrate the senct! () function

/*

* semctl.c: lllustrate the semctl() function.

*

* This is a simple exerciser of the semctl() funct ion. It lets you
* perform one control operation on one semaphore s et. It gives up
* immediately if any control operation fails, so b e careful not
to

* set permissions to preclude read permission; you won't be able
to

* reset the permissions with this code if you do.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/sem.h>
#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();
static void do_stat();
extern char *malloc();
extern void exit();
extern void perror();

char warning_message[] = "If you remove read per mission\
for yourself, this program will fail frequently "

main()

union semun arg; /* union to pass to semctl() */

int cmd, /*command to give to semctl() */
i, [*work area*/
semid, /* semid to pass to semctl() */
semnum; /* semnum to pass to semctl() */

7 of 12 8/4/2008 4:06uy

IPC:Semaphores http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n ");
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as o ctal,\\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "Enter semid value: ");
(void) scanf("%i", &semid);

(void) fprintf(stderr, "Valid semctl cmd values ar e:\n");
(void) fprintf(stderr, "WGETALL = %d\n", GETALL);
(void) fprintf(stderr, "tGETNCNT = %d\n", GETNCNT);

(void) fprintf(stderr, "WGETPID = %d\n", GETPID);
(void) fprintf(stderr, "tGETVAL = %d\n", GETVAL);

(void) fprintf(stderr, "WGETZCNT = %d\n", GETZCNT);
(void) fprintf(stderr, "t{IPC_RMID = %d\n", IPC_RM ID);
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "WIPC_STAT = %d\n", IPC_ST AT);

(void) fprintf(stderr, "tSETALL = %d\n", SETALL);
(void) fprintf(stderr, "WSETVAL = %d\n", SETVAL);
(void) fprintf(stderr, "\nEnter cmd: ");

(void) scanf("%i", &cmd);

/* Do some setup operations needed by multiple com mands. */
switch (cmd) {
case GETVAL:
case SETVAL:
case GETNCNT:
case GETZCNT:
/* Get the semaphore number for these commands. */
(void) fprintf(stderr, "\nEnter semnum value: ")
(void) scanf("%i", &semnum);
break;
case GETALL:
case SETALL:
/* Allocate a buffer for the semaphore values. * /
(void) fprintf(stderr,
"Get number of semaphores in the set.\n");
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
if (arg.array =
(ushort *)malloc((unsigned)
(semid_ds.sem_nsems * sizeof(ushort)))) {
/* Break out if you got what you needed. */
break;

}
(void) fprintf(stderr,

"semctl: unable to allocate space for %d values \n",
semid_ds.sem_nsems);
exit(2);
}
/* Get the rest of the arguments needed for the sp ecified
command. */
switch (cmd) {
case SETVAL:
/* Set value of one semaphore. */
(void) fprintf(stderr, "\nEnter semaphore value: ");

(void) scanf("%i", &arg.val);

do_semctl(semid, semnum, SETVAL, arg);

/* Fall through to verify the result. */

(void) fprintf(stderr,

"Do semctl GETVAL command to verify results.\n");
case GETVAL:

/* Get value of one semaphore. */

arg.val = 0;

do_semctl(semid, semnum, GETVAL, arg);

break;

case GETPID:

/* Get PID of last process to successfully compl ete a
semctl(SETVAL), semctl(SETALL), or semop() on the
semaphore. */

arg.val = 0;

do_semctl(semid, 0, GETPID, arg);

break;

case GETNCNT:

/* Get number of processes waiting for semaphore value to
increase. */

arg.val = 0;

do_semctl(semid, semnum, GETNCNT, arg);

break;

case GETZCNT:

/* Get number of processes waiting for semaphore value to
become zero. */

arg.val = 0;

do_semctl(semid, semnum, GETZCNT, arg);

break;

case SETALL:
/* Set the values of all semaphores in the set. */
(void) fprintf(stderr,

"There are %d semaphores in the set.\n",

8 of 12 8/4/2008 4:06uy

IPC:Semaphores

9 of 12

semid_ds.sem_nsems);
(void) fprintf(stderr, "Enter semaphore values:\
for (i=0; i < semid_ds.sem_nsems; i++) {
(void) fprintf(stderr, "Semaphore %d: ", i);
(void) scanf("%hi", &arg.arrayl[i]);

}

do_semctl(semid, 0, SETALL, arg);
/* Fall through to verify the results. */
(void) fprintf(stderr,

"Do semctl GETALL command to verify results.\n"

case GETALL:

/* Get and print the values of all semaphores in
set.*/

do_semctl(semid, 0, GETALL, arg);

(void) fprintf(stderr,
"The values of the %d semaphores are:\n",
semid_ds.sem_nsems);

for (i=0; i < semid_ds.sem_nsems; i++)

(void) fprintf(stderr, "%d ", arg.array[i]);

(void) fprintf(stderr, "\n");

break;

case IPC_SET:

/* Modify mode and/or ownership. */

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

(void) fprintf(stderr, "Status before IPC_SET:\n

do_stat();

(void) fprintf(stderr, "Enter sem_perm.uid value

(void) scanf("%hi", &semid_ds.sem_perm.uid);

(void) fprintf(stderr, "Enter sem_perm.gid value

(void) scanf("%hi", &semid_ds.sem_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);

(void) fprintf(stderr, "Enter sem_perm.mode valu

(void) scanf("%hi", &semid_ds.sem_perm.mode);

do_semctl(semid, 0, IPC_SET, arg);

/* Fall through to verify changes. */

(void) fprintf(stderr, "Status after IPC_SET:\n"

case IPC_STAT:

/* Get and print current status. */

arg.buf = &semid_ds;

do_semctl(semid, 0, IPC_STAT, arg);

do_stat();

break;

case IPC_RMID:

/* Remove the semaphore set. */

arg.val = 0;

do_semctl(semid, 0, IPC_RMID, arg);

break;

default:
/* Pass unknown command to semctl. */
arg.val = 0;
do_semctl(semid, 0, cmd, arg);
break;
}
exit(0);
/*

* Print indication of arguments being passed to se
* semctl(), and report the results. If semctl() fa
* return; this example doesn't deal with errors, i
* them.

*/
static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,

semid,

semnum;

register int i; /*work area */

void) fprintf(stderr, "\nsemctl: Calling semctl(%d
semid, semnum, cmd);
switch (cmd) {
case GETALL:
(void) fprintf(stderr, "arg.array = %#x)\n",
arg.array);
break;
case IPC_STAT:
case IPC_SET:
(void) fprintf(stderr, "arg.buf = %#x)\n", arg.b
break;
case SETALL:
(void) fprintf(stderr, "arg.array = [", arg.buf)
for (i = 0;i < semid_ds.sem_nsems;) {
(void) fprintf(stderr, "%d", arg.array[i++]);
if (i < semid_ds.sem_nsems)
(void) fprintf(stderr, ", ");

(void) fprintf(stderr, "])\n");

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

n");

the

mctl(), call
ils, do not
t just reports

, %d, %d,

uf);

8/4/2008 4:06.u

IPC:Semaphores http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

break;

case SETVAL:

default:

(void) fprintf(stderr, "arg.val = %d)\n", arg.va 1);
break;

i = semctl(semid, semnum, cmd, arg);
if (i==-1){

perror("semctl: semctl failed");
exit(1);

(void) fprintf(stderr, "semctl: semctl returned %d \n", i);
return;

/~k

* Display contents of commonly used pieces of the status
structure.

*

static void

do_stat()

(void) fprintf(stderr, "sem_perm.uid = %d\n",
semid_ds.sem_perm.uid);

(void) fprintf(stderr, "sem_perm.gid = %d\n",
semid_ds.sem_perm.gid);

(void) fprintf(stderr, "sem_perm.cuid = %d\n",
semid_ds.sem_perm.cuid);

(void) fprintf(stderr, "sem_perm.cgid = %d\n",
semid_ds.sem_perm.cgid);

(void) fprintf(stderr, "sem_perm.mode = %#o, ",
semid_ds.sem_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n
semid_ds.sem_perm.mode & 0777);

(void) fprintf(stderr, "sem_nsems = %d\n",

semid_ds.sem_nsems);

(void) fprintf(stderr, "sem_otime = %s", semid_ds. sem_otime ?
ctime(&semid_ds.sem_otime) : "Not Set\n");

(void) fprintf(stderr, "sem_ctime = %s",
ctime(&semid_ds.sem_ctime));

}

senop() Sample Program to lllustratesenop()

/*

* semop.c: lllustrate the semop() function.

*

* This is a simple exerciser of the semop() functi on. It lets you

* to set up arguments for semop() and make the cal I. It then
reports

* the results repeatedly on one semaphore set. You must have read
* permission on the semaphore set or this exercise r will fail.

(It

* needs read permission to get the number of semap hores in the set
* and to report the values before and after calls to semop().)

*

#include <stdio.h>
#include <sys/types.h>
#include <sysl/ipc.h>
#include <sys/sem.h>

static int ask();
extern void exit();
extern void free();
extern char *malloc();
extern void perror();

static struct semid_ds semid_ds; [* sta tus of semaphore set */

static char error_mesgl[] = "semop: Can't alloca te space for %d\
semaphore values. Giving up.\n";

static char error_mesg2[] = "semop: Can't allocat e space for %d\
sembuf structures. Giving up.\n";

main()

register int i; /* work area */

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

struct sembuf *sops; /* ptr to operations to perform */

(void) fprintf(stderr,

"All numeric input must follow C conventions:\n ");
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\tO... is interpreted as o ctal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Loop until the invoker doesn't want to do anymo re. */

while (nsops = ask(&semid, &sops)) {

10 of 12 8/4/2008 4:06.u

IPC:Semaphores

11 of 12

/* Initialize the array of operations to be perfo
for (i = 0; i < nsops; i++) {
(void) fprintf(stderr,
"\nEnter values for operation %d of %d.\n",
i +1, nsops);
(void) fprintf(stderr,

"sem_num(valid values are 0 <= sem_num < %(d):

semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i].sem_num);

(void) fprintf(stderr, "sem_op: ");

(void) scanf("%hi", &sops[i].sem_op);

(void) fprintf(stderr,
"Expected flags in sem_flg are:\n");

(void) fprintf(stderr, "WIPC_NOWAIT =\t%#6.60\n
IPC_NOWAIT);

(void) fprintf(stderr, "WSEM_UNDO =\t%#6.60\n",
SEM_UNDO);

(void) fprintf(stderr, "sem_flg: ");

(void) scanf("%hi", &sops[i].sem_flg);

}

/* Recap the call to be made. */

(void) fprintf(stderr,
"\nsemop: Calling semop(%d, &sops, %d) with:",
semid, nsops);

for (i = 0; i < nsops; i++)

(void) fprintf(stderr, "\nsops[%d].sem_num = %d,
sops[i].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sopsi].

(void) fprintf(stderr, "sem_flg = %#o\n",
sopsli].sem_flg);

/* Make the semop() call and report the results.
if ((i = semop(semid, sops, nsops)) == -1) {
perror("semop: semop failed");

}else {

(void) fprintf(stderr, "semop: semop returned %d

}
}

/*

* Ask if user wants to continue.

*

* On the first call:

* Get the semid to be processed and supply it to t
* On each call:

* 1. Print current semaphore values.

* 2. Ask user how many operations are to be perfo
* call to semop. Allocate an array of sembuf s
* sufficient for the job and set caller-suppli

that

* array. (The array is reused on subsequent ca
* enough. Ifitisn't, it is freed and a large

* allocated.)

*/

static

ask(semidp, sopsp)

int *semidp; /* pointer to semid (used only the
struct sembuf **sopsp;
{

static union semun arg; /* argument to semctl
int i; /*work area */

staticint nsops = 0; /* size of currently al

sembuf array */

staticint semid =-1; /* semid supplied by
static struct sembuf *sops; /* pointer to a

if (semid < 0) {

/* First call; get semid from user and the curren
the semaphore set. */

(void) fprintf(stderr,

"Enter semid of the semaphore set you want to u

(void) scanf("%i", &semid);

*semidp = semid;

arg.buf = &semid_ds;

if (semctl(semid, 0, IPC_STAT, arg) ==-1) {

perror("semop: semctl(IPC_STAT) failed");

/* Note that if semctl fails, semid_ds remains f
with zeros, so later test for number of semap
be zero. */

(void) fprintf(stderr,

"Before and after values are not printed.\n");

}else {

if ((arg.array = (ushort *)malloc(

(unsigned)(sizeof(ushort) * semid_ds.sem_nsems)
== NULL){

(void) fprintf(stderr, error_mesg1,
semid_ds.sem_nsems);

exit(1);

rmed.*/

sem_op);

*/

\n", i);

he caller.

rmed on the next
tructures
ed pointer to

lIs if it is big

rarray is

first time) */

*

located

user */

llocated array */

t state of

se:");

illed
hores will

http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

8/4/2008 4:06.u

IPC:Semaphores http://www.cs.cf.ac.uk/Dave/C/node26.html#SECTIORE0000000.

}
}

/* Print current semaphore values. */
if (semid_ds.sem_nsems) {
(void) fprintf(stderr,
"There are %d semaphores in the set.\n",
semid_ds.sem_nsems);
if (semctl(semid, 0, GETALL, arg) == -1) {
perror("semop: semctl(GETALL) failed");
}else {
(void) fprintf(stderr, "Current semaphore values are:");
for (i=0; i < semid_ds.sem_nsems;
(void) fprintf(stderr, " %d", arg.array[i++]));
(void) fprintf(stderr, "\n");
}

/* Find out how many operations are going to be do ne in the
next

call and allocate enough space to do it. */
(void) fprintf(stderr,

"How many semaphore operations do you want %s\ n",
"on the next call to semop()?");

(void) fprintf(stderr, "Enter 0 or control-D to qu it:");

i=0;

if (scanf("%i", &) == EOF || i == 0)

exit(0);

if (i > nsops) {

if (nsops)

free((char *)sops);

nsops = i;

if ((sops = (struct sembuf *)malloc((unsigned)(ns ops *

sizeof(struct sembuf)))) == NULL) {
(void) fprintf(stderr, error_mesg2, nsops);
exit(2);

}
*sSopsp = sops;
return (i);

Exercises

Exercise 12763

Write 2 programs that will communicabeth ways(i.e each process can read and write) when run comtlyrrga
semaphores.

Exercise 12764
Modify the semaphore.c program to handle synchronous semaphore commioricggmaphores.
Exercise 12765

Write 3 programs that communicate together via gdmees according to the following specificatiossn_server.c -- a
program that can communicate independently (oedifft semaphore tracks) with two clients prograss.clienti.c --a
program that talks teem_server.c 0n one tracksem_client2.c -- a program that talks &@m_server.c on another track to
sem_clientl.c

Exercise 12766
Compile the programsmget.c , semctl.c andsemop.c and then

¢ investigate and understand fully the operatiornthefflags (access, creatiett. permissions) you can set interactively i
the programs.
e Use the prgrams to:
o Send and receive semaphores of 3 different semaphat s.
o Inquire about the state of the semaphore queuesaitét.c . Add/delete a few semaphores (usiagop.c and
perform the inquiry once more.
o Usesemctl.c to alter a semaphore on the queue.
o Usesemctl.c to delete a semaphore from the queue.

Dave Marshall
1/5/1999

12 of 12 8/4/2008 4:06.u

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

1 of 15

Subsections

e Accessing a Shared Memory Segment
o Controlling a Shared Memory Segment
Attaching and Detaching a Shared Memory Segment
Example two processes comunicating via shared mestotyserver.c, shm_client.c
O shm_server.c
O shm_client.c
POSIX Shared Memory
Mapped memory
o Address Spaces and Mapping
o Coherence
o Creating and Using Mappings
o Other Memory Control Functions
Some further example shared memory programs
o shmget.c :Sample Program to lllustrate shmget()
o shmetl.c : Sample Program to lllustrasemctl()
o shmop.c : Sample Program to lllustragemat() andshmdt()
Exercises

IPC:Shared Memory

Shared Memory is an efficeint means of passing data between programs. One program velbcreat
memory portion which other processes (if permitted) can access.

In the Solaris 2.x operating system, the most efficient way to implement shaneoryrapplications is
to rely on themmap() function and on the system's native virtual memory facility. Solaris 2.x also
supports System V shared memory, which is another way to let multiple procéssiesaegment of
physical memory to their virtual address spaces. When write access iglditoweore than one
process, an outside protocol or mechanism such as a semaphore can be used to prevent ir@ONS
and collisions.

A process creates a shared memory segment sisifggt()) . The original owner of a shared memorn
segment can assign ownership to another userswittil() . It can also revoke this assignment. Oths
processes with proper permission can perform various control functions on the shared segmeryt
usingshmctl() . Once created, a shared segment can be attached to a process address space us
shmat() . It can be detached usisgndt() (seeshmop()). The attaching process must have the
appropriate permissions fetimat() . Once attached, the process can read or write to the segment,
allowed by the permission requested in the attach operation. A shared segment cahée @tltiple
times by the same process. A shared memory segment is described by a cortupg stithca unique
ID that points to an area of physical memory. The identifier of the segmenes dalshmid. The
structure definition for the shared memory segment control structures and prototgrele found in
<sys/shm.h >,

Accessing a Shared Memory Segment

shmget() is used to obtain access to a shared memory segment. It is prottyped by:

int shmget(key_t key, size_t size, int shmflg);

Thekey argument is a access value associated with the semaphore KxeTleggument is the size in
bytes of the requested shared memory.shh@lg argument specifies the initial access permissions

8/4/2008 4:1Quu

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

2 of 15

creation control flags.

When the call succeeds, it returns the shared memory segment ID. This calluseal to get the ID of
an existing shared segment (from a process requesting sharing of some mestioiy portion).

The following code illustratesimget()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

key_t key; /* key to be passed to shmget() */

int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */

int size; /* size to be passed to shmget() */

key = ...
size = ...
shmflg) = ...

if ((shmid = shmget (key, size, shmflg)) ==-1) {
perror("shmget: shmget failed"); exit(1); } else
(void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);
exit(0);

Controlling a Shared Memory Segment

shmctl() IS used to alter the permissions and other characteristics of a shared megmenytsk is
prototyped as follows:

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The process must have an effectiumid of owner, creator or superuser to perform this command.
cmd argument is one of following control commands:

SHW LOCK
-- Lock the specified shared memory segment in memory. The process must hawective ¢f
of superuser to perform this command.
SHM_UNLOCK
-- Unlock the shared memory segment. The process must have the effective ID ofesuperus
perform this command.
| PC_STAT
-- Return the status information contained in the control structure and place it in grepoudted
to by buf. The process must have read permission on the segment to perform this commar
| PC_SET
-- Set the effective user and group identification and access permissions. Tiss prasehave
an effective ID of owner, creator or superuser to perform this command.
| PC_.RM D
-- Remove the shared memory segment.

Thebuf is a sructure of typsruct shmid_ds which is defined in sys/shm.h >

The following code illustratesimcti()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

8/4/2008 4:1Quu

IPC:Shared Memory

3 of 15

int cmd; /* command code for shmctl() */
int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory data str

hold results */

shmid = ...

cmd = ...

if ((rtrn = shmctl(shmid, cmd, shmid_ds)) ==-1) {
perror("shmctl: shmctl failed");
exit(1);

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

ucture to

Attaching and Detaching a Shared Memory

Segment

shmat() andshmdt() are used to attach and detach shared memory segments. They are prototyp

follows:

void *shmat(int shmid, const void *shmaddr, int shm

int shmdt(const void *shmaddr);

flg);

shmat() returns a pointeshmaddr , to the head of the shared segment associated with aiwaiid
shmdt() detaches the shared memory segment located at the address indieatedidy

. The following code illustrates calls ¢bmat()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

static struct state { /* Internal record of attache
int shmid; /* shmid of attached segment *
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */
} ap[MAXnap]; /* State of current attached

int nap; /* Number of currently attached segments.

char *addr; /* address work variable */
register int i; /* work area */
register struct state *p; /* ptr to current state e

p = &ap[nap++];
p->shmid = ...
p->shmaddr = ...
p->shmflg = ...

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg)

if(p->shmaddr == (char *)-1) {

perror("shmop: shmat failed");

nap--;

} else

(void) fprintf(stderr, "shmop: shmat returned %
p->shmaddr);

i = shmdt(addr);

if(i == -1) {
perror("shmop: shmdt failed");
}else {

andshmdt()

d segments. */
/

segments. */
*

ntry */

#8.8x\n",

8/4/2008 4:1Quu

IPC:Shared Memory

4 of 15

(void) fprintf(stderr, "shmop: shmdt returned %d\

for (p = ap, i = nap; i--; p++)
if (p->shmaddr == addr) *p = ap[--nap];

}

n", i);

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

Example two processes comunicating via share

memaory: shm server. c,

shmclient.c

We develop two programs here that illustrate the passing of a simple piece afyr(eesteng) betweer

the processes if running simulatenously:

shm server.c

-- simply creates the string and shared memory portion.

shmclient.c

-- attaches itself to the created shared memory portion and uses thepsiing.(

The code listings of the 2 programs no follow:

shm server.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSzZ 27
main()

charc;

int shmid;
key t key;
char *shm, *s;

/*

* We'll name our shared memory segment
*"5678".

*

key = 5678;

/~k

* Create the segment.

*

if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 066
perror("shmget");
exit(1);

/*
* Now we attach the segment to our data space.
*/
if ((shm = shmat(shmid, NULL, 0)) == (char *) -
perror("shmat");
exit(1);

/*

* Now put some things into the memory for the
* other process to read.

*

s = shm;

for (c ='a’; c <='Z; c++)

6)) <0){

DA

8/4/2008 4:1Quu

IPC:Shared Memory

5 of 15

*S++ =C;
*s = NULL;

/*
* Finally, we wait until the other process
* changes the first character of our memory
*to "', indicating that it has read what
* we put there.
*/
while (*shm !="*")
sleep(1);

exit(0);
}

shmclient.c

/*

* shm-client - client program to demonstrate share
*/

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#define SHMSZ 27
main()

int shmid;

key_t key;

char *shm, *s;

/~k

* We need to get the segment named
*"5678", created by the server.

*

key = 5678;

/*

* Locate the segment.
*

if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {
perror("shmget");
exit(1);

/*

* Now we attach the segment to our data space.

*

if ((shm = shmat(shmid, NULL, 0)) == (char *) -
perror("shmat");
exit(1);

/~k
* Now read what the server put in the memory.
*
for (s = shm; *s 1= NULL; s++)
putchar(*s);
putchar(’\n’);

/~k

* Finally, change the first character of the
* segment to *', indicating we have read
* the segment.

*

*shm ="

exit(0);

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

d memory.

D{

8/4/2008 4:1Quu

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

6 of 15

POSIX Shared Memory

POSIX shared memory is actually a variation of mapped memory. The majorrdifierare to use
shm_open() to open the shared memory object (instead of calbag)) and usehm_unlink() to
close and delete the object (instead of callinge() which does not remove the object). The option
in shm_open() are substantially fewer than the number of options providegkit) .

Mapped memory

In a system with fixed memory (non-virtual), the address space of a process oaadpgsmited to a
portion of the system's main memory. In Solaris 2.x virtual memory the actualsaddaes of a proce:
occupies a file in the swap partition of disk storage (the file is called the bat&ney. Pages of main
memory buffer the active (or recently active) portions of the process addresscpeavide code for
the CPU(s) to execute and data for the program to process.

A page of address space is loaded when an address that is not currently in memesgésidnca
CPU, causing a page fault. Since execution cannot continue until the page faulvedrbgakading
the referenced address segment into memory, the process sleeps until the page leasl bEhe most
obvious difference between the two memory systems for the application developeviidithh
memory lets applications occupy much larger address spaces. Less obvious adeéridgab
memory are much simpler and more efficient file /O and very efficientrghafimemory between
processes.

Address Spaces and Mapping

Since backing store files (the process address space) exist only in swag, shaagre not included in
the UNIX named file space. (This makes backing store files inaccessible tpabesses.) However,
is a simple extension to allow the logical insertion of all, or part, of one, or more, néased the
backing store and to treat the result as a single address space. This is ggtied.iéith mapping, an
part of any readable or writable file can be logically included in a process'saddeee. Like any othe
portion of the process's address space, no page of the file is not actually loaded intpuméhsopage
fault forces this action. Pages of memory are written to the file only ifédbatents have been modifie
So, reading from and writing to files is completely automatic and very effidore than one process
can map a single named file. This provides very efficient memory sharing betweesgas. All or par
of other files can also be shared between processes.

Not all named file system objects can be mapped. Devices that cannot be tretmetjassich as
terminal and network device files, are examples of objects that cannot be mapped sé adocess
space is defined by all of the files (or portions of files) mapped into the addressEgatenapping is
sized and aligned to the page boundaries of the system on which the process is exectgigndhe
memory associated with processes themselves.

A process page maps to only one object at a time, although an object address may be tloé s1jg
process mappings. The notion of a "page” is not a property of the mapped object. Mapping an ot
only provides the potential for a process to read or write the object's contents. Mapsgimea
object's contents directly addressable by a process. Applications can acstssmgeresources they
use directly rather than indirectly through read and write. Potential advamalyeeiefficiency
(elimination of unnecessary data copying) and reduced complexity (single-stegsuadiaer than the
read, modify buffer, write cycle). The ability to access an object and haveantitetaentity over the
course of the access is unique to this access method, and facilitates the shanrmgaf code and
data.

8/4/2008 4:1Quu

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

7 of 15

Because the file system name space includes any directory trees tlatreaeted from other systems
via NFS, any networked file can also be mapped into a process's address space.

Coherence

Whether to share memory or to share data contained in the file, when multiple proocesBlena
simultaneously there may be problems with simultaneous access to data elSoeEn{zocesses can
cooperate through any of the synchronization mechanisms provided in Solaris 2.x. Becaarse\be)
light weight, the most efficient synchronization mechanisms in Solaris 2.Reatbreads library ones.

Creating and Using Mappings

mmap() establishes a mapping of a named file system object (or part of one) into a process addr
space. It is the basic memory management function and it is very simple.

e Firstopen() the file, then
e mmap() it with appropriate access and sharing options
e Away you go.

mmapiS prototypes as follows:

#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot, in t flags,
int fildes, off_t off);

The mapping established bynap() replaces any previous mappings for specified address range. T
flags MAP_SHAREBRNAMAP_PRIVATESpecify the mapping type, and one of them must be specified.
MAP_SHAREBpecifies that writes modify the mapped object. No further operations on the object a
needed to make the changepP_PRIVATESpecifies that an initial write to the mapped area creates a
copy of the page and all writes reference the copy. Only modified pages are copied.

A mapping type is retained acros®@() . The file descriptor used in a mmap call need not be kep
open after the mapping is established. If it is closed, the mapping remains untipfhiagnia undone
by munmap() or be replacing in with a new mapping. If a mapped file is shortened by a call to trun
an access to the area of the file that no longer exists caasmasUs signal.

The following code fragment demonstrates a use of this to create a block of doraigh 5 a
program, at an address that the system chooses.:

int fd;

caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHA RED, fd, 0);
(void) close(fd);

Other Memory Control Functions

int mlock(caddr_t addr, size_t len) causes the pages in the specified address range to be lo
in physical memory. References to locked pages (in this or other processes) do niot pagel faults
that require an I/O operation. This operation ties up physical resources and can disrapsysiam
operation, so, use aflock() is limited to the superuser. The system lets only a configuration depe
limit of pages be locked in memory. The call to mlock fails if this limit is eded.

int munlock(caddr_t addr, size_t len) releases the locks on physical pages. If multidek()

8/4/2008 4:1Quu

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

8 of 15

calls are made on an address range of a single mapping, a single munlock cakéstheldocks.
However, if different mappings to the same pages are mlocked, the pages are not unlddked unt
locks on all the mappings are released. Locks are also released when a mappioged, reimer
through being replaced with an mmap operation or removed with munmap. A lock is transferred
between pages on the ““copy-on-write' event associated with @RIVATEmMapping, thus locks on an
address range that includesp_PRIVATEmappings will be retained transparently along with the
copy-on-write redirection (see mmap above for a discussion of this redirection)

int mlockall(int flags) andint munlockall(void) are similar tonlock() andmunlock() , but
they operate on entire address spaaeskall) sets locks on all pages in the address space and
munlockall) ~ removes all locks on all pages in the address space, whether established by mloc}
mlockall.

int msync(caddr_t addr, size_t len, int flags) causes all modified pages in the specified
address range to be flushed to the objects mapped by those addresses. It is giynd@r tdor files.

long sysconf(int name) returns the system dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page. Note tlmatubisual for
page sizes to vary even among implementations of the same instruction set.

int mprotect(caddr_t addr, size_t len, int prot) assigns the specified protection to all page
in the specified address range. The protection cannot exceed the permissions alltweachdertying
object.

int brk(void *endds) andvoid *sbrk(int incr) are called to add storage to the data segment «
process. A process can manipulate this area by catkpg andsbrk() .brk() sets the system idea o
the lowest data segment location not used by the caller to addr (rounded up to the nextahthtple
system page sizegbrk() adds incr bytes to the caller data space and returns a pointer to the star
new data area.

Some further example shared memory program:

The following suite of programs can be used to investigate interactively ay\drgtared ideas (see
exercises below).

The semaphormust be initialised with thehmget.c program. The effects of controlling shared
memory and accessing can be investigated snitlat.c andshmop.c respectively.

shnget . c:Sample Program to lllustrate shmget()

/*
* shmget.c: lllustrate the shmget() function.

*

* This is a simple exerciser of the shmget() funct ion. It
prompts
* for the arguments, makes the call, and reports t he results.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit();
extern void perror();

main()

key t key; /*key to be passed to shmget() */

8/4/2008 4:1Quu

IPC:Shared Memory

9 of 15

int shmflg; /* shmflg to be passed to shmget()
int shmid; /* return value from shmget() */
int size; /* size to be passed to shmget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conven
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\tO... is interpreted as o
(void) fprintf(stderr, "\totherwise, decimal.\n");

[* Get the key. */

(void) fprintf(stderr, "IPC_PRIVATE == %#Ix\n", IP
(void) fprintf(stderr, "Enter key: ");

(void) scanf("%li", &key);

[* Get the size of the segment. */
(void) fprintf(stderr, "Enter size: ");
(void) scanf("%i", &size);

/* Get the shmflg value. */
(void) fprintf(stderr,

"Expected flags for the shmflg argument are:\n"
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.80\n",
IPC_CREAT);

(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.80\n",
(void) fprintf(stderr, "\towner read =\t%#8.80\n",
(void) fprintf(stderr, "\towner write =\t%#8.80\n"
(void) fprintf(stderr, "\tgroup read =\t%#8.80\n",
(void) fprintf(stderr, "\tgroup write =\t%#8.80\n"
(void) fprintf(stderr, "\tother read =\t%#8.80\n",
(void) fprintf(stderr, "\tother write =\t%#8.80\n"
(void) fprintf(stderr, "Enter shmflg: ");

(void) scanf("%i", &shmflg);

/* Make the call and report the results. */
(void) fprintf(stderr,
"shmget: Calling shmget(%#lx, %d, %#0)\n",
key, size, shmflg);
if ((shmid = shmget (key, size, shmflg)) ==-1) {
perror("shmget: shmget failed");
exit(1);
}else {
(void) fprintf(stderr,
"shmget: shmget returned %d\n", shmid);
exit(0);

}

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

*/

tions:\n");

ctal,\n");

C_PRIVATE);

IPC_EXCL);
0400);

, 0200);
040);

, 020);

04);

, 02);

shnet | . ¢c: Sample Program to lllustrate shnct | ()

/*

* shmctl.c: Illustrate the shmctl() function.

*

* This is a simple exerciser of the shmctl() funct

* to perform one control operation on one shared m
* (Some operations are done for the user whether r
not.

* |t gives up immediately if any control operation
careful

* not to set permissions to preclude read permissi
be

*able to reset the permissions with this code if y

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
static void do_shmctl();
extern void exit();
extern void perror();

ion. It lets you
emory segment.
equested or
fails. Be

on; you won't

ou do.)

8/4/2008 4:1Quu

IPC:Shared Memory

10 of 15

main()

int cmd; /* command code for shmctl() */

int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory da
hold results */

(void) fprintf(stderr,
"All numeric input is expected to follow C conven
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as o
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get shmid and cmd. */
(void) fprintf(stderr,

"Enter the shmid for the desired segment: ");
(void) scanf("%i", &shmid);
(void) fprintf(stderr, "Valid shmctl cmd values ar
(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_R
(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SE
(void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_S
(void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_L
(void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM
(void) fprintf(stderr, "Enter the desired cmd valu
(void) scanf("%i", &cmd);

switch (cmd) {

case IPC_STAT:

[* Get shared memory segment status. */
break;

case IPC_SET:

/* Set owner UID and GID and permissions. */

/* Get and print current values. */
do_shmctl(shmid, IPC_STAT, &shmid_ds);

/* Set UID, GID, and permissions to be loaded. *
(void) fprintf(stderr, "\nEnter shm_perm.uid: ")
(void) scanf("%hi", &shmid_ds.shm_perm.uid);
(void) fprintf(stderr, "Enter shm_perm.gid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.gid);
(void) fprintf(stderr,
"Note: Keep read permission for yourself.\n");
(void) fprintf(stderr, "Enter shm_perm.mode: ");
(void) scanf("%hi", &shmid_ds.shm_perm.mode);
break;

case IPC_RMID:

/* Remove the segment when the last attach point

detached. */

break;

case SHM_LOCK:

/* Lock the shared memory segment. */

break;

case SHM_UNLOCK:

/* Unlock the shared memory segment. */

break;

default:

/* Unknown command will be passed to shmctl. */
break;

}
do_shmctl(shmid, cmd, &shmid_ds);
exit(0);

/*
* Display the arguments being passed to shmctl(),
* and report the results. If shmctl() fails, do no
* example doesn't deal with errors, it just report
*/
static void
do_shmctl(shmid, cmd, buf)
int shmid, /*attach point */
cmd; /* command code */
struct shmid_ds *buf; /* pointer to shared memo

{

ta structure to

tions:\n");

ctal,\n");

e:\n");

MID);

n;

TAT);
OCK);
_UNLOCK);
e’"),

call shmctl(),
t return; this
s them.

ry data structure */

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

8/4/2008 4:1Quu

IPC:Shared Memory

11 of 15

register int rtrn; /* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d,
buf)\n",
shmid, cmd);
if (cmd == IPC_SET) {
(void) fprintf(stderr, "\tbuf->shm_perm.uid == %d
buf->shm_perm.uid);
(void) fprintf(stderr, "\tbuf->shm_perm.gid == %d
buf->shm_perm.gid);
(void) fprintf(stderr, "\tbuf->shm_perm.mode == %
buf->shm_perm.mode);

if ((rtrn = shmctl(shmid, cmd, buf)) == -1) {
perror("shmctl: shmctl failed");
exit(1);
}else{
(void) fprintf(stderr,
"shmctl: shmctl returned %d\n", rtrn);

}
if (cmd != IPC_STAT && cmd != IPC_SET)
return;

/* Print the current status. */

(void) fprintf(stderr, "\nCurrent status:\n");

(void) fprintf(stderr, "\tshm_perm.uid = %d\n",
buf->shm_perm.uid);

(void) fprintf(stderr, "\tshm_perm.gid = %d\n",
buf->shm_perm.gid);

(void) fprintf(stderr, "\tshm_perm.cuid = %d\n",
buf->shm_perm.cuid);

(void) fprintf(stderr, "\tshm_perm.cgid = %d\n",
buf->shm_perm.cgid);

(void) fprintf(stderr, "\tshm_perm.mode = %#o\n",
buf->shm_perm.mode);

(void) fprintf(stderr, "\tshm_perm.key = %#x\n",
buf->shm_perm.key);

(void) fprintf(stderr, "\tshm_segsz = %d\n", buf->

(void) fprintf(stderr, "\tshm_Ipid = %d\n", buf->s

(void) fprintf(stderr, "\tshm_cpid = %d\n", buf->s

(void) fprintf(stderr, "\tshm_nattch = %d\n", buf-

(void) fprintf(stderr, "\tshm_atime = %s",

buf->shm_atime ? ctime(&buf->shm_atime) : "Not S
(void) fprintf(stderr, "\tshm_dtime = %s",
buf->shm_dtime ? ctime(&buf->shm_dtime) : "Not S

(void) fprintf(stderr, "\tshm_ctime = %s",
ctime(&buf->shm_ctime));

}

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

%d,

\n",

\n",

#o\n",

shm_segsz);
hm_Ipid);
hm_cpid);
>shm_nattch);

et\n");

et\n");

shnop. c: Sample Program to lllustrate shmat () and shmdt ()

/*

* shmop.c: lllustrate the shmat() and shmdt() func
*

* This is a simple exerciser for the shmat() and s
* calls. It allows you to attach and detach segmen
* write strings into and read strings from attache
*/

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent

static ask();

static void catcher();
extern void exit();
static good_addr();
extern void perror();

tions.

hmdt() system
ts and to
d segments.

attaches. */

8/4/2008 4:1Quu

IPC:Shared Memory

12 of 15

extern char *shmat();

static struct state { /* Internal record of cur
segments. */

int shmid; /* shmid of attached segment */

char *shmaddr; /* attach point */

int shmflg; /*flags used on attach */

} ap[MAXnap]; /* State of current attached segm

static int nap; /* Number of currently attached
static jmp_buf segvbuf; /* Process state save a
catching. */

main()

register int action; /* action to be performe
char *addr; /* address work area */
register int i; /*work area */
register struct state *p; /* ptrto current s
void (*savefunc)(); /* SIGSEGV state hold area
(void) fprintf(stderr,

"All numeric input is expected to follow C conven
(void) fprintf(stderr,

"\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as o
(void) fprintf(stderr, "\totherwise, decimal.\n");
while (action = ask()) {

if (nap) {

(void) fprintf(stderr,

"\nCurrently attached segment(s):\n");
(void) fprintf(stderr, " shmid address\n");
(void) fprintf(stderr, "------ -==-mnmn-- \n");

p = &ap[nap];
while (p-- 1= ap) {
(void) fprintf(stderr, "%6d", p->shmid);
(void) fprintf(stderr, "%#11x", p->shmaddr);
(void) fprintf(stderr, " Read%s\n",
(p->shmflg & SHM_RDONLY) ?
"-Only" : "/Write");

} else
(void) fprintf(stderr,
"\nNo segments are currently attached.\n");
switch (action) {
case 1. /* Shmat requested. */
[* Verify that there is space for another attach
if (nap == MAXnap) {
(void) fprintf(stderr, "%s %d %s\n",
"This simple example will only allow",
MAXnap, "attached segments.");
break;

}

p = &ap[nap++];

[* Get the arguments, make the call, report the
results, and update the current state array. */
(void) fprintf(stderr,

"Enter shmid of segment to attach: ");

(void) scanf("%i", &p->shmid);

(void) fprintf(stderr, "Enter shmaddr: ");

(void) scanf("%i", &p->shmaddr);

(void) fprintf(stderr,

"Meaningful shmflg values are:\n");

(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.80\
SHM_RDONLY);

(void) fprintf(stderr, "\tSHM_RND = \t%#8.80\n",
SHM_RND);

(void) fprintf(stderr, "Enter shmflg value: ");

(void) scanf("%i", &p->shmflg);

(void) fprintf(stderr,
"shmop: Calling shmat(%d, %#x, %#0)\n",
p->shmid, p->shmaddr, p->shmflg);

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmf

if(p->shmaddr == (char *)-1) {

rently attached

ents. */

segments. */

rea for SIGSEGV
d*/

tate entry */

*/

tions:\n");

ctal,\n");

CH

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

8/4/2008 4:1Quu

IPC:Shared Memory

13 of 15

perror("shmop: shmat failed");
nap--;
}else {
(void) fprintf(stderr,
"shmop: shmat returned %#8.8x\n",
p->shmaddr);

break;

case 2. [* Shmdt requested. */

/* Get the address, make the call, report the re
and make the internal state match. */

(void) fprintf(stderr,
"Enter detach shmaddr: ");

(void) scanf("%i", &addr);

i = shmdt(addr);
if(i == -1) {
perror("shmop: shmdt failed");
}else{
(void) fprintf(stderr,
"shmop: shmdt returned %d\n", i);
for (p = ap, i = nap; i--; p++) {
if (p->shmaddr == addr)
}*p = ap[--nap];

}
break;
case 3: /* Read from segment requested. */
if (nap == 0)
break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");
(void) scanf("%i", &addr);

if (good_addr(addr))

(void) fprintf(stderr, "String @ %#x is “%s"\n"
addr, addr);

break;

case 4: [* Write to segment requested. */
if (nap == 0)
break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");
(void) scanf("%i", &addr);

[* Set up SIGSEGYV catch routine to trap attempts
write into a read-only attached segment. */
savefunc = signal(SIGSEGV, catcher);

if (setjimp(segvbuf)) {

(void) fprintf(stderr, "shmop: %s: %s\n",
"SIGSEGYV signal caught”,
"Write aborted.");

}else {

if (good_addr(addr)) {
(void) fflush(stdin);
(void) fprintf(stderr, "%s %s %#x:\n",
"Enter one line to be copied",
"to shared segment attached @",
addr);
(void) gets(addr);

}

}
(void) fflush(stdin);
/* Restore SIGSEGYV to previous condition. */

(void) signal(SIGSEGV, savefunc);
break;

}
b
exit(0);

http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

sults,

to

8/4/2008 4:1Quu

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

NOTREACHED/

}

/*

** Ask for next action.
*/

static

ask()

{

int response; /* user response */

do {
(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\t"D = exit\n");
(void) fprintf(stderr, "\t 0 = exit\n");
(void) fprintf(stderr, "\t 1 = shmat\n");
(void) fprintf(stderr, "\t 2 = shmdt\n");

(void) fprintf(stderr, "\t 3 = read from segment \n");
(void) fprintf(stderr, "\t 4 = write to segment\ n");
(void) fprintf(stderr,

"Enter the number corresponding to your choice: ");

/* Preset response so "*D" will be interpreted a s exit. */

response = 0;

(void) scanf("%i", &response);
} while (response < 0 || response > 4);
return (response);

}

/*

** Catch signal caused by attempt to write into sha red memory
segment

** attached with SHM_RDONLY flag set.

*/

ARGSUSED/

static void

catcher(sig)

longjmp(segvbuf, 1);
NOTREACHED/

}

/*

** VVerify that given address is the address of an a ttached
segment.

** Return 1 if address is valid; O if not.
*/

static

good_addr(address)

char *address;

{
register struct state *p; [* ptrto sta te of attached
segment */

for (p = ap; p != &ap[nap]; p++)
if (p->shmaddr == address)
return(l);

return(0);

}

Exercises

Exercise 12771

Write 2 programs that will communicate via shared memory and semaphores. IDiagaexchanged
via memory and semaphores will be used to synchronise and notify each process when opechtio
as memory loaded and memory read have been performed.

Exercise 12772
Compile the programshmget.c , shmctl.c andshmop.c and then

e investigate and understand fully the operations of the flags (access, cetafpmmmissions) you

14 of 15 8/4/2008 4:1Quu

IPC:Shared Memory http://www.cs.cf.ac.uk/Dave/C/node27.html#SECTIORDO000000.

can set interactively in the programs.
e Use the prgrams to:
o Exchange data between two processe runniggnas.c .
o Inquire about the state of shared memory wtithctl.c
o Usesemctl.c to lock a shared memory segment.
o Usesemctl.c to delete a shared memory segment.

Exercise 12773

Write 2 programs that will communicate via mapped memory.

Dave Marshall
1/5/1999

15 of 15 8/4/2008 4:1Quu

IPC:Sockets

1of6

http://www.cs.cf.ac.uk/Dave/C/node28.html#SECTIOR80000000.

Subsections

Socket Creation and Naming

Connecting Stream Sockets

Stream Data Transfer and Closing

Datagram sockets

Socket Options

Example Socket Programsceket_server.c,socket_client
O socket server.c
O socket_client.c

Exercises

IPC:Sockets

Sockets provide point-to-point, two-way communication between two processes. Sockety are
versatile and are a basic component of interprocess and intersystem communicsicketAs an
endpoint of communication to which a name can be bound. It has a type and one or more assoc
processes.

Sockets exist in communication domains. A socket domain is an abstraction that provididessirag
structure and a set of protocols. Sockets connect only with sockets in the same domajnthreent
socket domains are identified (se®stsocket.h >), of which only the UNIX and Internet domains a
normally used Solaris 2.x Sockets can be used to communicate between processesegnyatsimg|
like other forms of IPC.

The UNIX domain provides a socket address space on a single system. UNIX domainaseakatsed
with UNIX paths. Sockets can also be used to communicate between processes on siffenerst
The socket address space between connected systems is called the Internet domain.

Internet domain communication uses the TCP/IP internet protocol suite.

Socket types define the communication properties visible to the application. Processes comelunic
only between sockets of the same type. There are five types of socket.

A stream socket
-- provides two-way, sequenced, reliable, and unduplicated flow of data with no record
boundaries. A stream operates much like a telephone conversation. The socket type is
SOCK_STREAMVhich, in the Internet domain, uses Transmission Control Protocol (TCP).

A datagram socket
-- supports a two-way flow of messages. A on a datagram socket may receigagenessa
different order from the sequence in which the messages were sent. Record bountteidata
are preserved. Datagram sockets operate much like passing letters back andHerthail. The
socket type iSOCK_DGRAMvVhich, in the Internet domain, uses User Datagram Protocol (UDF

A sequential packet socket
-- provides a two-way, sequenced, reliable, connection, for datagrams of a fixedumaeingth.
The socket type isock_SEQPACKENO protocol for this type has been implemented for any
protocol family.

A raw socket
provides access to the underlying communication protocols.

These sockets are usually datagram oriented, but their exact charastddpgnd on the interface
provided by the protocol.

8/4/2008 4:14u

IPC:Sockets

2 of 6

http://www.cs.cf.ac.uk/Dave/C/node28.html#SECTIOR80000000.

Socket Creation and Naming

int socket(int domain, int type, int protocol) is called to create a socket in the specified
domain and of the specified type. Ipratocol is not specified, the system defaults to a protocol the
supports the specified socket type. The socket handle (a descriptor) is returned.eAprexess has ne
way to identify a socket until an address is bound to it. Communicating processes conngbt thr
addresses. In the UNIX domain, a connection is usually composed of one or two path names. In
Internet domain, a connection is composed of local and remote addresses and local and rtsmate
most domains, connections must be unique.

int bind(int s, const struct sockaddr *name, int na melen) is called to bind a path or interne
address to a socket. There are three different ways tare@ll , depending on the domain of the
socket.

e For UNIX domain sockets with paths containing 14, or fewer characters, you can:
#include <sys/socket.h>
blnd (sd, (struct sockaddr *) &addr, length);

e If the path of a UNIX domain socket requires more characters, use:

#include <sys/un.h>

Bind (sd, (struct sockaddr_un *) &addr, length);

e For Internet domain sockets, use
#include <netinet/in.h>

Bind (sd, (struct sockaddr_in *) &addr, length);

In the UNIX domain, binding a name creates a named socket in the file systemliddge orrm ()
to remove the socket.

Connecting Stream Sockets

Connecting sockets is usually not symmetric. One process usually acts as arsgiiie other process
is the client. The server binds its socket to a previously agreed path or address. tidkeonrbthe

socket. For 80CK_STREAMOcKet, the server calls listen(int s, int backlog) , Which
specifies how many connection requests can be queued. A client initiates a connectiserette
socket by a call tit connect(int s, struct sockaddr *name, int namel en) . A UNIX domain

call is like this:

struct sockaddr_un server;

&Jnnect (sd, (struct sockaddr_un *)&server, length)

while an Internet domain call would be:

struct sockaddr_in;

Ebnnect (sd, (struct sockaddr_in *)&server, length) ;

If the client's socket is unbound at the time of the connect call, the system awbynsgiects and
binds a name to the socket. FBGCK_STREAMOCKet, the server calls accept(3N) to complete the
connection.

int accept(int s, struct sockaddr *addr, int *addrl en) returns a new socket descriptor whi

8/4/2008 4:14u

IPC:Sockets

3 of 6

http://www.cs.cf.ac.uk/Dave/C/node28.html#SECTIOR80000000.

is valid only for the particular connection. A server can have mulipl_STREAMONNections active
at one time.

Stream Data Transfer and Closing

Several functions to send and receive data fra@G_STREAMocket. These ar@ite(), read(),

int send(int s, const char *msg, int len, int flags), andint recv(int s, char *buf,

int len, int flags) .send() andrecv() are very similar teead() andwrite() , but have some
additional operationalags

The flags parameter is formed from the bitwise OR of zero or more of the foltowing

MSG_OOB
-- Send "out-of-band" data on sockets that support this notion. The underlying protocol mu
support "out-of-band" data. On§pCK_STREAMOCkets created in th&_INET address family
support out-of-band data.

MSG_DONTROUTE
-- Theso_DONTRouUT@ption is turned on for the duration of the operation. It is used only by
diagnostic or routing pro- grams.

MSG_PEEK
-- "Peek" at the data present on the socket; the data is returned, but not consumed, so that
subsequent receive operation will see the same data.

A sock_STREAMocket is discarded by callingse()

Datagram sockets

A datagram socket does not require that a connection be established. Each messsiffeecar
destination address. If a particular local address is needed, amal{)to must precede any data
transfer. Data is sent through callséadto() orsendmsg() . Thesendto() call is like asend() call
with the destination address also specified. To receive datagram socketeavesaligevirom() or
recvmsg() . Whilerecv() requires one buffer for the arriving datayvirom() requires two buffers,
one for the incoming message and another to receive the source address.

Datagram sockets can also usenect() to connect the socket to a specified destination socket. W
this is donesend() andrecv() are used to send and receive data.

accept() andlisten() are not used with datagram sockets.

Socket Options

Sockets have a number of options that can be fetchedadtiekopt() and set withsetsockopt()

These functions can be used at the native socket lexgk(SOL_SOCKET), in which case the socket
option name must be specified. To manipulate options at any other level the protocol number of
desired protocol controlling the option of interest must be specifie@dsegoent() in
getprotobyname()).

Example Socket
Programs:socket server.c, socket cli ent

8/4/2008 4:14u

IPC:Sockets http://www.cs.cf.ac.uk/Dave/C/node28.html#SECTIOR80000000.
These two programs show how you can establish a socket connection using the above functions

socket server.c

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NSTRS 3 /* no. of strings */
#define ADDRESS "mysocket" /* addr to connect */
/*

* Strings we send to the client.

*/

char *strs[NSTRS] ={
"This is the first string from the server.\n",
"This is the second string from the server.\n",
"This is the third string from the server.\n"

3
main()

char c;

FILE *fp;

int fromlen;

register inti, s, ns, len;

struct sockaddr_un saun, fsaun;

/~k

* Get a socket to work with. This socket will

* be in the UNIX domain, and will be a

* stream socket.

*/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
perror("server: socket");
exit(1);

/*

* Create the address we will be binding to.
*/

saun.sun_family = AF_UNIX;
strepy(saun.sun_path, ADDRESS);

/*

* Try to bind the address to the socket. We
* unlink the name first so that the bind won't
* fall.

*

* The third argument indicates the "length"” of
* the structure, not just the length of the

* socket name.

*
unlink(ADDRESS);
len = sizeof(saun.sun_family) + strlen(saun.sun _path);

if (bind(s, &saun, len) < 0) {
perror("server: bind");
exit(1);

/*

* Listen on the socket.

*

if (listen(s, 5) < 0) {
perror("server: listen");
exit(1);

/*

* Accept connections. When we accept one, ns
* will be connected to the client. fsaun will

* contain the address of the client.

4 of 6 8/4/2008 4:14u

IPC:Sockets

5 of 6

http://www.cs.cf.ac.uk/Dave/C/node28.html#SECTIOR80000000.

*/

if ((ns = accept(s, &fsaun, &fromlen)) < 0) {
perror("server: accept");
exit(1);

/~k

* We'll use stdio for reading the socket.
*/

fp = fdopen(ns, "r");

/~k
* First we send some strings to the client.
*/
for (i=0; i < NSTRS; i++)
send(ns, strs]i], strlen(strsi]), 0);

/*
* Then we read some strings from the client an
* print them out.
*
for (i=0; i < NSTRS; i++) {
while ((c = fgetc(fp)) != EOF) {

putchar(c);
if (c =="n")
break;
}
}
/~k

* We can simply use close() to terminate the

* connection, since we're done with both sides
*

close(s);

exit(0);
}

socket client.c

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NSTRS 3 /* no. of strings
#define ADDRESS "mysocket" /* addr to connect

/*

* Strings we send to the server.

*/

char *strs[NSTRS] = {
"This is the first string from the client.\n",
"This is the second string from the client.\n",
"This is the third string from the client.\n"

%
main()

char c;

FILE *fp;

registerinti, s, len;
struct sockaddr_un saun;

/~k

* Get a socket to work with. This socket will

* be in the UNIX domain, and will be a

* stream socket.

*/

if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
perror(“client: socket");
exit(1);

*
*

8/4/2008 4:14u

IPC:Sockets

6 of 6

http://www.cs.cf.ac.uk/Dave/C/node28.html#SECTIOR80000000.

/~k

* Create the address we will be connecting to.
*

saun.sun_family = AF_UNIX;
strcpy(saun.sun_path, ADDRESS);

/*

* Try to connect to the address. For this to

* succeed, the server must already have bound

* this address, and must have issued a listen()
* request.

*

* The third argument indicates the "length" of

* the structure, not just the length of the

* socket name.

*

len = sizeof(saun.sun_family) + strlen(saun.sun _path);

if (connect(s, &saun, len) < 0) {
perror(“client: connect");
exit(1);

/*

* We'll use stdio for reading
* the socket.

*/

fp = fdopen(s, "r");

/~k
* First we read some strings from the server
* and print them out.
*
for (i=0; i <NSTRS; i++) {
while ((c = fgetc(fp)) != EOF) {
putchar(c);

if (c =="n")
break;
}

}

/~k
* Now we send some strings to the server.
*
for (i=0; i < NSTRS; i++)
send(s, strs]i], strlen(strsi]), 0);
/*
* We can simply use close() to terminate the
* connection, since we're done with both sides
*/
close(s);

exit(0);

Exercises

Exercise 12776

Configure the abovsocket_server.c andsocket_client.c programs for you system and compile
and run them. You will need to set up sock@bRESSIefinition.

Dave Marshall
1/5/1999

8/4/2008 4:14u

Threads: Basic Theory and Libraries

1 of 24

Subsections

e Processes and Threads

@)

@)

@)

Benefits of Threads vs Processes

Multithreading vs. Single threading
Some Example applications of threads

e Thread Levels

o

o

o

User-Level Threads (ULT)
Kernel-Level Threads (KLT)
Combined ULT/KLT Approaches

e Threads libraries

e The POSIX Threads Libramgpthread , <pthread.h>

o 0 0o 0o 0 o o oo 0o o o o o o o

@)

Creating a (Default) Thread

Wait for Thread Termination

A Simple Threads Example

Detaching a Thread

Create a Key for Thread-Specific Data

Delete the Thread-Specific Data Key

Set the Thread-Specific Data Key

Get the Thread-Specific Data Key

Global and Private Thread-Specific Data Example
Getting the Thread Identifiers

Comparing Thread IDs

Initializing Threads

Yield Thread Execution

Set the Thread Priority

Get the Thread Priority

Send a Signal to a Thread

Access the Signal Mask of the Calling Thread
Terminate a Thread

e Solaris Threads:thread.h >

@)

o

Unigque Solaris Threads Functions
Suspend Thread Execution

s Continue a Suspended Thread
Set Thread Concurrency Level
Readers/Writer Locks
Readers/Writer Lock Example
Similar Solaris Threads Functions
Create a Thread

Get the Thread Identifier

Yield Thread Execution
Signals and Solaris Threads
Terminating a Thread

Creating a Thread-Specific Data Key

Example Use of Thread Specific Data:Rethinking @lokariables

o Compiling a Multithreaded Application

@)

@)

Preparing for Compilation
Debugging a Multithreaded Program

http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

Threads: Basic Theory and Libraries

This chapter examines aspects of threads and modépsing (and multithreading). We will firts stualyittle
theory of threads and also look at how threadinglmeffectively used to make programs more efiicie

The C thread libraries will then be introduced. Toléowing chapters will look at further thead igsusucj a
synchronisation and practical examples.

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

Processes and Threads

We can think of @hread as basically dightweight process. In order to understand this let us censie
two main characteristics of a process:

Unit of resource ownership
-- A process is allocated:
e a virtual address space to hold the process image
e control of some resources (files, I/O devices...)
Unit of dispatching
- A process is an execution path through one oerpoograms:
e execution may be interleaved with other processes
e the process has an execution state and a dispg{ghority

If we treat these two characteristics as beingpeddent (as does modern OS theory):

e The unit of resource ownership is usually refetmeds gorocessor task. This Processes have:
o a virtual address space which holds the procesgeama
o protected access to processors, other procedsssaind 1/0 resources.
e The unit of dispatching is usually referred ttheead or a lightweight process. Thus a thread:
o Has an execution state (running, ready, etc.)
o Saves thread context when not running
o Has an execution stack and some per-thread statage for local variables
o Has access to the memory address space and resofliitseprocess
¢ all threads of a process share this when one ttakad a (non-private) memory item, all other #u=
(of the process) sees that a file open with onestihris available to others

Benefits of Threads vs Processes

If implemented correctly then threads have someatdges of (multi) processes, They take:

e Less time to create a new thread than a procesaube the newly created thread uses the current
process address space.

e Less time to terminate a thread than a process.

e Less time to switch between two threads withinghene process, partly because the newly created
thread uses the current process address space.

e Less communication overheads -- communicating batviiee threads of one process is simple bec:
the threads share everything: address space,tinyar. So, data produced by one thread is
immediately available to all the other threads.

Multithreading vs. Single threading

Just a we can multiple processes running on sosterag we can have multiple threads running:

Single threading
-- when the OS does not recognize the conceptreéith
Multithreading
-- when the OS supports multiple threads of exeauttithin a single process

Figure28.1shows a variety of models for threads and prosesse

2 of 24 8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

ONE Process
one thread

OIE Process
multiple threads

multiple processes
multiple threads per process

multiple processes
one thread per process

e

Fig. 28.1 Threads and ProcesseSome example popular OSs and their thread suport

MS-DOS

-- support a single user process and a singledhrea
UNIX

-- supports multiple user processes but only supmore thread per process
Solaris

-- supports multiple threads

Multithreading your code can have many benefits:

e Improve application responsiveness -- Any progrmamwhich many activities are not dependent upol
each other can be redesigned so that each adtidgfined as a thread. For example, the user of a
multithreaded GUI does not have to wait for onéviagtto complete before starting another.

e Use multiprocessors more efficiently -- Typicaliyplications that express concurrency requiremer
with threads need not take into account the nurabavailable processors. The performance of the
application improves transparently with additiopedcessors. Numerical algorithms and applicatior
with a high degree of parallelism, such as matnitiplications, can run much faster when
implemented with threads on a multiprocessor.

e Improve program structure -- Many programs are neffieiently structured as multiple independent
semi-independent units of execution instead of siagle, monolithic thread. Multithreaded program
can be more adaptive to variations in user demtraidssingle threaded programs.

e Use fewer system resources -- Programs that usertwmre processes that access common data
through shared memory are applying more than ameadhof control. However, each process has a
address space and operating systems state. Thef @psaiting and maintaining this large amount of
state information makes each process much moreneieethan a thread in both time and space. In
addition, the inherent separation between processesequire a major effort by the programmer to
communicate between the threads in different psEser to synchronize their actions.

Figure28.2illustrates different process models and threadrobin a single thread and multithreaded
application.

3 of 24 8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

Single-Threaded Multithreaded
Process Model Process Model
__Thread =~ Thread =~ Thread _
: Thread : : Thread : : Thread :
Process User 1| Control : 1| Control : i| Control :
Control Stack I Block | I Block | I Block ||
Block : : : : : :
| Loy - '
Kernel Process | || User : Il User : Il User :
User erne C i| Stack || 1| Stack |} 1| Stack ||
Add Stack ontrol] g Lo I
Tess ¢ Block I : I : I :
SIIH[:E : | : | : |
I by b I
| | |
User : Kernel | : Kernel |! : Kernel |
Address | || Stack : || Stack I !l Stack :
Spce |1
______ T e A e]|

Fig. 28.2Single and Multi- Thread Applicatiions

Some Example applications of threads

Example : A file server on a LAN

¢ |t needs to handle several file requests over & gleoiod
e Hence more efficient to create (and destroy) alsitigead for each request
e Multiple threads can possibly be executing sim@tarsly on different processors

Example 2: Matrix Multiplication

Matrix Multilication essentially involves takingetrows of one matrix and multiplying and adding
corresponding columns in a second maitex

a1l al2 a3 b1 b2 b1z
a2l ar? a3 =24 [bEa —
L
a3l azz a3 [=c3 bz b33
a11.b11+ alZ.bB21 + a13.631 a11.b12 + a12.b22 + 213 .H32 a11.b13 + a12.b23 + a13.H33
aZ21.b11+ aZ2 b21 + aZ3.H31 a21.b12 + aZ2 b2 + aZ3 B3z aZ21.b13 + aZ2 bE3 + az3 B33
a31.b11+ a32. b21 + a3 B3 a31.b12 + a32. b2 + a33 B3z a31.b13 + a32. bE3 + aZ2.H33

Fig. 28.3Matrix Multiplication (3x3 example) Note that eacklement of the resultant matrix can be
computed independently, that is to say by a diffetieread.

We will develop a C++ example program for matrixltiplication later (see Chaptt.l).

Thread Levels

There are two broad categories of thread implenienta

4 of 24 8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

5 of 24

e User-Level Threads -- Thread Libraries.
e Kernel-level Threads -- System Calls.

There are merits to both, in fact some OSs allovesg to both level®.Q. Solaris).

User-Level Threads (ULT)

In this level, the kernel is not aware of the etisie of threads -- All thread management is donbdy
application by using a thread library. Thread skiitg does not require kernel mode privileges (naeno
switch) and scheduling is application specific

Kernel activity for ULTSs:

e The kernel is not aware of thread activity busisiill managing process activity

e When a thread makes a system call, the whole psatilioe blocked but for the thread library that
thread is still in the running state

e So thread states are independent of process states

Advantages and inconveniences of ULT
Advantages:

e Thread switching does not involve the kernel -tmade switching
e Scheduling can be application specific -- choosetbst algorithm.
e ULTs can run on any OS -- Only needs a threadrbra

Disadvantages:

e Most system calls are blocking and the kernel ldqmocesses -- So all threads within the proceks
be blocked

e The kernel can only assign processes to processovgo threads within the same process cannot r!
simultaneously on two processors

Kernel-Level Threads (KLT)

In this level, All thread management is done bynkéNo thread library but an API (system callsjie
kernel thread facility exists. The kernel maintasesitext information for the process and the thsead
switching between threads requires the kernel Sdimeplis performed on a thread basis.

Advantages and inconveniences of KLT
Advantages

¢ the kernel can simultaneously schedule many threhtie same process on many processors blocl
is done on a thread level
e kernel routines can be multithreaded

Disadvantages:

e thread switching within the same process involeskiernele.g if we have 2 mode switches per
thread switch this results in a significant slowvto

Combined ULT/KLT Approaches

Idea is to combine the best of both approaches

Solaris is an example of an OS that combines bafh &hd KLT (Figure28.4

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

Thread creation done in the user space

Bulk of scheduling and synchronization of threadeelin the user space

The programmer may adjust the number of KLTs

Process includes the user's address space, stackr@cess control block

User-level threads (threads library) invisiblelte ©OS are the interface for application parallelism
Kernel threads the unit that can be dispatched mmoeessor

Lightweight processes (LWP) each LWP supports amaare ULTs and maps to exactly one KLT

Process 1 Process 2 Process 3 Process 4 Process 5

IR A I NN PR

\/ | |
hreads
User © IL\ LL DD ,ngﬁ Library D
> L) Rt ; OO0
Kernel
Hardware P P P P P

s User-level thread @ Kernel-level thread @ Light-weight Process P Processor

Fig. 28.4 Solaris Thread Implementation

Threads libraries

The interface to multithreading support is throagsubroutine library, libpthread for POSIX threaaisd
libthread for Solaris threads. They both contaidector:

creating and destroying threads

passing messages and data between threads
scheduling thread execution

saving and restoring thread contexts

The POSIX Threads Library:1i bpt hr ead,
<pthread.h>

Creating a (Default) Thread

Use the functiompthread_create() to add a new thread of control to the current @ssclt is prototyped by

int pthread_create(pthread_t *tid, const pthread\ attr_t *tattr,

6 of 24 8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

7 of 24

void*(*start_routine)(void *), void *arg);

When an attribute object is not specified, it isiNlUand thedefault thread is created with the following
attributes:

It is unbounded

It is nondetached

It has a a default stack and stack size
It inhetits the parent's priority

You can also create a default attribute object wtittead_attr_init() function, and then use this attribut
object to create a default thread. See the Sezfidh

An example call of default thread creation is:

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

extern void *start_routine(void *arg);

void *arg;

int ret;

[* default behavior*/

ret = pthread_create(&tid, NULL, start_routine, arg);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

[* default behavior specified*/

ret = pthread_create(&tid, &tattr, start_routine, a rg);

The pthread_create() function is called withattr having the necessary state behawart_routine is
the function with which the new thread begins exiecu Whenstart_routin e returns, the thread exits wit
the exit status set to the value returnedtdy routine

Whenpthread_create IS successful, the ID of the thread created iedtin the location referred to &s .

Creating a thread using a NULL attribute argumexst the same effect as using a default attributis; bo
create a default thread. When tattr is initializédcquires the default behavior.

pthread_create() returns a zero and exits when it completes suftdssAny other returned value
indicates that an error occurred.

Wait for Thread Termination

Use thepthread_join ~ function to wait for a thread to terminate. Ipi®totyped by:

int pthread_join(thread_t tid, void **status);

An example use of this function is:

#include <pthread.h>

pthread_t tid;

int ret;

int status;

/* waiting to join thread "tid" with status */
ret = pthread_join(tid, &status);

/* waiting to join thread "tid" without status */
ret = pthread_join(tid, NULL);

The pthread_join() function blocks the calling thread until the sfied thread terminates. The specified
thread must be in the current process and musiendetached. Whetatus is NOtNULL, it points to a
location that is set to the exit status of the teated thread whepthread_join() returns successfully.
Multiple threads cannot wait for the same threatgktminate. If they try to, one thread returns ssstully
and the others fail with an error B$RCH After pthread_join() returns, any stack storage associated witl
the thread can be reclaimed by the application.

Thepthread_join() routine takes two arguments, giving you some ffigiy in its use. When you want the

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

8 of 24

caller to wait until a specific thread terminategpply that thread's ID as the first argumentoli yare
interested in the exit code of the defunct thresagply the address of an area to receive it. Reraethhat
pthread_join() works only for target threads that are nondetacWéten there is no reason to synchroni:
with the termination of a particular thread, theattthread should be detached. Think of a detattivedd as
being the thread you use in most instances andveesendetached threads for only those situatioat t
require them.

A Simple Threads Example

In this Simple Threads fragment below, one threatetes the procedure at the top, creating a héipead
that executes the procedure fetch, which involvesmaplicated database lookup and might take same ti

The main thread wants the results of the lookuphlagtother work to do in the meantime. So it dbesé
other things and then waits for its helper to catelts job by executinghread_join() . An argument,
pbe, to the new thread is passed as a stack paraniatercan be done here because the main threasl foai
the spun-off thread to terminate. In general, tiQuilgs better tanalloc() storage from the heap instead o
passing an address to thread stack storage, waitHisappear or be reassigned if the thread tetetina

The source fothread.c is as follows:

void mainline (...)

struct phonebookentry *pbe;

pthread_attr_t tattr;

pthread_t helper;

int status;

pthread_create(&helper, NULL, fetch, &pbe);
/* do something else for a while */
pthread_join(helper, &status);

/* it's now safe to use result */

}
void fetch(struct phonebookentry *arg)

struct phonebookentry *npbe;

[* fetch value from a database */
npbe = search (prog_name)

if (npbe = NULL)

*arg = *npbe;

pthread_exit(0);

}

struct phonebookentry {
char name[64];

char phonenumber[32];
char flags[16];

}

Detaching a Thread
The functionpthread_detach() is an alternative tpthread_join() to reclaim storage for a thread that is
created with a detachstate attribute S&TteREAD_CREATE_JOINABLHt is prototyped by:

int pthread_detach(thread_t tid);

A simple example of calling this fucntion to detatcthread is given by:

#include <pthread.h>
pthread_t tid;

int ret;

[* detach thread tid */

ret = pthread_detach(tid);

The pthread_detach() function is used to indicate to the implementatiuat storage for the thread can
be reclaimed when the thread terminates. If tidiwdgerminatedythread_detach() does not cause it to
terminate. The effect of multiplghread_detach() calls on the same target thread is unspecified.

pthread_detach() returns a zero when it completes successfully. éther returned value indicates that a

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

9 of 24

error occurred. When any of the following condisaare detecte@thread_detach() fails and returns the
an error value.

Create a Key for Thread-Specific Data

Single-threaded C programs have two basic clads#eta: local data and global data. For multithezh@
programs a third class is addiead-specific data (TSD). This is very much like global data, except that
is private to a thread.

Thread-specific data is maintained on a per-thkeesis. TSD is the only way to define and referatadhat
is private to a thread. Each thread-specific data is associated with a key that is global tarakads in the
process. Using the key, a thread can access &petid *) that is maintained per-thread.

The functionpthread_keycreate() is used to allocate a key that is used to idettifgad-specific data in a
process. The key is global to all threads in tleegss, and all threads initially have the valueL associated
with the key when it is created.

pthread_keycreate() is called once for each key before the key is uskdre is no implicit
synchronization. Once a key has been created,theedd can bind a value to the key. The valuespeeific
to the thread and are maintained for each thredependently. The per-thread binding is deallocateen a
thread terminates if the key was created with &rdet®r function pthread_keycreate() is prototyped by:

int pthread_key_create(pthread_key _t *key, void (*d estructor) (void *));

A simple example use of this function is:

#include <pthread.h>

pthread_key t key;

int ret;

/* key create without destructor */

ret = pthread_key_create(&key, NULL);

/* key create with destructor */

ret = pthread_key_create(&key, destructor);

Whenpthread_keycreate() returns successfully, the allocatesgt is stored in the location pointed to by
key . The caller must ensure that the storage and swtcébis key are properly synchronized. An optiona
destructor function, destructor, can be used t® d$tale storage. When a key has a non-NULL destruct
function and the thread has a noukL value associated with that key, the destructoction is called with
the current associated value when the thread &tiesorder in which the destructor functions aféedas
unspecified.

pthread_keycreate() returns zero after completing successfully. Ariyeotreturned value indicates that a
error occurred. When any of the following condiBarccur pthread_keycreate() fails and returns an erro
value.

Delete the Thread-Specific Data Key

The functionpthread_keydelete() is used to destroy an existing thread-specifia #tay. Any memory
associated with the key can be freed because thedsbeen invalidated and will return an err@vér
referenced. (There is no comparable function irm&®threads.)

pthread_keydelete() is prototyped by:

int pthread_key_delete(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>
pthread_key _t key;

int ret;

/* key previously created */

ret = pthread_key_delete(key);

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

10 of 24

Once &ey has been deleted, any reference to it withptiread_setspecific() or
pthread_getspecific() call results in th&INVAL error.

It is the responsibility of the programmer to feegy thread-specific resources before calling tHetde
function. This function does not invoke any of thestructors.

pthread_keydelete() returns zero after completing successfully. Artyeotreturned value indicates that a
error occurred. When the following condition ocGuyisread_keycreate() fails and returns the
corresponding value.

Set the Thread-Specific Data Key

The functionpthread_setspecific() is used to set the thread-specific binding tosimecified
thread-specific data key. It is prototyped by :

int pthread_setspecific(pthread_key_t key, const vo id *value);

A simple example use of this function is:

#include <pthread.h>
pthread_key_t key;
void *value;

int ret;

/* key previously created */
ret = pthread_setspecific(key, value);

pthread_setspecific() returns zero after completing successfully. Artyeotreturned value indicates that
an error occurred. When any of the following coioti$ occurpthread_setspecific() fails and returns an
error value.

Note: pthread_setspecific() doesnot free its storage. If a new binding is set, thesexg binding must be
freed; otherwise, memory leak can occur.

Get the Thread-Specific Data Key
Usepthread_getspecific() to get the calling thread's binding for key, atatesit in the location pointed tc
by value. This function is prototyped by:

int pthread_getspecific(pthread_key _t key);

A simple example use of this function is:

#include <pthread.h>
pthread_key t key;

void *value;

/* key previously created */

value = pthread_getspecific(key);

Global and Private Thread-Specific Data Example

Thread-Specific Data Global but Private

Consider the following code:

body() {

\./;/'hile (write(fd, buffer, size) ==-1) {

if (errno != EINTR) {

fprintf(mywindow, "%s\n", strerror(errno));
exit(1);

}

}

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

11 of 24

}

This code may be executed by any number of thréadst has references to two global variablesy@and
mywindow, that really should be references to it@mgate to each thread.

References to errno should get the system errar froch the routine called by this thread, not byneather
thread. So, references to errno by one thread tefedifferent storage location than referencesrino by
other threads. The mywindow variable is intenderkfer to a stdio stream connected to a windowithat
private to the referring thread. So, as witiho , references to mywindow by one thread should refer
different storage location (and, ultimately, a eiiéint window) than references to mywindow by other
threads. The only difference here is that the titsdi@drary takes care of errno, but the programmest
somehow make this work for mywindow. The next exiEngmows how the references to mywindow work
The preprocessor converts references to mywindtwimvocations of thenywindow procedure. This routine
in turn invokesthread_getspecific() , passing it thenywindow_key global variable (it really is a global
variable) and an output parameten, , that receives the identity of this thread's wiwdo

Turning Global References Into Private Referencedlow consider this code fragment:

thread_key_t mywin_key;

FILE *_mywindow(void) {

FILE *win;
pthread_getspecific(mywin_key, &win);
return(win);

}
#define mywindow _mywindow()

void routine_uses_win(FILE *win) {

}

void thread_start(...) {
.rﬁ'ake_mywin();
.r.dutine_uses_win(mywindow)

Themywin_key variable identifies a class of variables for wheéath thread has its own private copy; that
these variables are thread-specific data. Eachdhrallsmake_mywin to initialize its window and to arrange
for its instance of mywindow to refer to it. Ondéstroutine is called, the thread can safely redefywindow
and, aftemywindow, the thread gets the reference to its private awndso, references to mywindow behav
as if they were direct references to data privatie thread.

We can now set up our initial Thread-Specific Data:

void make_mywindow(void) {

FILE **win;

static pthread_once_t mykeycreated = PTHREAD_ONCE_| NIT;
pthread_once(&mykeycreated, mykeycreate);

win = malloc(sizeof(*win));

create_window(win, ...);

pthread_setspecific(mywindow_key, win);

void mykeycreate(void) {
pthread_keycreate(&mywindow_key, free_key);

void free_key(void *win) {
free(win);

First, get a unique value for the keywin_key . This key is used to identify the thread-spedifass of data.
So, the first thread to calake_mywin eventually callgthread_keycreate() , Which assigns to its first
argument a unique key. The second argument isteudes function that is used to deallocate a thiea
instance of this thread-specific data item oncelhihead terminates.

The next step is to allocate the storage for tlertainstance of this thread-specific data itétaving
allocated the storage, a call is made toctbate_window routine, which sets up a window for the thread &
sets the storage pointed to by win to refer tBirtally, a call is made tpthread_setspecific() , which

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

12 of 24

associates the value contained in win (that is|dbation of the storage containing the referenché
window) with the key. After this, whenever thisehad callgthread_getspecific() , passing the global ke
it gets the value that was associated with thislkethis thread when it callgghread_setspecific()

When a thread terminates, calls are made to theudes functions that were set up in

pthread_key_create() . Each destructor function is called only if themeating thread established a valut
for the key by callingthread_setspecific()

Getting the Thread Identifiers

The functionpthread_self() can be called to return the ID of the calling #utelt is prototyped by:

pthread_t pthread_self(void);

It is use is very straightforward:

#include <pthread.h>
pthread_t tid;
tid = pthread_self();

Comparing Thread IDs

The functionpthread_equal() can be called to compare the thread identificatimmbers of two threads. It
is prototyped by:

int pthread_equal(pthread_t tid1, pthread_t tid2);

It is use is straightforward to use, also:

#include <pthread.h>

pthread_t tid1, tid2;

int ret;
ret = pthread_equal(tid1, tid2);

As with other comparison functionghread_equal() returns a non-zero value wh&l andtid2 are
equal; otherwise, zero is returned. When eitbher ortid2 is an invalid thread identification number, the
result is unpredictable.

Initializing Threads

Usepthread_once() to call an initialization routine the first tinpghread_once() is called -- Subsequent
calls to have no effect. The prototype of this tioitis:

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

Yield Thread Execution

The functionsched_yield() to cause the current thread to yield its executidavor of another thread with
the same or greater priority. It is prototyped by:

int sched_yield(void);
It is clearly a simple function to call:

#include <sched.h>
int ret;
ret = sched_yield();

sched_yield() returns zero after completing successfully. Othsewl is returned and errno is set to
indicate the error condition.

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

13 of 24

Set the Thread Priority

Usepthread_setschedparam() to modify the priority of an existing thread. THisction has no effect on
scheduling policy. It is prototyped as follows:

int pthread_setschedparam(pthread_t tid, int policy ,
const struct sched_param *param);

and used as follows:

#include <pthread.h>

pthread_t tid;

int ret;

struct sched_param param;

int priority;

[* sched_priority will be the priority of the threa d*
sched_param.sched_priority = priority;

/* only supported policy, others will result in ENO TSUP */

policy = SCHED_OTHER;
/* scheduling parameters of target thread */
ret = pthread_setschedparam(tid, policy, ¶m);

pthread_setschedparam() returns zero after completing successfully. Arhyeotreturned value indicates
that an error occurred. When either of the follaywronditions occurs, thehread_setschedparam()
function fails and returns an error value.

Get the Thread Priority

int pthread_getschedparam(pthread_t tid, int policy , struct schedparam *param) gets the
priority of the existing thread.

An example call of this function is:

#include <pthread.h>

pthread_t tid;

sched_param param;

int priority;

int policy;

int ret;

/* scheduling parameters of target thread */

ret = pthread_getschedparam (tid, &policy, ¶m);

/* sched_priority contains the priority of the thre ad */
priority = param.sched_priority;

pthread_getschedparam() returns zero after completing successfully. Artyeotreturned value indicates
that an error occurred. When the following conditaxcurs, the function fails and returns the evaedue set.

Send a Signal to a Thread

Signal may be sent to threads is a similar fastodhose for process as follows:

#include <pthread.h>
#include <signal.h>

int sig;

pthread_t tid;

int ret;

ret = pthread_Kkill(tid, sig);

pthread_kill() sends the signaig to the thread specified oy .td must be a thread within the same
process as the calling thread. Eige argument must be a valid signal of the same tyfiaebefor signal()
in <signal.h > (See Chaptez3)

Whensig is zero, error checking is performed but no sigealctually sent. This can be used to check the
validity of tid.

8/4/2008 4:17u

Threads: Basic Theory and Libraries

14 of 24

http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

This function returns zero after completing sucfidlys Any other returned value indicates that aroe

occurred. When either of the following conditioreors,pthread_kill()

fails and returns an error value.

Access the Signal Mask of the Calling Thread

The functionpthread_sigmask() may be used to change or examine the signal niable @alling thread. It

is prototyped as follows:

int pthread_sigmask(int how, const sigset_t *new, s

Example uses of this function include:

#include <pthread.h>

#include <signal.h>

int ret;

sigset_t old, new;

ret = pthread_sigmask(SIG_SETMASK, &new, &old); /*
ret = pthread_sigmask(SIG_BLOCK, &new, &old); /* bl
ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); /*

igset_t *old);

set new mask */
ocking mask */
unblocking */

how determines how the signal set is changednlheae one of the following values:

SI G_SETMASK

-- Replace the current signal mask with new, wimene indicates the new signal mask.

SI G_BLOCK

-- Add new to the current signal mask, where neticates the set of signals to block.

SI G_UNBLOCK

-- Delete new from the current signal mask, whee mdicates the set of signals to unblock.

When the value afew is NULL, the value of how is not significant and the signask of the thread is
unchanged. So, to inquire about currently blockgdads, assign BULL value to the new argument. The ol
variable points to the space where the previousasigiask is stored, unless itNSLL

pthread_sigmask() returns a zero when it completes successfully. éther returned value indicates that .
error occurred. When the following condition ocGuyisread_sigmask() fails and returns an errro value.

Terminate a Thread

A thread can terminate its execution in the follogvivays:

e By returning from its first (outermost) proceduttee threads start routine; Sgeread_create()

e By callingpthread_exit() , Supplying an exit status

e By termination with POSIX cancel functions; g@@ead_cancel()

Thevoid pthread_exit(void *status)
process:

#include <pthread.h>
int status;
pthread_exit(&status); /* exit with status */

is used terminate a thread in a similar fashiaeth) for a

Thepthread_exit() function terminates the calling thread. All thregakcific data bindings are released.
the calling thread is not detached, then the thsd®dand the exit status specified by status etanmed until
the thread is waited for (blocked). Otherwise,ustas ignored and the thread's ID can be reclaimed

immediately.

The pthread_cancel() function to cancel a thread is prototyped:

int pthread_cancel(pthread_t thread);

and called:

#include <pthread.h>

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

15 of 24

pthread_t thread,
int ret;
ret = pthread_cancel(thread);

How the cancellation request is treated dependb@state of the target thread. Two functions,

pthread_setcancelstate() andpthread_setcanceltype() (seeman pages for further information on thes
functions), determine that state.

pthread_cancel() returns zero after completing successfully. Arhyeotreturned value indicates that an
error occurred. When the following condition occuh® function fails and returns an error value.

Solaris Threads: < hr ead. h>

Solaris have many similarities to POSIX thread#)la sectionfocus on the Solaris features thahatdéound
in POSIX threads. Where functionality is virtualhe same for both Solaris threads and for pthrgagten
though the function names or arguments might diffemly a brief example consisting of the correciude
file and the function prototype is presented. Whetarn values are not given for the Solaris thsead
functions, see the appropriaiien pages.

The Solaris threads API and the pthreads API aoestlutions to the same problem: building paraiali
into application software. Although each API is gete in itself, you can safely mix Solaris threads
functions and pthread functions in the same program

The two APIs do not match exactly, however. Soldmisads supports functions that are not found in
pthreads, and pthreads includes functions that@reupported in the Solaris interface. For thosetions
that do match, the associated arguments mighatibgugh the information content is effectively gaame.

By combining the two APIs, you can use featuresfoond in one to enhance the other. Similarly, gao
run applications using Solaris threads, exclusiweith applications using pthreads, exclusively tlo& same
system.

To use the Solaris threads functions describelisnchapter, you must link with the Solaris threkioisry
-thread and include thetiread.h > in all programs.

Unique Solaris Threads Functions

Let us begin by looking at some functions thatlargjue to Solaris threads:

Suspend Thread Execution
Continue a Suspended Thread
Set Thread Concurrency Level
Get Thread Concurrency

Suspend Thread Execution

The functionthr_suspend() immediately suspends the execution of the thrpadied by a target thread,
(td below). It is prototyped by:

int thr_suspend(thread_t tid);

On successful return fromr_suspend() , the suspended thread is no longer executing. @iceead is
suspended, subsequent callstosuspend() have no effect. Signals cannot awaken the suspethdead,;
they remain pending until the thread resumes ei@tut

A simple example call is as follows:

#include <thread.h>

thread_t tid; /* tid from thr_create() */

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

16 of 24

[* pthreads equivalent of Solaris tid from thread c reated */
[* with pthread_create() */

pthread_t ptid;

int ret;

ret = thr_suspend(tid);

[* using pthreads ID variable with a cast */

ret = thr_suspend((thread_t) ptid);

Note: pthread_t tid as defined in pthreads is the samen@ad_t tid in Solaris threadsid values can be
used interchangeably either by assignment or thrdlg use of casts.

Continue a Suspended Thread

The functionthr_continue() resumes the execution of a suspended threadpribistypes as follows:

int thr_continue(thread_t tid);
Once a suspended thread is continued, subsequlsribasr_continue() have no effect.

A suspended thread witlot be awakened by a signal. The signal stays penditigthe execution of the
thread is resumed hyr_continue()

thr_continue() returns zero after completing successfully. Ariyeotreturned value indicates that an errc
occurred. When the following condition occurs, continue() The following code fragment illustrates th
use of the function:

thread_t tid; /* tid from thr_create()*/

[* pthreads equivalent of Solaris tid from thread c reated */
/* with pthread_create()*/

pthread_t ptid;

int ret;

ret = thr_continue(tid);

[* using pthreads ID variable with a cast */

ret = thr_continue((thread_t) ptid)

Set Thread Concurrency Level

By default, Solaris threads attempt to adjust {fstesn execution resources (LWPSs) used to run urtboun
threads to match the real number of active thréafiisle the Solaris threads package cannot makegerf
decisions, it at least ensures that the proceso@s to make progress. When you have some idtee of
number of unbound threads that should be simulissig@ctive (executing code or system calls),thell
library throughthr_setconcurrency(int new_level) . To get the number of threads being used, use the
functionthr_getconcurrencyint(void)

thr_setconcurrency() provides a hint to the system about the requegdllof concurrency in the
application. The system ensures that a sufficientlver of threads are active so that the procedsoes to
make progress, for example:

#include <thread.h>
int new_level,
int ret;

ret = thr_setconcurrency(new_level);

Unbound threads in a process might or might natebeired to be simultaneously active. To conseystesmm
resources, the threads system ensures by defatiéitbugh threads are active for the process t@ mak
progress, and that the process will not deadloadutlih a lack of concurrency. Because this might not
produce the most effective level of concurreniay setconcurrency() permits the application to give the
threads system a hint, specifiedrey _level , for the desired level of concurrency. The actuahber of
simultaneously active threads can be larger orlemalannew_level . Note that an application with multiple
compute-bound threads can fail to schedule altuheable threads ifir_setconcurrency() has not been
called to adjust the level of execution resour¥esi can also affect the value for the desired caeccy
level by setting theHR_NEW_LWag inthr_create() . This effectively increments the current leveldne.

thr_setconcurrency() a zero when it completes successfully. Any otkarrned value indicates that an

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

17 of 24

error occurred. When any of the following condisaare detectedhr_setconcurrency() fails and returns
the corresponding value to errno.

Readers/Writer Locks

Readers/Writer locks are another unique featuf®oddris threads. They allow simultaneous read adogs
many threads while restricting write access to amlg thread at a time.

When any thread holds the lock for reading, othezads can also acquire the lock for reading bust nvait
to acquire the lock for writing. If one thread helidhe lock for writing, or is waiting to acquirestlock for
writing, other threads must wait to acquire thekléar either reading or writing. Readers/writerkeare
slower than mutexes, but can improve performancenvthey protect data that are not frequently writiat
that are read by many concurrent threads. Use r@ad#er locks to synchronize threads in this gsscand
other processes by allocating them in memory thetritable and shared among the cooperating presess
(see mmap(2)) and by initializing them for this aeir. By default, the acquisition order is notidetl when
multiple threads are waiting for a readers/writexkl However, to avoid writer starvation, the Sisléihreads
package tends to favor writers over readers. ReAdeéter locks must be initialized before use.

Initialize a Readers/Writer Lock

The functionrwlock_init() initialises the readers/writer lock. it is protpés in synch.n > or <hread.h >
as follows:
int rwlock_init(rwlock_t *rwlp, int type, void * ar 9);

The readers/writer lock pointed to byp and to set the lock state to unlockgge can be one of the
following

USYNC_PROCESS

-- The readers/writer lock can be used to synclmtiireads in this process and other processes.
USYNC_THREAD

-- The readers/writer lock can be used to synclasothireads in this process, only.

Note: thatarg is currently ignored.

rwlock_init() returns zero after completing successfully. Ariyeotreturned value indicates that an error
occurred. When any of the following conditions agehe function fails and returns the correspondialyie
toerro .

Multiple threads must not initialize the same reafiriter lock simultaneously. Readers/writer loclas
also be initialized by allocation in zeroed memanywhich case a type efSYNC_THREALS assumed. A
readers/writer lock must not be reinitialized wtotber threads might be using it.

An example code fragment that initialises Readers@M_ocks with Intraprocess Scope is as follows:
#include <thread.h>

rwlock_t rwlip;

int ret;

/* to be used within this process only */

ret = rwlock_init(&rwlp, USYNC_THREAD, 0);

Initializing Readers/Writer Locks with Interprocess Scope
#include <thread.h>

rwlock_t rwlp;

int ret;

/* to be used among all processes */

ret = rwlock_init(&rwlp, USYNC_PROCESS, 0);

Acquire a Read Lock

To acquire a read lock on the readers/writer lasd thhew_rdiock() ~ function:

int rw_rdlock(rwlock_t *rwlip);

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

18 of 24

The readers/writer lock pointed to byp . When the readers/writer lock is already lockedwating, the
calling thread blocks until the write lock is reted. Otherwise, the read lock is acquired.

rw_rdlock() returns zero after completing successfully. Aeotreturned value indicates that an error
occurred. When any of the following conditions agdbe function fails and returns the correspondialgie
toerrno .

A functionrw_tryrdlock(rwlock_t *rwip) may also be used to attempt to acquire a readdndke
readers/writer lock pointed to by rwip. When thaders/writer lock is already locked for writingréturns
an error. Otherwise, the read lock is acquireds Timction returns zero after completing succeblsfainy
other returned value indicates that an error oecurr

Acquire a Write Lock

The functionmw_wrlock(rwlock_t *rwip) acquires a write lock on the readers/writer looknfed to by
rwip . When the readers/writer lock is already lockedréading or writing, the calling thread blocksiual
the read locks and write locks are released. Oméytbread at a time can hold a write lock on aeesdriter
lock.

rw_wrlock() returns zero after completing successfully. Aeotreturned value indicates that an error
occurred.

Userw_trywrlockrwlock_t *rwip) to attempt to acquire a write lock on the readeitér lock pointed to
by rwip. When the readers/writer lock is alreadskied for reading or writing, it returns an error.

rw_trywrlock() returns zero after completing successfully. Ariyeotreturned value indicates that an errc
occurred.

Unlock a Readers/Writer Lock

The functionm_unlock(rwlock_t *rwip) unlocks a readers/writer lock pointed torby . The
readers/writer lock must be locked and the callimgad must hold the lock either for reading orting.
When any other threads are waiting for the readeitet lock to become available, one of them islaoked.

rw_unlock() returns zero after completing successfully. Aeotreturned value indicates that an error
occurred.

Destroy Readers/Writer Lock State

The functionmwlock_destroy(rwlock_t *rwip) destroys any state associated with the readetsiock
pointed to byiwp . The space for storing the readers/writer loakasfreed.

rwlock_destroy() returns zero after completing successfully. Artyeotreturned value indicates that an
error occurred.

Readers/Writer Lock Example

The following example uses a bank account analogiemonstrate readers/writer locks. While the @ogr
could allow multiple threads to have concurrentlrealy access to the account balance, only a simgter
is allowed. Note that thget balance() function needs the lock to ensure that the addiicine checking
and saving balances occurs atomically.

rwlock_t account_lock;
float checking_balance = 100.0;
float saving_balance = 100.0;

.r;/'vlock_init(&account_lock, 0, NULL);
float

get_balance() {

float bal;

rw_rdlock(&account_lock);
bal = checking_balance + saving_balance;

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

19 of 24

rw_unlock(&account_lock);
return(bal);

void

transfer_checking_to_savings(float amount) {
rw_wrlock(&account_lock);

checking_balance = checking_balance - amount;

saving_balance = saving_balance + amount;
rw_unlock(&account_lock);

}

Similar Solaris Threads Functions

Here we simply list the similar thread functiongldheir prototype definitions, except where the ptaxity
of the function merits further exposition. .

Create a Thread

Thethr_create() routine is one of the most elaborate of all thaB®threads library routines.

It is prototyped as follows:

int thr_create(void *stack_base, size_t stack_size,
void *(*start_routine) (void *), void *arg, long fl ags,
thread_t *new_thread);

Thijis function adds a new thread of control to ¢herent process. Note that the new thread doemheitit
pending signals, but it does inherit priority afmghal masks.

stack_base contains the address for the stack that the nexadhuses. Ktack base is NULL then
thr_create() allocates a stack for the new thread with at lsastsize bytes.stack_size ~ Contains the
size, in number of bytes, for the stack that the tieead uses. Hiack_size is zero, a default size is used.
In most cases, a zero value works bestiatk_size is not zero, it must be greater than the valugrned
by thr_min_stack(void) inquiry function.

There is no general need to allocate stack spatarieads. The threads library allocates one megaify
virtual memory for each thread's stack with no swjagce reserved.

start_routine contains the function with which the new threadibg execution. Whestart_routine
returns, the thread exits with the exit statuds#te value returned Byart_routine

arg can be anything that is described by void, whectypically any 4-byte value. Anything larger mbst
passed indirectly by having the argument point.to i

Note that you can supply only one argument. Toygat procedure to take multiple arguments, enchdmt
as one (such as by putting them in a structure).

flags specifies attributes for the created thread. Istnases a zero value works best. The value is ffag
constructed from the bitwise inclusive OR of thiédwing:

THR_SUSPENDED
-- Suspends the new thread and does not exe@tteoutine until the thread is started by

thr_continue() . Use this to operate on the thread (such as chaugi priority) before you run it. Th
termination of a detached thread is ignored.
THR_DETACHED

-- Detaches the new thread so that its thread tDatiner resources can be reused as soon as thd ti
terminates. Set this when you do not want to waitlie thread to terminate. Note - When there is r
explicit synchronization to prevent it, an unsuspeh detached thread can die and have its thread
reassigned to another new thread before its creatioms fromnthr_create()

THR_BOUND
-- Permanently binds the new thread to an LWP rithe thread is a bound thread).

THR_NEW LWP

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

20 of 24

-- Increases the concurrency level for unboundatisey one. The effect is similar to incrementing

concurrency by one witlr_setconcurrency() , althoughtHR_NEW_Lweoes not affect the level set
through thehr_setconcurrency() function. Typically,THR_NEW_Lwadds a new LWP to the pool of
LWPs running unbound threads.

When you specify botihHR_BOUNmNdTHR_NEW_LWRwWO LWPs are typically created -- one for the
bound thread and another for the pool of LWPs mnugrinbound threads.

THR_DAEMON
-- Marks the new thread as a daemon. The procéssvexen all nondaemon threads exit. Daemon
threads do not affect the process exit status endyaored when counting the number of thread exi

A process can exit either by calliagit) or by having every thread in the process thatneas
created with theHR_DAEMORNag callthr_exit) . An application, or a library it calls, can create
or more threads that should be ignored (not colntetthe decision of whether to exit. The
THR_DAEMdNIag identifies threads that are not countechia process exit criterion.

new_thread points to a location (whetew_thread is notNULL) where the ID of the new thread is stored
whenthr_create() is successful. The caller is responsible for syipglthe storage this argument points t
The ID is valid only within the calling processytbu are not interested in this identifier, supplgero value
to new_thread .

thr_create() returns a zero and exits when it completes suftdgssAny other returned value indicates
that an error occurred. When any of the followingditions are detectetly_create() fails and returns the
corresponding value w@mo .

Get the Thread Identifier

Theint thr_self(void) to get the ID of the calling thread.

Yield Thread Execution

void thr_yield(void) causes the current thread to yield its executidavor of another thread with the
same or greater priority; otherwise it has no eff€bere is no guarantee that a thread cattingield()
will do so.

Signals and Solaris Threads

The following functions exist and operate as dogss.
int thr_kill(thread_t target_thread, int sig) sends a signal to a thread.

int thr_sigsetmask(int how, const sigset_t *set, si gset_t *oset) to change or examine the sign
mask of the calling thread.

Terminating a Thread

Thevoid th_exit(void *status) to terminates a thread.

Theint thr_join(thread_t tid, thread_t *departedid, vo id **status) function to wait for a thread
to terminate.

Therefore to join specific threads one would do:

#include <thread.h>

thread_t tid;

thread_t departedid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = thr_join(tid, &departedid, (void**)&status);

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

21 of 24

/* waiting to join thread "tid" without status */

ret = thr_join(tid, &departedid, NULL);

/* waiting to join thread "tid" without return id a nd status */
ret = thr_join(tid, NULL, NULL);

When theid is(thread t)0 , thenthread_join() waits for any undetached thread in the process to
terminate. In other words, when no thread identifiespecified, any undetached thread that exilses
thread_join() to return.

To join any threads:

#include <thread.h>

thread_t tid;

thread_t departedid;

int ret;

int status;

/* waiting to join thread "tid" with status */

ret = thr_join(NULL, &departedid, (void **)&status)

By indicating NULL ashreadid in thethr_join() , a join will take place when any non detachedatir@
the process exits. The departedid will indicatetkinead ID of exiting thread.

Creating a Thread-Specific Data Key

Except for the function names and arguments, thspadific data is the same for Solaris as it iSFfOSIX.

int thr_keycreate(thread_key_t *keyp, void (*destru ctor) (void *value)) allocates a key that is
used to identify thread-specific data in a process.

int thr_setspecific(thread_key _t key, void *value) binds value to the thread-specific data key, ke
for the calling thread.

int thr_getspecific(thread_key_t key, void **valuep) stores the current value bound to key for th:
calling thread into the location pointed to by \egiu

In Solaris threads, if a thread is to be creatdt wipriority other than that of its parent'ssitreated in
susPENOMode. While suspended, the threads priority isifiemtusing thent thr_setprio(thread_t
tid, int newprio) function call; then it is continued.

An unbound thread is usually scheduled only widpeet to other threads in the process using siprpeity
levels with no adjustments and no kernel involvemis system priority is usually uniform and isarited
from the creating process.

The functionthr_setprio() changes the priority of the thread, specifiediby, within the current process
to the priority specified by newprio.

By default, threads are scheduled based on fixiedifgs that range from zero, the least significéan the
largest integer. Thed will preempt lower priority threads, and will yieto higher priority threads. For
example:

#include <thread.h>

thread_t tid;

int ret;

int newprio = 20;

/* suspended thread creation */

ret = thr_create(NULL, NULL, func, arg, THR_SUSPEND , &tid);

/* set the new priority of suspended child thread * /

ret = thr_setprio(tid, newprio);

/* suspended child thread starts executing with new priority */

ret = thr_continue(tid);

Use int thr_getprio(thread_t tid, int *newprio)det the current priority for the thread. Each tdredherits a
priority from its creatorthr_getprio() stores the current priorityg , in the location pointed to by
newprio .

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

22 of 24

Example Use of Thread Specific Data:Rethinking Gloal Variables

Historically, most code has been designed for sitigieaded programs. This is especially true fostrob
the library routines called from C programs. Thiéofwing implicit assumptions were made for
single-threaded code:

e When you write into a global variable and then,@mant later, read from it, what you read is exactl
what you just wrote.

e This is also true for nonglobal, static storage.

¢ You do not need synchronization because theretigngpto synchronize with.

The next few examples discuss some of the probleatsrise in multithreaded programs because skthe
assumptions, and how you can deal with them.

Traditional, single-threaded C and UNIX have a aontion for handling errors detected in system calls
System calls can return anything as a functionkalevéfor example, write returns the number of bytes
were transferred). However, the value -1 is regktgandicate that something went wrong. So, when a
system call returns -1, you know that it failed.

Consider the following piece of code:

extern int errno;

if (write(file_desc, buffer, size) == -1)
{ I* the system call failed */
fprintf(stderr, "something went wrong, error co de = %d\n", errno);
exit(1);

Rather than return the actual error code (whichHdcba confused with normal return values), the recomle
is placed into the global variabdeno . When the system call fails, you can loolkiimo to find out what
went wrong.

Now consider what happens in a multithreaded enwent when two threads fail at about the same time
but with different errors.

e Both expect to find their error codeseimo |,
e but one copy of errno cannot hold both values.a

This global variable approach simply does not wiorkmultithreaded programs. Threads solves thiblera
through a conceptually new storage cléissead-specific data.

This storage is similar to global storage in thaan be accessed from any procedure in whicheadhmight
be running. However, it is private to the threatiew two threads refer to the thread-specific datatlon of
the same name, they are referring to two diffeagaas of storage.

So, when using threads, each refereneerto is thread-specific because each thread has a@coeay of
errno . This is achieved in this implementation by makingo a macro that expands to a function call.

Compiling a Multithreaded Application

There are many options to consider for header, filefine flags, and linking.

Preparing for Compilation

The following items are required to compile andk laamultithreaded program.

e A standard C compilee¢, gcc €tc)

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

23 of 24

e Include files:
o <thread.h> and <pthread.h>
o <errno.h>, <limits.h>, <signal.h>, <unistd.h>
e The Solaris threads librarypthread), the POSIX threads librarybpthread), and possibly the
POSIX realtime librarylipposix4) for semaphores
e MT-safe librariesifc, libm, libw, libintl, libnsl, libsocket, lioma lloc, libmapmalloc ,
and so on)

The include file <thread.h>, used with theread library, compiles code that is upward compatibighw
earlier releases of the Solaris system. This libcantains both interfaces: those with Solaris sd¢iosand
those with POSIX semantics. To cal setconcurrency() with POSIX threads, your program needs to
include <thread.h>.

The include file <pthread.h>, used with thenhread library, compiles code that is conformant with the
multithreading interfaces defined by the POSIX 1@03tandard. For complete POSIX compliance, the
define flag_Posix_c_sourceshould be set to a (long) val>> 199506, as follows:

cc [flags] file... -D_POSIX_C_SOURCE=N (where N 199 506L)

You can mix Solaris threads and POSIX threadsersdime application, by including both <thread.hd an
<pthread.h>, and linking with either theéaread or-Ipthread library. In mixed use, Solaris semantics
prevail when compiling witho_REENTRANTflag set>> 189506 L and linking with-ithread , whereas

POSIX semantics prevail when compiling withposix_c_sourciflag setz> 1895061 and linking with

-lpthread . Defining_REENTRANTOI _POSIX_C_SOURCE
Linking With libthread or libpthread

For POSIX threads behavior, load tirethread library. For Solaris threads behavior, load itbteread
library. Some POSIX programmers might want to hvikh -ithread to preserve the Solaris distinction
betweerfork() andforkl() . All that-lpthread really does is to makierk() behave the same way as th
Solarisfork1() call, and change the behavioragirm()

To use libthread, specifyhread last on thec command line.
To use libpthread, specifipthread last on thec command line.

Do not link anonthreaded program with-ithread ~ or -Ipthnread . Doing so establishes multithreading
mechanisms at link time that are initiated at ioret Theseslow down a single-threaded application, waste
system resources, and produce misleading resu#s wbu debug your code.

Note: For C++ programs that use threads, userntheoption, rather thanthread , to compile and link your
application. Themt option links withiibthread =~ and ensures proper library linking order. (Usingead
might cause your program to crash (core dump).

Linking with -Iposix4 for POSI X Semaphores

The Solaris semaphore routines (see Ch&@tle) are contained in thisthread library. By contrast, you
link with the-lposix4 library to get the standard POSIX semaphore rest{iee Chapt@5s)

Debugging a Multithreaded Program

The following list points out some of the more fueqt oversights and errors that can cause bugs in
multithreaded programs.

e Passing a pointer to the caller's stack as an agutn a new thread.

e Accessing global memory (shared changeable statieyut the protection of a synchronization
mechanism.

e Creating deadlocks caused by two threads tryiregtpire rights to the same pair of global resource

8/4/2008 4:17u

Threads: Basic Theory and Libraries http://www.cs.cf.ac.uk/Dave/C/node29.html#SECTIORS0000000.

24 of 24

in alternate order (so that one thread controlditeeresource and the other controls the second
resource and neither can proceed until the otlvesgip).

e Trying to reacquire a lock already held (recursieadlock).
e Creating a hidden gap in synchronization protecfidmns is caused when a code segment protectec

a synchronization mechanism contains a call tanatfan that frees and then reacquires the
synchronization mechanism before it returns toctidker. The result is that it appears to the cdhat
the global data has been protected when it actbhabynot.

Mixing UNIX signals with threads -- it is better ise thesigwait) model for handling asynchronot

signals.
Forgetting that default threads are cre®edREAD_CREATE_JOINABLENd must be reclaimed with
pthread_join() . Note, pthread_exit() does not free up its storage space.

Making deeply nested, recursive calls and usingelautomatic arrays can cause problems becaus
multithreaded programs have a more limited stao& #ian single-threaded programs.

Specifying an inadequate stack size, or using refatdt stacks. And, note that multithreaded progr:
(especially those containing bugs) often behaverdiftly in two successive runs, given identical
inputs, because of differences in the thread sdimedarder.

In general, multithreading bugs are statisticaldad of deterministic. Tracing is usually a morfective
method of finding order of execution problems timhreakpoint-based debugging.

Dave Marshall
1/5/1999

8/4/2008 4:17u

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

1of9

Subsections

Attributes
Initializing Thread Attributes
Destroying Thread Attributes
Thread's Detach State
Thread's Set Scope
Thread Scheduling Policy
o Thread Inherited Scheduling Policy
o Set Scheduling Parameters
Thread Stack Size
o Building Your Own Thread Stack

Further Threads Programming:Thread
Attributes (POSIX)

The previous chapter covered the basics of threads creation using default attrinatelsapter
discusses setting attributes at thread creation time.

Note that only pthreads uses attributes and cancellation, so the API covered in teisistiapPOSIX
threads only. Otherwise, the functionality for Solaris threads and pthreadslg taggsame.

Attributes

Attributes are a way to specify behavior that is different from the default. Wineeaal is created with
pthread_create() or when a synchronization variable is initialized, an attribute object can be
specified Note: however that the default atributes are usually sufficient for most applications.

Impottant Note: Attributes are specifiednly at thread creation time; theycannot be altered while the
thread isheing used

Thus three functions are usually called in tandem

e Thread attibute intialisation pthread_attr_init() create a defaupthread_attr_t tattr

e Thread attribute value change (unless defaults appropriate) -- a vapetygaf attr_*()
functions are available to set individual attribute values foptthead_attr_t tattr structure.
(see below).

e Thread creation -- a call f@hread_create() with approriate attribute values set in a
pthread_attr_t tattr structure.

The following code fragment should make this point clearer:

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;

void *start_routine;
void arg

int ret;

[* initialized with default attributes */
ret = pthread_attr_init(&tattr);

/* call an appropriate functions to alter a default value */
ret = pthread_attr_*(&tattr, SOME_ATRIBUTE_VALUE_PAR AMETER);

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

[* create the thread */
ret = pthread_create(&tid, &tattr, start_routine, a rg);

In order to save space, code examples mainly focus on the attribute setting functidwesiatializing
and creation functions are ommitted. Therest of course be present in all actual code fragtments.

An attribute object is opaque, and cannot be directly modified by assignments. A setiohfuisct
provided to initialize, configure, and destroy each object type. Once an attributaiz@utand
configured, it has process-wide scope. The suggested method for using attributesafiguoecall
required state specifications at one time in the early stages of programi@xeThe appropriate
attribute object can then be referred to as needed. Using attribute objects hasawyp guivantages:

e First, it adds to code portability. Even though supported attributes might vary between
implementations, you need not modify function calls that create thread entitiesdéoa
attribute object is hidden from the interface. If the target port supports attrthateare not founc
in the current port, provision must be made to manage the new attributes. This is an &gy |
task though, because attribute objects need only be initialized once in a well-defateohloc

e Second, state specification in an application is simplified. As an example, cdhsidesveral
sets of threads might exist within a process, each providing a separate sedvea;hawith its
own state requirements. At some point in the early stages of the applicationdaathibate
object can be initialized for each set. All future thread creations will thentrcethe attribute
object initialized for that type of thread. The initialization phase is simpleoaatized, and any
future modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the objectabzad, memory is
allocated for it. This memory must be returned to the system. The pthreads standdest gumdgtion
calls to destroy attribute objects.

Initializing Thread Attributes

The functionpthread_attr_init() Is used to initialize object attributes to their default values. The
storage is allocated by the thread system during execution.

The function is prototyped by:

int pthread_attr_init(pthread_attr_t *tattr);

An example call to this function is:
#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* initialize an attribute to the default value */
ret = pthread_attr_init(&tattr);

The default values for attributesat() are:
Attribute Value Result

unbound -
not

permanently

2 0f 9 8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI

30f9

http://www.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I$00000000.

attached to

LWP.

detachstat% PTHREAD_CREATE_JOINABL

EEXit status

and thread are

preserved

after the

thread

terminates.

stackaddr

NULL

New thread

has

system-allocated stac

address.

stacksize

1 megabyte

New thread

has

system-defined

stack size.

priority New thread

inherits

parent thread

priority.

inheritscheo‘ PTHREAD_INHERIT_SCHED

New thread

inherits

parent thread

scheduling

priority.

schedpolicy

SCHED_OTHER

New thread

uses

Solaris-defined

fixed priority

scheduling;

threads run

until

preempted by a

higher-priority

thread or

ok

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

4 of 9

until they
block or
yield.

This function zero after completing successfully. Any other returned value irgdibatean error
occurred. If the following condition occurs, the function fails and returns an error vatuedtg.

Destroying Thread Attributes

The functionpthread_attr_destroy() is used to remove the storage allocated during initialization
The attribute object becomes invalid. It is prototyped by:

int pthread_attr_destroy(pthread_attr_t *tattr);

A sample call to this functions is:

#include <pthread.h>
pthread_attr_t tattr;

int ret;

[* destroy an attribute */

ret = pthread_attr_destroy(&tattr);

Attribites are declared as fpthread_attr_init() above.

pthread_attr_destroy() returns zero after completing successfully. Any other returned value
indicates that an error occurred.

Thread's Detach State

When a thread is created detacherHREAD_CREATE_DETACHEILS thread ID and other resources cal
be reused as soon as the thread terminates.

If you do not want the calling thread to wait for the thread to terminate then call thierfiunc
pthread_attr_setdetachstate()

When a thread is created nondetaclPa®iREAD_CREATE_JOINABLEIt is assumed that you will be
waiting for it. That is, it is assumed that you will be executiptyraad_join() on the thread.
Whether a thread is created detached or nondetached, the process does not exit wadahave
exited.

pthread_attr_setdetachstate() is prototyped by:
int pthread_attr_setdetachstate(pthread_attr_t *tat tr,int detachstate);
pthread_attr_setdetachstate() returns zero after completing successfully. Any other returned v

indicates that an error occurred. If the following condition occurs, the function failgtamdsrthe
corresponding value.

An example call to detatch a thread with this function is:

#include <pthread.h>

pthread_attr_t tattr;

int ret;

[* set the thread detach state */

ret = pthread_attr_setdetachstate(&tattr, PTHREAD_CR EATE_DETACHED);

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

50f9

Note - When there is no explicit synchronization to prevent it, a newly created, detiaceel can die
and have its thread ID reassigned to another new thread before its creator returns fr
pthread_create() . For nondetache@®tHREAD_CREATE_JOINABDEhreads, it is very important that
some thread join with it after it terminates -- otherwise the resourced dtfitbad are not released for
use by new threads. This commonly results in a memory leak. So when you do not want a threac
joined, create it as a detached thread.

It is quite common that you will wish to create a thread which is detatched fronorcrddoe following
code illustrates how this may be achieved with the standard calls to initradisetand then create a
thread:

#include <pthread.h>
pthread_attr_t tattr;
pthread_t tid;

void *start_routine;
void arg

int ret;

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);

ret = pthread_attr_setdetachstate(&tattr, PTHREAD_CR EATE_DETACHED);

ret = pthread_create(&tid, &tattr, start_routine, a rg);

The functionpthread_attr_getdetachstate() may be used to retrieve the thread create state, wh
can be either detached or joined. It is prototyped by:

int pthread_attr_getdetachstate(const pthread_attr_ t *tattr, int *detachstate);
pthread_attr_getdetachstate() returns zero after completing successfully. Any other returned v

indicates that an error occurred.

An example call to this fuction is:
#include <pthread.h>

pthread_attr_t tattr;

int detachstate;

int ret;

[* get detachstate of thread */
ret = pthread_attr_getdetachstate (&tattr, &detachs tate);

Thread's Set Scope

A thread may be boun®@{HREAD_SCOPE_SYSTERI an unboundP(THREAD_SCOPE_PROCEHS80th
these types of types are accessirlly within a given process.

The functionpthread_attr_setscope() to create a bound or unbound thread. It is prototyped by:

int pthread_attr_setscope(pthread_attr_t *tattr,int scope);
Scope takes on the value of eitREHREAD_SCOP_SYSTEM PTHREAD_SCOPE_PROCESS

pthread_attr_setscope() returns zero after completing successfully. Any other returned value
indicates that an error occurred and an appropriate value is returned.

So to set a bound thread at thread creation on would do the following function calls:

#include <pthread.h>

pthread_attr_t attr;
pthread_t tid;

void start_routine;
void arg;

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

6 of 9

int ret;

/* initialized with default attributes */
ret = pthread_attr_init (&tattr);

/* BOUND behavior */

ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_S YSTEM);
ret = pthread_create (&tid, &tattr, start_routine, arg);

If the following conditions occur, the function fails and returns the corresponding value.

The functionpthread_attr_getscope() is used to retrieve the thread scope, which indicates whetl
the thread is bound or unbound. It is prototyped by:

int pthread_attr_getscope(pthread_attr_t *tattr, in t *scope);

An example use of this function is:

#include <pthread.h>
pthread_attr_t tattr;
int scope;

int ret;

[* get scope of thread */
ret = pthread_attr_getscope(&tattr, &scope);

If successful the approriateTTHREAD_SCOP_SYSTEM PTHREAD_SCOPE_PROCHSSIl be stored in
scope .

pthread_att_getscope() returns zero after completing successfully. Any other returned value
indicates that an error occurred.

Thread Scheduling Policy

The POSIX draft standard specifies scheduling policy attributesie#D_FIFO(first-in-first-out),
SCHED_RKround-robin), oSCHED_OTHERan implementation-defined methodEHED_FIFoand
SCHED_RRare optional in POSIX, anghly are supported fareal time bound threads.

Howver Note, currently, only the SolariscHED_OTHERefault value is supported in pthreads.
Attempting to set policy aSCHED_FIFOor SCHED_RRwill result in the erroENOSUP

The function is used to set the scheduling policy.It is prototyped by:

int pthread_attr_setschedpolicy(pthread_attr_t *tat tr, int policy);

pthread_attr_setschedpolicy() returns zero after completing successfully. Any other returned v
indicates that an error occurred.

To set the scheduling policy sStHED_OTHERIMply do:
#include <pthread.h>

pthread_attr_t tattr;

int ret;

/* set the scheduling policy to SCHED_OTHER */
ret = pthread_attr_setschedpolicy(&tattr, SCHED_OTH ER);

There is a functiopthread_attr_getschedpolicy() that retrieves the scheduling policy. But,
currently, it is not of great use as it can only return the (Solaris-basadp_oTHERefault value

Thread Inherited Scheduling Policy

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

7 of 9

The functionpthread_attr_setinheritsched() can be used to the inherited scheduling policy of a
thread. It is prototyped by:

int pthread_attr_setinheritsched(pthread_attr_t *ta ttr, int inherit);

Aninherit value ofPTHREAD_INHERIT_SCHEIfthe default) means that the scheduling policies defir
in the creating thread are to be used, and any scheduling attributes defingdhirdtiereate() call
are to be ignored. FTHREAD_EXPLICIT_SCHEDS used, the attributes from thwread_create() call
are to be used.

The function returns zero after completing successfully. Any other returned vakegt@sdhat an error
occurred.

An example call of this function is:

#include <pthread.h>
pthread_attr_t tattr;
int ret;

/* use the current scheduling policy */
ret = pthread_attr_setinheritsched(&tattr, PTHREAD _ EXPLICIT_SCHED);

The functionpthread_attr_getinheritsched(pthread_attr_t *tattr, int *inherit) may be
used to inquire a current threads scheduling policy.

Set Scheduling Parameters

Scheduling parameters are defined insdhned_param structurepnly priority

sched_param.sched_priority is supported. This priority is an integer value the higher the value tt
higher a thread's proiority for scehduling. Newly created threads run with thisypritie
pthread_attr_setschedparam() is used to set this stucture appropiately. It is prototyped by:

int pthread_attr_setschedparam(pthread_attr_t *tatt r,
const struct sched_param *param);

and returns zero after completing successfully. Any other returned value inthedtas error occurrec

An example call t@thread_attr_setschedparam() is:

#include <pthread.h>
pthread_attr_t tattr;
int newprio;
sched_param param;

/* set the priority; others are unchanged */
newprio = 30;
param.sched_priority = newprio;

/* set the new scheduling param */
ret = pthread_attr_setschedparam (&tattr, ¶m);

The functionpthread_attr_getschedparam(pthread_attr_t *tattr, ¢ onst struct sched_param
*param) Mmay be used to inquire a current thread's priority of scheduling.

Thread Stack Size

Typically, thread stacks begin on page boundaries and any specified size is rounded up t@Huene
boundary. A page with no access permission is appended to the top of the stack so that most stz
overflows result in sendinglaGseGvsignal to the offending thread. Thread stacks allocated by the

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

8 of 9

caller are used as is.

When a stack is specified, the thread should also be creaie¢AD_CREATE_JOINABLET hat stack
cannot be freed until thehread_join() call for that thread has returned, because the thread's sta
cannot be freed until the thread has terminated. The only reliable way to know if suadahtse
terminated is throughpthread_join()

Generally, you do not need to allocate stack space for threads. The threads litcatgsatine
megabyte of virtual memory for each thread's stack with no swap space resdmedihr@ry uses the
MAP_NORESERVEption of mmap to make the allocations.)

Each thread stack created by the threads library has a red zone. The librasytheesgd zone by
appending a page to the top of a stack to catch stack overflows. This page is invalid anal causes
memory fault if it is accessed. Red zones are appended to all automatioalyeallstacks whether the
size is specified by the application or the default size is used.

Note: Because runtime stack requirements vary, you should be absolutely certain thatifiexdsstack
will satisfy the runtime requirements needed for library calls and dynamkindj.

There are very few occasions when it is appropriate to specify a stack, ity $ipéh. It is difficult
even for an expert to know if the right size was specified. This is because even anmagaiant
with ABI standards cannot determine its stack size statically. Itsssdapendent on the needs of the
particular runtime environment in which it executes.

Building Your Own Thread Stack

When you specify the size of a thread stack, be sure to account for the allocations neleel@uvbited
function and by each function called. The accounting should include calling sequence needs, loc
variables, and information structures.

Occasionally you want a stack that is a bit different from the default stack. An obitioatson is when
the thread needs more than one megabyte of stack space. A less obvious situation is wfaitthe c
stack is too large. You might be creating thousands of threads and not have enough virtuatonem
handle the gigabytes of stack space that this many default stacks require.

The limits on the maximum size of a stack are often obvious, but what about the limitengrirmsam
size? There must be enough stack space to handle all of the stack frames that drenpaishe stack,
along with their local variables, and so on.

You can get the absolute minimum limit on stack size by calling the rREEREAD_STACK_MIN
(defined in <pthread.h>), which returns the amount of stack space required for a thresectitasea
NULL procedure. Useful threads need more than this, so be very careful when reducing theestack

The functionpthread_attr_setstacksize() Is used to set this a thread's stack size, it is prototype

int pthread_attr_setstacksize(pthread_attr_t *tattr , int stacksize);

Thestacksize attribute defines the size of the stack (in bytes) that the system wilitalldhe size
should not be less than the system-defined minimum stack size.

pthread_attr_setstacksize() returns zero after completing successfully. Any other returned vall
indicates that an error occurred.

An example call to set the stacksize is:

#include <pthread.h>

8/4/2008 4:2Quu

Further Threads Programming:Thread Attributes (PQSI http://mww.cs.cf.ac.uk/Dave/C/node30.htmI#SECTI@I00000000

9 of 9

pthread_attr_t tattr;
int stacksize;
int ret;

[* setting a new size */
stacksize = (PTHREAD_STACK_MIN + 0x4000);
ret = pthread_attr_setstacksize(&tattr, stacksize);

In the example above, size contains the size, in number of bytes, for the stack that tireackwses. |
size is zero, a default size is used. In most cases, a zero value WorkSHrsAD STACK_MINs the
amount of stack space required to start a thread. This does not take into consideratieadbedhtine
requirements that are needed to execute application code.

The functionpthread_attr_getstacksize(pthread_attr_t *tattr, si ze_t *size) may be used
to inquire about a current threads stack size as follows:

#include <pthread.h>

pthread_attr_t tattr;

int stacksize;

int ret;

[* getting the stack size */

ret = pthread_attr_getstacksize(&tattr, &stacksize) ;

The current size of the stack is returned to the variadlesize

You may wish tp specify the base adress of thread's stack. The function
pthread_attr_setstackaddr() does this task. It is prototyped by:

int pthread_attr_setstackaddr(pthread_attr_t *tattr ,void *stackaddr);

Thestackaddr parameter defines the base of the thread's stack. If this is set to non-null @NUEL i
default) the system initializes the stack at that address.

The function returns zero after completing successfully. Any other returned vakegt@sdhat an error
occurred.

This example shows how to create a thread with both a custom stack address and aanlstine st

#include <pthread.h>

pthread_attr_t tattr;

pthread_t tid;

int ret;

void *stackbase;

int size = PTHREAD_STACK_MIN + 0x4000;
stackbase = (void *) malloc(size);

/* initialized with default attributes */

ret = pthread_attr_init(&tattr);

/* setting the size of the stack also */

ret = pthread_attr_setstacksize(&tattr, size);
/* setting the base address in the attribute */
ret = pthread_attr_setstackaddr(&tattr, stackbase);
/* address and size specified */

ret = pthread_create(&tid, &tattr, func, arg);

The functionpthread_attr_getstackaddr(pthread_attr_t *tattr,voi d * *stackaddr) can be
used to obtain the base address for a current thread's stack address.

Dave Marshall
1/5/1999

8/4/2008 4:2Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

1of 16

Subsections

e Mutual Exclusion Locks
Initializing a Mutex Attribute Object
Destroying a Mutex Attribute Object
The Scope of a Mutex
Initializing a Mutex
Locking a Mutex
» L ock with a Nonblocking Mutex
Destroying a Mutex
Mutex Lock Code Examples
= Mutex Lock Example
m Using Locking Hierarchies: Avoiding Deadlock
o Nested Locking with a Singly Linked List
o Solaris Mutex Locks
e Condition Variable Attributes
Initializing a Condition Variable Attribute
Destoying a Condition Variable Attribute
The Scope of a Condition Variable
Initializing a Condition Variable
Block on a Condition Variable
Destroying a Condition Variable State
Solaris Condition Variables
e Threads and Semaphores
o POSIX Semaphores
o Basic Solaris Semaphore Functions

@)

o O O O

@)

(@]

o 0O O O O O

(@]

Further Threads Programming:Synchronization

When we multiple threads running they will invariably need to communicate with eachnotinder
synchronise their execution. This chapter describes the synchronization types availablereaithstand
discusses when and how to use synchronization.

There are a few possible methods of synchronising threads:

e Mutual Exclusion (Mutex) Locks
e Condition Variables
e Semaphores

We wil frequently make use &ynchronization objects: these are variables in memory that you acce
just like data. Threads in different processes can communicate with each othdr #yrmelgonization
objects placed in threads-controlled shared memory, even though the threads in differssgsrare
generally invisible to each other.

Synchronization objects can also be placed in files and can have lifetimes beyondnbatedting
process.

Here are some example situations that require or can profit from the use of syratfooni

e \When synchronization is the only way to ensure consistency of shared data.

e When threads in two or more processes can use a single synchronization object joiatillgaiNo
the synchronization object should be initialized by only one of the cooperating processese t
reinitializing a synchronization object sets it to the unlocked state.

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

2 of 16

¢ When synchronization can ensure the safety of mutable data.

e \When a process can map a file and have a thread in this process get a record's lock.l@kce
is acquired, any other thread in any process mapping the file that tries to acquiok ike |
blocked until the lock is released.

e Even when accessing a single primitive variable, such as an integer. On machneeth@he
integer is not aligned to the bus data width or is larger than the data width, a simgleyrioad
can use more than one memory cycle. While this cannot happen on the SPARC architectul
portable programs cannot rely on this.

Mutual Exclusion Locks

Mutual exclusion locks (mutexes) are a comon method of serializing thread erebuitual exclusion
locks synchronize threads, usually by ensuring that only one thread at a time exedtited section
of code. Mutex locks can also preserve single-threaded code.

Mutex attributes may be associated with every thread. To change the defaulatiriiaies, you can
declare and initialize an mutex attribute object and then alter specific valiobslike we have seen in
the last chapter on more general POSIX attributes. Often, the mutex attaliset in one place at th:
beginning of the application so they can be located quickly and modified easily.

After the attributes for a mutex are configured, you initialize the mutdk fsmctions are available to
initialize or destroy, lock or unlock, or try to lock a mutex.

Initializing a Mutex Attribute Object

The functionpthread_mutexattr_init() is used to initialize attributes associated with this object t
their default values. It is prototyped by:

int pthread_mutexattr_init(pthread_mutexattr_t *mat tr);

Storage for each attribute object is allocated by the threads system dudofjiogxenattr iS an opaque
type that contains a system-allocated attribute object. The possible valuds'sfsoape are
PTHREAD_PROCESS_PRIVAT(the default) an@THREAD_PROCESS_SHAREDe default value of the
pshared attribute when this function is calleBTIHREAD_PROCESS_PRIVATR/hich means that the
initialized mutex can be used within a process.

Before a mutex attribute object can be reinitialized, it must first be dedthyy
pthread_mutexattr_destroy/() (see below). Thethread_mutexattr_init() call returns a pointer tc
an opague object. If the object is not destroyed, a memory leak will feiseld_mutexattr_init()

returns zero after completing successfully. Any other returned value inditate@sterror occurred.

A simple example of this function call is:

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* initialize an attribute to default value */

ret = pthread_mutexattr_init(&mattr);

Destroying a Mutex Attribute Object

The functionpthread_mutexattr_destroy() deallocates the storage space used to maintain the
attribute object created Ipyhread_mutexattr_init() . It is prototyped by:

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

3 of 16

int pthread_mutexattr_destroy(pthread_mutexattr_t * mattr);

which returns zero after completing successfully. Any other returned value @wdibat an error
occurred.

The function is called as follows:

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

[* destroy an attribute */
ret = pthread_mutexattr_destroy(&mattr);

The Scope of a Mutex

The scope of a mutex variable can be either process private (intraprocesgrggs (interprocess)
The functionpthread_mutexattr_setpshared() is used to set the scope of a mutex atrribute and it
prototype as follows:

int pthread_mutexattr_setpshared(pthread_mutexattr_ t *mattr, int pshared);

If the mutex is created with thwhared (POSIX) attribute set to ttRFTHREAD_PROCESS_SHARE(ate,
and it exists in shared memory, it can be shared among threads from more than one iedsss. T
equivalent to th&syYNC_PROCESHag in mutex_init() in Solaris threads. If the mutexhared

attribute is set teTHREAD_PROCESS_PRIVATBNly those threads created by the same process can
operate on the mutex. This is equivalent toueNC_THREAflag in mutex_init() in Solaris threads.

pthread_mutexattr_setpshared() returns zero after completing successfully. Any other returned
value indicates that an error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

ret = pthread_mutexattr_init(&mattr);

[* resetting to its default value: private */
ret = pthread_mutexattr_setpshared(&mattr, PTHREAD _ PROCESS_PRIVATE);

The functionpthread_mutexattr_getpshared(pthread_mutexattr_t *m attr, int *pshared) may
be used to obtain the scope of a current thread mutex as follows:

#include <pthread.h>
pthread_mutexattr_t mattr;
int pshared, ret;

/* get pshared of mutex */ ret =
pthread_mutexattr_getpshared(&mattr, &pshared);

Initializing a Mutex

The functionpthread_mutex_init() to initialize the mutex, it is prototyped by:

int pthread_mutex_init(pthread_mutex_t *mp, const p thread_mutexattr_t *mattr);

Here,pthread_mutex_init() initializes the mutex pointed at by to its default value ifnattr is
NULL, or to specify mutex attributes that have already been septithd_mutexattr_init()

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

4 of 16

A mutex lock must not be reinitialized or destroyed while other threads might betusirggram
failure will result if either action is not done correctly. If a mutex is ti@ilized or destroyed, the
application must be sure the mutex is not currently inpiisead_mutex_init() returns zero after
completing successfully. Any other returned value indicates that an error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;
pthread_mutexattr_t mattr;

int ret;

/* initialize a mutex to its default value */
ret = pthread_mutex_init(&mp, NULL);

When the mutex is initialized, it is in an unlocked state. The effesatof beingNULL is the same as
passing the address of a default mutex attribute object, but without the memory ovedieazdyS
defined mutexes can be initialized directly to have default attributes withat®m
PTHREAD_MUTEX_INITIALIZER.

To initialise a mutex with non-default values do something like:

/* initialize a mutex attribute */
ret = pthread_mutexattr_init(&mattr);

/* change mattr default values with some function * /
ret = pthread_mutexattr_*();

/* initialize a mutex to a non-default value */
ret = pthread_mutex_init(&mp, &mattr);

Locking a Mutex

The functionpthread_mute_lock() is used to lock a mutex, it is prototyped by:

int pthread_mutex_lock(pthread_mutex_t *mp);

pthread_mute_lock() locks the mutex pointed to lmp. When the mutex is already locked, the callir
thread blocks and the mutex waits on a prioritized queue. \Aflvead_mute_lock() returns, the
mutex is locked and the calling thread is the owinteread_mute_lock() returns zero after
completing successfully. Any other returned value indicates that an error occurred.

Therefor to lock a mutexp on would do the following:

#include <pthread.h>
pthread_mutex_t mp;
int ret;

ret = pthread_mutex_lock(&mp);

To unlock a mutex use the functiptread_mutex_unlock() whose prototype is:

int pthread_mutex_unlock(pthread_mutex_t *mp);
Clearly, this function unlocks the mutex pointed tarpy

The mutex must be locked and the calling thi@adt be the one that last locked the muties (he
owner). When any other threads are waiting for the mutex to become available, the thinescleaict of
the queue is unblockepthread_mutex_unlock() returns zero after completing successfully. Any ot
returned value indicates that an error occurred.

A simple example call gfthread_mutex_unlock() is:

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

5 of 16

#include <pthread.h>

pthread_mutex_t mp;
int ret;

/* release the mutex */
ret = pthread_mutex_unlock(&mp);

Lock with a Nonblocking Mutex

The functionpthread_mutex_trylock() to attempt to lock the mutex and is prototyped by:

int pthread_mutex_trylock(pthread_mutex_t *mp);

This function attempts to lock the mutex pointed tanpypthread_mutex_trylock() is a nonblocking
version oOfpthread_mutex_lock() . When the mutex is already locked, this call returns with an erro
Otherwise, the mutex is locked and the calling thread is the opitvead_mutex_trylock() returns
zero after completing successfully. Any other returned value indicates thabaacsurred.

The function is called as follows:

#include <pthread.h>
pthread_mutex_t mp;

[* try to lock the mutex */
int ret; ret = pthread_ mutex_trylock(&mp);

Destroying a Mutex

The functionpthread_mutex_destroy() may be used to destroy any state associated with the mut
is prototyped by:

int pthread_mutex_destroy(pthread_mutex_t *mp);
and destroys a mutex pointed to by mp.

Note: that the space for storing the mutex is not fregtead_mutex_destroy() returns zero after
completing successfully. Any other returned value indicates that an error occurred.

It is called by:

#include <pthread.h>
pthread_mutex_t mp;
int ret;

[* destroy mutex */
ret = pthread_mutex_destroy(&mp);

Mutex Lock Code Examples

Here are some code fragments showing mutex locking.

Mutex Lock Example

We develop two small functions that use the mutex lock for different purposes.

e Theincrement_count function() uses the mutex lock simply to ensure an atomic update c
shared variablesount .

e Theget_count() function uses the mutex lock to guarantee thatithgbng) 64-bit quantity
count is read atomically. On a 32-bit architecture, a long long is really two 32-bittgsant

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

6 of 16

The 2 functions are as follows:

#include <pthread.h>
pthread_mutex_t count_mutex;
long long count;

void increment_count()
{ pthread_mutex_lock(&count_mutex);
count = count + 1;
pthread_mutex_unlock(&count_mutex);

}

long long get_count()
{long long c;
pthread_mutex\ lock(&count_mutex);
C = count;
pthread_mutex_unlock(&count_mutex);
return (c);

}

Recall that reading an integer value is an atomic operation because integer is the comadnsizenan
most machines.

Using Locking Hierarchies: Avoiding Deadlock

You may occasionally want to access two resources at once. For instance, you areausirige
resources, and then discover that the other resource is needed as well. However, thbeeacoul
problem if two threads attempt to claim both resources but lock the associatedsnmuttiKerent
orders.

In this example, if the two threads lock mutexes 1 and 2 respectively, teadlack occurs when eact
attempts to lock the other mutex.

Thread 1 Thread 2

/* use resource 1 */ [* use resource 2 */
pthread_mutex_lock(&m1); pthread_mutex_lock(&m?2);

/* NOW use resources 2 + 1 */ [* NOW juse resources 1 +2*
pthread_mutex_lock(&m2); pthread_mutex_lock(&m1);
pthread_mutex_lock(&m1); pthread_mutex_lock(&m?2);

The best way to avoid this problem is to make sure that whenever threads lock multiglesirthtsy
do so in the same order. This technique is known as lock hierarchies: order the mutexesilby logi
assigning numbers to them. Also, honor the restriction that you cannot take a mutexstighedan
when you are holding any mutex assigned a number greater than n.

Note: Thelock_lint tool can detect the sort of deadlock problem shown in this example.

The best way to avoid such deadlock problems is to use lock hierarchies. When locks arta&bmay
in a prescribed order, deadlock should not occur. However, this technique cannot always be use

e sometimes you must take the mutexes in an order other than prescribed.
e To prevent deadlock in such a situation, ptsead_mutex_trylock() . One thread must releas
its mutexes when it discovers that deadlock would otherwise be inevitable.

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

The idea ofConditional Locking use this approach:

Thread 1:

pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);

/* no processing */
pthread_mutex_unlock(&m?2);
pthread_mutex_unlock(&m1l);

Thread 2:

for (; ;) {
pthread_mutex_lock(&m?2);
if(pthread_mutex_trylock(&m1)==0)
[* got it! */
break;
[* didn't get it */
pthread_mutex_unlock(&m?2);

/* get locks; no processing */
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m?2);

In the above example, thread 1 locks mutexes in the prescribed order, but thread 2 takes them ¢
order. To make certain that there is no deadlock, thread 2 has to take mutex 1 very;darefwdie to

block waiting for the mutex to be released, it is likely to have just entered into adeadh thread 1.

To ensure this does not happen, thread 2 plsad_mutex_trylock() , Which takes the mutex if it i
available. If it is not, thread 2 returns immediately, reporting failure. At thig,dbread 2 must releas
mutex 2, so that thread 1 can lock it, and then release both mutex 1 and mutex 2.

Nested Locking with a Singly Linked List

We have met basic linked structues in Sectidrg when using threads which share a linked list
structure the possibility of deadlock may arise.

By nesting mutex locks into the linked data structure and a simple ammendment of tisé ¢ciodtd we
can prevent deadlock by taking the locks in a prescribed order.

The modified linked is as follows:

typedef struct nodel {
int value;
struct nodel *link;
pthread_mutex_t lock;
} nodel t;

Note: we simply ammend a standard singly-linked list structure so that each node corataimnitex.
Assuming we have created a variafdee1_t ListHead
To remove a node from the list:

e first search the list starting at ListHead (which itself is never red)awstil the desired node is
found.

e To protect this search from the effects of concurrent deletions, lock each node befafrgsany
contents are accessed.

Because all searches start at ListHead, there is never a deadlock beckcss tre always
taken in list order.

7 of 16 8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

8 of 16

¢ When the desired node is found, lock both the node and its predecessor since the change
both nodes.

Because the predecessor's lock is always taken first, you are again protentddddlock.

The C code to remove an item from a singly linked list with nested locking is as follows

nodel_t *delete(int value)
{ nodel_t *prev,
*current; prev = &ListHead;

pthread_mutex_lock(&prev->lock);
while ((current = prev->link) '= NULL)
{ pthread_mutex_lock(¤t->lock);
if (current->value == value)

{ prev->link = current->link;
pthread_mutex_unlock(¤t->lock);
pthread_mutex_unlock(&prev->lock);
current->link = NULL; return(current);

pthread_mutex_unlock(&prev->lock);
prev = current;

pthread_mutex_unlock(&prev->lock);
return(NULL);

Solaris Mutex Locks

Similar mutual exclusion locks exist for in Solaris.
You should include the <synch.h> or <thread.h>libraries.

To initialize a mutex usiat mutex_init(mutex_t *mp, int type, void *arg)) . mutex_init()
initializes the mutex pointed to lyp. Thetype can be one of the following (note thad is currently
ignored).

USYNC_PROCESS

-- The mutex can be used to synchronize threads in this and other processes.
USYNC_THREAD

-- The mutex can be used to synchronize threads in this process, only.

Mutexes can also be initialized by allocation in zeroed memory, in which cased UgeNC_THREAD
is assumed. Multiple threads must not initialize the same mutex simultane®uslitex lock must not
be reinitialized while other threads might be using it.

The functionint mutex_destroy (mutex_t *mp) destroys any state associated with the mutex poi
to bymp Note that the space for storing the mutex is not freed.

To acquire a mutex lock use the functioutex_lock(mutex_t *mp) which locks the mutex pointed tc
by mp. When the mutex is already locked, the calling thread blocks until the mutex becaitaddea
(blocked threads wait on a prioritized queue).

To release a mutex us®tex_unlock(mutex_t *mp) which unlocks the mutex pointed to by mp. The
mutex must be locked and the calling thread must be the one that last locked the muterdithe ow

To try to acquire a mutex use mutex_trylock(mutex_t *mp) to attempt to lock the muteedtm by
mp. This function is a nonblocking versionraditex_lock()

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

9 of 16

Condition Variable Attributes

Condition variables can be usedto atomically block threads until a particular conditioe Sondition
variables ar@lways used in conjunction with mutex locks:

¢ With a condition variable, a thread can atomically block until a condition is satisfied.
e The condition is tested under the protection of a mutual exclusion lock (mutex).
o When the condition is false, a thread usually blocks on a condition variable and atom
releases the mutex waiting for the condition to change.
o When another thread changes the condition, it can signal the associated condition ve
to cause one or more waiting threads to wake up, acquire the mutex again, and reev:
the condition.

Condition variables can be used to synchronize threads among processes when thegtackialloc
memory that can be written to and is shared by the cooperating processes.

The scheduling policy determines how blocking threads are awakened. For thesie{faDItOTHER
threads are awakened in priority order. The attributes for condition variables masthd sitialized
before the condition variables can be used.

As with mutex locks, The condiotion variable attributes must be initialised and set (oNULL)
before an actual condition variable may be initialise (with appropriat attrjandgshen used.

Initializing a Condition Variable Attribute

The functionpthread_condattr_init() initializes attributes associated with this object to their def
values. It is prototyped by:

int pthread_condattr_init(pthread_condattr_t *cattr);

Storage for each attribute objeetitr , is allocated by the threads system during executé@n. is an
opaque data type that contains a system-allocated attribute object. The possds®ieattr's scope
arePTHREAD_PROCESS_PRIVATENJPTHREAD_PROCESS_SHARELhe default value of the pshared
attribute when this function is calledARSHREAD_PROCESS_PRIVAT®hich means that the initialized
condition variable can be used within a process.

Before a condition variable attribute can be reused, it must first be reieitidliz
pthread_condattr_destroy() . Thepthread_condattr_init() call returns a pointer to an opaque
object. If the object is not destroyed, a memory leak will result.

pthread_condattr_init() returns zero after completing successfully. Any other returned value
indicates that an error occurred. When either of the following conditions occurs, therfdais and
returns the corresponding value.

A simple example call of this function is :

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* initialize an attribute to default value */
ret = pthread_condattr_init(&cattr);

Destoying a Condition Variable Attribute

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

10 of 16

The functionpthread_condattr_destroy() removes storage and renders the attribute object inval
is prototyped by:

int pthread_condattr_destroy(pthread_condattr_t *ca ttr);

pthread_condattr_destroy() returns zero after completing successfully and destroying the cond
variable pointed to byattr . Any other returned value indicates that an error occurred. If the follow
condition occurs, the function fails and returns the corresponding value.

The Scope of a Condition Variable

The scope of a condition variable can be either process private (intraprocessrongge
(interprocess), as with mutex locks. If the condition variable is created withitheedsattribute set to
thePTHREAD_PROCESS_SHAREMate, and it exists in shared memory, it can be shared among threa
from more than one process. This is equivalent tw#y&lC_PROCES&ag in mutex_init() in the
original Solaris threads. If the mutex pshared attribute is SaHREAD_PROCESS_PRIVAT(Eefault
value), only those threads created by the same process can operate on the mutex. Using
PTHREAD_PROCESS_PRIVATESUIts in the same behavior as withiseNC_THREAfflag in the original
Solaris threadsond_init() call, which is that of a local condition variabbddHREAD PROCESS_SHARE
is equivalent to a global condition variable.

The functionpthread_condattr_setpshared () Is used to set the scope of a condition variable, it is
prototyped by:

int pthread_condattr_setpshared(pthread_condattr_t *cattr, int pshared);

The condition variable attributatr must be initialised first and the valuepshared is either
PTHREAD_PROCESS SHARBDPTHREAD_PROCESS_PRIVATE

pthread_condattr_setpshared() returns zero after completing successfully. Any other returned v
indicates that an error occurred.

A sample use of this function is as follows:

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

[* Scope: all processes */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_P ROCESS_SHARED);

/* OR */

/* Scope: within a process */

ret = pthread_condattr_setpshared(&cattr, PTHREAD_P ROCESS_PRIVATE);

The functionint pthread_condattr_getpshared(const pthread_conda ttr_t *cattr, int

*pshared) may be used to obtain the scope of a given condition variable.

Initializing a Condition Variable

The functionpthread_cond_init() initializes the condition variable and is prototyped as follows:

int pthread_cond_init(pthread_cond_t *cv, const pth read_condattr_t *cattr);

The condition variable which is initialized is pointed atbyand is set to its default valuecittr is
NULL, or to specifizattr condition variable attributes that are already set with

pthread_condattr_init() . The effect otattr being NULL is the same as passing the address of
default condition variable attribute object, but without the memory overhead.

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

11 of 16

Statically-defined condition variables can be initialized directly to haveildeftributes with the macrec
PTHREAD_COND_INITIALIZER. This has the same effect as dynamically allocatifgad_cond_init()

with null attributes. No error checking is done. Multiple threads must not simultanéatialize or
reinitialize the same condition variable. If a condition variable is reiziédlor destroyed, the
application must be sure the condition variable is not in use.

pthread_cond_init() returns zero after completing successfully. Any other returned value indical
that an error occurred.

Sample calls of this function are:

#include <pthread.h>

pthread_cond_t cv;
pthread_condattr_t cattr;
int ret;

/* initialize a condition variable to its default v alue */
ret = pthread_cond_init(&cv, NULL);

/* initialize a condition variable */ ret =
pthread_cond_init(&cv, &cattr);

Block on a Condition Variable

The functionpthread_cond_wait() is used to atomically release a mutex and to cause the calling
thread to block on the condition variable. It is protoyped by:

int pthread_cond_wait(pthread_cond_t *cv,pthread_mu tex_t *mutex);
The mutex that is released is pointed tonbyex and the condition variable pointed todvyis blocked.

pthread_cond_wait() returns zero after completing successfully. Any other returned value indica
that an error occurred. When the following condition occurs, the function fails and returns the
corresponding value.

A simple example call is:

#include <pthread.h>

pthread_cond_t cv;
pthread_mutex_t mutex;
int ret;

/* wait on condition variable */
ret = pthread_cond_wait(&cv, &mutex);

The blocked thread can be awakened pyir@ad_cond_signal() , apthread_cond_broadcast() , Oor
when interrupted by delivery of a signal. Any change in the value of a condition assocthtatewi
condition variable cannot be inferred by the returptiotad_cond_wait() , and any such condition
must be reevaluated. Thtread_cond_wait() routine always returns with the mutex locked and
owned by the calling thread, even when returning an error. This function blocks until the conditio
signaled. It atomically releases the associated mutex lock before blockingoawchlly acquires it
again before returning. In typical use, a condition expression is evaluated under theprotec
mutex lock. When the condition expression is false, the thread blocks on the condition variable.
condition variable is then signaled by another thread when it changes the condition valugu3éss c
one or all of the threads waiting on the condition to unblock and to try to acquire the mutex lack ¢
Because the condition can change before an awakened thread returpréraincond_wait() , the
condition that caused the wait must be retested before the mutex lock is acquired.

The recommended test method is to write the condition check as a while loop that calls

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

12 of 16

pthread_cond_wait() , as follows:

pthread_mutex_lock();

while(condition_is_false)
pthread_cond_wait();
pthread_mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread blocks on the conditio
variable. Note also thathread_cond_wait() is a cancellation point. If a cancel is pending and the
calling thread has cancellation enabled, the thread terminates and beginsg@xecciieanup handlers
while continuing to hold the lock.

To unblock a specific thread ustread_cond_signal() which is prototyped by:

int pthread_cond_signal(pthread_cond_t *cv);

This unblocks one thread that is blocked on the condition variable pointedwo by
pthread_cond_signal() returns zero after completing successfully. Any other returned value indi
that an error occurred.

You should always caflthread_cond_signal() under the protection of the same mutex used with
condition variable being signaled. Otherwise, the condition variable could be signaledrbéte test
of the associated condition and blockingtitead_cond_wait() , Which can cause an infinite wait.
The scheduling policy determines the order in which blocked threads are awakersstHEHDIOTHER
threads are awakened in priority order. When no threads are blocked on the condition variable, t
calling pthread_cond_signal() | has no effect.

The folloowing code fragment illustrates how to avoid an infinite problem described above:

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;

decrement_count()
{ pthread_mutex_lock(&count_lock);

while (count == 0)

pthread_cond_wait(&count_nonzero, &count_lo ck);
count = count - 1;
pthread_mutex_unlock(&count_lock);

}

increment_count()
{ pthread_mutex_lock(&count_lock);
if (count == 0)
pthread_cond_signal(&count_nonzero);
count = count + 1;
pthread_mutex_unlock(&count_lock);

}

You can also block until a specified event occurs. The funptiberd_cond_timedwait() is used for
this purpose. It is prototyped by:

int pthread_cond_timedwait(pthread_cond_t *cv,
pthread_mutex_t *mp, const struct timespec *a bstime);

pthread_cond_timedwait() is used in a similar manner gthread_cond_wait()

pthread_cond_timedwait() blocks until the condition is signaled or until the time of day, specifiec
abstime , has passe@thread_cond_timedwait() always returns with the mutexp, locked and
owned by the calling thread, even when it is returning an @thegad_cond_timedwait() is also a
cancellation point.

pthread_cond_timedwait() returns zero after completing successfully. Any other returned value

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

13 of 16

indicates that an error occurred. When either of the following conditions occurs, therfdaidt and
returns the corresponding value.

An examle call of this function is:

#include <pthread.h>
#include <time.h>

pthread_timestruc_t to;
pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t abstime;
int ret;

/* wait on condition variable */

ret = pthread_cond_timedwait(&cv, &mp, &abstime);

pthread_mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;

while (cond == FALSE)
{ err = pthread_cond_timedwait(&c, &m, &to);
if (err == ETIMEDOUT)
{ I* timeout, do something */
break;

}

pthread_mutex_unlock(&m);

All threads may be unblocked in one functiptiread_cond_broadcast() . This function is prototypet
as follows:

int pthread_cond_broadcast(pthread_cond_t *cv);

pthread_cond_broadcast() unblocks all threads that are blocked on the condition variable pointe
by cv, specified bythread_cond_wait() . When no threads are blocked on the condition variable,
pthread_cond_broadcast() has no effect.

pthread_cond_broadcast() returns zero after completing successfully. Any other returned value

indicates that an error occurred. When the following condition occurs, the function faittuang the
corresponding value.

Sincepthread_cond_broadcast() causes all threads blocked on the condition to contend again fo
mutex lock, use carefully. For example, gs@ead_cond_broadcast() to allow threads to contend
for varying resource amounts when resources are freed:

#include <pthread.h>

pthread_mutex_t rsrc_lock;
pthread_cond_t rsrc_add;
unsigned int resources;

get_resources(int amount)
{ pthread_mutex_lock(&rsrc_lock);
while (resources < amount)
pthread_cond_wait(&rsrc_add, &rsrc_lock);

resources -= amount;
pthread_mutex_unlock(&rsrc_lock);

}

add_resources(int amount)

{ pthread_mutex_lock(&rsrc_lock);
resources += amount;
pthread_cond_broadcast(&rsrc_add);
pthread_mutex_unlock(&rsrc_lock);

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

14 of 16

}

Note: that inadd_resources it does not matter whether resources is updated first or if
pthread_cond_broadcast() is called first inside the mutex lock. Cptlhread_cond_broadcast()
under the protection of the same mutex that is used with the condition variable beiregsignal
Otherwise, the condition variable could be signaled between the test of the agsmmndigon and
blocking inpthread_cond_wait() , Which can cause an infinite wait.

Destroying a Condition Variable State

The functionpthread_cond_destroy() to destroy any state associated with the condition variable,
prototyped by:

int pthread_cond_destroy(pthread_cond_t *cv);

The condition variable pointed to by will be destroyed by this call:

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* Condition variable is destroyed */
ret = pthread_cond_destroy(&cv);

Note that the space for storing the condition variable is not freed.

pthread_cond_destroy() returns zero after completing successfully. Any other returned value
indicates that an error occurred. When any of the following conditions occur, the funcsanthil
returns the corresponding value.

Solaris Condition Variables

Similar condition variables exist in Solaris. The functions are prototyped in ethrea

To initialize a condition variable us@ cond_init(cond_t *cv, int type, int arg) which
initializes the condition variable pointed to dw. Thetype can be one aiSYNC_PROCESSr
USYNC_THREAKSee Solaris mutex (Secti@0.1.9for more details). Note thatg is currently ignored.

Condition variables can also be initialized by allocation in zeroed memory, in whech tgse of
USYNC_THREALs assumed. Multiple threads must not initialize the same condition variable
simultaneously. A condition variable must not be reinitialized while other thregth$ ba using it.

To destroy a condition variable ugecond_destroy(cond_t *cv) which destroys a state associate
with the condition variable pointed to by. The space for storing the condition variable is not freed

To wait for a condition usiat cond_wait(cond_t *cv, mutex_t *mp) which atomically releases th
mutex pointed to bywpand to cause the calling thread to block on the condition variable pointed tc
CV.

The blocked thread can be awakeneddny_signal(cond_t *cv) , cond_broadcast(cond_t *cv) ,

or when interrupted by delivery of a signal or a fork. tis@_signal() to unblock one thread that is
blocked on the condition variable pointed tocky Call this function under protection of the same
mutex used with the condition variable being signaled. Otherwise, the condition could bedsigna
between its test andnd_wait() , causing an infinite wait. Us@nd_broadcast() to unblock all
threads that are blocked on the condition variable pointeddo.then no threads are blocked on tf
condition variable thetond_broadcast() has no effect.

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

15 of 16

Finally, to wait until the condition is signaled or for an absolute timenusd_timedwait(cond_t

*cv, mutex_t *mp, timestruct_t abstime) Usecond_timedwait() as you would use

cond_wait() , except thatond_timedwait() does not block past the time of day specified by abstin
cond_timedwait() always returns with the mutex locked and owned by the calling thread even wi
returning an error.

Threads and Semaphores

POSIX Semaphores

Chapter25 has dealt with semaphore programming for POSIX and System V IPC semaphores.

Semaphore operations are the same in both POSIX and Solaris. The function names eddrcmang
sema_ in Solaris tasem_ in pthreads. Solaris semaphore are defined in <thread.h>.

In this section we give a brief description of Solaris thread semaphores.

Basic Solaris Semaphore Functions

To initialize the functionnt sema_init(sema_t *sp, unsigned int count, int t ype, void
*arg) IS usedsema. type can be one of the following):

USYNC_PROCESS
-- The semaphore can be used to synchronize threads in this process and other processes
process should initialize the semaphore.

USYNC_THREAD
-- The semaphore can be used to synchronize threads in this process.

arg Is currently unused.

Multiple threadgmust not initialize the same semaphore simultaneously. A semapmasenot be
reinitialized while other threads may be using it.

To increment a Semaphore use the funatiosema_post(sema_t *sp) . sema_post atomically
increments the semaphore pointed tegyWhen any threads are blocked on the semaphore, one i
unblocked.

To block on a Semaphore usesema_wait(sema_t *sp) .sema_wait() to block the calling thread
until the count in the semaphore pointed tapyecomes greater than zero, then atomically decren
it.

To decrement a Semaphore countibis&ma_trywait(sema_t *sp) . sema_trywait() atomically
decrements the count in the semaphore pointed ¢p fhen the count is greater than zero. This
function is a nonblocking version sdma_wait()

To destroy the Semaphore state call the functora_destroy(sema_t *sp) . sema_destroy() tO
destroy any state associated with the semaphore pointedio Diye space for storing the semaphore
not freed.

Dave Marshall

8/4/2008 5:3Quu

Further Threads Programming:Synchronization httpwiees.cf.ac.uk/Dave/C/node31.htmi#SECTION003100@0(

1/5/1999

16 of 16 8/4/2008 5:3Quu

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

1 of 42

Subsections

Usingthr_create() andthr_join()

Arrays
Deadlock

Signal Handler

Interprocess Synchronization

The Producer / Consumer Problem
A Socket Server

Using Many Threads

Real-time Thread Example

POSIX Cancellation

Software Race Condition

Tgrep : Threadeds version of UNI¥ep
Multithreaded Quicksort

Thread programming examples

This chapter gives some full code examples of thpragrams. These examles are taken from a varietyurces:

e The sun workshop developers web phtip://mww.sun.com/workshop/threads/share-code/ on threads is
an excelleny source

e The web pagéttp://mwww.sun.com/workshop/threads/Berg-L ewis/examples.html where example from the
Threads Primer Book by D. Berg anD B. Lewis are also a major uese.

Usingthr_create() andthr_j oi n()

This example exercises the create() andthr_join() calls. There is not a parent/child relationshipuaen
threads as there is for processes. This can des#gen in this example, because threads aredt@aigoined by
many different threads in the process. The examipteshows how threads behave when created wigrefit
attributes and options.

Threads can be created by any thread and joinedhyppther.

The main thread: In this example the main thresals purpose is to create new threads. Threads and8C are
created by the main thread. Notice that thread@dated suspended. After creating the new thré¢laesnain
thread exits. Also notice that the main threadeekity calling thr_exit(). If the main thread ha@&dshe exit() call,

thread C.

Thread A: The first thing thread A does after itieated is to create thread D. Thread A then sitesilsome
processing and then exits, usingexit) . Notice that thread A was created with tim®_DETACHE(flag, so
thread A's resources will be immediately reclaimapdn its exit. There is no way for thread A's axdtus to be
collected by ahr_join() call.

Thread B: Thread B was created in a suspended staiieis not able to run until thread D continitdsy making
thethr_continue() call. After thread B is continued, it simulatesrsoprocessing and then exits. Thread B's €
status and thread resources are held until joigatiread E.

Thread C: The first thing that thread C does isr&ate thread F. Thread C then joins the main dhrElais action
will collect the main thread's exit status andwlthe main thread's resources to be reused by emibitead.
Thread C will block, waiting for the main threadexit, if the main thread has not yet calledexit() . After
joining the main thread, thread C will simulate sopnocessing and then exit. Again, the exit stahdsthread
resources are held until joined by thread E.

Thread D: Thread D immediately creates thread EerAfreating thread E, thread D continues thredg Biaking
thethr_continue() call. This call will allow thread B to start itxecution. Thread D then tries to join thread E
blocking until thread E has exited. Thread D thiemusates some processing and exits. If all went,wielead D

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

2 of 42

should be the last nondaemon thread running. Whmerad D exits, it should do two things: stop thecesion of
any daemon threads and stop the execution of teegs.

Thread E: Thread E starts by joining two threadsads B and C. Thread E will block, waiting focleaf these
thread to exit. Thread E will then simulate somacpssing and will exit. Thread E's exit status tmead
resources are held by the operating system uimikgbby thread D.

Thread F: Thread F was created as a bound, dadmeadtby using theHR_BOUN@RNdTHR_DAEMORags in the
thr_create() call. This means that it will run on its own LWAHtil all the nondaemon threads have exited the
process. This type of thread can be used when wmit some type of "background" processing to alvieys
running, except when all the "regular” threads hexiged the process. If thread F was created asalaemon
thread, then it would continue to run forever, heseaa process will continue while there is at leastthread still
running. Thread F will exit when all the nondaentioreads have exited. In this case, thread D sHuilkthe last
nondaemon thread running, so when thread D ekitsll ialso cause thread F to exit.

This example, however trivial, shows how threadzalve differently, based on their creation optidhalso shows
what happens on the exit of a thread, again basdéobw it was created. If you understand this examapld how it
flows, you should have a good understanding of toousethr_create() andthr_join() in your own programs.
Hopefully you can also see how easy it is to craatkjoin threads.

The source tenulti_thr.c

#define _ REENTRANT
#include <stdio.h>
#include <thread.h>

/* Function prototypes for thread routines */
void *sub_a(void *);
void *sub_b(void *);
void *sub_c(void *);
void *sub_d(void *);
void *sub_e(void *);
void *sub_f(void *);

thread_t thr_a, thr_b, thr_c;
void main()
thread_t main_thr;

main_thr = thr_self();
printf("Main thread = %d\n", main_thr);

if (thr_create(NULL, 0, sub_b, NULL, THR_SUSPENDED| THR_NEW_LWP, &thr_b))
fprintf(stderr,"Can't create thr_b\n"), exi t(2);

if (thr_create(NULL, O, sub_a, (void *)thr_b, THR_N EW_LWP, &thr_a))
fprintf(stderr,"Can't create thr_a\n"), exi t(1);

if (thr_create(NULL, O, sub_c, (void *)main_thr, TH R_NEW_LWP, &thr_c))
fprintf(stderr,"Can't create thr_c\n"), exi t(1);

printf("Main Created threads A:%d B:%d C:%d\n", thr _a, thr_b, thr_c);

printf("Main Thread exiting...\n");
thr_exit((void *)main_thr);

void *sub_a(void *arg)

{

thread_t thr_b = (thread_t) arg;
thread_t thr_d;

int i

printf("A: In thread A...\n");

if (thr_create(NULL, 0O, sub_d, (void *)thr_b, THR_N EW_LWP, &thr_d))
fprintf(stderr, "Can't create thr_d\n"), ex it(1);

printf("A: Created thread D:%d\n", thr_d);

/* process

*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("A: Thread exiting...\n");
thr_exit((void *)77);

8/4/2008 5:37up

Thread programming examples

3 of 42

}

void * sub_b(void *arg)

i{nt i

printf("B: In thread B...\n");

/* process
*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("B: Thread exiting...\n");
thr_exit((void *)66);

}

void * sub_c(void *arg)

void *status;

inti;

thread_t main_thr, ret_thr;

main_thr = (thread_t)arg;

printf("C: In thread C...\n");

if (thr_create(NULL, 0, sub_f, (void *)0, THR_BOUND
fprintf(stderr, "Can't create thr_f\n"), ex

printf("C: Join main thread\n");

if (thr_join(main_thr,(thread_t *)&ret_thr, &status
fprintf(stderr, "thr_join Error\n"), exit(1

printf("C: Main thread (%d) returned thread (%d) w/

/* process
*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("C: Thread exiting...\n");
thr_exit((void *)88);

void * sub_d(void *arg)

{

thread_t thr_b = (thread_t) arg;
inti;

thread_t thr_e, ret_thr;

void *status;

printf("D: In thread D...\n");

if (thr_create(NULL, O, sub_e, NULL, THR_NEW_LWP, &

fprintf(stderr,"Can't create thr_e\n"), exi

printf("D: Created thread E:%d\n", thr_ge);
printf("D: Continue B thread = %d\n", thr_b);

thr_continue(thr_b);
printf("D: Join E thread\n");

if(thr_join(thr_e,(thread_t *)&ret_thr, &status))
fprintf(stderr,"thr_join Error\n"), exit(1)

printf("D: E thread (%d) returned thread (%d) w/sta
ret_thr, (int) status);

/* process
*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("D: Thread exiting...\n");
thr_exit((void *)55);

}

void * sub_e(void *arg)

int i
thread_tret_thr;

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

|THR_DAEMON, NULL))
it(1);

)
):

status %d\n", main_thr, ret_thr, (int) status)

thr_e))
t(2);

tus %d\n", thr_e,

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

void *status;

printf("E: In thread E...\n");
printf("E: Join A thread\n");

if(thr_join(thr_a,(thread_t *)&ret_thr, &status))
fprintf(stderr,"thr_join Error\n"), exit(1) ;

printf("E: A thread (%d) returned thread (%d) w/sta tus %d\n", ret_thr, ret_thr, (int) status);
printf("E: Join B thread\n");

if(thr_join(thr_b,(thread_t *)&ret_thr, &status))
fprintf(stderr,"thr_join Error\n"), exit(1)

printf("E: B thread (%d) returned thread (%d) w/sta tus %d\n", thr_b, ret_thr, (int) status);
printf("E: Join C thread\n");

if(thr_join(thr_c,(thread_t *)&ret_thr, &status))
fprintf(stderr,"thr_join Error\n"), exit(1) ;

printf("E: C thread (%d) returned thread (%d) w/sta tus %d\n", thr_c, ret_thr, (int) status);
for (i=0;i<1000000*(int)thr_self();i++);

printf("E: Thread exiting...\n");
thr_exit((void *)44);

void *sub_f(void *arg)

{

inti;
printf("F: In thread F...\n");
while (1) {

for (i=0;i<10000000;i++);
printf("F: Thread F is still running...\n")

Arrays

This example uses a data structure that contaittiplewarrays of data. Multiple threads will concemtly vie for
access to the arrays. To control this access, exwatiable is used within the data structure tk line entire
array and serialize the access to the data.

The main thread first initializes the data struetand the mutex variable. It then sets a levebatarrency and
creates the worker threads. The main thread tramk®lby joining all the threads. When all the thiehave
exited, the main thread prints the results.

The worker threads modify the shared data strudtare within a loop. Each time the threads neechtalify the
shared data, they lock the mutex variable assatiatih the shared data. After modifying the date, threads
unlock the mutex, allowing another thread acceskdalata.

This example may look quite simple, but it showslimportant it is to control access to a simplered data
structure. The results can be quite differentéf autex variable is not used.

The source tarray.c

#define _REENTRANT
#include <stdio.h>
#include <thread.h>

/* sample array data structure */
struct {

mutex_t data_lock[5];

int int_val[5];

float float_val[5];

} Data;

/* thread function */
void *Add_to_Value();

4 of 42 8/4/2008 5:31uu

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

5 of 42

main()
inti;

/* initialize the mutexes and data */

for (i=0; i<5; i++) {
mutex_init(&Data.data_lock[i], USYNC_THREAD , 0);
Data.int_val[i] = 0;
Data.float_val[i] = O;

/* set concurrency and create the threads */
thr_setconcurrency(4);

for (i=0; i<5; i++)
thr_create(NULL, 0, Add_to_Value, (void *)(2*) , 0, NULL);
/* wait till all threads have finished */
for (i=0; i<5; i++)
thr_join(0,0,0);

/* print the results */
printf("Final Values.....\n");

for (i=0; i<5; i++) {

printf("integer value[%d] =\t%d\n", i, Data .int_val[i]);
printf(“float value[%d] =\t%.0f\n\n", i, Da ta.float_val[i]);
return(0);

/* Threaded routine */
void *Add_to_Value(void *arg)

intinval = (int) arg;
int i

for (i=0;i<10000;i++){
mutex_lock(&Data.data_lock[i%5]);
Data.int_val[i%?5] += inval;
Data.float_val[i%5] += (float) 1.5 * inval;
mutex_unlock(&Data.data_lock[i%5]);

}

return((void *)0);

Deadlock

This example demonstrates how a deadlock can atenultithreaded programs that use synchronization
variables. In this example a thread is createdabatinually adds a value to a global variable. fivead uses a
mutex lock to protect the global data.

The main thread creates the counter thread anddbps, waiting for user input. When the user preghe
Return key, the main thread suspends the couraidtand then prints the value of the global végiabhe main
thread prints the value of the global variable urnide protection of a mutex lock.

The problem arises in this example when the maiath suspends the counter thread while the cotimsad is
holding the mutex lock. After the main thread susfsethe counter thread, it tries to lock the mwaable. Since
the mutex variable is already held by the couritezad, which is suspended, the main thread deasllock

This example may run fine for a while, as longtesdounter thread just happens to be suspendeditiberot
holding the mutex lock. The example demonstrates thicky some programming issues can be when yail de
with threads.

The source teusp_lock.c
#define _REENTRANT
#include <stdio.h>

#include <thread.h>

/* Prototype for thread subroutine */

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

void *counter(void *);

int count;
mutex_t count_lock;

main()

{
char str[80];
thread_t ctid;

/* create the thread counter subroutine */
thr_create(NULL, O, counter, 0, THR_NEW_LWP|THR_DET ACHED, &ctid);

while(1) {
gets(str);
thr_suspend(ctid);

mutex_lock(&count_lock);
printf("\M\nCOUNT = %d\n\n", count);
mutex_unlock(&count_lock);

thr_continue(ctid);
return(0);

void *counter(void *arg)

{

inti;

while (1) {
printf("."); fflush(stdout);

mutex_lock(&count_lock);
count++;

for (i=0;i<50000;i++);
mutex_unlock(&count_lock);

for (i=0;i<50000;i++);
}

return((void *)0);
}

Signal Handler

This example shows how easy it is to handle signaisultithreaded programs. In most programs, fedint
signal handler would be needed to service eachdfpignal that you wanted to catch. Writing eatthe signal
handlers can be time consuming and can be a reat@debug.

This example shows how you can implement a sigaatiter thread that will service all asynchronogsmais that
are sent to your process. This is an easy waydbvdth signals, because only one thread is netaladndle all
the signals. It also makes it easy when you createthreads within the process, because you needarny
about signals in any of the threads.

First, in the main thread, mask out all signals @rah create a signal handling thread. Since tisrigdmbrit the
signal mask from their creator, any new threadateckafter the new signal mask will also maskighals. This
idea is key, because the only thread that willikecsignals is the one thread that does not bliéckeasignals.

The signal handler thread waits for all incomingnsils with the sigwait() call. This call unmasks #ignals given
to it and then blocks until a signal arrives. Wiaesignal arrives, sigwait() masks the signals agaihthen returns
with the signal ID of the incoming signal.

You can extend this example for use in your appiboacode to handle all your signals. Notice alsat this signal
concept could be added in your existing nonthreadel@ as a simpler way to deal with signals.

The source tehr_sig.c

#define _REENTRANT
#include <stdio.h>

6 of 42 8/4/2008 5:37up

Thread programming examples

7 of 42

#include <thread.h>
#include <signal.h>
#include <sys/types.h>
void *signal_hand(void *);
main()

sigset_t set;

/* block all signals in main thread. Any other thr
created after this will also block all signals *

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, NULL);

/* create a signal handler thread. This thread wil
signals and decide what to do with them. This w

catch nondirected signals. (l.e., if a thread c
then that thread will get that signal. */

thr_create(NULL, O, signal_hand, 0, THR_NEW_LWP|THR
while (1) {

/*

Do your normal processing here....

*/
} /* end of while */

return(0);

void *signal_hand(void *arg)

{
sigset_t set;
int sig;

sigfillset(&set); /* catch all signals */

while (1) {
/* wait for a signal to arrive */

switch (sig=sigwait(&set)) {

/* here you would add whatever signal you
case SIGINT : {

printf("Interrupted with si

exit(0);

default : printf("GOT A SIGNAL = %d\n", s
} /* end of switch */
} * end of while */

return((void *)0);
} /* end of signal_hand */

Another example of a signal handlsig, kill.c

~
*

Multithreaded Demo Source

Copyright (C) 1995 by Sun Microsystems, Inc.
All rights reserved.

This file is a product of SunSoft, Inc. and is p
unrestricted use provided that this legend is in
media and as a part of the software program in w
Users may copy, modify or distribute this file a

This file is provided with no support and withou
part of SunSoft, Inc. to assist in its use, corr
enhancement.

EIE I R D T R R I I L I N B N B N I I

FILE OR ANY PART THEREOF.

THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES O
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FI
PURPOSE, OR ARISING FROM A COURSE OF DEALING, US

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

eads that are
/

| catch all
ill only
auses a SIGFPE

_DAEMON|THR_DETACHED, NULL);

needed to catch */

gnal %d, exiting...\n", sig);

ig);

rovided for
cluded on all
hole or part.
t will.

F ANY KIND INCLUDING
TNESS FOR A PARTICULAR
AGE OR TRADE PRACTICE.

t any obligation on the
ection, modification or

SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT
TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS

8/4/2008 5:37up

Thread programming examples

IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, IN
LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRE
DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE P
DAMAGES.

SunSoft, Inc.
2550 Garcia Avenue
Mountain View, California 94043

EE I T T L

<

/*

* Rich Schiavi writes:
*

* | believe the recommended way to kill certain th
* using a signal handler which then will exit that

* thread properly. I'm not sure the exact reason (
* if you take out the signal_handler routine in my
* you describe, as the main process dies even if y
* thr_Kkill to the specific thread.

Sept 11, 19

* | whipped up a real quick simple example which s
* some sleep()s to get a good simulation.
*/

#include <stdio.h>
#include <thread.h>
#include <signal.h>

static thread_t one_tid, two_tid, main_thre
static void *first_thread();

static void *second_thread();

void ExitHandler(int);

static mutex_t first_mutex, second_mutex;
int first_active=1;
int second_active =1,

main()

{
inti;
struct sigaction act;

act.sa_handler = ExitHandler;
(void) sigemptyset(&act.sa_mask);
(void) sigaction(SIGTERM, &act, NULL);

mutex_init(&first_mutex, 0, 0);
mutex_init(&second_mutex, 0 , 0);
main_thread = thr_self();

thr_create(NULL,0first_thread,0, THR_NEW_LWP,&one
thr_create(NULL,0,second_thread,0,THR_NEW_LWP,&tw

for (i = 0; i < 10; i++){
fprintf(stderr, "main loop: %d\n", i);
if (i == 5) {
thr_kill(one_tid, SIGTERM);

}
sleep(3);
thr_kill(two_tid, SIGTERM);
sleep(5);
fprintf(stderr, "main exit\n");
}

static void *first_thread()
inti=0;
fprintf(stderr, "first_thread id: %d\n", thr_self
while (first_active){
fprintf(stderr, "first_thread: %d\n", i++);
sleep(2);

}
fprintf(stderr, "first_thread exit\n");

static void *second_thread()

inti=0;

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

C. BE LIABLE FOR ANY
CT AND CONSEQUENTIAL
OSSIBILITY OF SUCH

94

reads is

particular

| can't remember), but
example, you will see what
ou send the

hows this using

ad;

_tid);
o_tid);

0

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

9 of 42

fprintf(stderr, "second_thread id: %d\n", thr_sel f0);

while (second_active){
fprintf(stderr, "second_thread: %d\n", i++);
sleep(3);

fprintf(stderr, "second_thread exit\n");

void ExitHandler(int sig)
thread_t id;
id = thr_self();

fprintf(stderr, "ExitHandler thread id: %d\n", id);
thr_exit(0);

Interprocess Synchronization

This example uses some of the synchronization basaavailable in the threads library to synchrerazcess to a
resource shared between two processes. The syigdtion variables used in the threads library aredvantage
over standard IPC synchronization mechanisms beazubeir speed. The synchronization variablasén
threads libraries have been tuned to be very ligliat and very fast. This speed can be an advamtage your
application is spending time synchronizing betwpmtesses.

This example shows how semaphores from the thidadsy can be used between processes. Note tisat th
program does not use threads; it is just usindighénveight semaphores available from the thredatary.

When using synchronization variables between psmsgst is important to make sure that only onegss
initializes the variable. If both processes tryritialize the synchronization variable, then otfi¢he processes wil
overwrite the state of the variable set by the oginecess.

The source tipc.c

#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <synch.h>
#include <sys/types.h>
#include <unistd.h>

/* a structure that will be used between processes */
typedef struct {

sema_t mysema;

int num;
} buf_t;

main()
{
int i,j, fd;
buf t *buf;

/* open a file to use in a memory mapping */
fd = open("/dev/zero", O_RDWR);

/* create a shared memory map with the open file fo r the data

structure that will be shared between processes */
buf=(buf_t *)mmap(NULL, sizeof(buf_t), PROT_READ|PR OT_WRITE, MAP_SHARED, fd, 0);
/* initialize the semaphore -- note the USYNC_PROCE SS flag; this makes

the semaphore visible from a process level */
sema_init(&buf->mysema, 0, USYNC_PROCESS, 0);

/* fork a new process */
if (fork() == 0) {
/* The child will run this section of code */
for (j=0;j<5;j++)
/* have the child "wait" for the se maphore */

printf("Child PID(%d): waiting...\n ", getpid());

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

10 of 42

sema_wait(&buf->mysema);

/* the child decremented the semaph ore */
printf("Child PID(%d): decrement se maphore.\n", getpid());
[* exit the child process */
printf("Child PID(%d): exiting...\n", getpi d();
exit(0);
}

/* The parent will run this section of code */
/* give the child a chance to start running */

sleep(2);
for (i=0;i<5;i++)
[* increment (post) the semaphore */

printf("Parent PID(%d): posting semaphore.\ n", getpid());
sema_post(&buf->mysema);

/* wait a second */
sleep(1);
}

/* exit the parent process */
printf("Parent PID(%d): exiting...\n", getpid());

return(0);

The Producer / Consumer Problem

This example will show how condition variables ¢@nused to control access of reads and writedtdfar. This
example can also be thought as a producer/consuoiglem, where the producer adds items to the baffd the
consumer removes items from the buffer.

Two condition variables control access to the bufime condition variable is used to tell if thdfbuis full, and
the other is used to tell if the buffer is emptyh& the producer wants to add an item to the huffehecks to
see if the buffer is full; if it is full the prodec blocks on theond_wait() call, waiting for an item to be removec
from the buffer. When the consumer removes an iftem the buffer, the buffer is no longer full, $®tproducer
is awakened from theond_wait() call. The producer is then allowed to add anoiteen to the buffer.

The consumer works, in many ways, the same asrtitiper. The consumer uses the other conditiomvigrito
determine if the buffer is empty. When the consuweents to remove an item from the buffer, it chetcksee if it
is empty. If the buffer is empty, the consumer thtatks on theond wait() call, waiting for an item to be adde
to the buffer. When the producer adds an itemedthffer, the consumer's condition is satisfiedt san then
remove an item from the buffer.

The example copies a file by reading data intoaaeshbuffer (producer) and then writing data ouhtwnew file
(consumer). The Buf data structure is used to hott the buffered data and the condition variatilas control
the flow of the data.

The main thread opens both files, initializesahie data structure, creates the consumer thread handalssumes
the role of the producer. The producer reads data the input file, then places the data into aaropuffer
position. If no buffer positions are available,riitbe producer waits via thend_wait) call. After the producer
has read all the data from the input file, it ckotiee file and waits for (joins) the consumer tidrea

The consumer thread reads from a shared buffetremdwrites the data to the output file. If no leusf positions
are available, then the consumer waits for theymredto fill a buffer position. After the consuntexs read all the
data, it closes the output file and exits.

If the input file and the output file were residiag different physical disks, then this exampleld@xecute the
reads and writes in parallel. This parallelism wiosignificantly increase the throughput of the eglnthrough
the use of threads.

The source tprod_cons.c:

8/4/2008 5:37up

Thread programming examples

11 of 42

#define _REEENTRANT
#include <stdio.h>
#include <thread.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>

#define BUFSIZE 512
#define BUFCNT 4

/* this is the data structure that is used between
and consumer threads */

struct {

char buffer[BUFCNT][BUFSIZE];

int byteinbuf[BUFCNT];

mutex_t buflock;

mutex_t donelock;

cond_t adddata;

cond_t remdata;

int nextadd, nextrem, occ, done;
} Buf;

/* function prototype */
void *consumer(void *);

main(int argc, char **argv)

int ifd, ofd;
thread_t cons_thr;

/* check the command line arguments */
if (argc = 3)
printf("Usage: %s <infile> <outfile>\n", ar

/* open the input file for the producer to use */
if ((ifd = open(argv[1], O_RDONLY)) == -1)
{

fprintf(stderr, "Can't open file %s\n", arg

exit(1);
}

/* open the output file for the consumer to use */
if ((ofd = open(argv[2], O_WRONLY|O_CREAT, 0666)) =
{

fprintf(stderr, "Can't open file %s\n", arg
exit(1);
/* zero the counters */

Buf.nextadd = Buf.nextrem = Buf.occ = Buf.done = 0;

/* set the thread concurrency to 2 so the producer
run concurrently */

thr_setconcurrency(2);

/* create the consumer thread */
thr_create(NULL, O, consumer, (void *)ofd, NULL, &c

/* the producer ! */
while (1) {

* lock the mutex */
mutex_lock(&Buf.buflock);

/* check to see if any buffers are empty */
/* If not then wait for that condition to b

while (Buf.occ == BUFCNT)
cond_wait(&Buf.remdata, &Buf.bufloc

[* read from the file and put data intoa b
Buf.byteinbuf[Buf.nextadd] = read(ifd,Buf.b

/* check to see if done reading */
if (Buf.byteinbuf[Buf.nextadd] == 0) {

/* lock the done lock */
mutex_lock(&Buf.donelock);

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

the producer

gv[0]), exit(0);

v[1]);

= _1)

v[2]);

and consumer can

ons_thr);

ecome true */

K);

uffer */

uffer[Buf.nextadd],BUFSIZE);

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

/* set the done flag and release th e mutex lock */
Buf.done = 1;

mutex_unlock(&Buf.donelock);

/* signal the consumer to start con suming */
cond_signal(&Buf.adddata);

/* release the buffer mutex */
mutex_unlock(&Buf.buflock);

/* leave the while looop */
break;

}

/* set the next buffer to fill */
Buf.nextadd = ++Buf.nextadd % BUFCNT;

/* increment the number of buffers that are filled */
Buf.occ++;

[* signal the consumer to start consuming * /
cond_signal(&Buf.adddata);

[* release the mutex */
mutex_unlock(&Buf.buflock);

}
close(ifd);

/* wait for the consumer to finish */
thr_join(cons_thr, 0, NULL);

/* exit the program */
return(0);

}

/* The consumer thread */
void *consumer(void *arg)

{
int fd = (int) arg;

/* check to see if any buffers are filled or if the done flag is set */
while (1) {

* lock the mutex */
mutex_lock(&Buf.buflock);

if ('Buf.occ && Buf.done) {
mutex_unlock(&Buf.buflock);

break;
}
[* check to see if any buffers are filled * /
/* if not then wait for the condition to be come true */

while (Buf.occ == 0 && !Buf.done)

cond_wait(&Buf.adddata, &Buf.bufloc k);
/* write the data from the buffer to the fi le*/
write(fd, Buf.buffer[Buf.nextrem], Buf.byte inbuf[Buf.nextrem]);

/* set the next buffer to write from */
Buf.nextrem = ++Buf.nextrem % BUFCNT,;

/* decrement the number of buffers that are full */
Buf.occ--;
/* signal the producer that a buffer is emp ty */

cond_signal(&Buf.remdata);

[* release the mutex */
mutex_unlock(&Buf.buflock);

}

/* exit the thread */
thr_exit((void *)0);
}

12 of 42 8/4/2008 5:31uu

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

13 of 42

A Socket Server

The socket server example uses threads to implesrietandard” socket port server. The example shamws
easy it is to usenr_create() calls in the place dbrk() calls in existing programs.

A standard socket server should listen on a squittand, when a message arrives, fork a proces=rtice the
request. Sincefark() system call would be used in a honthreaded progeasncommunication between the
parent and child would have to be done through ssoreof interprocess communication.

We can replace thierk() call with athr_create() call. Doing so offers a few advantages:create() can
create a thread much faster theorig) could create a new process, and any communichétween theerver
and the new thread can be done with common vasdalblds technique makes the implementation of toket
server much easier to understand and should alke ineespond much faster to incoming requests.

The server program first sets up all the needekletd@cformation. This is the basic setup for mastket servers.
The server then enters an endless loop, waitisgnace a socket port. When a message is seng &ottket port,
the server wakes up and creates a new thread tthehidne request. Notice that the server createsdhethread as
a detached thread and also passes the socketpti@sas an argument to the new thread.

The newly created thread can then read or writaninfashion it wants, to the socket descriptor Wes passed tc
it. At this point the server could be creating avrieread or waiting for the next message to arfiree key is that
the server thread does not care what happens teethe¢hread after it creates it.

In our example, the created thread reads fromdbleet descriptor and then increments a global bbaid his
global variable keeps track of the number of retpgst were made to the server. Notice that axrotk is used
to protect access to the shared global variable.ldtk is needed because many threads might tnctement the
same variable at the same time. The mutex lockiges\serial access to the shared variable. Seehsyit is to
share information among the new threads! If eadh®threads were a process, then a significaottefould
have to be made to share this information amongtheesses.

The client piece of the example sends a given nuwfomessages to the server. This client code calslol be run
from different machines by multiple users, thug@asing the need for concurrency in the servergasc

The source code tc_server.c

#define _REENTRANT
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/uio.h>
#include <unistd.h>
#include <thread.h>

/* the TCP port that is used for this example */
#define TCP_PORT 6500

/* function prototypes and global variables */
void *do_chld(void *);

mutex_t lock;

int service_count;

main()
int sockfd, newsockfd, clilen;

struct sockaddr_in cli_addr, serv_addr;
thread_t chid_thr;

if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) <0)
fprintf(stderr,"server: can't open stream socket\n"), exit(0);
memset((char *) &serv_addr, 0, sizeof(serv_ addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = hton|(INADDR_AN Y);
serv_addr.sin_port = htons(TCP_PORT);
if(bind(sockfd, (struct sockaddr *) &serv_a ddr, sizeof(serv_addr)) <
0)
fprintf(stderr,"server: can't bind local address\n"), exit(0);

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

14 of 42

[* set the level of thread concurrency we d esire */
thr_setconcurrency(5);

listen(sockfd, 5);

for(;;{
clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,
&clilen);
if(newsockfd < 0)
fprintf(stderr,"server: acc ept error\n"), exit(0);
[* create a new thread to process t he incomming request */
thr_create(NULL, 0O, do_chld, (void *) newsockfd, THR_DETACHED,
&chld_thr);
[* the server is now free to accept another socket request */
return(0);
/*
This is the routine that is executed from a new thread

*/
void *do_chld(void *arg)

int mysocfd = (int) arg;
char data[100];
int i

printf("Child thread [%d]: Socket nhumber = %d\n", thr_self(), mysocfd);

[* read from the given socket */
read(mysocfd, data, 40);

printf("Child thread [%d]: My data = %s\n", thr_self(), data);

[* simulate some processing */
for (i=0;i<1000000*thr_self();i++);

printf("Child [%d]: Done Processing...\n", thr_self());

[* use a mutex to update the global service counter */
mutex_lock(&lock);

service_count++;
mutex_unlock(&lock);

printf("Child thread [%d]: The total socket s served = %d\n", thr_self(), service_count);

/* close the socket and exit this thread */
close(mysocfd);
thr_exit((void *)0);

Using Many Threads

This example that shows how easy it is to createyrttareads of execution in Solaris. Because ofigfweight
nature of threads, it is possible to create liteithlousands of threads. Most applications mayneed a very large
number of threads, but this example shows just ligiweight the threads can be.

We have said before that anything you can do waiteads, you can do without them. This may be awasee it
would be very hard to do without threads. If yowdnaome spare time (and lots of memory), try imgletimg this
program by using processes, instead of threageultry this, you will see why threads can havadwantage
over processes.

This program takes as an argument the number @hdlsrto create. Notice that all the threads astentevith a

user-defined stack size, which limits the amouremmory that the threads will need for executidme $tack size
for a given thread can be hard to calculate, scegesting usually needs to be done to see if theeghstack size
will work. You may want to change the stack siz¢hiis program and see how much you can lower tiieethings
stop working. The Solaris threads library provithesthr_min_stack() call, which returns the minimum allowec

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

15 of 42

stack size. Take care when adjusting the sizetlufesds stack. A stack overflow can happen queéyea a
thread with a small stack.

After each thread is created, it blocks, waitingpamutex variable. This mutex variable was lockefbie any of
the threads were created, which prevents the thifeach proceeding in their execution. When alllaf threads
have been created and the user presses Retumuthe variable is unlocked, allowing all the thre&adl proceed.

After the main thread has created all the threidgsits for user input and then tries to jointak threads. Notice
that thethr_join() call does not care what thread it joins; it ig gsunting the number of joins it makes.

This example is rather trivial and does not senxeraal purpose except to show that it is possiblreate a lot of
threads in one process. However, there are singatidien many threads are needed in an applic#&tioexample
might be a network port server, where a threadeated each time an incoming or outgoing requesiide.

The source tenany_thr.c

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <thread.h>

/* function prototypes and global varaibles */
void *thr_sub(void *);

mutex_t lock;

main(int argc, char **argv)

{
inti, thr_count = 100;
char buf;

/* check to see if user passed an argument
-- if so, set the number of threads to the value
passed to the program */
if (argc == 2) thr_count = atoi(argv[1]);
printf("Creating %d threads...\n", thr_count);

/* lock the mutex variable -- this mutex is being u sed to
keep all the other threads created from proceedi ng */

mutex_lock(&lock);

/* create all the threads -- Note that a specific s tack size is
given. Since the created threads will not use a Il of the
default stack size, we can save memory by reduci ng the threads'

stack size */

for (i=0;i<thr_count;i++) {
thr_create(NULL,2048,thr_sub,0,0,NULL);

}
printf("%d threads have been created and are runnin gh\n®, i);
printf("Press <return> to join all the threads...\n ")
/* wait till user presses return, then join all the threads */
gets(&buf);

printf("Joining %d threads...\n", thr_count);

/* now unlock the mutex variable, to let all the th reads proceed */
mutex_unlock(&lock);

/* join the threads */
for (i=0;i<thr_count;i++)

thr_join(0,0,0);
printf("All %d threads have been joined, exiting... \n", thr_count);
return(0);
/* The routine that is executed by the created thre ads */

void *thr_sub(void *arg)

/* try to lock the mutex variable -- since the main thread has
locked the mutex before the threads were created , this thread
will block until the main thread unlock the mute X */

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

16 of 42

mutex_lock(&lock);
printf("Thread %d is exiting...\n", thr_self());

/* unlock the mutex to allow another thread to proc eed */
mutex_unlock(&lock);

/* exit the thread */
return((void *)0);

Real-time Thread Example

This example uses the Solaris real-time extendmnsake a single bound thread within a processiriine
real-time scheduling class. Using a thread in #a&-time class is more desirable than running aevpmcess in
the real-time class, because of the many probleatscan arise with a process in a real-time skieexample, it
would not be desirable for a process to performl&Dyr large memory operations while in realtihecause a
real-time process has priority over system-relgi@tesses; if a real-time process requests a pagieif can
starve, waiting for the system to fault in a newygaNe can limit this exposure by using threads<ecute only
the instructions that need to run in realtime.

Since this book does not cover the concerns tleg ®ith real-time programming, we have included tode
only as an example of how to promote a threadtimaeal-time class. You must be very careful wyanuse
real-time threads in your applications. For moferimation on real-time programming, see the Solaris
documentation.

This example should be safe from the pitfalls ef-tane programs because of its simplicity. Howewhianging
this code in any way could have adverse affectgoom system.

The example creates a new thread from the maiadhi&his new thread is then promoted to the rea-tilass by
looking up the real-time class ID and then setéingal-time priority for the thread. After the tadeis running in
realtime, it simulates some processing. Sinceeathin the real-time class can have an infinite tmantum, the
process is allowed to stay on a CPU as long #ée#.|I The time quantum is the amount of time aatiiie allowed
to stay running on a CPU. For the timesharing cldigstime quantum (time-slice) is 1/100th of aosetby
default.

In this example, we set the time quantum for tla-tiene thread to infinity. That is, it can staywning as long as
it likes; it will not be preempted or scheduled tf& CPU. If you run this example on a UP machiingill have
the effect of stopping your system for a few sesontile the thread simulates its processing. Tlseesy does not
actually stop, it is just working in the real-titfeead. When the real-time thread finishes its @geing, it exits
and the system returns to normal.

Using real-time threads can be quite useful whennged an extremely high priority and response biotecan
also cause big problems if it not used properlgoiiote that this example must be run as rootwe haot
execute permissions.

The source ta&_thr.c

#define _REENTRANT
#include <stdio.h>
#include <thread.h>
#include <string.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>

/* thread prototype */
void *rt_thread(void *);

main()

/* create the thread that will run in realtime */
thr_create(NULL, O, rt_thread, 0, THR_DETACHED, 0);

/* loop here forever, this thread is the TS schedul ing class */
while (1) {
printf("MAIN: In time share class... runnin g\n");

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

17 of 42

sleep(1);
}
return(0);

/*
This is the routine that is called by the ¢ reated thread
*/

void *rt_thread(void *arg)

pcinfo_t pcinfo;

pcparms_t pcparms;

inti;

/* let the main thread run for a bit */
sleep(4);

/* get the class ID for the real-time class */
strepy(pcinfo.pc_clname, "RT");

if (priocntl(0, 0, PC_GETCID, (caddr_t)&pcinfo) == -1)
fprintf(stderr, "getting RT class id\n"), e xit(1);

/* set up the real-time parameters */
pcparms.pc_cid = pcinfo.pc_cid;

((rtparms_t *)pcparms.pc_clparms)->rt_pri = 10;
((rtparms_t *)pcparms.pc_clparms)->rt_tgnsecs = 0;

/* set an infinite time quantum */

((rtparms_t *)pcparms.pc_clparms)->rt_tgqsecs = RT_T QINF;

/* move this thread to the real-time scheduling cla ss */

if (priocntl(P_LWPID, P_MYID, PC_SETPARMS, (caddr_t)&pcparms) == -1)
fprintf(stderr, "Setting RT mode\n"), exit(1);

[* simulate some processing */
for (i=0;i<100000000;i++);

printf('RT_THREAD: NOW EXITING...\n");
thr_exit((void *)0);
}

POSIX Cancellation

This example uses the POSIX thread cancellationhifiy to kill a thread that is no longer needBdndom
termination of a thread can cause problems in de@applications, because a thread may be holdénitjcal

lock when it is terminated. Since the lock was H®fore the thread was terminated, another threaddeadlock,
waiting for that same lock. The thread cancellatiapability enables you to control when a threadlma
terminated. The example also demonstrates the ititipatof the POSIX thread library in implementiagorogram
that performs a multithreaded search.

This example simulates a multithreaded search fiven number by taking random guesses at a tacgaber.
The intent here is to simulate the same type athahat a database might execute. For examplatadase might
create threads to start searching for a data édéter, some amount of time, one or more threads tméhrn with
the target data item.

If a thread guesses the number correctly, thame iseed for the other threads to continue theircked his is
where thread cancellation can help. The threadfitihdg the number first should cancel the othegdls that are
still searching for the item and then return theuhes of the search.

The threads involved in the search can call a digdnnction that can clean up the threads resolrefse it
exits. In this case, the cleanup function prinesghogress of the thread when it was cancelled.

The source tposix_cancel.c

#define _REENTRANT
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <pthread.h>

8/4/2008 5:37up

Thread programming examples

18 of 42

/* defines the number of searching threads */
#define NUM_THREADS 25

/* function prototypes */
void *search(void *);
void print_it(void *);

/* global variables */

pthread_t threads[NUM_THREADS];
pthread_mutex_t lock;

int tries;

main()

inti;
int pid;

/* create a number to search for */
pid = getpid();

/* initialize the mutex lock */
pthread_mutex_init(&lock, NULL);
printf("Searching for the number = %d...\n", pid);

/* create the searching threads */
for (i=0;i<NUM_THREADS;i++)
pthread_create(&threads[i], NULL, search, (

/* wait for (join) all the searching threads */
for (i=0;i<NUM_THREADS;i++)
pthread_join(threads[i], NULL);

printf("It took %d tries to find the number.\n", tr

[* exit this thread */
pthread_exit((void *)0);

/*
This is the cleanup function that is called
the threads are cancelled

*/

void print_it(void *arg)

int *try = (int *) arg;
pthread_t tid;

/* get the calling thread's ID */
tid = pthread_self();

/* print where the thread was in its search when it
printf("Thread %d was canceled on its %d try.\n", t

/*
This is the search routine that is executed
*/

void *search(void *arg)

int num = (int) arg;
inti=0, j;
pthread_t tid;

/* get the calling thread ID */
tid = pthread_self();

/* use the thread ID to set the seed for the random
srand(tid);

/* set the cancellation parameters --

- Enable thread cancellation

- Defer the action of the cancellation
*/

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

void *)pid);

ies);

when

was cancelled */
id, *try);

in each thread

number generator */

pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL) ;
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

/* push the cleanup routine (print_it) onto the thr
cleanup stack. This routine will be called when

ead
the

8/4/2008 5:37up

Thread programming examples

19 of 42

thread is cancelled. Also note that the pthread

call must have a matching pthread_cleanup_pop ca
push and pop calls MUST be at the same lexical |
within the code */

/* pass address of ‘i’ since the current value of *
the one we want to use in the cleanup function *

pthread_cleanup_push(print_it, (void *)&i);

/* loop forever */
while (1) {
i++;

[* does the random number match the target
if (num == rand()) {

/* try to lock the mutex lock --
if locked, check to see if the t
if not locked then continue */

while (pthread_mutex_trylock(&lock)
pthread_testcancel(

/* set the global variable for the
tries = i;
printf(“thread %d found the number!

/* cancel all the other threads */
for (j=0;j<NUM_THREADS;j++)
if (threads][j] != tid) pthr

/* break out of the while loop */
break;

}

[* every 100 tries check to see if the thre
if the thread has not been cancelled the
LWP to another thread that may be able t

if (1%2100 == 0) {
pthread_testcancel();
sched_yield();
}

}

/* The only way we can get here is when the thread
of the while loop. In this case the thread that
has found the number we are looking for and does
the thread cleanup function. This is why the pt
function is called with a 0 argument; this will
function off the stack without executing it */

pthread_cleanup_pop(0);
return((void *)0);

Software Race Condition

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

_cleanup_push
IIl. The
evel

i"is not
/

number? */

hread has been cancelled

== EBUSY)
):

number of tries */

\n", tid);

ead_cancel(threadslj]);

ad has been cancelled
n yield the thread's
o run*/

breaks out

makes it here

not need to run
hread_cleanup_pop
pop the cleanup

This example shows a trivial software race conditiy software race condition occurs when the exeouf a
program is affected by the order and timing ofradkls execution. Most software race conditionsbeaalleviated
by using synchronization variables to control theeads' timing and access of shared resourcegrtfggam
depends on order of execution, then threadinggittegiram may not be a good solution, because ther ardvhich

threads execute is nondeterministic.

In the examplethr_continue()

andthr_suspend() calls continue and suspend a given thread, ragsphbct

Although both of these calls are valid, use cautibien implementing them. It is very hard to detewnivhere a
thread is in its execution. Because of this, yoy mat be able to tell where the thread will suspahén the call
tothr_suspend() is made. This behavior can cause problems indleadtaode if not used properly.

The following example uselsr_continue()

andthr_suspend()

to try to control when a thread starts and stoy

The example looks trivial, but, as you will see) cause a big problem.

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

20 of 42

Do you see the problem? If you guessed that thgrano would eventually suspend itself, you wereeaxttThe
example attempts to flip-flop between the mainadrand a subroutine thread. Each thread contitneesther
thread and then suspends itself.

Thread A continues thread B and then suspendsdtiiteaow the continued thread B can continue thrdaohd
then suspend itself. This should continue backfartt all day long, right? Wrong! We can't guarantleat each
thread will continue the other thread and then endptself in one atomic action, so a software @m&ition
could be created. Callingr_continue() on a running thread and calling_suspend() on a suspended threa
has no effect, so we don't know if a thread isaalyerunning or suspended.

If thread A continues thread B and if between iime tthread A suspends itself, thread B continuesathA, then
both of the threads will cadhr_suspend() . This is the race condition in this program thik gause the whole
process to become suspended.

It is very hard to use these calls, because yoarreally know the state of a thread. If you dentw exactly
where a thread is in its execution, then you darw what locks it holds and where it will stop whgou suspenc
it.

The source tew_race.c

Tgr ep: Threadeds version of UNIXgrep

Tgrep is a multi-threaded version giep . Tgrep supports all but the -w (word search) optionshefmormabrep
command, and a few options that are only avalitdbtgrep . The real change frogiep , is thatTgrep will recurse
down through sub-directories and search all fikeste target stringrgrep searches files like the following
command:

find <start path> -name "<file/directory pattern>" -exec \ (Line wrapped)
grep <options> <target> /dev/null {} \;

An example of this would be (run from thigrep directory)

% find . -exec grep thr_create /dev/null {} \;

JSolaris/main.c: if (thr_create(NULL,0,SigThread, NULL,THR_DAEMON,NULL)) {
/Solaris/main.c: err = thr_create(NULL,0, cascade,(void *)work,
/Solaris/main.c: err = thr_create(NULL,0 ,search_thr,(void *)work,

%
Running the same command with timex:

real 4.26
user 0.64
Sys 2.81

The same search run withrep would be

% {\tt Tgrep} thr_create

JSolaris/main.c: if (thr_create(NULL,0,SigThread, NULL,THR_DAEMON,NULL)) {
./Solaris/main.c: err = thr_create(NULL,0, cascade,(void *)work,
JSolaris/main.c: err = thr_create(NULL,0 ,search_thr,(void *)work,

%
Running the same command with timex:

real 0.79
user 0.62
Sys 1.50

Tgrep gets the results almost four times faster. Thebarmabove where gathered on a SS20 running 5ilf (bu
18) with 4 50MHz CPUs.

You can also filter the files that you wargep to search like you can with find. The next two coamds do the
same thing, justgrep gets it done faster.

find . -name "*.c" -exec grep thr_create /dev/null O\
and
{\tt Tgrep} -p ".*\.c$' thr_create

The -p option will allowrgrep to search only files that match the "regular exgian" file pattern string. This
option does NOT use shell expression, so to siggp from seeing a file named foobar.cyou must add'$he
meta character to the pattern and escape the reaharacter.

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

21 of 42

Some of the othergrep only options are -r, -C, -P, -e, -B, -S and -ZeFhoption stopsgrep from searching any
sub-directories, in other words, search only tlwalldirectory, but -l was taken. The -C option wilarch for and
print "continued" lines like you find in Makefil&ote the differences in the results of grep agédp run in the
current directory.

TheTgrep output prints the continued lines that ended with"character. In the case of grep | would noehav
seen the three values assigned to SUBDIRSTdei shows them to me (Common, Solaris, Posix).

The -P option | use when | am sending the outpatlohg search to a file and want to see the "gssjrof the
search. The -P option will print a "." (dot) onetdfor every file (or groups of files dependingtbe value of the
-P argumentygrep searches.

The -e option will change the waygrep uses the target stringgrep uses two different patter matching systems
The first (with out the -e option) is a literaliaty match call Boyer-Moore. If the -e option is dsthen a MT-Safe
PD version of regular expression is used to sefarctine target string as a regexp with meta charagh it. The
regular expression method is slower, tuitp needed the functionality. The -Z option will primtlp on the meta
characterggrep uses.

The -B option tellggrep to use the value of the environment variable dall&LIMIT to limit the number of
threads it will use during a search. This optios ha affect if TGLIMIT is not settgrep can "eat" a system alive
so the -B option was a way to rtigrep on a system with out having other users screaroiat

The last new option is -S. If you want to see hbindgs went whilergrep was searching, you can use this optiot
to print statistic about the number of files, linbgtes, matches, threads created, etc.

Here is an example of the -S options output. (againn the current directory)

% {\tt Tgrep} -S zimzap

----------------- {\tt Tgrep} Stats. --------------
Number of directories searched: 7
Number of files searched: 37
Number of lines searched: 9504
Number of matching lines to target: 0
Number of cascade threads created: 7
Number of search threads created: 20
Number of search threads from pool: 17
Search thread pool hit rate: 45.95%
Search pool overall size: 20
Search pool size limit: 58

Number of search threads destroyed: 0
Max # of threads running concurrenly: 20

Total run time, in seconds. 1

Work stopped due to no FD's: (058) 0 Times, 0.00%
Work stopped due to no work on Q: 19 Times, 43.18%
Work stopped due to TGLIMITS: (Unlimited) O Times, 0.00%

%
For more information on the usage and optionsttsenan pag&grep

TheTgrep.c source code is:

/* Copyright (c) 1993, 1994 Ron Winacott */
/* This program may be used, copied, modified, and redistributed freely */
/* for ANY purpose, so long as this notice remains intact. */

#define _REENTRANT

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <ctype.h>
#include <sys/types.h>
#include <time.h>
#include <sys/stat.h>
#ifdef __sparc
#include <note.h> /* warlock/locklint */
#else

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

#define NOTE(S)
#endif

#include <dirent.h>
#include <fcntl.h>
#include <sys/uio.h>
#include <thread.h>
#include <synch.h>

#include "version.h"
#include "pmatch.h"
#include "debug.h"

#define PATH_MAX 1024 /* max # of ch aracters in a path name */
#define HOLD_FDS 6 /* stdin,out,err and a buffer */
#define UNLIMITED 99999 /* The defaul t tglimit */
#define MAXREGEXP 10 /* max number o f -e options */
#define FB_BLOCK 0x00001

#define FC_COUNT 0x00002

#define FH_HOLDNAME 0x00004

#define FI_IGNCASE 0x00008

#define FL_NAMEONLY 0x00010

#define FN_NUMBER 0x00020

#define FS_NOERROR 0x00040

#define FV_REVERSE 0x00080

#define FW_WORD 0x00100

#define FR_RECUR 0x00200

#define FU_UNSORT 0x00400

#define FX_STDIN 0x00800

#define TG_BATCH 0x01000

#define TG_FILEPAT 0x02000

#define FE_REGEXP 0x04000

#define FS_STATS 0x08000

#define FC_LINE 0x10000

#define TG_PROGRESS 0x20000

#define FILET 1

#define DIRT 2

#define ALPHASIZ 128

/*

* New data types
*/

typedef struct work_st {

char *path;

int tp;

struct work_st *next;
} work_t;

typedef struct out_st {

char *line;
int line_count;
long byte_count;
struct out_st *next;
}out_t;
typedef struct bm_pattern { /* Boyer - Moore pa ttern */
short p_m; /* length o f pattern string */
short p_r[ALPHASIZ]; /* "r" vect or */
short *n_R; /*"R" vect or */
char *p_pat; [* pattern string */

} BM_PATTERN;

/*
* Prototypes
*/

/* bmpmatch.c */

extern BM_PATTERN *bm_makepat(char *);

extern char *bm_pmatch(BM_PATTERN *, register char *);

extern void bm_freepat(BM_PATTERN *);

/* pmatch.c */

extern char *pmatch(register PATTERN *, register ch ar*, int*);
extern PATTERN *makepat(char *string, char *);

extern void freepat(register PATTERN *);

extern void printpat(PATTERN *);

#include "proto.h" /* function prototypes of main. c*

void *SigThread(void *arg);

22 of 42 8/4/2008 5:31uu

Thread programming examples

23 of 42

void sig_print_stats(void);

/*
* Global data
*/

BM_PATTERN *bm_pat; /* the global target read
NOTE(READ_ONLY_DATA(bm_pat))

PATTERN *nm_pat{MAXREGEXP]; /* global targ
NOTE(READ_ONLY_DATA(pm_pat))

mutex_t global_count_Ik;

int global_count = 0;
NOTE(MUTEX_PROTECTS_DATA(global_count_lk, global_co
NOTE(DATA_READABLE_WITHOUT_LOCK(global_count)) /*

work_t *work_qg = NULL;

cond_t work_q_cv;

mutex_t work_q_Ik;

int all_done =0;

int work_cnt =0;

int current_open_files = 0;

int tglimit = UNLIMITED; /*if -B limit the

NOTE(MUTEX_PROTECTS_DATA(work_q_lk, work_q all_done
current_open_files tglimit

work_t *search_q = NULL;

mutex_t search_q_lk;

cond_t search_qg_cv;

int search_pool_cnt=0; /*the countin the

int search_thr_limit=0; /*the maxinthep
NOTE(MUTEX_PROTECTS_DATA(search_qg_Ik, search_q sear
NOTE(DATA_READABLE_WITHOUT_LOCK(search_pool_cnt)) /
NOTE(READ_ONLY_DATA(search_thr_limit))

work_t *cascade_g = NULL;

mutex_t cascade_q_lk;

cond_t cascade_g_cv;

int cascade_pool_cnt =0;

int cascade_thr_limit = 0;
NOTE(MUTEX_PROTECTS_DATA(cascade_g_lk, cascade_q ca
NOTE(DATA_READABLE_WITHOUT_LOCK(cascade_pool_cnt))
NOTE(READ_ONLY_DATA(cascade_thr_limit))

int running = 0;
mutex_t running_Ik;
NOTE(MUTEX_PROTECTS_DATA(running_lk, running))

sigset_t set, oldset;
NOTE(READ_ONLY_DATA(set oldset))

mutex_t stat_Ik;

time_t st_start=0;

int st dir_search =0;

int st file_search =0;

int st_line_search =0;

int st _cascade = 0;

int st_cascade_pool = 0;

int st _cascade_destroy = 0;

int st_search =0;

int st_pool =0;

int st_maxrun =0;

int st_worknull = 0;

int st workfds = 0;

int st_worklimit = 0;

int st _destroy = 0;

NOTE(MUTEX_PROTECTS_DATA(stat_lk, st_start st_dir_s
st_line_search st_cascade
st_cascade_destroy st_sear
st_worknull st_workfds st_

int progress_offset = 1;
NOTE(READ_ONLY_DATA(progress_offset))

mutex_t output_print_Ik;

/* output_print_lk used to print multi-line output

int progress = 0;
NOTE(MUTEX_PROTECTS_DATA(output_print_Ik, progress)

unsigned int flags = 0;
int regexp_cnt=0;

only after main */

ets read only for pmatch */

unt))
see prnt_stats() */

number of threads */
work_cnt \

)

pool now */

ool */
ch_pool_cnt))

* see prnt_stats() */

scade_pool_cnt))
/* see prnt_stats() */

earch st_file_search \
st_cascade_pool \

ch st_pool st_maxrun \
worklimit st_destroy))

only */

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples

char *stringlMAXREGEXP];

int debug =0;

int use_pmatch = 0;

char file_pat[255]; /*file patten match */

PATTERN *pm_file_pat; /* compiled file target strin
NOTE(READ_ONLY_DATA(flags regexp_cnt string debug u

file_pat pm_file_pat))

/*

* Locking ording.

*/

NOTE(LOCK_ORDER(output_print_Ik stat_Ik))

/*
* Main: This is where the fun starts
*/

int
main(int argc, char **argv)

int c,out_thr_flags;

long max_open_files = 0l, ncpus = 0OI;
extern int optind;

extern char *optarg;
NOTE(READ_ONLY_DATA(optind optarg))
int prio = 0;

struct stat sbuf;

thread_t tid,dtid;

void *status;

char *e = NULL, *d = NULL; /* for debug
int debug_file = 0;

int err=0,i=0, pm_file_len =0;
work_t *work;
int restart_cnt = 10;

flags = FR_RECUR; /* the default */

thr_setprio(thr_self(),127); /* set me up HIGH
while ((c = getopt(argc, argv, "d:e:bchilnsvwru
switch (c) {
#ifdef DEBUG
case 'd"
debug = atoi(optarg);
if (debug ==0)
debug_usage();

d = optarg;
fprintf(stderr,"tgrep: Debug on at leve
while (*d) {
for (i=0; i<9; i++)
if (debug_set[i].level == *d) {
debug_levels |= debug_set]i
fprintf(stderr,"%c ",debug_
break;
}

d++;

}
fprintf(stderr,"\n");
break;

case 'f:
debug_file = atoi(optarg);
break;

#endif /* DEBUG */

case 'B"
flags |[= TG_BATCH;
if ((e = getenv("TGLIMIT"))) {

tglimit = atoi(e);

else {
if ({(flags & FS_NOERROR)) /* orde
fprintf(stderr,"env TGLIMIT not
flags &= ~TG_BATCH;

break;

case 'p"
flags |= TG_FILEPAT;
strepy(file_pat,optarg);
pm_file_pat = makepat(file_pat,NULL);
break;

case 'P"
flags |= TG_PROGRESS;

24 of 42

g (pmatch()) */
se_pmatch \

flags */

*
/
f:p:BCSZzHP:")) |= EOF) {

I(s) ");

].flag;
set[i].level);

r dependent! */
set, overriding -B\n");

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples

25 of 42

progress_offset = atoi(optarg);
break;
case 'S" flags |= FS_STATS; break;
case 'b": flags |= FB_BLOCK; break;
case 'c" flags [= FC_COUNT; break;
case 'h": flags |= FH_HOLDNAME; break;
case 'i": flags |= FI_IGNCASE; break;
case 'l' flags |= FL_NAMEONLY:; break;
case 'n": flags |= FN_NUMBER; break;
case 's" flags [= FS_NOERROR; break;
case 'V flags |= FV_REVERSE; break;
case 'w" flags |= FW_WORD; break;
case 1" flags &= ~FR_RECUR; break;
case 'C" flags |= FC_LINE; break;
case 'e".
if (regexp_cnt == MAXREGEXP) {
fprintf(stderr,"Max number of regex
MAXREGEXP);
exit(1);

}

flags |= FE_REGEXP;

if ((string[regexp_cnt] =(char *)malloc
fprintf(stderr,"tgrep: No space for
exit(1);

memset(string[regexp_cnt],0,strlen(opta
strepy(string[regexp_cnt],optarg);
regexp_cnt++;
break;

case 'z"

case 'Z": regexp_usage();
break;

case 'H"

case '?"

default : usage();

}

if (I(flags & FE_REGEXP)) {
if (argc - optind < 1) {
fprintf(stderr,"tgrep: Must supply a se
"and file list or directory\n™)
usage();

if ((string[O]=(char *)malloc(strlen(argv[o
fprintf(stderr,"tgrep: No space for sea
exit(1);

memset(string[0],0,strlen(argv[optind])+1);
strepy(string[0],argv[optind]);
regexp_cnt=1;

optind++;

}

if (flags & FI_IGNCASE)
for (i=0; i<regexp_cnt; i++)
uncase(stringl[i]);

#ifdef __lock_lint
/*
** This is NOT somthing you really want to do.
** function calls are here ONLY for warlock/loc
*/
pm_pat[i] = makepat(string[i], NULL);
bm_pat = bm_makepat(string[0]);
bm_freepat(bm_pat); /* stop it from becomming
#else
if (flags & FE_REGEXP) {
for (i=0; i<regexp_cnt; i++)
pm_pat[i] = makepat(string[i], NULL);
use_pmatch = 1;

else {
bm_pat = bm_makepat(string[0]); /* only one

I
#endif
flags |= FX_STDIN;
max_open_files = sysconf(_SC_OPEN_MAX);

ncpus = sysconf(_SC_NPROCESSORS_ONLN);
if ((max_open_files - HOLD_FDS - debug_file) <

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

p's (%d) exceeded\n",

(strlen(optarg)+1))==NULL){
search string(s)\n");

rg)+1);

arch string(s) "

ptind])+1))==NULL)
rch string(s)\n");

This
klint 11!

a root */

allowed */

DA

8/4/2008 5:37up

Thread programming examples

fprintf(stderr,"tgrep: You MUST have at les
"that can be used, check limit (>10
exit(1);

}

search_thr_limit = max_open_files - HOLD_FDS -
cascade_thr_limit = search_thr_limit / 2;

[* the number of files that can by open */
current_open_files = search_thr_limit;

mutex_init(&stat_Ik,USYNC_THREAD,"stat");
mutex_init(&global_count_Ik,USYNC_THREAD,"globa
mutex_init(&output_print_Ik,USYNC_THREAD,"outpu
mutex_init(&work_g_lk,USYNC_THREAD,"work_q");
mutex_init(&running_lk,USYNC_THREAD,"running");
cond_init(&work_q_cv,USYNC_THREAD,"work_qg");
mutex_init(&search_g_lk,USYNC_THREAD,"search_q"
cond_init(&search_q_cv,USYNC_THREAD,"search_q")
mutex_init(&cascade_q_lk,USYNC_THREAD,"cascade_
cond_init(&cascade_g_cv,USYNC_THREAD,"cascade_q

if ((argc == optind) && ((flags & TG_FILEPAT) |
add_work(".",DIRT);
flags = (flags & ~FX_STDIN);

for (; optind < argc; optind++) {

restart_cnt = 10;

flags = (flags & ~FX_STDIN);

STAT_AGAIN:
if (stat(argv[optind], &sbuf)) {
if (errno == EINTR) { /*try again !, r
if (--restart_cnt)
goto STAT_AGAIN;

}
if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can't stat f
argv[optind], strerror(errn
continue;

}
switch (sbuf.st_mode & S_IFMT) {
case S_IFREG:
if (flags & TG_FILEPAT) {
if (omatch(pm_file_pat, argv[optind
add_work(argv[optind],FILET);
}

else {
add_work(argv[optind],FILET);
}
break;
case S_IFDIR :
if (flags & FR_RECUR) {
add_work(argv[optind],DIRT);
}
else {
if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can't se
"-r option is on. Direc
argv[optind]);

break;

}
}

NOTE(COMPETING_THREADS_NOW) /* we are goinf th

if (flags & FS_STATS) {

mutex_lock(&stat_IK);

st_start = time(NULL);

mutex_unlock(&stat_Ik);

#ifdef SIGNAL_HAND

/*

** setup the signal thread so the first cal

** only print stats, the second will interu

*/

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, &oldset);

if (thr_create(NULL,0,SigThread,NULL,THR_DA
thr_sigsetmask(SIG_SETMASK,&oldset,NULL
fprintf(stderr,"SIGINT for stats NOT se

}
thr_yield(); /* give the other thread time

#endif /* SIGNAL_HAND */
}

26 of 42

t ONE fd "
nn);

debug_file;

|_cnt");
t_print");

)

ﬁ");
")

| (flags & FR_RECURY))) {

estart */

ile/dir %s, %s\n",

0));

1, &pm_file_len))

arch directory %s, "
tory ignored.\n",

readed */

I to SIGINT will
pt.

EMON,NULL)) {
tl’.lp\n");
*/

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples

thr_setconcurrency(3);

if (flags & FX_STDIN) {

fprintf(stderr,"tgrep: stdin option is not

exit(0); /* XXX Need

search_thr(NULL); /* NULL is not understoo

if (flags & FC_COUNT) {
mutex_lock(&global_count_IK);
printf("%d\n",global_count);
mutex_unlock(&global_count_IK);

}

if (flags & FS_STATS) {
mutex_lock(&stat_IK);
prnt_stats();
mutex_unlock(&stat_Ik);

Iy
exit(0);
}

mutex_lock(&work_q_Ik);
if ('work_q) {
if ((flags & FS_NOERROR))
fprintf(stderr,"tgrep: No files to sear
exit(0);

mutex_unlock(&work_q_lk);
DP(DLEVELL,("Starting to loop through the work_

[* OTHER THREADS ARE RUNNING */
while (1) {
mutex_lock(&work_q_Ik);
while ((work_q == NULL || current_open_file
all_done ==0) {
if (flags & FS_STATS) {
mutex_lock(&stat_Ik);
if (work_q == NULL)
st_worknull++;
if (current_open_files == 0)
st workfds++;
if (tglimit <= 0)
st worklimit++;
mutex_unlock(&stat_Ik);

cond_wait(&work_qg_cv,&work_q_Ik);

}

if (all_done !=0) {
mutex_unlock(&work_g_1Ik);
DP(DLEVELZL,("All_done was set to TRUE\n
goto OUT;

work = work_q;

work_q = work->next; /* maybe NULL */
work->next = NULL;
current_open_files--;
mutex_unlock(&work_qg_IK);

tid = 0;
switch (work->tp) {
case DIRT:
mutex_lock(&cascade_q_Ik);
if (cascade_pool_cnt) {
if (flags & FS_STATS) {
mutex_lock(&stat_Ik);
st_cascade_pool++;
mutex_unlock(&stat_IK);

work->next = cascade_qQ;

cascade_q = work;
cond_signal(&cascade_q_cv);
mutex_unlock(&cascade_g_Ik);
DP(DLEVELZ2,("Sent work to cascade p

else {

mutex_unlock(&cascade_q_IK);

err = thr_create(NULL,0,cascade,(vo
THR_DETACHED|THR_D
,&tid);

DP(DLEVEL2,("Sent work to new casca

thr_setprio(tid,64); /* set cascad

if (flags & FS_STATS) {

27 of 42

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

coded at this time\n");
to fix this SOON */
d in search_thr() */

ch.\n");

g for work\n"));

s == 0 || tglimit <= 0) &&

)k

ool thread\n"));

id *)work,
AEMON|THR_NEW_LWP

de thread\n"));
e to middle */

8/4/2008 5:37up

Thread programming examples

mutex_lock(&stat_Ik);
st_cascade++;
mutex_unlock(&stat_Ik);

}
}

break;
case FILET:
mutex_lock(&search_q_Ik);
if (search_pool_cnt) {
if (flags & FS_STATS) {
mutex_lock(&stat_Ik);
st_pool++;
mutex_unlock(&stat_Ik);
}
work->next = search_q; /* could be
search_q = work;
cond_signal(&search_g_cv);
mutex_unlock(&search_g_Ik);
DP(DLEVEL2,("Sent work to search po
}
else {
mutex_unlock(&search_q_Ik);
err = thr_create(NULL,0,search_thr,
THR_DETACHED|THR_D
J&tid);
thr_setprio(tid,0); /* set search
DP(DLEVEL2,("Sent work to new searc
if (flags & FS_STATS) {
mutex_lock(&stat_Ik);
st_search++;
mutex_unlock(&stat_Ik);

}

break;

default:
fprintf(stderr,"tgrep: Internal error,
exit(1);

}
if (err) { /* NEED TO FIX THIS CODE. Exiti
fprintf(stderr,"Cound not create new th
exit(1);
}
}

OUT:
if (flags & TG_PROGRESS) {
if (progress)
fprintf(stderr,".\n");
else
fprintf(stderr,"\n");

/* we are done, print the stuff. All other thre

if (flags & FC_COUNT) {
mutex_lock(&global_count_IK);
printf("%d\n",global_count);
mutex_unlock(&global_count_Ik);

}
if (flags & FS_STATS)

prnt_stats();
return(0); /* should have a return from main */

/*

* Add_Work: Called from the main thread, and casca

* and directory names to the work Q.
*/

int

add_work(char *path,int tp)

{

work_t *wt,*ww,*wp;

if ((wt = (work_t *)malloc(sizeof(work_t))) ==
goto ERROR,;

if ((wt->path = (char *)malloc(strlen(path)+1))
goto ERROR,;

strcpy(wt->path,path);

wt->tp = tp;

wt->next = NULL;

if (flags & FS_STATS) {
mutex_lock(&stat_Ik);

28 of 42

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

null */

ol thread\n"));

(void *)work,
AEMON|THR_NEW_LWP

to low */
h thread\n"));

work_t->tp no valid\n");

ng is just wrong */
read\n");

ads ar parked */

de threads to add file

NULL)
== NULL)

8/4/2008 5:37up

Thread programming examples

29 of 42

if (wt->tp == DIRT)
st_dir_search++;
else
st_file_search++;
mutex_unlock(&stat_Ik);

mutex_lock(&work_q_IK);

work_cnt++;

wt->next = work_(;

work_q = wt;

cond_signal(&work_q_cv);

mutex_unlock(&work_q_lk);

return(0);

ERROR:
if ((flags & FS_NOERROR))
fprintf(stderr,"tgrep: Could not add %s to

path);

return(-1);

/*

* Search thread: Started by the main thread when a

* on the work Q to be serached. If all the needed
* a new search thread will be created.

*/

void *

search_thr(void *arg) /* work_t *arg */

FILE *fin;

char fin_buf[(BUFSIZ*4)]; /* 4 Kbytes *
work_t *wt,std;

int line_count;

char rline[128];

char cline[128];

char *line;

register char *p,*pp;

int pm_len;

int len =0;

long byte_count;

long next_line;

int show_line; /* for the -v option */

register int slen,plen,i;
out_t *out = NULL; /* this threads out

thr_setprio(thr_self(),0); /* set search to lo
thr_yield();

wt = (work_t *)arg; /* first pass, wt is passed
/* len = strlen(string);*/ /* only set on firs

while (1) { /* reuse the search threads */
[* init all back to zero */

line_count = 0;
byte_count = 0l;
next_line = 0l;

show_line = 0;

mutex_lock(&running_IK);
running++;
mutex_unlock(&running_Ik);
mutex_lock(&work_q_Ik);
tglimit--;
mutex_unlock(&work_q_Ik);

DP(DLEVELS5,("searching file (STDIO) %s\n",w

if ((fin = fopen(wt->path,"r")) == NULL) {
if (I(flags & FS_NOERROR)) {
fprintf(stderr,"tgrep: %s. File \"%
strerror(errno),wt->path);

}
goto ERROR,;

}
setvbuf(fin,fin_buf, |OFBF,(BUFSIZ*4)); /*

DP(DLEVELS5,("Search thread has opened file

while ((fgets(rline,127,fin)) '= NULL) {
if (flags & FS_STATS) {
mutex_lock(&stat_Ik);
st_line_search++;
mutex_unlock(&stat_Ik);

slen = strlen(rline);
next_line += slen;

work queue. Ignored\n”,

file name is found
resources are ready

put list */
w */
to use. */

t pass */

t->path));

s\" not searched.\n",

XXX */
%s\n",wt->path));

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples

30 of 42

line_count++;
if (rline[slen-1] =="\n")
rline[slen-1] ="0";
/*
** |f the uncase flag is set, copy the
** To the uncase line (cline) Set the |
** cline.
** |f the case flag is NOT set, then po
** line is what is compared, rline is w
** match.
*/
if (flags & FI_IGNCASE) {
strepy(cline,rline);
uncase(cline);

line = cline;
else {
line =rline;

show_line = 1; /* assume no match, if
/* The old code removed */
if (use_pmatch) {
for (i=0; i<regexp_cnt; i++) {
if (pmatch(pm_pat][i], line, &pm
if ((flags & FV_REVERSE))
add_output_local(&out,w

byte_c
continue_line(rline,fin
&line_cou
}
else {

show_line = 0;
}*end of if -v flag if /
/*
** if we get here on ANY of
** jump out of the loop, we
** match so, do not keep lo
** |f name only, do not kee
** file, we found a single
** print the file name and
*/
if (flags & FL_NAMEONLY)
goto OUT_OF_LOOP;
else
goto OUT_AND_DONE;
} /* end found a match if block
} I* end of the for pat[s] loop */

else {
if (om_pmatch(bm_pat, line)) {
if (/(flags & FV_REVERSE)) {
add_output_local(&out,wt,li
continue_line(rline,fin,out
&line_count,&
}

else {
show_line = 0;

}
if (flags & FL_NAMEONLY)
goto OUT_OF_LOOP;

}

}
OUT_AND_DONE:
if (flags & FV_REVERSE) && show_line)
add_output_local(&out,wt,line_count
show_line = 0;
}

byte_count = next_line;

}
OUT_OF_LOOFP:

fclose(fin);
/*
** The search part is done, but before we g
** and park this thread in the search threa
** |ocal output we have gathered.
*/
print_local_output(out,wt); /* this also f
out = NULL; /* for the next time around, if

ERROR:
DP(DLEVELS,("Search done for %s\n",wt->path
free(wt->path);
free(wt);

read in line (rline)
ine pointer to point at

int line at rline.
aht is printed on a

-v set */

_lenm) {
{

t,line_count,
ount,rline);
,out,wt,
nt,&byte_count);

else block */

the regexp targets
found a single

oking!

p searcthing the same
match, so close the file,
move on to the next file.

*/

ne_count,byte_count,rline);
W,
byte_count);

,byte_count,rline);

ive back the FD,
d pool, print the

rees out nodes */
there is one */

)

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples

}

/*

notrun();
mutex_lock(&search_q_lk);
if (search_pool_cnt > search_thr_limit) {
mutex_unlock(&search_q_Ik);
DP(DLEVELS5,("Search thread exiting\n™))
if (flags & FS_STATS) {
mutex_lock(&stat_Ik);
st_destroy++;
mutex_unlock(&stat_Ik);

return(0);

else {
search_pool_cnt++;
while (Isearch_q)
cond_wait(&search_q_cv,&search_q_lk
search_pool_cnt--;
wt = search_q; /* we have work to do!
if (search_g->next)
search_q = search_g->next;
else
search_q = NULL;
mutex_unlock(&search_q_Ik);

}

}
I"NOTREACHED*/

* Continue line: Speacial case search with the -C
* searching files like Makefiles, some lines may h
* contine the line on the next line. So the target

* no data is displayed. This function continues to
* until there are no more "\" chars found.

*/
int

continue_line(char *rline, FILE *fin, out_t *out, w

{

/*

* cascade: This thread is started by the main thre

* are found on the work Q. The thread reads all th
* names from the directory it was started when and
*work Q. (it finds more work!)

*/

int *Ic, long *bc)

int len;
intcnt = 0;
char *line;

char nline[128];

if ((flags & FC_LINE))
return(0);

line =rline;

AGAIN:

len = strlen(line);
if (lineflen-1] == "\V) {
if ((fgets(nline,127 fin)) == NULL) {
return(cnt);

line = nline;
len = strlen(line);
if (line[len-1] =="n")
line[len-1] ="\0";
*bc = *bc + len;
*lc++;
add_output_local(&out,wt,*Ic,*bc,line);
cnt++;
goto AGAIN;

return(cnt);

void *

31 of 42

cascade(void *arg) /* work_t *arg */

char fullpath[1025];
int restart_cnt = 10;
DIR *dp;

char dir_buf[sizeof(struct dirent) + PAT

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

*/

flag set. If you are

ave escape char's to
string can be found, but
print the escaped line

ork_t *wt,

ad when directory names
e new file, and directory
adds the names to the

H_MAX];

8/4/2008 5:37up

Thread programming examples

32 of 42

struct dirent *dent = (struct dirent *)dir_buf;
struct stat sbuf;
char *fpath;

work_t *wt;
int fl=0,dl =0;
int pm_file_len = 0;

thr_setprio(thr_self(),64); /* set search tom
thr_yield(); /* try toi give control back to m
wt = (work_t *)arg;

while(1) {
fl=0;

dl =0;
restart_cnt = 10;
pm_file_len =0;

mutex_lock(&running_IK);
running++;
mutex_unlock(&running_Ik);
mutex_lock(&work_q_Ik);
tglimit--;
mutex_unlock(&work_qg_IK);

if ('wt) {
if (/(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Bad work nod
goto DONE;

fpath = (char *)wt->path;
if (fpath) {
if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Bad path nam
goto DONE;

}
DP(DLEVEL3,("Cascading on %s\n",fpath));

if ((dp = opendir(fpath)) == NULL) {
if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can't open d
fpath,strerror(errno));
goto DONE;

}
while ((readdir_r(dp,dent)) != NULL) {
restart_cnt = 10; /* only try to resta

if (dent->d_name[0] =="") {
if (dent->d_name[1] =="."' && dent-
continue;
if (dent->d_name[1] =="0")
continue;
}

fl = strlen(fpath);
dl = strlen(dent->d_name);
if (fl + 1 +dl)>1024) {
fprintf(stderr,"tgrep: Path %s/%s i
"MaxPath = 1024\n",
fpath, dent->d_name);
continue; /* try the next name in

}

strepy(fullpath,fpath);
strcat(fullpath,"/");
strcat(fullpath,dent->d_name);

RESTART_STAT:
if (stat(fullpath,&sbuf)) {
if (errno == EINTR) {
if (--restart_cnt)
goto RESTART_STAT;

}
if (!(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Can't st
"Ignored.\n",
fullpath,strerror(errno
goto ERROR;

}

switch (sbuf.st_mode & S_IFMT) {
case S_IFREG :
if (flags & TG_FILEPAT) {
if (omatch(pm_file_pat, dent->d
DP(DLEVELS3,("file pat match

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

iddle */
ain thread */

e passed to cascade\n");

e passed to cascade\n™);

ir %s, %s. Ignored.\n",

rt the interupted 10 X */

>d_name[2] =="0")

s too long. "

this directory */

at file/dir %s, %s. "

)

_name, &pm_file_len)) {
(cascade) %s\n",

8/4/2008 5:37up

Thread programming examples

dent->d_name));
add_work(fullpath,FILET);
}
}

else {
add_work(fullpath,FILET);
DP(DLEVEL3,("cascade added file

fullpath));
}
break;
case S_IFDIR :

DP(DLEVELS3,("cascade added dir %s t
add_work(fullpath,DIRT);
break;
}
}

ERROR:
closedir(dp);
DONE:
free(wt->path);
free(wt);
notrun();
mutex_lock(&cascade_q_Ik);
if (cascade_pool_cnt > cascade_thr_limit) {
mutex_unlock(&cascade_qg_lk);
DP(DLEVELS5,("Cascade thread exiting\n")
if (lags & FS_STATS) {
mutex_lock(&stat_Ik);
st_cascade_destroy++;
mutex_unlock(&stat_Ik);

return(0); /* thr_exit */

else {
DP(DLEVELS5,("Cascade thread waiting in
cascade_pool_cnt++;
while (cascade_q)
cond_wait(&cascade_g_cv,&cascade_q_
cascade_pool_cnt--;
wt = cascade_g; /* we have work to do!
if (cascade_g->next)
cascade_(= cascade_g->next;
else
cascade_q = NULL;
mutex_unlock(&cascade_q_Ik);

}

}
[*NOTREACHED*/
}

/*

* Print Local Output: Called by the search thread
* a single file. If any oputput was saved (matchin
* displayed as a group on stdout.

*/
int
print_local_output(out_t *out, work_t *wt)
{
out t *pp, *op;
int out_count = 0;
int printed = 0O;
int print_name = 1;
pp = out;

mutex_lock(&output_print_IK);
if (pp && (flags & TG_PROGRESS)) {
progress++;
if (progress >= progress_offset) {
progress = 0;
fprintf(stderr,".");

}
while (pp) {
out_count++;

if (!(flags & FC_COUNT)) {
if (flags & FL_NAMEONLY) { /* Pint nam
if (Iprinted) {
printed = 1;
printf("%s\n",wt->path);
}
}

33 of 42

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

(MATCH) %s to Work Q\n",

o Work Q\n" fullpath));

pool\n"));

Ik);
*/

after it is done searching
g lines), the lines are

e ONLY !'¥/

8/4/2008 5:37up

Thread programming examples

else { /* We are printing more then ju

if (I(flags & FH_HOLDNAME)) /* do
printf("%s :",wt->path);

if (flags & FB_BLOCK)
printf("%ld:",pp->byte_count/51

if (flags & FN_NUMBER)
printf("%d:",pp->line_count);

printf("%s\n",pp->line);

}
}
0p = pp;
pp = pp->next;

/* free the nodes as we go down the list */
free(op->line);
free(op);

mutex_unlock(&output_print_lk);
mutex_lock(&global_count_lIKk);
global_count += out_count;
mutex_unlock(&global_count_Ik);
return(0);

}

/*

* add output local: is called by a search thread a
* the matching line, it's byte offset, line count,

* search thread is done searching the file, then t

* a group. This way the lines from more then a sin
* together.

*/

int

add_output_local(out_t **out, work_t *wt,int Ic, lo

out t *ot,*00, *op;

if ((ot = (out_t *)malloc(sizeof(out_t))) ==
goto ERROR,;

if ((ot->line = (char *)malloc(strlen(line)+1)
goto ERROR,;

strcpy(ot->line line);
ot->line_count = Ic;
ot->byte_count = bc;

if ("*out) {
*out = of;
ot->next = NULL,;
return(0);

}
/* append to the END of the list, keep things s
op = 00 = *out;
while(oo) {
op = 00;
00 = 00->next;
}
op->next = ot;
ot->next = NULL,
return(0);
ERROR:
if (\(flags & FS_NOERROR))
fprintf(stderr,"tgrep: Output lost. No spac
"[%s: line %d byte %d match : %s\n"
wt->path,lc,bc,line);
return(1);

/*

* print stats: If the -S flag is set, after ALL fi

* main thread calls this function to print the sta
* search went.

*/

void

prnt_stats(void)

float a,b,c;

floatt = 0.0;
time_t st end =0;
char I[80];

st_end = time(NULL); /* stop the clock */
fprintf(stderr,"\n----------------- Tgrep Stats
fprintf(stderr,"Number of directories searched:

st the name */
not print name ? */

2+1);

s it finds matching lines.
etc are stored until the
he lines are printed as
gle file are not mixed

ng bc, char *line)

ULL)
) == NULL)

orted! */

e.

les have been searched,
ts it keeps on how the

%d\n",

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples

35 of 42

st_dir_search);

fprintf(stderr,"Number of files searched:
st_file_search);

¢ = (float)(st_dir_search + st_file_search) / (

fprintf(stderr,"Dir/files per second:
)

fprintf(stderr,"Number of lines searched:
st_line_search);

fprintf(stderr,"Number of matching lines to tar
global_count);

fprintf(stderr,"Number of cascade threads creat
st_cascade);

fprintf(stderr,"Number of cascade threads from
st_cascade_pool);

a = st_cascade_pool; b = st_dir_search;

fprintf(stderr,"Cascade thread pool hit rate:
((a/b)*100));

fprintf(stderr,"Cascade pool overall size:
cascade_pool_cnt);

fprintf(stderr,"Cascade pool size limit:
cascade_thr_limit);

fprintf(stderr,"Number of cascade threads destr
st_cascade_destroy);

fprintf(stderr,"Number of search threads create
st_search);

fprintf(stderr,"Number of search threads from p
st_pool);

a =st_pool; b = st_file_search;

fprintf(stderr,"Search thread pool hit rate:
((a/b)*100));

fprintf(stderr,"Search pool overall size:
search_pool_cnt);

fprintf(stderr,"Search pool size limit:
search_thr_limit);

fprintf(stderr,"Number of search threads destro
st_destroy);

fprintf(stderr,"Max # of threads running concur
st_maxrun);

fprintf(stderr,"Total run time, in seconds.
(st_end - st_start));

/* Why did we wait ? */

a = st_workfds; b = st_dir_search+st_file_searc

¢ = (a/b)*100; t +=c;

fprintf(stderr,"Work stopped due to no FD's: (
search_thr_limit,st_workfds,c);

a = st_worknull; b = st_dir_search+st_file_sear

¢ = (a/b)*100; t +=c;

fprintf(stderr,"Work stopped due to no work on
st_worknull,c);

#ifndef __lock_lint /*itis OK to read HERE with
if (tglimit == UNLIMITED)
strepy(tl,"Unlimited™);
else
sprintf(tl," %.3d "tglimit);
#endif

a = st_worklimit; b = st_dir_search+st_file_sea

¢ = (a/b)*100; t +=c;

fprintf(stderr,"Work stopped due to TGLIMIT: (
tl,st_worklimit,c);

fprintf(stderr,"Work continued to be handed out
100.00-t);

fprintf(stderr,”

}

/*

* not running: A glue function to track if any sea

* threads are running. When the count is zero, and
* we can safly say, WE ARE DONE.

*/

void

notrun (void)

mutex_lock(&work_q_IK);
work_cnt--;

tglimit++;
current_open_files++;
mutex_lock(&running_Ik);
if (flags & FS_STATS) {

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

%d\n",
float)(st_end - st_start);
%3.2f\n",

%d\n",
get: %d\n",
ed: %d\n",
pool: %d\n",

%3.2f%%\n",
%d\n",
%d\n",

oyed: %d\n",

d: %d\n",

ool: %d\n",

%3.2f%%\n",
%d\n",
%d\n",

yed: %d\n",

renly: %d\n",

%d\n",

h;

%.3d) %d Times, %3.2f%%\n",
ch;

Q: %d Times, %3.2f%%\n",

out the lock ! */

rch;
%.9s) %d Times, %3.2f%%\n",

%3.21%%\n",

rch threads or cascade
the work Q is NULL,

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

mutex_lock(&stat_IK);
if (running > st_maxrun) {
st_maxrun = running;

DP(DLEVELS,("Max Running has increased to %d\n",st_maxrun));
mutex_unlock(&stat_IK);
}
running--;
if (work_cnt == 0 && running == 0) {
all_done =1;
DP(DLEVELS,("Setting ALL_DONE flag to TRUE. \n"));

mutex_unlock(&running_Ik);
cond_signal(&work_q_cv);
mutex_unlock(&work_q_lk);

}

/*

* uncase: A glue function. If the -i (case insensi tive) flag is set, the
* target strng and the read in line is converted t o lower case before
* comparing them.

*/

void

uncase(char *s)

char *p;

for (p =S; *p 1= NULL; p++)
*p = (char)tolower(*p);

/*
* SigThread: if the -S option is set, the first °C set to tgrep will

* print the stats on the fly, the second will kill the process.
*/

void *
SigThread(void *arg)
{

int sig;
int stats_printed = 0O;

while (1) {

sig = sigwait(&set);

DP(DLEVEL7,("Signal %d caught\n",sig));

switch (sig) {

case -1:
fprintf(stderr,"Signal error\n");
break;

case SIGINT:
if (stats_printed)

exit(1);

stats_printed = 1;
sig_print_stats();
break;

case SIGHUP:
sig_print_stats();
break;

default:
DP(DLEVEL?7,("Default action taken (exit) for signal %d\n",sig));
exit(1); /* default action */

}

}
}

void
sig_print_stats(void)

/*

** Get the output lock first

** Then get the stat lock.

*/

mutex_lock(&output_print_IK);
mutex_lock(&stat_Ik);
prnt_stats();
mutex_unlock(&stat_Ik);
mutex_unlock(&output_print_Ik);
return;

/*

36 of 42 8/4/2008 5:31uu

Thread programming examples

37 of 42

* usage: Have to have one of these.
*/

void

usage(void)

fprintf(stderr,"usage: tgrep <options> pattern
fprintf(stderr,"\n");
fprintf(stderr,"Where:\n");
#ifdef DEBUG
fprintf(stderr,"Debug -d = debug level -d <
fprintf(stderr,"Debug -f = block fd's from
#endif

fprintf(stderr,” -b = show block count
fprintf(stderr,” -c = print only a lin
fprintf(stderr," -h = do not print fil
fprintf(stderr,” -i = case insensitive
fprintf(stderr," -| = print file name
fprintf(stderr,” -n = print the line n
fprintf(stderr," -S = Suppress error m
fprintf(stderr," -v = print all but ma
#ifdef NOT_IMP
fprintf(stderr," -w = search for a \"w
#endif
fprintf(stderr," -r = Do not search fo
"sub-directories\n"
fprintf(stderr,” -C = show continued |
fprintf(stderr," -p = File name regexp
fprintf(stderr,” -P = show progress. -

for each file it
on stderr for ea

fprintf(stderr," -e = expression searc
fprintf(stderr," -B = limit the number
fprintf(stderr,” -S = Print thread sta
fprintf(stderr," -Z = Print help on th

fprintf(stderr,"\n");

fprintf(stderr,"Notes:\n");

fprintf(stderr,” If you start tgrep with o
fprintf(stderr,” and no file names, you mu
fprintf(stderr,” set or you will get no ou
fprintf(stderr,” To search stdin (piped in
fprintf(stderr,” Tgrep will search ALL fil
fprintf(stderr,” sub-directories. (like */
fprintf(stderr,” if you supply a directory
fprintf(stderr,” If you do not supply a fi
fprintf(stderr,” and the -r option is not
fprintf(stderr,” directory \".\" will be u
fprintf(stderr,” All the other options sho
fprintf(stderr," The -p patten is regexp,
fprintf(stderr,” the file names that match
fprintf(stderr,"\n");

fprintf(stderr,” Tgrep Version %s\n", Tgrep

fprintf(stderr,"\n");

fprintf(stderr,” Copy Right By Ron Winacot

fprintf(stderr,"\n");
exit(0);
}

/*

* regexp usage: Tell the world about tgrep custom
*/

int
regexp_usage (void)

fprintf(stderr,"usage: tgrep <options> -e \"pat

"<{file,dir}>...\n");
fprintf(stderr,"\n");
fprintf(stderr,"metachars:\n");
fprintf(stderr,” . - match any character\n")
fprintf(stderr,” * - match O or more occurre
fprintf(stderr,” + - match 1 or more occurre
fprintf(stderr,” " - match at begining of st
fprintf(stderr,” $ - match end of string\n")
fprintf(stderr,” [- start of character clas
fprintf(stderr,”] - end of character class\
fprintf(stderr," (- start of a new pattern\
fprintf(stderr,”) - end of a new pattern\n”

fprintf(stderr,” @ (n)c - match <c> at column

fprintf(stderr,” | - match either pattern\n"
fprintf(stderr,” \\ - escape any special cha
fprintf(stderr,” \\c - escape any special ch
fprintf(stderr,” \\o - turn on any special ¢
fprintf(stderr,"\n");

<{file,dir}>..\n");

levels> (-dO for usage)\n");
use (-f #)\n");

(512 byte block)\n");

e count\n");

e hames\n");

\n");

only\n");

umber with the line\n");
essages\n");

tching lines\n");

ord\"\n");
rfilesinall "

);
ines (\"\\W")\n");
pattern. (Quote it)\n");

P 1 prints a DOT on stderr\n”

finds, -P 10 prints a DOT\n"
ch 10 files it finds, etc...\n");

h.(regexp) More then one\n");

of threads to TGLIMIT\n");
ts when done.\n");
e regexp used.\n");

nly a directory name\n");
st not have the -r option\n™);
tput.\n");

put), you must set -r\n");
esin ALL \n");

* kxR kR etc,)\n™);
name.\n");

le, or directory name,\n");
set, the current \n");
sed.\n");

uld work \"like\" grep\n");
tgrep will search only\n");
the patten\n™);

_Version);

t, 1993-1995.\n");

(THREAD SAFE) regexp!
tern\" <-e ..>"

’nces of pervious char\n");
nces of pervious char.\n");
ring\n”);

’s\n");

n");

r.]II);

’<n>\n");

récters\n");

aracters\n");
haracters\n");

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

fprintf(stderr,"To match two diffrerent pattern
fprintf(stderr,"Use the or function. \n"

"ie: tgrep -e \"(patl)|(pat2)\" file\n"

"This will match any line with \"pat1\"
fprintf(stderr,"You can also use up to %d -e ex
fprintf(stderr,"RegExp Pattern matching brought
exit(0);

}

/*

* debug usage: If compiled with -DDEBUG, turn it 0
* how to get tgrep to print debug info on differen

*/

#ifdef DEBUG

void

debug_usage(void)

{

inti=0;

fprintf(stderr,"DEBUG usage and levels:\n");
fprintf(stderr,”
fprintf(stderr,"Level code\n"
fprintf(stderr,”
fprintf(stderr,"0 This message.
for (i=0; i<9; i++) {

fprintf(stderr,"%d %s\n",i+

fprintf(stderr,”
fprintf(stderr,"You can or the levels together
fprintf(stderr,"1 and 3 and 4.\n");
fprintf(stderr,"\n");

exit(0);

L
#endif

Multithreaded Quicksort

s in the same command\n");

or \"pat2\" in it.\n");
presions\n",MAXREGEXP);
to you by Marc Staveley\n™);

n, and tell the world
t threads.

like -d134 for Ieveis\n");

The following exampleguick.c implements the quicksort algorithm using threads.

~
*

Multithreaded Demo Source

Copyright (C) 1995 by Sun Microsystems, Inc.
All rights reserved.

This file is a product of SunSoft, Inc. and is p
unrestricted use provided that this legend is in
media and as a part of the software program in w
Users may copy, modify or distribute this file a

THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES O
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FI
PURPOSE, OR ARISING FROM A COURSE OF DEALING, US

This file is provided with no support and withou
part of SunSoft, Inc. to assist in its use, corr
enhancement.

SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO
TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS
FILE OR ANY PART THEREOF.

IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, IN
LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRE
DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE P
DAMAGES.

SunSoft, Inc.
2550 Garcia Avenue
Mountain View, California 94043

H 0% % F X F X F X X 3 X X X X X X X X X X X F X X X X F F

R

/*

* multiple-thread quick-sort. See man page for gs
* Works fine on uniprocessor machines as well.

*

* Written by: Richard Pettit (Richard.Pettit@Wes
*/

38 of 42

rovided for
cluded on all
hole or part.
t will.

F ANY KIND INCLUDING
TNESS FOR A PARTICULAR
AGE OR TRADE PRACTICE.
t any obligation on the

ection, modification or

LIABILITY WITH RESPECT
OR ANY PATENTS BY THIS

C. BE LIABLE FOR ANY
CT AND CONSEQUENTIAL
OSSIBILITY OF SUCH

ort(3c) for info.

t.Sun.COM)

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

#include <unistd.h>
#include <stdlib.h>
#include <thread.h>

/* don't create more threads for less than this */
#define SLICE_THRESH 4096

/* how many threads per lwp */
#define THR_PER_LWP 4

/* cast the void to a one byte quanitity and comput e the offset */
#define SUB(a, n) ((void *) (((unsigned char *) (8)) + ((n) * width)))
typedef struct {

void *sa_base;

int sa_nel;

size t sa_width;
int (*sa_compar)(const void *, const void *);
} sort_args_t;

/* for all instances of quicksort */
static int threads_avail;

#define SWAP(a, i, j, width) \
{\
intn; \
unsigned char uc; \
unsigned short us; \
unsigned long ul; \
unsigned long long ull; \
\
if (SUB(a, i) == pivot) \
pivot = SUB(a, j); \
else if (SUB(a, j) == pivot) \
pivot = SUB(a, i); \
\

/* one of the more convoluted swaps I've done */ \
switch(width) {\
case 1:\
uc = *((unsigned char *) SUB(a, i)); \
*((unsigned char *) SUB(a, i)) = *((unsigned ch ar *) SUB(a, j)); \
*((unsigned char *) SUB(a, j)) = uc; \
break; \
case 2:\
us = *((unsigned short *) SUB(a, i)); \
*((unsigned short *) SUB(a, i)) = *((unsigned s hort *) SUB(a, j)); \
*((unsigned short *) SUB(a, j)) = us; \
break; \
case 4:\
ul = *((unsigned long *) SUB(a, i)); \
*((unsigned long *) SUB(a, i)) = *((unsigned lo ng *) SUB(a, j)); \
*((unsigned long *) SUB(a, j)) = ul; \
break; \
case 8:\
ull = *((unsigned long long *) SUB(a, i)); \
*((unsigned long long *) SUB(a,i)) = *((unsigne d long long *) SUB(a,))); \
*((unsigned long long *) SUB(a, j)) = ull; \
break; \
default: \

for(n=0; n<width; n++) {\
uc = ((unsigned char *) SUB(a, i))[n]; \

((unsigned char *) SUB(a, i))[n] = ((unsigned char *) SUB(a, j))[n]; \
((unsigned char *) SUB(a, j))[n] = uc; \
N
break; \
ja
}
static void *

_quicksort(void *arg)

sort_args_t *sargs = (sort_args_t *) arg;
register void *a = sargs->sa_base;

int n = sargs->sa_nel;

int width = sargs->sa_width;

int (*compar)(const void *, const void *) = sargs ->sa_compar;
register int i;

register int j;

int z;

int thread_count = 0;

void *t;

void *b[3];

39 of 42 8/4/2008 5:31uu

Thread programming examples

void *pivot = 0;
sort_args_t sort_args[2];
thread_t tid;

/* find the pivot point */
switch(n) {
case 0:
case 1:
return O;
case 2:
if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
SWAP(a, 0, 1, width);

return O;
case 3:
/* three sort */
if (*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
SWAP(a, 0, 1, width);

[* the first two are now ordered, now order the
if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {
SWAP(a, 2, 1, width);

/* should the second be moved to the first? */
if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {
SWAP(a, 1, 0, width);

return O;
default:
if (n>3){
b[0] = SUB(a, 0);
b[1] = SUB(a, n/ 2);
b[2] = SUB(a, n - 1);
/* three sort */
if ((*compar)(b[0], b[1]) > 0) {
t=b[0]
b[0] = b[1];
b[1] =t;

/* the first two are now ordered, now order t
if ((*compar)(b[2], b[1]) < 0) {

t=Db[1];

b[1] = b[2];

b[2] =t;

/* should the second be moved to the first? *
if ((*compar)(b[1], b[0]) < 0) {

t=b[0];

b[0] = b[1];

b[1]=t;

}
if ((*compar)(b[0], b[2]) != 0)
if ((*compar)(b[0], b[1]) < 0)
pivot = b[1];
else
pivot = b[2];

break;

}
if (pivot == 0)
for(i=1; i<n; i++) {
if (z = (*compar)(SUB(a, 0), SUB(a, i))) {
pivot = (z > 0) ? SUB(a, 0) : SUB(a, i);
break;

}

}
if (pivot == 0)
return;

/* sort */
i=0;
j=n-1,
while(i <=j) {
while((*compar)(SUB(a, i), pivot) < 0)
++i;
while((*compar)(SUB(a, j), pivot) >= 0)
-k
if (1<) {
SWAP(a, i, j, width);
++i;
el
}

40 of 42

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

second two */

he second two */

8/4/2008 5:37up

Thread programming examples http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

}

/* sort the sides judiciously */
switch(i) {
case 0:
case 1:
break;
case 2:
if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
SWAP(a, 0, 1, width);
}
break;
case 3:
/* three sort */
if (*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
SWAP(a, 0, 1, width);

/* the first two are now ordered, now order the second two */
if (*compar)(SUB(a, 2), SUB(a, 1)) < 0) {
SWAP(a, 2, 1, width);

* should the second be moved to the first? */
if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {
SWAP(a, 1, 0, width);
}
break;
default:
sort_args[0].sa_base =a;
sort_args[0].sa_nel =i
sort_args[0].sa_width = width;
sort_args[0].sa_compar = compat;
if ((threads_avail > 0) && (i > SLICE_THRESH)) {
threads_avail--;
thr_create(0, O, _quicksort, &sort_args[0], O , &tid);
thread_count = 1;
} else
_quicksort(&sort_args[0]);
break;
b
j=n-i
switch(j) {
case 1:
break;
case 2:
if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {
SWAP(a, i, i + 1, width);
}
break;
case 3:
[* three sort */
if (*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {
SWAP(a, i, i + 1, width);

/* the first two are now ordered, now order the second two */
if (*compar)(SUB(a, i + 2), SUB(a, i+ 1)) <0){
SWAP(a, i + 2, i+ 1, width);

/* should the second be moved to the first? */
if ((*compar)(SUB(a, i + 1), SUB(a, i)) < 0) {
SWAP(a, i + 1, i, width);

}
break;
default:

sort_args[l].sa_base = SUB(a, i);

sort_args[1].sa_nel =j;

sort_args[1].sa_width = width;

sort_args[1].sa_compar = compatr;

if ((thread_count == 0) && (threads_avail > 0) && (i > SLICE_THRESH)) {
threads_avail--;
thr_create(0, O, _quicksort, &sort_args[1], 0 , &tid);
thread_count = 1;

} else
_quicksort(&sort_args[1]);

break;

if (thread_count) {
thr_join(tid, 0, 0);
threads_avail++;

return O;

}

41 of 42 8/4/2008 5:31uu

Thread programming examples

42 of 42

void
quicksort(void *a, size_t n, size_t width,

int (*compar)(const void *, const void *)

static int ncpus = -1;
sort_args_t sort_args;

if (ncpus ==-1) {
ncpus = sysconf(_SC_NPROCESSORS_ONLN);

/* lwp for each cpu */
if ((ncpus > 1) && (thr_getconcurrency() < ncpu
thr_setconcurrency(ncpus);

[* thread count not to exceed THR_PER_LWP per |
threads_avail = (ncpus == 1) ? 0 : (ncpus * THR

}

sort_args.sa_base = a;

sort_args.sa_nel = n;

sort_args.sa_width = width;

sort_args.sa_compar = compar;

(void) _quicksort(&sort_args);

Dave Marshall
1/5/1999

http://www.cs.cf.ac.uk/Dave/C/node32.html#SECTIORRO000000.

s)

wp */

_PER_LWP);

8/4/2008 5:37up

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

1of14

Subsections

e What Is RPC
e How RPC Works
e RPC Application Development
o Defining the Protocol
o Defining Client and Server Application Code
o Compliling and running the application
Overview of Interface Routines
o Simplified Level Routine Function
o Top Level Routines
Intermediate Level Routines
o Expert Level Routines
o Bottom Level Routines
The Programmer's Interface to RPC
o Simplified Interface
o Passing Arbitrary Data Types
o Developing High Level RPC Applications
» Defining the protocol
o Sharing the data
= The Server Side
= The Client Side
Exercise

Remote Procedure Calls (RPC)

This chapter provides an overview of Remote Procedure Calls (RPC) RPC.

What Is RPC

RPC is a powerful technique for constructing distributed, client-server basedtpp$clt is based on
extending the notion of conventional, or local procedure calling, so that the called proceduretnee
exist in the same address space as the calling procedure. The two processesmtlg bame system
or they may be on different systems with a network connecting them. By using RPCyonegsaof
distributed applications avoid the details of the interface with the network. Thpdraimslependence
of RPC isolates the application from the physical and logical elements of th@dataunications
mechanism and allows the application to use a variety of transports.

RPC makes the client/server model of computing more powerful and easier to prodramcdhbined
with the ONC RPCGEN protocol compiler (Chapd&) clients transparently make remote calls throt
a local procedure interface.

How RPC Works

An RPC is analogous to a function call. Like a function call, when an RPC is made, tige calli
arguments are passed to the remote procedure and the caller waits for a resporetarteeddrom the
remote procedure. FiguB2.1shows the flow of activity that takes place during an RPC call betwe
two networked systems. The client makes a procedure call that sends a requestrtetizag waits.
The thread is blocked from processing until either a reply is received, or it tim&¥lwr the request
arrives, the server calls a dispatch routine that performs the requested sevisends the reply to th

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

2 of 14

client. After the RPC call is completed, the client program continues. RPGicgicsupports network
applications.

MACHIMNEE
clisnt (SERVER)
program o
-
callmpe
muﬁiuﬁ exe cute
Tequest call
seTrice
MAZHINE &
{CLIENT}) 3ervrice
execite s
——ee
Teque st
Ietum completes
Eply
-~
PIOSTAl
continues

Fig. 32.1 Remote Procedure Calling Mechanisn remote procedure is uniquely identified by the
triple: (program number, version number, procedure number) The program number identdigs af g
related remote procedures, each of which has a unique procedure number. A program may cols
or more versions. Each version consists of a collection of procedures which are at@ba&oballed
remotely. Version numbers enable multiple versions of an RPC protocol to be avaitalitarseously.
Each version contains a a number of procedures that can be called remotely. Each praeedure he
procedure number.

RPC Application Development

Consider an example:

A client/server lookup in a personal database on a remote machine. Assuming that wacmaassahe
database from the local machine (via NFS).

We use UNIX to run a remote shell and execute the command this way. There are soanesprotbi
this method:

e the command may be slow to execute.
e You require an login account on the remote machine.

The RPC alternative is to

e establish an server on the remote machine that can repond to queries.
¢ Retrieve information by calling a query which will be quicker than previous approach.

To develop an RPC application the following steps are needed:

e Specify the protocol for client server communication
e Develop the client program
e Develop the server program

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

3 of 14

The programs will be compiled seperately. The communication protocol is achievatebgtge stubs
and these stubs and rpc (and other libraries) will need to be linked in.

Defining the Protocol

The easiest way to define and generate the protocol is to use a protocol compliersigeh ashich
we discuss is Chapt&B.

For the protocol you must identify the name of the service procedures, and data types etiepsiamnd
return arguments.

The protocol compiler reads a definitio and automatically generates clientraadstabs.

rpcgen uses its own language (RPC language or RPCL) which looks very similar to preproces
directives.

rpcgen exists as a standalone executable compiler that reads special files dersotetsfix.

So to compile a RPCL file you simply do
rpcgen rpcprog.x

This will generate possibly four files:

e rpcprog_clnt.c -- the client stub

® rpcprog_svc.c -- the server stub

e rpcprog_xdr.c -- If necessary XDR (external data representation) filters
e rpcprog.h - the header file needed for any XDR filters.

The external data representation (XDR) is an data abstraction needed for nratgpeadent
communication. The client and server need not be machines of the same type.

Defining Client and Server Application Code

We must now write the the client and application code. They must communicate via procediudata
types specified in the Protocol.

The service side will have to register the procedures that may be called bgrhard receive and
return any data required for processing.

The client application call the remote procedure pass any required data andeni# the retruned
data.

There are several levels of application interfaces that may be used to develapptP&aions. We will
briefly disuss these below before exapnading thhe most common of these in lateschapter

Compliling and running the application

Let us consider the full compilation model required to run a RPC application. Makedilesedul for
easing the burden of compiling RPC applications but it is necessary to understand tletecomogél
before one can assemble a convenient makefile.

Assume the the client program is callechrog.c , the service program igcsvc.c and that the
protocol has been definedrstprog.x and thatpcgen has been used to produce the stub and filtel
files: rpcprog_clnt.c, rpcprog_sve.c, rpcprog_xdr.c, rpcpr og.h .

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

4 of 14

The client and server program must inclugélec(ude "rpcprog.h"
You must then:

e compile the client code:
cC -C rpcprog.c
e compile the client stub:
cc -C rpcprog_clint.c
e compile the XDR filter:
cc -C rpcprog_xdr.c
¢ build the client executable:
CC -0 rpcprog rpcprog.o rpcprog_clint.o rpcprog_xdr. c
e compile the service procedures:
CC -C rpcsvc.c
e compile the server stub:
CC -C rpcprog_svc.c
e build the server executable:

CC -0 IPCSVC IPCSVC.0 rPCprog_svce.o rpcprog_xdr.c

Now simply run the programscprog andrpcsve on the client and server respectively. The server
procedures must be registered before the client can call them.

Overview of Interface Routines

RPC has multiple levels of application interface to its services. Thess progide different degrees c
control balanced with different amounts of interface code to implement. In order @fsimgyeontrol
and complexity. This section gives a summary of the routines available at edcBilepdfied
Interface Routines

The simplified interfaces are used to make remote procedure calls to routinesronamthi@es, and
specify only the type of transport to use. The routines at this level are used for micstiappl
Descriptions and code samples can be found in the section, Simplified Interface @ 3-2.

Simplified Level Routine Function

rpc_reg() -- Registers a procedure as an RPC program on all transports of the specified type
rpc_call() -- Remote calls the specified procedure on the specified remote host.
rpc_broadcast() -- Broadcasts a call message across all transports of the specifiedaypler®

Interface Routines The standard interfaces are divided into top level, inteeriededt expert level,
and bottom level. These interfaces give a developer much greater control over coromunica
parameters such as the transport being used, how long to wait beforeresponding to errors and
retransmitting requests, and so on.

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

5 of 14

Top Level Routines

At the top level, the interface is still simple, but the program has to creagmiheindle before making
a call or create a server handle before receiving calls. If you want the appltoatun on all transports
use this interface. Use of these routines and code samples can be found in Top Lew Interfa

cint_create() -- Generic client creation. The program telis_create() where the server is locate
and the type of transport to use.

cint_create_timed() Similar tocint_create() but lets the programmer specify the maximum tim:
allowed for each type of transport tried during the creation attempt.

svc_create() -- Creates server handles for all transports of the specified type. The pretisam t
svc_create() which dispatch function to use.

cint_call() -- Client calls a procedure to send a request to the server.

Intermediate Level Routines

The intermediate level interface of RPC lets you control details. Prograttenvat these lower levels
are more complicated but run more efficiently. The intermediate level enablés gpecify the
transport to use.

cint_tp_create() -- Creates a client handle for the specified transport.

clnt_tp_create_timed() -- Similar tocint_tp_create() but lets the programmer specify the
maximum time allowedsvc_tp_create() Creates a server handle for the specified transport.

cint_call() -- Client calls a procedure to send a request to the server.

Expert Level Routines

The expert level contains a larger set of routines with which to specify transladed parameters. Us
of these routines

cint_tli_create() -- Creates a client handle for the specified transport.

svc_tli_create() -- Creates a server handle for the specified transport.

rpcb_set() -- Calls rpcbind to set a map between an RPC service and a network address.
rpcb_unset() -- Deletes a mapping set p¢b_set()

rpcb_getaddr() -- Calls rpcbind to get the transport addresses of specified RPC services.

svc_reg() -- Associates the specified program and version number pair with the specifiddidispa
routine.

svc_unreg() -- Deletes an association setsoy reg()

cint_call() -- Client calls a procedure to send a request to the server.

Bottom Level Routines

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

6 of 14

The bottom level contains routines used for full control of transport options.

cint_dg_create() -- Creates an RPC client handle for the specified remote program, using a
connectionless transport.

svc_dg_create() -- Creates an RPC server handle, using a connectionless transport.

cInt_vc_create() -- Creates an RPC client handle for the specified remote program, using a
connection-oriented transport.

svc_vc_create() -- Creates an RPC server handle, using a connection-oriented transport.

cint_call() -- Client calls a procedure to send a request to the server.

The Programmer's Interface to RPC

This section addresses the C interface to RPC and describes how to write netwecaki@mpgplusing
RPC. For a complete specification of the routines in the RPC library, see thad relateehan pages.

Simplified Interface

The simplified interface is the easiest level to use because it does not tleguise of any other RPC
routines. It also limits control of the underlying communications mechanisms. Prdgkeelopment at
this level can be rapid, and is directly supported byddyen compiler. For most applications, rpcger
and its facilities are sufficient. Some RPC services are not availaBléumetions, but they are
available as RPC programs. The simplified interface library routines proveds dccess to the RPC
facilities for programs that do not require fine levels of control.

Routines such assers are in the RPC services libraiypcsve . rusers.c , below, is a program tha
displays the number of users on a remote host. It calls the RPC library rastire,.

Theprogram.c program listing:

#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
#include <stdio.h>

/*
* a program that calls the

* rusers() service
*

main(int argc,char **argv)

{

int num;

if (argc '=2) {
fprintf(stderr, "usage: %s hostname\n”,
argv[Q]);
exit(1);

if ((num = rnusers(argv[1])) < 0) {
fprintf(stderr, "error: rusers\n®);
exit(1);
}

fprintf(stderr, "%d users on %s\n", num, argv[1]);
exit(0);

Compile the program with:

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

7 of 14

cc program.c -Irpcsvc -Insl
The Client Side
There is just one function on the client side of the simplified interfaceall()

It has nine parameters:

int
rpc_call (char *host /* Name of server host */,
u_long prognum /* Server program number */,
u_long versnum /* Server version number */,
xdrproc_t inproc /* XDR filter to encode arg */ ,
char *in /* Pointer to argument */,
xdr_proc_t outproc /* Filter to decode result * /,
char *out /* Address to store result */,
char *nettype /* For transport selection */);

This function calls the procedure specifiedbgnum, versum, andprocnum on the host. The
argument to be passed to the remote procedure is pointed toibygaemeter, angproc is the XDR
filter to encode this argument. The& parameter is an address where the result from the remote
procedure is to be placedtproc is an XDR filter which will decode the result and place it at this
address.

The client blocks ofpc_call() until it receives a reply from the server. If the server accepts, it ret
RPC_suUccEssvith the value of zero. It will return a non-zero value if the call was unsuccessfil. Th
value can be cast to the typet_stat , an enumerated type defined in the RPC include files
(<rpc/rpc.h>) and interpreted by thiet_sperrno() function. This function returns a pointer to a
standard RPC error message corresponding to the error code. In the exampleblall trasisports
listed in/etc/netconfig are tried. Adjusting the number of retries requires use of the lower levels
the RPC library. Multiple arguments and results are handled by collecting thanrciares.

The example changed to use the simplified interface, looks like

#include <stdio.h>
#include <utmp.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

/* a program that calls the RUSERSPROG
* RPC program
*/

main(int argc, char **argv)

unsigned long nusers;

enum cint_stat cs;

if (argc 1= 2) {
fprintf(stderr, "usage: rusers hostname\n");
exit(1);

if(cs = rpc_call(argv[1l], RUSERSPROG,
RUSERSVERS, RUSERSPROC_NUM, xdr_void,
(char *)0, xdr_u_long, (char *)&nusers,
"visible") '= RPC_SUCCESS) {
cint_perrno(cs);
exit(1);
}

fprintf(stderr, "%d users on %s\n", nusers, argv [11);
exit(0);
}

Since data types may be represented differently on different maapinesl)() needs both the type
of, and a pointer to, the RPC argument (similarly for the resultRE®ERSPROC_NUthe return value

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

8 of 14

is an unsigned long, so the first return parametescotall() iSxdr_u_long (which is for an
unsigned long) and the seconduisers (which points to unsigned long storage). Because
RUSERSPROC_NUWas no argument, the XDR encoding functiorpofcall() isxdr_void() and its
argument isNULL

The Server Side

The server program using the simplified interface is very straightforwasichply callsrpc_reg() to
register the procedure to be called, and then it eallsun() , the RPC library's remote procedure
dispatcher, to wait for requests to come in.

rpc_reg() has the following prototype:

rpc_reg(u_long prognum /* Server program number */,
u_long versnum /* Server version number */,

u_long procnum /* server procedure number * /,
char *procname /* Name of remote function * /,
xdrproc_t inproc /* Filter to encode arg */ ,
xdrproc_t outproc /* Filter to decode resul t*/,
char *nettype /* For transport selection */);

svc_run() invokes service procedures in response to RPC call messages. The dispaichegin
takes care of decoding remote procedure arguments and encoding results, using the?$sDR fi
specified when the remote procedure was registered. Some notes about the searar progr

e Most RPC applications follow the naming convention of appendingta the function name.
The sequencen is added to the procedure names to indicate the version nurabtre service.

e The argument and result are passed as addresses. This is true for all functemescthiléd
remotely. If you passULL as a result of a function, then no reply is sent to the client. It is ass
that there is no reply to send.

e The result must exist in static data space because its value is accesdbeé alctual procedure
has exited. The RPC library function that builds the RPC reply message at¢hesssult and
sends the value back to the client.

¢ Only a single argument is allowed. If there are multiple elements of datahbeld be wrapped
inside a structure which can then be passed as a single entity.

e The procedure is registered for each transport of the specified type. If the @peferigchar
*NULL , the procedure is registered for all transports specifie@ TRATH

You can sometimes implement faster or more compact code thagstgan. rpcgen handles the
generic code-generation cases. The following program is an example of a hand-gstedioa
routine. It registers a single procedure and entersun() to service requests.

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

void *rusers();
main()
if(rpc_reg(RUSERSPROG, RUSERSVERS,

RUSERSPROC_NUM, rusers,
xdr_void, xdr_u_long,

"visible") == -1) {
fprintf(stderr, "Couldn't Register\n");
exit(1);

svc_run(); /* Never returns */
fprintf(stderr, "Error: svc_run returned\n");
exit(1);

}

rpc_reg() can be called as many times as is needed to register different programssyeirsil

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

9 of 14

procedures.

Passing Arbitrary Data Types

Data types passed to and received from remote procedures can be any of a set ofdotygolesfinar car
be programmer-defined types. RPC handles arbitrary data structures, ssgafdiéferent machines'
byte orders or structure layout conventions, by always converting them to a standé&ed fvemat
called external data representation (XDR) before sending them over the trafspanversion from
a machine representation to XDR is called serializing, and the reverse psacadted deserializing.
The translator arguments @t_call() andrpc_reg() can specify an XDR primitive procedure, like
xdr_u_long() , or a programmer-supplied routine that processes a complete argument structure.
Argument processing routines must take only two arguments: a pointer to the resysoartdrato the
XDR handle.

The following XDR Primitive Routines are available:

xdr_int() xdr_netobj() xdr_u_long() xdr_enum()

xdr_long() xdr_float() xdr_u_int() xdr_bool()

xdr_short() xdr_double() xdr_u_short() xdr_wrapstri ng()
xdr_char() xdr_quadruple() xdr_u_char() xdr_void()

The nonprimitivexdr_string() , Which takes more than two parameters, is called from
xdr_wrapstring()

For an example of a programmer-supplied routine, the structure:

struct simple {
int a;
short b;
} simple;

contains the calling arguments of a procedure. The XDR routin@mple() translates the argumen
structure as shown below:

#include <rpc/rpc.h>
#include "simple.h"

bool_t xdr_simple(XDR *xdrsp, struct simple *simple p)

if (Ixdr_int(xdrsp, &simplep->a))
return (FALSE);

if (Ixdr_short(xdrsp, &simplep->b))
return (FALSE);

return (TRUE);

An equivalent routine can be generated automaticaltydggn (See Chapte33).
An XDR routine returns nonzero (a C TRUE) if it completes successfully, and zeraisthe

For more complex data structures use the XDR prefabricated routines:

xdr_array() xdr_bytes() xdr_reference()
xdr_vector() xdr_union() xdr_pointer()
xdr_string() xdr_opaque()

For example, to send a variable-sized array of integers, it is packaged inw@aetrootaining the array
and its length:

struct varintarr {
int *data,;

int arrinth;

}arr;

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

10 of 14

Translate the array withur_array() , as shown below:

bool_t xdr_varintarr(XDR *xdrsp, struct varintarr * arrp)

return(xdr_array(xdrsp, (caddr_t)&arrp->data,
(u_int *)&arrp->arrinth, MAXLEN, sizeo f(int), xdr_int));
}

The arguments ofdr_array() are the XDR handle, a pointer to the array, a pointer to the size of t
array, the maximum array size, the size of each array element, and a pomtexX@R routine to
translate each array element. If the size of the array is known in advancad, wseor() instread as
is more efficient:

int intarr[SIZE];
bool_t xdr_intarr(XDR *xdrsp, int intarr[])

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(i nt), xdr_int));

}

XDR converts quantities to 4-byte multiples when serializing. For arrays @fatbes, each character
occupies 32 bitsdr_bytes() packs characters. It has four parameters similar to the first four
parameters ofdr_array()

Null-terminated strings are translatedxay string() . Itis likexdr_bytes() with no length
parameter. On serializing it gets the string length fsolen() , and on deserializing it creates a
null-terminated string.

xdr_reference() calls the built-in functions xdr_string() arét_reference() , Which translates
pointers to pass a string, and struct simple from the previous examples. An exangble use
xdr_reference() is as follows:

struct finalexample {
char *string;
struct simple *simplep;
} finalexample;

bool_t xdr_finalexample(XDR *xdrsp, struct finalexa mple *finalp)
{ if ("xdr_string(xdrsp, &finalp->string, MAXSTRLE N))
return (FALSE);
if ('xdr_reference(xdrsp, &finalp->simplep, siz eof(struct simple), xdr_simple))

return (FALSE);
return (TRUE);

Note thatdr_simple() could have been called here insteaddofreference()

Developing High Level RPC Applications

Let us now introduce some further functions and see how we develop an application using high |
RPC routines. We will do this by studying an example.

We will develop a remote directory reading utility.

Let us first consider how we would write a local directory reader. We have seern Howhis already
in Chapterl9.

Consider the program to consist of two files:
e lls.c -- the main program which calls a routine in a local modhake dir.c

/*

8/4/2008 5:33u

Remote Procedure Calls (RPC)

11 of 14

* |s.c: local directory listing main - before RPC
*/

#include <stdio.h>

#include <strings.h>

#include "rls.h"

main (int argc, char **argv)

char dir[DIR_SIZE];

[* call the local procedure */
strepy(dir, argv[1]); /* char dirf[DIR_SIZ
read_dir(dir);

[* spew-out the results and bail out of her
printf("%s\n", dir);

exit(0);
}

e read_dir.c -- the file containing théocal routineread_dir()

/* note - RPC compliant procedure calls take one in
return one output. Everything is passed by point
values should point to static data, as it might
survive some while. */

#include <stdio.h>

#include <sys/types.h>

#include <sys/dir.n> /* use <xpg2include/sys/di

<sys/dirent.h> for X/Open Portability Guide

#include "rls.h"

read_dir(char *dir)
/* char dir[DIR_SIZE] */
{
DIR * dirp;
struct direct *d;
printf("beginning ");

[* open directory */

dirp = opendir(dir);

if (dirp == NULL)
return(NULL);

[* stuff filenames into dir buffer */
dir[0] = NULL;
while (d = readdir(dirp))
sprintf(dir, "%s%s\n", dir, d->d_na

[* return the result */

printf("returning);
closedir(dirp);
return((int)dir); /* this is the only new

}

E] is coming and going...

el */

put and
er. Return
have to

rent.h> (Sun0OS4.1) or

, issue 2 conformance */

me);

line from Example 4-3 */

e the header fileis.n contains only the following (for now at least)

#define DIR_SIZE 8192

http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

*

Clearly we need to share the size between the files. Later when we develop BiB@svapre

information will need to be added to this file.

This local program would be compiled as follows:

cc lls.c read_dir.c -o lls

Now we want to modify this program to work over a network: Allowing us to inspect diesmira

remote server accross a network.

The following steps will be required:

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

12 of 14

e We will have to convert thead_dir.c , to run on the server.
o We will have to register the server and the rouisae dir() on the server/.
e The clientis.c will have to call the routine as a remote procedure.
e We will have to define the protocol for communication between the client and the server
programs.

Defining the protocol

We can can use simplLL-terminated strings for passing and receivong the directory name and
directory contents. Furthermore, we can embed the passing of these parametsrsndine client and
server code.

We therefore need to specify the program, procedure and version numbers for client asddesve
can be done automatically usimggen or relying on prdefined macros in the simlified interface. He
we will specify them manually.

The server and client must agedesad of time what logical adresses thney will use (The physical
addresses do not matter they are hidden from the application developer)

Program numbers are defined in a standard way:

0x00000000 - MFFFFFFF: Defined by Sun
0x20000000 - BFFFFFFF: User Defined
0x40000000 - 8BFFFFFFF: Transient
0x60000000 - SFFFFFFFF: Reserved

We will simply choose aser deifnined value for our program number. The version and procedure
numbers are set according to standard practice.

We still have theIR_sIzE definition required from the local version as the size of the directory buf
is rewquired by bith client and server programs.

Our newrls.h file contains:

#define DIR_SIZE 8192

#define DIRPROG ((u_long) 0x20000001) /* server p rogram (suite) number */
#define DIRVERS ((u_long) 1) /* program version number */
#define READDIR ((u_long) 1) /* procedure number for look-up */

Sharing the data

We have mentioned previously that we can pass the data a simple strings. We need &0 déiRe
filter routinexdr_dir() that shares the data. Recall that only one encoding and decoding argume
be handled. This is easy and defined via the standardring() routine.

The XDR file,rls_xrd.c , is as follows:

#include <rpc/rpc.h>
#include "rls.h"
bool_t xdr_dir(XDR *xdrs, char *objp)

{ return (xdr_string(xdrs, &objp, DIR_SIZE)); }
The Server Side

We can use the originadad_dir.c file. All we need to do is register the procedure and start the se

8/4/2008 5:33u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

The procedure is registered witlisterrpc() function. This is prototypes by:

registerrpc(u_long prognum /* Server program number */,
u_long versnum /* Server version number */,
u_long procnum /* server procedure number * /,
char *procname /* Name of remote function * /
xdrproc_t inproc /* Filter to encode arg */ ,
xdrproc_t outproc /* Filter to decode resul t */);

The parameters a similarly defined as inrfleereg simplified interface function. We have already
discussed the setting of the parametere with the prateeol header files and th&_xrd.c XDR
filter file.

Thesvc_run() routine has also been discussed previously.

The fullris_svc.c code is as follows:

#include <rpc/rpc.h>
#include "rls.h"

main()

extern bool_t xdr_dir();
extern char * read_dir();

registerrpc(DIRPROG, DIRVERS, READDIR,
read_dir, xdr_dir, xdr_dir) ;

svc_run();

}
The Client Side

At the client side we simply need to call the remote procedure. The funatipe) does this. It is
prototyped as follows:

callrpc(char *host /* Name of server host */,
u_long prognum /* Server program number */,
u_long versnum /* Server version number */,
char *in /* Pointer to argument */,
xdrproc_t inproc /* XDR filter to encode arg */ ,
char *out /* Address to store result */
xdr_proc_t outproc /* Filter to decode result * /);

We call a local functiomead_dir() which usesallrpc() to call the remote procedure that has bee
registeredREADDIRat the server.

The fullris.c program is as follows:

/*

* rls.c: remote directory listing client
*/

#include <stdio.h>

#include <strings.h>

#include <rpc/rpc.h>

#include "rls.h"

main (argc, argv)
int argc; char *argv[];

{
char dir[DIR_SIZE];

/* call the remote procedure if registered */
strepy(dir, argv[2]);

read_dir(argv[1], dir); /* read_dir(host, d irectory) */
[* spew-out the results and bail out of her el */

printf("%s\n", dir);

13 of 14 8/4/2008 5:33.1u

Remote Procedure Calls (RPC) http://www.cs.cf.ac.uk/Dave/C/node33.html#SECTIORB80000000.

exit(0);

read_dir(host, dir)
char *dir, *host;

{
extern bool_t xdr_dir();
enum cInt_stat cInt_stat;
cint_stat = callrpc (host, DIRPROG, DIRVER S, READDIR,
xdr_dir, dir, xdr_dir, dir) ;
if (cInt_stat != 0) cInt_perrno (cInt_stat) ;
}

Exercise 12833

Compile and run the remote directory example etc. Run both the client ande srever locally and
possible over a network.

Dave Marshall
1/5/1999

14 of 14 8/4/2008 5:33.1u

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

1of 12

Subsections

e What isrpcgen
e An rpcgen Tutorial

o Converting Local Procedures to Remote Procedures
Passing Complex Data Structures
Preprocessing Directives

o cpp Directives

o Compile-Time Flags

o Client and Server Templates

o Examplerpcgen compile options/templates
Recommended Reading
Exercises

Protocol Compiling and Lower Level RPC
Programming

This chapter introduces the rpcgen tool and provides a tutorial with code examples amd teage
available compile-time flags. We also introduce some further RPC progranooinges.

What is r pcgen

Therpcgen tool generates remote program interface modules. It compiles source coele iwvrikie
RPC Language. RPC Language is similar in syntax and structurep@&o. produces one or more C
language source modules, which are then compiled by a C compiler.

The default output of rpcgen is:

¢ A header file of definitions common to the server and the client

¢ A set of XDR routines that translate each data type defined in the header file
e A stub program for the server

e A stub program for the client

rpcgen can optionally generate (although de@not consider these issues here --seepages or
receommended reading):

e Various transports

e A time-out for servers

e Server stubs that are MT safe

e Server stubs that are not main programs

e C-style arguments passing ANSI C-compliant code

e An RPC dispatch table that checks authorizations and invokes service routines

rpcgen significantly reduces the development time that would otherwise be spent developlegdbw
routines. Handwritten routines link easily with the rpcgen output.

An r pcgen Tutorial

rpcgen provides programmers a simple and direct way to write distributed applications: Se
procedures may be written in any language that observes procedure-calling convehéypase Tinked

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

2 of 12

with the server stub produced by rpcgen to form an executable server program. Clighirpsoaee
written and linked in the same way. This section presents some basic rpcgen piograramples.
Refer also to thevan rpcgen online manual page.

Converting Local Procedures to Remote Procedures

Assume that an application runs on a single computer and you want to convert it to run inbat&tist
manner on a network. This example shows the stepwise conversion of this programekat writ
message to the system console.

Single Process Version pfintmesg.c

/* printmsg.c: print a message on the console */
#include <stdio.h>
main(int argc, char *argv[])

{

char *message;

if (argc !=2) {
fprintf(stderr, "usage: %s <message>\n",argv[op;
exit(1);

message = argv[1];

if ('printmessage(message)) {
fprintf(stderr,"%s: couldnlt print your messag e\n",argv|[0]);
exit(1);

printf("Message Delivered!\n");
exit(0);

/* Print a message to the console.
* Return a boolean indicating whether
* the message was actually printed. */

printmessage(char *msg)

FILE *f;
f = fopen("/dev/console”, "w");
if (f == (FILE *)NULL) {

return (0);

fprintf(f, "%s\n", msg);
fclose(f);
return(l);

}
For local use on a single machine, this program could be compiled and executed as follows:

$ cc printmsg.c -0 printmsg
$ printmsg "Hello, there."
Message delivered!

$

If the printmessage() function is turned into eemote procedure, it can be called from anywhere in tl
network.rpcgen makes it easy to do this:

First, determine the data types of all procedure-calling arguments and thamgsoient. The calling
argument oprintmessage() IS a string, and the result is an integer. We can write a protocol
specification in RPC language that describes the remote version of printeaédsarPC language
source code for such a specification is:

/* msg.x: Remote msg printing protocol */
program MESSAGEPROG {
version PRINTMESSAGEVERS {
int PRINTMESSAGE(string) = 1;

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

}=1
} = 0x20000001;

Remote procedures are always declared as part of remote programs. The code ®eademntire
remote program that contains the single proceBRNTMESSAGE

In this example,

® PRINTMESSAGHrocedure is declared to be:
o theprocedure1
o in version 1 of the remote program
® MESSAGEPROGWith the program number 0x20000001.

Version numbers are incremented when functionality is changed in the remote progsimg E
procedures can be changed or new ones can be added. More than one version of a remote prog
be defined and a version can have more than one procedure defined.

Note: that the program and procedure names are declared with all capital letters.nbisequired,
but is a good convention to follow. Note also that the argument type is string and not chardudd it
be in C. This is because a char * in C is ambiguous. char usually means an array arshartdaat
could also represent a pointer to a single character. In RPC language, a noldestrarray of char is
called a string.

There are just two more programs to write:
e The remote procedure itself

Th RPC Version ofrintmsg.c

/*
* msg_proc.c: implementation of the
* remote procedure "printmessage"
*/

#include <stdio.h>
#include "msg.h" /* msg.h generated by rpcgen */

int * printmessage_1(char **msg, struct svc_req *re q)

{

static int result; /* must be static! */
FILE *f;

f = fopen("/dev/console”, "w");
if (f == (FILE *)NULL) {

result = 0;

return (&result);

fprintf(f, "%s\n", *msgq);
fclose(f);

result = 1;

return (&result);

}

Note that the declaration of the remote procegtifienessage_1 differs from that of the local
procedure printmessage in four ways:

o It takes a pointer to the character array instead of the pointer itself. Tius of &ll remote
procedures when theN option is not used: They always take pointers to their argurr
rather than the arguments themselves. Without'the option, remote procedures are
always called with a single argument. If more than one argument is requireduheeats
must be passed in a struct.

o Itis called with two arguments. The second argument contains information on the cot
of an invocation: the program, version, and procedure numbers, raw and canonical

3 0f 12 8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming

4 of 12

ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

credentials, and asvCxPRTstructure pointer (thevCxpPRTstructure contains transport
information). This information is made available in case the invoked procedure refjuir
to perform the request.

It returns a pointer to an integer instead of the integer itself. This is alsaf remote
procedures when theN option is not used: They return pointers to the result. The re
should be declared static unless'the (multithread) or- A (Auto mode) options are
used. Ordinarily, if the result is declared local to the remote procedure, refetentby
the server stub are invalid after the remote procedure returns. In the eage aind'-

A options, a pointer to the result is passed as a third argument to the procedure, so tt
is not declared in the procedure.

An _1 is appended to its name. In general, all remote procedures calls generated by 1
are named as follows: the procedure name in the program definitiorPhRTMESSAGEIS
converted to all lowercase letters, an undetbaris appended to it, and the version num
(here1) is appended. This naming scheme allows multiple versions of the same proce

e The main client program that calls it:

/*

* rprintmsg.c: remote version
* of "printmsg.c”

*/

#include <stdio.h>
#include "msg.h" /* msg.h generated by rpcgen */

main(int argc, char **argv)

CLIENT *clnt;
int *result;

char *server;
char *message;

if (argc '=3) {
fprintf(stderr, "usage: %s host
message\n", argv[0]);
exit(1);

server = argv[1];
message = argv[2];

/*

* Create client "handle" used for

* calling MESSAGEPROG on the server
* designated on the command line.

*

cint = cInt_create(server, MESSAGEPROG, PRINTMESS

if (cInt == (CLIENT *)NULL) {

/*
* Couldn't establish connection
* with server.
* Print error message and die.
*/

cint_pcreateerror(server);
exit(1);
}

/*

* Call the remote procedure

* "printmessage"” on the server
*

result = printmessage_1(&message, cint);
if (result == (int *)NULL) {

/*

* An error occurred while calling

* the server.

AGEVERS, "visible");

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

* Print error message and die.
*/

clnt_perror(cint, server);

exit(1);
}

/* Okay, we successfully called
* the remote procedure.
*/

if (*result ==0) {

/*

* Server was unable to print

* our message.

* Print error message and die.
*/

fprintf(stderr, "%s: could not print your messa ge\n",argv|[0]);
exit(1);

/* The message got printed on the
* server's console
*/

printf("Message delivered to %s\n", server);
cint_destroy(cint);
exit(0);

}

Note the following about Client Program to Call printmsg.c:

o First, a client handle is created by the RPC library routitnecreate() . This client
handle is passed to the stub routine that calls the remote procedure. If no more talls
be made using the client handle, destroy it with a calhtalestroy() to conserve
system resources.

o The last parameter tint_create() is visible, which specifies that any transport noted
visible in/etc/netconfig can be used.

o The remoterocedure printmessage_1 is called exactly the same way as it is declared
msg_proc.c , except for the inserted client handle as the second argument. It also retu
pointer to the result instead of the result.

o The remote procedure call can fail in two ways. The RPC mechanism can faileotdher
be an error in the execution of the remote procedure. In the former case, the remote
procedure printmessage_1 returns alULL In the latter case, the error reporting is
application dependent. Here, the error is returned throeght

To compile the remoterintmsg example:
e compile the protocol defined isg.x : rpcgen msg.x
This generates the header filesd.h), client stub fisg_cint.c), and server stubngg_svc.c).

e compile the client executable:
cc rprintmsg.c msg_clnt.c -0 rprintmsg -Insl
e compile the server executable:

CC Msg_proc.c msg_svc.c -0 msg_server -Insl

The C object files must be linked with the librawysl , which contains all of the networking
functions, including those for RPC and XDR.

In this example, no XDR routines were generated because the application uses orsig tlypdmthat

5 of 12 8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming

are included inbnsl

e |t created a header file calledg.h that containeddefine

ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

. Let us consider further whaicgen did with the input filensg.x :

statements fOMESSAGEPROG,

MESSAGEVER®NAPRINTMESSAGHOr use in the other modules. This ffilast be included by both

the client and server modules.

e |t created the client stub routines in th&y_cint.c
routine, that was called from thgintmsg

printmessage_1

file. Here there is only one, the
client program. If the name of an

rpcgen input file isprog.x , the client stub's output file is calleag_cint.c

e |t created the server programnigg_svc.c that callsprintmessage_1

from msg_proc.c . The rule

for naming the server output file is similar to that of the client: for an inputdiledprog.x , the

output server file is nameglog_svc.c

Once created, the server program is installed on a remote machine and run. (Itinesrae
homogeneous, the server binary can just be copied. If they are not, the server sourcstfitesaopied

to and compiled on the remote machine.)

Passing Complex Data Structures

rpcgen can also be used to generate XDR routines -- the routines that convert local dataestito

XDR format and vice versa.

let us considetlir.x
and to generate the XDR routines.

The RPC Protocol Description Fileit.x

/*
* dir.x: Remote directory listing protocol

*

a remote directory listing service, built usipggen both to generate stub routin

is as follows:

* This example demonstrates the functions of rpcgen

*/

const MAXNAMELEN = 255; /* max length of directory

typedef string nametype<MAXNAMELEN>; /* director en

typedef struct namenode *namelist; /* link in the |
/* A node in the directory listing */

struct namenode {
nametype name; /* name of directory entry */
namelist next; /* next entry */

I3

/*

* The result of a READDIR operation

*

* a truly portable application would use
* an agreed upon list of error codes

* rather than (as this sample program

* does) rely upon passing UNIX errno's
* back.

*

* In this example: The union is used

* here to discriminate between successful
* and unsuccessful remote calls.

*/

union readdir_res switch (int errno) {
case O:
namelist list; /* no error: return directory |
default:
void; /* error occurred: nothing else to retur

J§

6 of 12

entry */
try */

isting */

isting */

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

7 of 12

/* The directory program definition */

program DIRPROG {
version DIRVERS {
readdir_res
READDIR(nametype) = 1;
=1

} = 0x20000076;

You can redefine types (likeaddir_res in the example above) using theict, union , andenum
RPC language keywords. These keywords are not used in later declarations ofsvafitdase types.
For example, if you defineuion , my_un, you declare using onhgy_un, and not uniomy_un. rpcgen
compiles RPC unions into C structures. Do not declare C unions using the union keyword.

Runningrpcgen ondir.x generates four output files:

the header filegir.h

the client stubgir_cint.c

the server skeletodir svc.c ,and
the XDR routines in the filgir_xdr.c

This last file contains the XDR routines to convert declared data types from th@atfmsin
representation into XDR format, and vice versa. For each RPCL data type used ifild)epcgen
assumes thaibnsl contains a routine whose name is the name of the data type, prepended by tt
routine headexdr_ (for examplexdr_int). If a data type is defined in the file, rpcgen generates th
requiredxdr_ routine. If there is no data type definition in thesource file (for exampleysg.x ,
above), then noxdr.c file is generated. You can writexa source file that uses a data type not
supported byibnsl , and deliberately omit defining the type (in tkefile). In doing so, you must
provide thexdr_ routine. This is a way to provide your own customig#d routines.

The server-side of tHREADDIR procedure , dir_proc.c IS shown below:

/*

* dir_proc.c: remote readdir
* implementation

*/

#include <dirent.h>
#include "dir.h" /* Created by rpcgen */

extern int errno;

extern char *malloc();
extern char *strdup();

readdir_res *
readdir_1(nametype *dirname, struct svc_req *req)

{
DIR *dirp;
struct dirent *d;
namelist nl;
namelist *nip;

static readdir_res res; /* must be static! */

/* Open directory */
dirp = opendir(*dirname);

if (dirp == (DIR *)NULL) {

res.errno = errno;
return (&res);

[* Free previous result */
xdr_free(xdr_readdir_res, &res);

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming

8 of 12

/*

* Collect directory entries.

* Memory allocated here is free by
* xdr_free the next time readdir_1
*is called

*/

nlp = &res.readdir_res_u.list;
while (d = readdir(dirp)) {
nl = *nlp = (namenode *)
malloc(sizeof(namenode));
if (nl == (namenode *) NULL) {
res.errno = EAGAIN,;
closedir(dirp);
return(&res);
}
nl->name = strdup(d->d_name);
nlp = &nl->next;

}
*nlp = (hamelist)NULL;

/* Return the result */
res.errno = 0;
closedir(dirp);
return (&res);

}

ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

The Client-side Implementation of implementation of the READDIR procedsite, is given below:

/*
* rls.c: Remote directory listing client
*/

#include <stdio.h>

#include "dir.h" /* generated by rpcgen */

extern int errno;

main(int argc, char *argv][])

CLIENT *clnt;

char *server;

char *dir;
readdir_res *result;
namelist nl;

if (argc '=3) {
fprintf(stderr, "usage: %s host
directory\n",argv|[0]);
exit(1);

server = argv[1];
dir = argv[2];

/*
* Create client "handle" used for

* calling MESSAGEPROG on the server

* designated on the command line.
*/

cl = cInt_create(server, DIRPROG, DIRVERS,

if (cInt == (CLIENT *)NULL) {
cInt_pcreateerror(server);
exit(1);
}

result = readdir_1(&dir, cint);

if (result == (readdir_res *)NULL) {
cint_perror(cint, server);

"tep”)

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

9 of 12

exit(1);

/* Okay, we successfully called
* the remote procedure.
*/

if (result->errno !=0) {
/* Remote system error. Print
* error message and die.
*

errno = result->errno;
perror(dir);
exit(1);

/* Successfully got a directory listing.
* Print it.
*/

for (nl = result->readdir_res_u.list;
nl '= NULL;
nl = nl->next) {
printf("%s\n", nl->name);

xdr_free(xdr_readdir_res, result);
cint_destroy(cl);
exit(0);

}

As in other examples, execution is on systems named local and remote. The Gt@a@ted and run
as follows:

remote$ rpcgen dir.x

remote$ cc -c dir_xdr.c

remote$ cc rls.c dir_clInt.c dir_xdr.o -o rls -Insl

remote$ cc dir_svc.c dir_proc.c dir_xdr.o -o dir_sv ¢ -Insl
remote$ dir_svc

When you installls on system local, you can list the contentsigfshare/lib on system remote a
follows:

local$ rls remote /usr/share/lib
ascii

egnchar

greek

kbd

marg8

tabclr

tabs

tabs4

local$

rpcgen generated client code does not release the memory allocated for the resulRR(E tbal. Call
xdr_free() to release the memory when you are finished with it. It is similar to calling:éoe
routine, except that you pass the XDR routine for the result. In this example, aftegphe list,
xdr_free(xdr_readdir_res, result); was called.

Note - Usexdr_free() to release memory allocated ytioc() . Failure to usedr_free to()
release memory results in memory leaks.

Preprocessing Directives

rpcgen supports C and other preprocessing features. C preprocessing is perforgegehonnput files
before they are compiled. All standard C preprocessing directives are allowedkirsburce files.

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

Depending on the type of output file being generated, five symbols are definedeay. rpcgen
provides an additional preprocessing feature: any line that begins with a pencdpt)sig passed
directly to the output file, with no action on the line's content. Caution is required bgeguse does
not always place the lines where you intend. Check the output source file and, if needed, edit it

The following symbols may be used to process file specific output:

RPC_HDR

-- Header file output
RPC_XDR

-- XDR routine output
RPC_SVC

-- Server stub output
RPC_CLNT

-- Client stub output
RPC_TB

-- Index table output

The following example illustrates tthe usermfgen (ES pre-processing features.

/*
* time.x: Remote time protocol
*/
program TIMEPROG {
version TIMEVERS {
unsigned int TIMEGET() = 1,
1=
} = 0x20000044;

#ifdef RPC_SVC
%int *

%timeget_1()

%{

% static int thetime;
%

% thetime = time(0);
% return (&thetime);
%}

#endif

cpp Directives

rpcgen supports C preprocessing featurpsgen defaults to usgusr/ccslib/cpp as the C
preprocessor. If that failggcgen tries to usdib/cpp . You may specify a library containing a differe
cpp torpcgen with the'-y flag.

For example, if /usr/local/bin/cpp exists, you can specify it to rpcgen as follows
rpcgen -Y /usr/local/bin test.x
Compile-Time Flags

This section describes th&gen options available at compile time. The following table summarize:
options which are discussed in this section.

Option Flag Comments
C-style =N Also called Newstyle mode
ANSI C -C Often used with the -N option

10 of 12 8/4/2008 5:36.u

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

11 of 12

MT-Safe code -'M For use in multithreaded environments
MT Auto mode ~'A -A also turns on -M option

TS-RPC library' -'P TI-RPC library is default

xdr_inline count ' Uses 5 packed elements as default,

but other number may be specified

Client and Server Templates

rpcgen generates sample code for the client and server sides. Use these options te thengesired
templates.

Flag Function

-'a Generate all template files

- Sc Generate client-side template
- Ss Generate server-side template

~Sm Generate makefile template

The files can be used as guides or by filling in the missing parts. These filesddition to the stubs
generated.

Exampler pcgen compile options/templates

A C-style mode server template is generated fronadie source by the command:
rpcgen -N -Ss -0 add_server_template.c add.x
The result is stored in the fikeld_server_template.c

A C-style mode, client template for the sasmgex source is generated with the command line:

rpcgen -N -Sc -0 add_client_template.c add.x

The result is stored in the fikeld_client_template.c

A make file template for the samed.x source is generated with the command line:
rpcgen -N -Sm -0 mkfile_template add.x

The result is stored in the fitekfile_template . It can be used to compile the client and the server.
the'-a flagis used as follows:

rpcgen -N -a add.x

rpcgen generates all three template files. The client template goesdihigient.c , the server
template taadd_server.c , and the makefile template to makefile.a. If any of these files alreadg,exi
rpcgen displays an error message and exits.

Note - When you generate template files, give them new names to avoid the files beingtiavetine
next time rpcgen is executed.

8/4/2008 5:36uy

Protocol Compiling and Lower Level RPC Programming ttpHwww.cs.cf.ac.uk/Dave/C/node34.html#SECTIONS0300000.

12 of 12

Recommended Reading

The bookPower Programming with RPC by John Bloomer, O'Reilly and Associates, 1992, is the nr
comprehensive on the topic and is essential reading for further RPC programming.

Exercises

Exercise 12834

Userpcgen the generate and compile tentmsg listing example given in this chapter.
Exercise 12835

Userpcgen the generate and compile the listing example given in this chapter.
Exercise 12836

Develop a Remote Procedure Call suite of programs that enables a user to sepatifforfiles or
filtererd files in a remote directory. That is to say you can search for a naened.ffile.c or all files
named.c oOr even-.x .

Exercise 12837

Develop a Remote Procedure Call suite of programs that enables adiserfites remotely. You may
use code developed previously or unix system calls to implemepnt

Exercise 12838

Develop a Remote Procedure Call suite of programs that enables alis¢héocontents of a named
remote files.

Dave Marshall
1/5/1999

8/4/2008 5:36uy

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

1 of 10

Subsections

e Header files
External variables and functions
o Scope of externals
Advantages of Using Several Files
How to Divide a Program between Several Files
Organisation of Data in each File
The Make Utility
Make Programming
Creating a makefile
Make macros

Running Make

Writing Larger Programs

This Chapter deals with theoretical and practical aspects that need to be
considered when writing larger programs.

When writing large programs we should divide programs up into modules.
These would be separate source fibesn() would be in one filemain.c say, the others will contain
functions.

We can create our own library of functions by writinguée of subroutines in one (or more) modules
In fact modules can be shared amongst many programs by simply including the modulgslaticom
as we will see shortly..

There are many advantages to this approach:

e the modules will naturally divide into common groups of functions.
e we can compile each module separately and link in compiled modules (more on this later).
e UNIX utilities such asnake help us maintain large systems (see later).

Header files

If we adopt a modular approach then we will naturally want to keep variable definitionsyriunc
prototypesetc. with each module. However what if
several modules need to share such definitions?

It is best to centralise the definitions in one file and share this file amongsbtthdes. Such a file is
usually called &eader file.

Convention states that these files have auffix.

We have met standard library header files alresgly
#include <stdio.h>

We can define our own header files and include then our programs via:
#include “"my_head.h"

NOTE: Header files usually ONL¥ontain definitions of data types,

8/4/2008 5:37u

Writing Larger Programs

2 of 10

function prototypes and C preprocessor commands.

http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

Consider the following simple example of a large program @d) .

header h
Cther modules
#define ... (pethaps)
roid ... tmodle
int ...
#include
fiz.....
mod ¢
#irclude
T WititeMyS tring ¢ ...
#include = = #include "headerh"
#include "headerh” mnd3.c
void #irclude
WhiteMyStriing () friz....
{
Taindy
E
3
¥

Fig. [l Modular structure of a C program The full listingsmain.c, WriteMyString.c

as as follows:

main.c:

/*

* main.c
*/

#include "header.h"
#include <stdio.h>

char *AnotherString = "Hello Everyone™;
main()
printf("Running...\n");
Jx
:/ Call WriteMyString() - defined in a
WriteMyString(MY_STRING);

printf("Finished.\n");

WriteMyString.c:

/*

* WriteMyString.c

*/

extern char *AnotherString;

void WriteMyString(ThisString)
char *ThisString;

printf("%s\n", ThisString);

printf("Global Variable = %s\n", AnotherStr
}

header.h:

/*

nother file

ing);

andheader.h

8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

3 of 10

* header.h
*/
#define MY_STRING "Hello World"

void WriteMyString();

We would usually compile each module separately (more later).

Some modules have#clude “header.h” that share common definitions.
Some, likemain.c, also include standard header files also.

main calls the functiomwriteMyString() which is inWriteMyString.c module.
The function prototypeoid for writeMyString is defined irHeader.h

NOTE that in general we must resolve a tradeoff between having a desire far @actiule to have
access to the information it needs solely for its job and the practical reatigiataining lots of headel
files.

Up to some moderate program size it is probably best to one or two header files thataeahan one
modules definitions.

For larger programs get UNIX to help you (see later).

One problem left with module approach:
SHARING VARIABLES

If we have global variables declared and instantiated in one module how can pass knowladde of
other modules.

We could pass values as parameters to functions, BUT:

e this can be laborious if we pass the same parameters to many functions and / oarttlerg
argument lists involved.
e very large arrays and structures are difficult to store locally -- meproblems with stack.

External variables and functions

“Internal” implies arguments and functions are defined inside functibosat

“External” variables are defined outside of
functions -- they are potentialgvailable to the whole program (Global) N®T necessarily

External variables are always permanent.

NOTE: That in C, all function definitions are external. We CANN@iWe embedded function
declarations like in PASCAL.

Scope of externals

An external variable (or function) is not always totally global.

C applies the following rule:

8/4/2008 5:37u

Writing Larger Programs

4 of 10

http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

The scope of an external variable (or function) begins at its point of declaration and lasts to the end

of thefile (module) it isdeclared in.

Consider the following:

main()

-}

int what_scope;
float end_of scope[10]

void what_global()
{..}

char alone;

float fn()

main cannot see what_scope or end_of_scope but the
ONLY fn can see alone.

This is also the one of the reasons why we should
of code etc. isgiven.

So here main will not know anything about the funct
what_global does not know about fn but fn knows abo
declared above.

functions what_global and fn can.

pr ot ot ype functions before the body

ions what_global and fn.
ut what_global since it is

NOTE: The other reason we pr ot ot ype functions is that some checking can be done the

parameters passed to functions.

If we need to refer to an external variable before
in another module we must declare it as an extern v

extern int what_global

So returning to the modular example. We have a glob
in main.c and shared with WriteMyString.c where it

it is declared or ___ifitis defined
ariable. e.g.

al string AnotherString declared
is declared extern.

BEWARE the extern prefix is a declaration NOTa definition. i.e NO STORAGE s set

aside in memory for an extern variable -- it is jus
of a variable.

t an announcement of the property

The actual variable must only be defined once in the whole program -- you c an have as

many extern declarations as needed.

Array sizes must obviously be given with
declarations but are not needed with extern declara

main.c: int arr[100]:

file.c: externintarr[];

tions. e.g.:

Advantages of Using Several Files

The main advantages of spreading a program across several files are:

e Teams of programmers can work on programs. Each programmer works on a different file

e An object oriented style can be used. Each file defines a particular type of olgetatasype anc
operations on that object as functions. The implementation of the object can be kept pmvat
the rest of the program. This makes for well structured programs which are ezawntain.

¢ Files can contain all functions from a related group. For Example all matrixtiopsral hese can

8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

5 of 10

then be accessed like a function library.

¢ Well implemented objects or function definitions can be re-used in other programsnpgeduci
development time.

¢ In very large programs each major function can occupy a file to itself. Any loveflmctions
used to implement them can be kept in the same file. Then programmers who call the majc
function need not be distracted by all the lower level work.

e When changes are made to a file, only that file need be re-compiled to rebuild the pildgram
UNIX make facility is very useful for rebuilding multi-file programs in thiay.

How to Divide a Program between Several Files

Where a function is spread over several files, each file will contain one or motierisn@ne file will
include main while the others will contain functions which are called by others. Thesdilets can be
treated as a library of functions.

Programmers usually start designing a program by dividing the problem intoreasgged sections.
Each of these sections might be implemented as one or more functions. All functionadhoseetion
will usually live in a single file.

Where objects are implemented as data structures, it is usual to to keep ahtuwtiich access that
object in the same file. The advantages of this are:

e The object can easily be re-used in other programs.
¢ All related functions are stored together.
e Later changes to the object require only one file to be modified.

Where the file contains the definition of an object, or functions which return values stheiather
restriction on calling these functions from another file. Unless functions in anib¢heneftold about the
object or function definitions, they will be unable to compile them correctly.

The best solution to this problem is to write a header file for each of the C filesvilltiave the same
name as the C file, but ending in .h. The header file contains definitions of all the functidms tise
C file.

Whenever a function in another file calls a function from our C file, it can define théofubgtmaking
at#include of the appropriaten file.

Organisation of Data in each File

Any file must have its data organised in a certain order. This will typically be:

e A preamble consisting @define d constantstinclude d header files angpedef s of important
datatypes.

e Declaration of global and external variables. Global variables may also bésedihere.

e One or more functions.

The order of items is important, since every object must be defined before it can bainsgdn&
which return values must be defined before they are called. This definition might be lo@e of t
following:

e Where the function is defined and called in the same file, a full declaration of theruren be
placed ahead of any call to the function.

e If the function is called from a file where it is not defined, a prototype should appeas thefor
call to the function.

8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

6 of 10

A function defined as

float find_max(float a, float b, float c)
{ I*etc... ... */

would have a prototype of

float find_max(float a, float b, float c);

The prototype may occur among the global variables at the start of the sourcadieatMely it may
be declared in a header file which is read in usifgcude

It is important to remember that all C objects should be declared before use.

The Make Utility

Themake utility is an intelligent program manager that maintains integrity oflaaan of program
modules, a collection of programs or a complete system -- does not have be prograntiséncarabe
any system of files €.9. chapters of text in book being typeset).

Its main use has been in assisting the development of software systems.
Make was originally developed on UNIX but it is now available on most systems.
NOTE: Make is a programmers utility not part of C language or any language for that. mat
Consider the problem of maintaining a large collection of source files:
main.c fl1.c fn.c
We would normally compile our system via:
cc -0 main main.c fl.c fn.c

However, if we know that some files have been compiled previously and their sources havage
since then we could try and save overall compilation time by linking in the object codénrearfites
say:

cc -0 main main.c fl.c ... fi.o .. fl.o ... fn.c
We can use the C compiler option (Appen_Jx-c to create a for a given module. For example:
cC -C main.c

will create amain.o file. We do not need to supply any library links here as these are resolved at t
linking stage of compilation.

We have a problem in compiling the whole program inltmg hand way however:

It is time consuming to compile a .c module -- if the module has been compiled before and not
altered there is no need to recompiled it. We can just link the object files in. Howevidmot be easy
to remember which files are in fact up to date. If we link in an old object file our kiralitable
program will be wrong.

& |t is error prone and laborious to type a long compile sequence on the command line. There m
many of our own files to link as well as many system library files. It may behaedyto remember the
correct sequence. Also if we make a slight change to our system editing commaad ligeerror

8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

7 of 10

prone.

If we use thenake utility all this control is taken care by make. In general only modules that have
object files than source files will be recompiled.

Make Programming

Make programming is fairly straightforward. Basically, we write a secgi®@f commands which
describes how our program (or system of programs) can be constructed from sairce file

The construction sequence is described in
makefiles which contaidependency rules andconstruction rules.

A dependency rule has two parts - a left and right side separated by a :
left side : right side

Theleft side gives the names oftarget(s) (the names of the program or system files) to be built,
whilst theright side gives names of files on which the target depends (eg. source files, header f
data files)

If the target is out of datewith respect to the constituent padsnstruction rules following the
dependency rules are obeyed.

So for a typical C program, when a make file is run the following tasks are performed:

1.
The makefile is read. Makefile says which object and library files need to bd knklewhich
header files and sources have to be compiled to create each object file.

2.
Time and date of each object file are checked against source and header filawdis depd any
source, header file later than object file then files have been altered strammadation
THEREFORE recompile object file(s).

3.

Once all object files have been checked the time and date of all object filesckedchgainst
executable files. If any later object files will be recompiled.

NOTE: Make files can obey any commands we type from command line. Therefore we can use
makefiles to do more than just compile a system source module. For example, we couddchaks
of files, run programs if data files have been changed or clean up directories.

Creating a makefile

This is fairly simple: just create a text file using any text editor.rmdlefile just contains a list of file
dependencies and commands needed to satisfy them.

Lets look at an example makefile:

prog: prog.o fl.o0 f2.0
¢89 prog.o f1.0 f2.0 -Im etc.

prog.o: header.h prog.c
c89 -c prog.c

8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

8 of 10

fl.0: header.h fl.c
c89 -cfl.c

f2.0: ---

Make would interpret the file as follows:

1.
prog depends on 3 filegrog.o, f1.0 and f2.0 . If any of the object files have been changed
since last compilation the files must be relinked.

prog.o depends on 2 files. If these have been changed prog.o must be recompiled. Similar|
fl.o andf2.o .

The last 3 commands in the makefile are cadgalicit rules -- since the files in commands are listed
name.

We can usemplicit rules in our makefile which let us generalise our rules and save typing.

We can take

fl.o: fl.c
cc-cfl.c

f2.0: f2.c
cc-cf2.c

and generalise to this:
.C.0: cC-C $<
We read this as .source_extension.target_extensi@niand

$< is shorthand for file name with .c extension.

We can put comments in a makefile by using the # sy mbol. All characters following #
on line are ignored.

Make has many built in commands similar to or actua I UNIX commands. Here are a few:

break date mkdir

> type chdir mv (move or rename)
cd rm (remove) Is
cp (copy) path
There are many more see manual pages for make (onli ne and printed reference)

Make macros

We can definenacros in make -- they are typically used to store source file names, object file,narr
compiler options and library links.

They are simple to defineg.:
SOURCES = main.c fl.c f2.c

8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

CFLAGS =-g-C

LIBS =-lm

PROGRAM = main

OBJECTS = (SOURCES: .c =.0)

where(SOURCES: .c = .0) makes .c extensions of SOURCES . 0 extensions.
To reference or invoke a macro in make do $(macro_n ame). e. g. :

$(PROGRAM) : $(OBJECTS)
$(LINK.C) -0 $@ $(OBJIECTS) $(LIBS)
NOTE:

® $(PROGRAM) : $(OBJECTS) - makes a list of
dependencies and targets.

® The use of an internal macros i.e. $@.

There are many internal macros (see manual pages) h ere a few common ones:
$~k

-- file name part of current dependent (minus .suff ix).
$@

-- full target name of current target.
$<

-- .c file of target.
An example makefile for the WriteMyString modular p rogram discussed in the above is
as follows:
#
Makefile
#
SOURCES.c= main.c WriteMyString.c
INCLUDES=
CFLAGS=
SLIBS=

PROGRAM= main

OBJECTS= $(SOURCES.c:.c=.0)
.KEEP_STATE:

debug := CFLAGS= -g

all debug: $(PROGRAM)

$(PROGRAM): $(INCLUDES) $(OBJECTS)
$(LINK.C) -0 $@ $(OBJECTS) $(SLIBS)

clean:
rm -f §(PROGRAM) $(OBJECTS)

Running Make

Simply typemake from command line.
UNIX automatically looks for a file calledakefile (note: capital M rest lower case letters).

So if we have a file calledakefile and we type make from command line. Magefile in our

9 of 10 8/4/2008 5:37u

Writing Larger Programs http://www.cs.cf.ac.uk/Dave/C/node35.html#SECTIORB0000000.

current directory will get executed.
We can override this search for a file by typimke -f make_filename

€.0. make -f my_make

There are a few moreptions for makefiles -- see manual pages.

Dave Marshall
1/5/1999

10 of 10 8/4/2008 5:37wu

