
What is a named pipe?

A named pipe is a special file that is used to transfer data between unrelated
processes. One (or more) processes wr ite to it, while another process reads from it.
Named pipes are visible in the file system and may be viewed with ` l s ' command
like any other file. (Named pipes are also called fifos; this term stands for `First In,
First Out' .)
Named pipes may be used to pass data between unrelated processes, while normal
(unnamed) pipes can only connect parent/child processes (unless you try very hard).
Named pipes are str ictly unidirectional, even on systems where anonymous pipes
are bidirectional (full-duplex).

How do I create a named pipe?

To create a named pipe interactively, you' ll use mkf i f o.

To make a named pipe within a C program use include the following C librar ies:

#i ncl ude <sys/ t ypes. h>
#i ncl ude <sys/ st at . h>

 and to create the named pipe(FIFO) use mkf i f o() function:
i f (mkf i f o(" t est _f i f o" , 0777))
/ * per mi ssi on i s f or al l * /
{
 per r or (" mkf i f o") ;
 exi t (1) ;
}

How do I use a named pipe?

To use the pipe, you open it like a normal file, and use r ead() and wr i t e() just as
though it was a plain pipe.
However, the open() of the pipe may block! The following rules apply:

•••• I f you open for both reading and wr iting (O_RDWR), then the open will not
block.
•••• I f you open for reading (O_RDONLY), the open will block until another
process opens the FIFO for wr iting, unless O_NONBLOCK is specified, in which
case the open succeeds.
•••• I f you open for wr iting O_WRONLY, the open will block until another
process opens the FIFO for reading, unless O_NONBLOCK is specified, in which
case the open fails.

open_mode = O_RDONLY or O_WRONLY, or O_NONBLOCK;
res = open(" t est _f i f o" , open_mode);

Here, open mode is one of the modes that was discussed above.

When reading and wr iting the FIFO, the same considerations apply as for regular
pipes, i.e. r ead() and wr i t e() ;

read(res, buffer , BUFFER_SIZE);
wr ite(res, buffer ,BUFFER_SIZE);

Here is a simple use of pipes, unlike the named pipes, we use two differenct files
with out using f or k() or execl () . Offcourse we can use fork and execl in our
programs, but they are not necessary.

/* fifo1.c* /
/*
This program will read from a fifo and pr ints the received str ing to the screen.
* /
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <limits.h>

#define FIFO_NAME " my_fifo" /* the named pipe* /
#define BUFFER_SIZE PIPE_BUF
int main()
{
 int res;
 char buffer [BUFFER_SIZE + 1];

 if (access(FIFO_NAME, F_OK) == -1) { /* check if fifo already
exists* /
 res = mkfifo(FIFO_NAME, 0777); /* if not then, create the fifo* /
 if (res != 0) {
 fpr intf(stderr , " Could not create fifo %s\n" , FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }
 memset(buffer , ' \0' , BUFFER_SIZE + 1); /* clear the str ing * /
 pr intf(" Process %d opening FIFO for reading\n" , getpid());
 res = open(FIFO_NAME, O_RDONLY); /* open fifo in read-only
mode * /
 read(res, buffer , BUFFER_SIZE);
 pr intf(" Process %d received: %s\n" , getpid(), buffer);
 sleep(5);
 if (res != -1) (void)close(res); /* close the fifo * /
 pr intf(" Process %d finished\n" , getpid()); /* make sure you close fifo
after * /
 exit(EXIT_SUCCESS); /* using it. * /
}

/* fifo2.c * /
/* This file will wr ite to the fifo a str ing.* /
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <limits.h>

#define FIFO_NAME " my_fifo" /* the fifo name * /
#define BUFFER_SIZE PIPE_BUF
int main()
{
 int res;
 char buffer [BUFFER_SIZE + 1];
 if (access(FIFO_NAME, F_OK) == -1) { /* check if fifo already
exists* /
 res = mkfifo(FIFO_NAME, 0777); /* if not then, create the fifo* /
 if (res != 0) {
 fpr intf(stderr , " Could not create fifo %s\n" , FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }
 pr intf(" Process %d opening FIFO\n" , getpid());
 res = open(FIFO_NAME, O_WRONLY); /* open fifo in wr ite only
mode * /
 spr intf(buffer , " hello"); /* str ing to be sent * /
 wr ite(res, buffer ,BUFFER_SIZE); /* wr ite the str ing to fifo * /
 pr intf(" Process %d result %d\n" , getpid(), res);
 sleep(5);
 if (res != -1) (void)close(res); /* close the fifo * /
 pr intf(" Process %d finished\n" , getpid());
 exit(EXIT_SUCCESS);
}

result of the programs on the screen:

Process 23242 opening FIFO
Process 23242 result 3
Process 23243 opening FIFO for reading
Process 23243 received: hello
Process 23242 finished
Process 23243 finished

