What isa named pipe?

A named pipeisa special filethat isused to transfer data between unrelated
processes. One (or more) processeswriteto it, whileanother processreadsfrom it.
Named pipesarevisiblein thefile system and may be viewed with * I s' command
like any other file. (Named pipesare also called fifos; thisterm standsfor "First In,
First Out'.)

Named pipes may be used to pass data between unrelated processes, while nor mal
(unnamed) pipes can only connect parent/child processes (unlessyou try very hard).
Named pipes are strictly unidirectional, even on systems where anonymous pipes
are bidirectional (full-duplex).

How do | create a named pipe?

To createanamed pipeinteractively, you'll use nkfi f o.

To make anamed pipewithin a C program useincludethefollowing C libraries:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

and to create the named pipe(FIFO) use nkfi f o() function:
if (nkfifo("test fifo", 0777))
/[* permssion is for all */
{
perror("nkfifo");
exit(1l);



How do | use a named pipe?

To usethepipe, you open it likeanormal file, and useread() andwite() just as
though it was a plain pipe.
However, theopen() of the pipe may block! Thefollowing rules apply:
« If you open for both reading and writing (O_RDWR), then the open will not
block.
« If you open for reading (O_RDONLY), the open will block until another
process opensthe FIFO for writing, unless O NONBLOCK is specified, in which
case the open succeeds.
« If you open for writing O WRONLY, the open will block until another
process opensthe FIFO for reading, unless O NONBLOCK is specified, in which
case the open fails.
open_mode=0_RDONLY or O WRONLY, or O NONBLOCK;
res=open("test fifo",open_mode);
Here, open modeisone of the modes that was discussed above.

When reading and writing the FIFO, the same consider ations apply asfor regular
pipes,i.e.read() andwite();

read(res, buffer, BUFFER_SIZE);

write(res, buffer BUFFER_SIZE);



Hereisa smpleuse of pipes, unlike the named pipes, we use two differenct files
with out using for k() or execl () . Offcourse we can use fork and execl in our
programs, but they are not necessary.

[* fifol.c*/

/*

This program will read from afifo and printsthereceived string to the screen.
*/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <systypes.h>
#include <syg/stat.h>
#include <limits.h>

#define FIFO_NAME "my_fifo" [* the named pipe*/
#define BUFFER_SIZE PIPE_BUF
int main()
b
int res;
char buffer[BUFFER_SIZE + 1];

if (access(FIFO_NAME, F_OK) ==-1){ [* check if fifo already
exists*/
res = mkfifo(FIFO_NAME, 0777); [* if not then, create thefifo*/
if res!=0){

fprintf(stderr, " Could not createfifo %s\n", FIFO_NAME);
exit(EXIT_FAILURE);

}
}
memset(buffer, '\O', BUFFER_SIZE + 1); [* clear thestring */
printf(" Process % d opening FIFO for reading\n”, getpid());
res = open(FIFO_NAME, O_RDONLY); [* open fifoin read-only
mode */

read(res, buffer, BUFFER_SIZE);
printf(" Process %d received: %s\n", getpid(), buffer);

sleep(5);

if (res!=-1) (void)close(res); [* closethefifo */

printf(" Process %d finished\n", getpid()); /* make sureyou closefifo
after */

exit(EXIT_SUCCESS); [* usingit. */

}



[* fifo2.c*/

[* Thisfilewill writeto thefifo a string.*/
#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <systypes.h>

#include <syg/stat.h>

#include <limits.h>

#define FIFO_NAME "my_fifo" /* thefifo name*/
#define BUFFER_SIZE PIPE_BUF
int main()
b
int res;
char buffer[BUFFER_SIZE + 1];
if (access(FIFO_NAME, F_OK) ==-1){ [* check if fifo already
exists*/
res = mkfifo(FIFO_NAME, 0777); [* if not then, create thefifo*/
if res!=0){

fprintf(stderr, " Could not createfifo % s\n", FIFO_NAME);
exit(EXIT_FAILURE);
}

}

printf(" Process %d opening FIFO\n", getpid());

res=open(FIFO_NAME, O_WRONLY); [* open fifoin write only

mode */

sprintf(buffer, " hello"); [* string to be sent */

write(res, buffer BUFFER_SIZE); [* writethestringto fifo*/

printf(" Process %d result %d\n", getpid(), res);

deep(d);

if (res!=-1) (void)close(res); [* closethefifo */

printf(" Process %d finished\n", getpid());

exit(EXIT_SUCCESS);

result of the programs on the screen:

Process 23242 opening FIFO

Process 23242 result 3

Process 23243 opening FIFO for reading
Process 23243 received: hello

Process 23242 finished

Process 23243 finished



