

SYNCHRONOUSPROGR~GOFREACTIVESYSTEMS

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

REAL-TIME SYSTEMS

Consulting Editor

Jobn A. Stankovic

REAL-TIME UNIX SYSTEMS: Design andApplication Guide,
B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, M. McRoberts (eds.)
ISBN 0-7923-9099-7

FOUNDA TIONS OF REAL-TIME COMPUTING: Scheduling and Resource
Management, A. M. van Tilborg, G. M. Koob (eds.)
ISBN 0-7923-9166-7

FOUNDATIONS OF REAL-TIME COMPUTING: Formal Specijications and
Methods, A. M. van Tilborg, G. M. Koob (eds.)
ISBN 0-7923-9167-5

REAL-TIME SYSTEMS ENGINEERING AND APPLICATIONS
M. Schiebe, S. Pferrer
ISBN 0-7923-9196-9

CONSTRUCTING PREDICT ABLE REAL-TIME SYSTEMS
w. A. Halang, A. D. Stoyenko
ISBN 0-7923-9202-7

SYNCHRONIZATION IN REAL-TIME SYSTEMS: A Priority Inheritance
Approach
R. Rajkumar
ISBN 0-7923-9211-6

SYNCHRONOUS PROGRAMMING
OF REACTIVE SYSTEMS

by

Nicolas Halbwachs
IMAG Institute, Grenoble, France

Springer-Science+Business Media, B.V.

Library of Congress Cataloging-in-Publication Data

Halbwachs, Nicolas.
Synchronous programming of reactive systems! by Nicolas

Halbwachs.
p. cm. -- (The Kluwer international series ln englneerlng and

computer science ; 215)
Includes bibliographical references (p.) and index.

1. Real-time programming. 2. Programming languages (Electronic
computers) I. Title. 11. Series.
QA76.54.H36 1993
005. 13--dc20 92-38480

ISBN 978-1-4419-5133-5 ISBN 978-1-4757-2231-4 (eBook)
DOI 10.1007/978-1-4757-2231-4

Printed on acid-free paper

All Rights Reserved

© 1993 Springer Science+Business Media Dordrecht

Originally published by Kluwer Academic Publishers in 1993.

Softcover reprint of the hardcover 1 st edition 1993

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

Contents

List of figures

List of tables

Foreword
List of contacts concerning each language
Explanation of acronyms.

1 Introduction
1.1 Reactive systems
1.2 Classical approaches
1.3 The synchronous approach.
1.4 Complex systems ...
1.5 Summary of this book ...

I Four Synchronous Languages

2 The imperative language Esterel
2.1 Introduction
2.2 Basic concepts
2.3 Programming primitives

2.3.1 Declarations .
2.3.2
2.3.3

Expressions . . .
Statements . . .

2.4 Programming style and first examples
2.4.1 Using signals as time units

v

ix

x

xi
Xlll

Xlll

1

1

3
5
6
7

9

11

11
11
13
14
14
15
21
21

2.4.2 Use of broadcasting .,
2.4.3 Instantaneous dialogue .
2.4.4 A stopwatch

2.5 Causality problems in Esterel
2.5.1 Lack of behavior ...
2.5.2 Multiple behavior
2.5.3 Putting right the stopwatch

2.6 Another example: the reflex game
2.6.1 Specifications
2.6.2 Interface...........
2.6.3 Computation of the average reflex time
2.6.4 The pro gram body

3 Graphie formalisms: the language Argos
3.1 Automata and operators

3.1.1 Simple automata
3.1.2 ARGOS operators

3.2 Causality problems .. .
3.3 Programming style .. .

3.3.1 Termination by exception
3.3.2 Normal termination
3.3.3 Interrllpt

3.4 Examples
3.4.1 The stopwatch ...
3.4.2 Controllogic of the digital watch

4 Declarative languages : Lustre and Signal
4.1 Introduction
4.2 The language LUSTRE

4.2.1 Flows ancl docks
4.2.2
4.2.3
4.2.4

Variables, equations, expressions, and assertions
Program structure .
Causality in LUSTRE

4.2.5 Some examples .. .
4.3 The language SIGNAL .. .

4.3.1 Signals, docks, and operators
4.3.2 Program strllcture

VI

22
23
25
29
29
30
31
31
31
32
33
34

39

40
40
41
45
46
47
47
49
49
49
49

53
53
55
56
57
60
62
62
68
68
71

11 Compilation

5 Static verifications
5.1 Causality checking in ESTEREL

5.2 Causality checking in ARGOS

5.3 Clock checking in LUSTRE ..

5.4 The dock calculus of SIGNAL

6 Sequential code generation
6.1 The ESTEREL compiler.

6.1.1 Principles.
6.1.2 Example
6.1.3 Comments .. .

6.2 The LUSTRE compiler
6.2.1 Node expansion.
6.2.2 Single loop ...
6.2.3 Compiling LUSTRE into automata

6.3 The OC code alld associated tools

7 Distributed code generation
7.1 lntroduction
7.2 Code distribution in SIGNAL.

7.2.1 Static dependences ..

7.2.2 Dynamic dependences
7.3 OC code distribution

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

7.3.6

Code replication . . .
Placement of emission statements.
U seless emission elimination
Placement of receiving statements
Synchronization
Final processing

73

75
75
77
80
81

85

85
85
86
91

93
93
94
96

· 100

103

· 103
.104

· 105
· 107
· 107
· 109
· 109
.110

111
112
114

8 Circuit generation from synchronous programs 117
8.1 Introduction 117
8.2 A hardware implementation of LUSTRE . 118

8.2.1 Programmable active memories 118
8.2.2 Translation of Boolean LUSTRE . 120

Vll

8.2.3 Translating full LUSTRE
8.3 Hardware implementation of pure ESTEREL

8.3.1 Basic components
8.3.2 First example
8.3.3 Translating Parallel and Exceptions

III Program Verification

9 Lustre program verification: the tool Lesar
9.1 Specification of safety properties
9.2 Verification

· 123
· 129
· 129
.130
· 133

137

139
.140

· 143

10 Using Auto for Esterel program verification 149

11 Conclusion 157
11.1 The common environment of synchronous languages . 157
11.2 Works in progress. 159

Bibliography 161

Index 171

Vlll

List of Figures

2.1 The whole program of the reflex game 37

3.1 An ARGOS automaton. . . . 40
3.2 Parallel composition 42
3.3 Behavior of parallel processes 42
3.4 Local signal definition . . . 43
3.5 Hierarchical decomposition 45
3.6 Absence of behavior . . . 46
3.7 Implicit nondeterminism . 47
3.8 Exception handling. 48
3.9 Normal termination ... 48
3.10 Process interrupt 49
3.11 The control automaton of the stopwatch 50
3.12 The running modes of the digital watch 52

4.1 Descriptions of a data-flow system 54
4.2 Operator net of the counter . . 60
4.3 Model instanciation in SIGNAL 72

5.1 Lack of behavior 78
5.2 Nondeterminism 79

6.1 The control automaton of the button interpreter 90
6.2 A looping call . 93
6.3 The control automaton of the watchdog 99
6.4 The common environment ESTEREL/LuSTRE/ ARGOS . 101
6.5 The SAHARA intrument panel of the reflex game . 102

IX

8.1 A simple programmable active memory 119
8.2 Some rules for packing operators into PABs . 122
8.3 The ceIl computing the variable "watchdog_is_on" . 123
8.4 The net of the zero comparator . . . 125
8.5 Layout of the watchdog on Perle-O . 127
8.6 First circuit . . 132
8.7 Second circuit 134

9.1 Verification pro gram . 144
9.2 Assumption-dependent equivalence of programs . 146
9.3 Modular verification 146

10.1 The fuIl automaton of a lift controller . 150
10.2 Simplified automaton. . 151
10.3 Reduced automaton 155

11.1 The common environment of synchronous languages . 158

List of Tables
4.1 Boolean flows and docks .
4.2 Filtering and projection
4.3 Nodes and docks

7.1 Code replication
7.2 Placement of emission statements.
7.3 Placement of receiving statements
7.4 Example of distributed code

10.1 Transition table of the T-saturated automaton.
10.2 Result of the first reduction step .
10.3 Result of the second reduction step

x

56
59
61

.110

.111

.113

.115

. 152

. 153

.154

Foreword

This book will attempt to give a first synthesis of recent works con
cerning reactive system design. The term "reactive system" has been
introduced in order to at'oid the ambiguities often associated with by the

term "real-time system," which, although best known and more sugges
tive, has been given so many different meanings that it is almost in
evitably misunderstood. Industrial process control systems, transporta
tion control and supervision systems, signal-processing systems, are ex
amples of the systems we have in mind.

Although these systems are more and more computerized, it is sur

prising to notice that the problem of time in computer science has been

studied only recently by "pure" computer scientists. Until the early
1980s, time problems were regarded as the concern of performance evalu

ation, or of some (unjustly scorned) "industrial computer engineering,"

or, at best, of operating systems.

A second surprising fact, in contrast, is the growth of research con

cerning timed systems during the last decade. The handling of time has
suddenly become a fundamental goal for most models of concurrency. In
particular, Robin Alilner 's pioneering works about synchronous process

algebras gave rise to a school of thought adopting the following abstract
point of view: As soon as one admits that a system can instantaneously

react to events, i.e., if the execution time of the machine is considered
negligible with respect to the response delays of its environment, the time
behavior of a system can be formalized in a very simple and elegant way.

The third surprise is that this synchronous point of view was applied

to programming almost exclusively by French projects. Three projects
started, quite independently, in the early 1 980s, aiming at designing

the three synchronous programming languages ESTEREL (ENSMP €f IN

RIA), SIGNAL (INRIA/IRISA), and LUSTRE (IMAG). Other languages

like SML, STATECHARTS, or L.O, which were developed in other coun
tries, adopt some aspects of the synchronous model; but on the one hand,

these languages do not thoroughly use this model, and on the other hand,
they were not designed to be used for programming (SML is a hardware
description language, STATECHARTS were designed as a specification lan-

Xl

guage, and L.O is a language lor specilying communication protocols}.
The three French groups rapidly noticed that their languages were based
on the same model. A tight cooperation was set up, that locused in par
ticular on compiling methods and broadcasting the synchronous point 01
view to the industrial world. This community was joined by another,
more recent project, concerning the language ARGOS (IMAG), a purely
synchronous variant 01 STATECHARTS.

This book is therelore a survey 01 very recent work, some 01 which
is still under development. Being mysell strongly involved in the devel
opment olone 01 these languages - the language LUSTRE - I cannot
claim to give a lully unbiased presentation: it is often inftuenced by
my personal opinion and my present knowledge 01 the subjects. On the
other hand, several parts 01 this book have been partially borrowed from
existing papers devoted to each language. For their permission to borrow
this material, and lor many helplul comments about the manuscript, I
would like to thank Gerard Berry, Albert Benveniste, Paul Caspi, Paul
Le Guernic, and Florence Maraninchi. I am also gratelul to Corinne
Pichon, who carelully corrected the English version.

A first draft 01 this book (written in French) was used as lecture notes
lor a 12-hour course given at the 21th AFCET International School 01
Computer Science, held in San Sebastian (Spain) in July 1991.

Xll

List or academic and industrial contacts
concerning each language

Esterel:

Argos:

Lustre:

Signal:

• Gerard Berry, CMAjENSMP, Sophia Antipolis -
06565 Valbonne, France

• Jean-Pierre Paris, CISI-Ingenierie, Sophia Antipolis -
06565 Valbonne, France

• Philippe Couronne, ILOG S.A. , 2, Avenue Galieni -
94253 Gentilly, France

• Florence Maraninchi, IMAG, B.P. 53
38041 Grenoble, France

• Paul Caspi or Nicolas Halbwachs, IMAG, B.P. 53 -
38041 Grenoble, France

• Daniel Pilaud, VERlLOG, ZAC du Pre Millet -
38330 Montbonnot, France

• Albert Benveniste or Paul Le Guernic, IRISAjINRlA,
Campus de Beaulieu - 35042 Rennes, France

• Fran~ois Dupont, TNI, ZI du Vernis - 29608 Brest,
France

Explanation of acronyms

ENSMP: Ecole Nationale Superieure des Mines de Paris

INRlA: Institut National de Recherche en Informatique et Automatique

IRISA: Institut de Recherche en Informatique et Systemes Aleatoires

IMAG: Institut d'Informatique et de Mathematiques Appliquees de
Grenoble

X111

Chapter 1

Introd uction

1.1 Reactive systems

Reactive systems are computer systems that continuously react to their
environment at a speed determined by this environment. This class of
systems has been introduced [HP85, Ber89] in order to distinguish these
systems, on the one hand, from transformational systems - i.e., classical
systems, whose inputs are available at the beginning of the execution
and which deliver their outputs when terminating - and, on the other
hand, from interactive systems, which continuously interact with their
environment, but at their own rate (e.g., operating systems). Most
industrial "real-time" systems are reactive - control, supervision and
signal-processing systems - but other examples concern communication
protocols or man-machine interfaces.

The main features of these systems are the following:

They involve concurrency: At the least, the concurrency between
the system and its environment must be taken into account. Moreover,
it is often convenient and natural to consider such a system as made
of a set of parallel components, that cooperate to achieve the intended
behavior. Finally, these systems are sometimes implemented on parallel
or distributed architectures in order to increase their performances or
their reliability. However, let us note that the logical decomposition of a
system into parallel processes generally has nothing to do with an actual

2 Chapter 1 : Introduction

concurrent implementation, and, even if such a concurrent implementa
tion is performed, the physical decomposition is not necessarily the same
as the logical one. There is no reason for a logical decomposition of a
problem into subproblems to satisfactorily meet performance or fault
tolerance criteria on a given architecture.

They are submitted to strict time requirements: These require
ments concern both their input rate and their input/output response
time. These constraints must be expressed in the system specifications,
they must be taken into account during the system design, and their
satisfaction must be checked on the implementation. Time-constraint
fulfillment obviously requires efficient implementation, but it especially
necessitates precise evaluation of execution time.

They are generally deterministic: The outputs of such a system
are entirely determined by their input values and by the occurrence
times of these inputs. This determinism distinguishes reactive systems
from interactive ones: most interactive systems are intrinsically nonde
terminist. An operating system contains, for instance, schedulers that
dynamically activate and interrupt processes according to various pa
rameters (CPU load, resource availability, priorities, ...). The result of
a call to the system generally depends on these parameters. The de
sign, analysis, and debugging of a deterministic system are much easier.
So the inherent determinism of reactive-system specifications must be
preserved in their implementation.

Their reliability is an especially important goal: This may be
their most important feature. It is a commonplace to say that errors in
reactive systems can have dramatic consequences, involving human lives
and huge amount of money. The economic and human consequences
of an error in the software driving a satellite or controlling a nuclear
plant can obviously be incalculable. Therefore, these systems require
especially rigorous design methods and constitute a field where formal
verification must be considered.

Generally, they are made partly by software and partly by
hardware: Many reactive systems are still implemented by hardware,
for reasons of cost or performance or for historical reasons. In many

§ 1.2 : Classical approaches 3

other cases, they are partly implemented by hardware, and the hardware
and software parts are separated quite late during the design.

1.2 Classical approaches

As noted above, reactive systems have been for a long time (and often
still are) implemented by hardware (analog machines, switch systems,
and custom circuits). When implemented by software, they are often
programmed in assembly language for efficiency purposes. At a higher
level, "operating system" approaches (real-time monitors) or general
purpose parallellanguages are used. Models include automata or Pe tri
net-based models, task-based models, and communicating processes.

Deterministic automata: Automata are often used to implement
the control kernel of a reactive system. Given a set of input values,
the automaton selects a transition from its current state, calls the cor
responding sequential tasks, and changes its state for its next reaction.
Such an approach generally leads to excellent and measurable perfor
mances; areaction is a "linear" piece of code (neither loop nor recursiv
ity, no interrupt, no overhead due to process management), whose max
imal execution time can be accurately bounded. Moreover, automata
are well-known mathematical objects for which verification techniques
are available (evaluation of temporallogic formulas [CES86, QS82], re
duction and observation [Ver86, Fer90]).

However, automata are "fl.at" objects, without any hierarchical or
parallel structure. Consequently, they are very difficlllt to use to design
complex systems. Writing an automaton with about ten states only is a
difficult and error-prone task. The slightest modification in the system
specifications may involve a complete modification and rewriting of the
automat on.

Petri-net-based models: These models are mainly used to pro gram
industrial controllers. The inherent concurrency of these models reduces
the complexity of system description. However, because of the lack
of hierarchy, they are hard to apply to big systems. Moreover, their
semantics, especially concerning time aspects, is often unclear.

4 Chapter 1 : Introduction

Task-based models: Here, we mean the approach consisting in de
signing a system as made of a set of sequential tasks, activated and
controlled by a real-time operating system. The system is decomposed
into tasks that generally communicate with each other by means of a
shared memory. In our opinion, this is a low-Ievel approach. Time con
straints are not directly expressed in the descriptionj they can only be
satisfied by me ans of scheduling instructions (interrupts, priorities, ...)
given to the operating system. Program port ability is doubtful. System
analysis is made difficult because of nondeterminism and lack of a global
view. Performances can deteriorate because of tasks management and
dynamic scheduling.

Communicating processes: General-purpose parallel languages,
such as ADA [ADA83] or OCCAM [INM84] are on a higher level.
These languages off er high-level primitives to structure programs and
data. Communication and synchronization mechanisms (rendezvous,
fifo queues, ...) are much cleaner than shared memory. These languages
have been designed in order to increase program portability. However,
this portability is achieved at the expense of nondeterminism. For a
program behavior to be independent of the target architecture (mono
or multiprocessor), only minimal assumptions are made about inter
process synchronization. Even if some of these languages have been
provided with "real-time" primitives, the semantics of these primitives
is generally vague. We illustrate these problems by means of a classical
example of an ADA program, where a task A signals "minutes" to a task
B, by counting "seconds":

loop
delay 60; B.MINUTE
end

This program does not provide the intended behavior: for a MINUTE
to be received by B, A must have been waiting for 60 seconds, but B must
also listen to it, and, moreover, the rendezvous must take pI ace - and
the occurrence time of this rendezvous is left unspecified in the language
semantics. The delay separating two successive receptions of MINUTE is
at least 60 seconds. On the other hand, a signal cannot be broadcast: if
A must send MINUTE to a third task C, A must also execu te C. MINUTE. B

§ 1.3 : The synchronous approach 5

and C will never receive MINUTE at the same time. In such a language,
different processes never have the same view of the global state of the
program. The last drawback of general-purpose parallel languages for
real-time programming is the tremendous overhead that can be involved
by runtime process management.

As a conclusion to this brief overview of classical tools to reactive sys
tem design, let us notice that the user must choose between determinism
and concurrency. All parallellanguages are based on asynchronous exe
cution schemes, where processes compete with each other for resources,
and where this competition is nondeterministically solved. Synchronous
languages may be viewed as an attempt to reconcile concurrency and
determinism.

1.3 The synchronous approach

Synchronous languages have been designed to make the programmer's
task easier, by providing hirn with "ideal" primitives, which allow a
program to be considered as instantaneously reacting to external events.
Each internal or output event of the program is precisely dated with
respect to the flow of input events. The behavior of a pro gram is fully
deterministic, both from the functional and from the time point of view.

In fact, the notion of physical (chronometrie) time is replaced by a
simple not ion of order among events: the only relevant not ions are the
simultaneity and precedence between events. Physical time does not play
any special role (as it does in ADA); it will be handled as an external
event, exactlyas any other event coming from the pro gram environment.
This is called the multi/orm notion 0/ time. As an example, let us
consider the two following requirements:

"The train must stop within 10 seconds"
and

"The train must stop within 100 meters"

Conceptually, these two constraints are of the same nature. However,
in a language where physical time (counted in "seconds") plays a par
ticular role and is handled by special statements, they will be expressed
in completely different ways. In the synchronous model, they will be
expressed by similar precedence constraints:

6 Chapter 1 : Introduction

"The event stop must precede the 10th (respectively, 100th)
next occurrence of the event second (respectively, meter)"

When we will speak of an instant, this notion will be understood a.s a
logical instant: the history of a system is a totally ordered sequence of
logical instantsj at each of these instants, zero, one, or several events
occur. Event occurrences that happen at the same logical instant are
considered simultaneousj those that happen at different instants are or
dered a.s their instants of occurrence. Apart from these logical instants,
nothing happens either in the system or in its environment. Finally,
all the processes of the system have the same knowledge of the events
occurring at a given instant.

In practice, the synchrony hypothesis is the a.ssumption that the
program reacts rapidly enough to perceive all the external events in
suitable order. H this a.ssumption is satisfied - and, more importantly,
if its satisfaction can be checked - the synchronous hypothesis is rather
a more realistic abstraction than the one that consists in considering
that a machine deals with "actual" integer or real numbers. Moreover,
we will see that synchronous languages can be implemented in a partic
ularly efficient and measurable way. The object code is structured as a
finite automaton, a transition of which corresponds to areaction of the
program. As noted before, the code corresponding to such a transition
is linear (loop-free), and its maximal execution time can be accurately
bounded on a given machine. Therefore, the validity of the synchrony
hypothesis can be checked.

1.4 Complex systems

However, synchronous languages do not pretend to solve all the prob
lems raised by the design of real-time systems. A real-life complex
system generally involves the cooperation of the three types of pro
grams: for instance, a programmer makes use of a reactive interface
(keyboard, mouse, scrollbar) to call interactive services of the operat
ing system and to activate transformational tasks. Generally speaking,
following [BG88], we can distinguish three parts in a complex real-time
system:

§ 1.5 : Summary of this book 7

• A gene rally interactive interface with the environment, which ac
quires the inputs and processes the outputs. This level includes
interrupt management, input reading from sensors, and conver
sion between logical and physical inputs/outputs. This level can
also deal with the communication between several loosely coupled,
synchronaus components.

• One or more reactive kernels. Such a kernel computes the outputs
from the logical inputs, by selecting the suitable reaction (compu
tations and output emissions) to incoming inputs.

• A level of data management, which performs transformational
tasks under the control of the reactive kernel.

This book essentially deals with reactive kernel design, which is the
most specific and probably the most difficult part of the design of a
complex real-time system. One must keep in mind, however, that these
kerneIs are intended to be merged into more complex systems. As a
consequence, synchron aus languages are not complete languages. In
particular, they da not off er primitives to define and handle complex
data structures, which are left to a classicallanguage (hast language).
Moreover, synchron aus language compilers produce their object code in
the hast language, for this code willlater on be integrated into a larger
program.

1.5 Summary of this book

We will present the work concerning four languages: ESTEREL, ARGOS,
LUSTRE, and SIGNAL. Rather than describing successively the parts
concerning each of them, we prefer to sort them according to same gen
eral topics:

• Part I of this book presents each language, tagether with illustrat
ing examples of programs. Examples have been chosen in order to
highlight the most specific features of each language.

• Part TI deals with compilation. We will successively present:

8 Chapter 1 : Introduction

nonclassical static verifications perfonned by compilers:
causality checking in ESTEREL (§5.1) and ARGOS (§5.2), dock
checking in LUSTRE, (§5.3) and dock synthesis in SIGNAL
(§5.4).

sequential code generation from ESTEREL (§6.1) and LUSTRE
(§6.2) programs. ESTEREL and LUSTRE compilers share an
original method to synthesize the control structure of the ob
ject code as a finite automaton. Both compilers generate the
code in a common fonnat, called oe (for "object code"), on
which several tools can be applied (§6.3).

- distributed code generation. Two very different approaches
will be presented. The first one has been applied to SIGNAL
and makes use of the logical concurrency expressed in the
source pro gram. The second approach has been developed
for LUSTRE, but can be applied to any language compiled
towards oe, since it requires first the generation of sequential
code.

silicon compiling, from ESTEREL and LUSTRE (Chapter 8).

• Part III is devoted to program verification. The language L USTRE
itself can be used to express properties about programs (Chapter
9); these properties are checked by an exhaustive analysis of the
automaton built by the compiler. Another approach, used to verify
ESTEREL programs (Chapter 10), consists of reducing the gen er
ated automaton according to various suitable observation criteria.

Part I

Four Synchronous
Languages

Chapter 2

The imperative language
Esterel

2.1 Introduction

Among the languages we will present, ESTEREL is the oldest, since its de
sign started in the early 1980s. It was developed in Gerard Berry's group
and is a common project of INRIA and ENSMP in Sophia-Antipolis.

ESTEREL is an imperative, textuallanguage, and its syntax is elose to
usual parallellanguages. Paradoxically, because of this apparent analogy
with elassicallanguages, ESTEREL will be the best language to highlight
the specificity of the synchronous approach. The formalization of funda
mental concepts of synchronous programming is mainly a consequence
of the design of ESTEREL, and the method to compile synchronous pro
grams into automata was first proposed in the ESTEREL compiler. To
day, ESTEREL is a commercial product (sold and maintained by two
French software companies: CISI-Ingenierie and Ilog) that is actually
used in the industry. The following overview of the language is essen
tially derived from [BCG87, BCG88].

2.2 Basic concepts

An ESTEREL pro gram communicates with its environment by means
of signals and sensors. Signals are used both as inputs and outputs,

11

12 Chapter 2 : The imperative language Esterel

while sensors are used only as inputs. Signals can convey values; sensors
always do. For instance, a train controller can receive a signal every
millisecond, a signal every wheel revolution, track signals conveying po
sitional informations, and signals coming from the operator keyboard; it
can use sensors to measure the external temperaturej it can emit power
commands to the engines and brakes. It can be made of submodules,
communicating with each other by me ans of internal signals.

Signals and sensors are identified by names. The notation S (v) ex
presses that the signal S conveys the value v.

Signals are broadcast among all the processes (though this broad
casting may be limited by scope rulesj see below). When a signal is
emitted (either by the environment or by an internal process), it is in
stantaneously perceived by all the processes that listen to it. One can
think of programs as communicating via radio waves, each signal be
ing represented by a frequency. Two kinds of information are broadcast
on the waves: values, which are permanent, and signal tops, which are
transient (they cannot be perceived by processes that do not listen to
the signal when it occurs). A sensor has a value but no signal top. A
pure signal has a signal top but no value. A valued signal has both,
and a value change is always synchronous with a signal top (hence, the
signal top is used to broadcast and detect value changesj there is no way
to detect sensor value changes).

Values conveyed by signals can appear in expressions: if S is the
name of a valued signal or of a sensor, ?S denotes its current value. A
signal top is a control information that is handled by special control
statements.

In ESTEREL, control takes no time. The occurrence of an input
signal can instantaneously result in the emission of other signals. As a
consequence, the following program fragment

every 60 SECOND do

eIBit MINUTE

end

precisely emits the signal MINUTE every 60 occurrences of the signal
SECOND. The emission of MINUTE is simultaneous with the 60th occur
rence of SECOND.

§ 2.3 : Programming primitives 13

This notion of simultaneity is captured by the concept of event. An
event is a set of simultaneous occurrences of (possibly valued) signals. A
parlicular run of a pro gram is a sequence of events, called a history. We
give below a possible history of a speed counter, receiving two signals
sEcorm and METER, and computing the valued signal SPEED every second:

{METER} , {SBCDND, SPEBD(1)} , {METER} , {METER, SECDND, SPEED (2) } , ...

There is a special built-in pure signal named tick that implicitly belongs
to any event. In other words, tick occurs at any reaction of the program.

The same signal may be emitted several times at the same instant
(e.g., by several processes). H such a signal is pure, the result is only
that the signal is present in the current event. Hit is a valued signal, it
can be associated a "combination operator," noted by *: the result of
the simultaneous emission of S(V1),S(V2),'" ,S(Vn) is then the occur
rence of S(V1 * V2 * ... * vn) in the current event. As an example of the
use of this combination mechanism, in ETHERNET-like local networks,
signal broadcasting is physically realized on a cable. A special value RAK
represents the collision of two messages. One sets V1 * v2=RAK for all

VI, V 2'

2.3 Programming primitives

The basic programming unit is the module, which contains a declaration
part and a statement part.

Like all the synchronous languages considered here, ESTEREL is not
a complete language. Data types, constants, functions, and procedures
can be imported from a host language and are only declared as abstract
names in the declaration part. Only a minimal set of types, constants,
and operators are built in (integers, Boolean, usual arithmetic and logic
operators).

14 Chapter 2 : The imperative language Esterel

2.3.1 Declarations

In the declaration part, we declare the types, constants, functions, and
procedures used by the module (and defined in the host language); we
then declare the signals and the sensors that define the module's inter
face. FinaUy, the declaration part may also include "relations," which
are implication and exclusion relations among input signals; these are
known properties of the environment, which are indicated to the com
piler for optiroization purposes. Here is a possible declaration part of
a TIMER module, as it appears in the digital watch program described
in [Ber91b]:

module TIMER
type TIME;
constant INITIAL_TIME : TIME ;
procedure INCREKERT_TIME (TIME) ()
input SECOND, RESET;
output TIMER_VALUE (TIME),

BEEP (combine integer vith PLUS);
relation SECOND # RESET ;

The procedure INCREMERT_TIME is declared with two lists of types:
the first list types arguments passed by reference, and the second list
types arguments passed by value (it is empty here). The output sig
nal TIMER_ VALUE conveys a value of type TIME and has no combination
operator: its multiple emission is forbidden (it will be checked by the
compiler). The multiple emission of the output signal BEEP is allowed:
the integer values conveyed will then be added. Intuitively, several com
ponents of a watch can operate the beeper: the chime beeps once a
second, the stopwatch beeps twice a second, and the alarm beeps four
tim es a second. If some of these components beep together, the beep
frequencies must be added. Finally, the given relation indicates that
signals SECOND and RESET never occur at the same time (the # operator
denotes exclusivity).

2.3.2 Expressions

The expressions are classically built from variables, constants, signal and
sensor values (1S), and function calls.

§ 2.3 : Programming primitives 15

2.3.3 Statements

There are two kinds of statements: primitive statements and derived
statements, which are defined in terms of primitive statements. The
primitive statements are themselves divided into two groups: classical
basic imperative statements, and temporal statements that deal with
signals.

Basic imperative statements

Here is the list of the basic imperative statements:

nothing
halt
<var> :z <expression>
eall <id> «var_Iist»«exp_Iist»
<stat>;<stat>
if <exp> then <stat>

else <stat> end
loop <stat> end
<stat> I I <stat>
trap <id> in <stat>
exit <id>
var <var_deels> in <stat> end
signal <signal_deels>

in <stat> end
run <name> <renaming>

dummy statement
halting statement
assignment
external procedure call
sequence

conditional
infinite loop
parallel statement
trap definition
exit from trap
local variable declaration

local signal declaration
module instanciation

There are no shared variables: if a variable is updated in one
branch of a parallel statement, it cannot be read or written in the other
branches.

Remember that the execution machine is infinitely fast. The only
statement that takes time is the halt statement, which does nothing
and never terminates.1 Therefore, nothing does nothing in no time,
assignment and external procedure calls are instantaneous, the second
statement of a sequence is started exactly when the first statement ter-

1 We will see later that the infinite execution of a halt statement can be inter
rupted.

16 Chapter 2 : The imperative language Esterel

minates, and the branches of a parallel statement start simultaneously;
a parallel statement terminates synchronously with the last termination
of its branches. Hence, when a parallel statement is started, its branches
work in the same signal environment.

The trap_exi t mechanism is a classical escape mechanism: a trap
defines a block that is instantly exited when a corresponding exi t state
ment is executed. H several nested blocks are simultaneously exited, the
effect is to instantly exit the outermost one. This mechanism is perhaps
the most powerful control mechanism in ESTEREL. It extends to general
exception facility.

The run statement allows module reuse. Its effect is a copy in place
of the code of the module whose name is given. Some input/output
signals can be renamed (by default, they are not). We will see later
some examples of use of this statement.

Although statements are simultaneously executed, they are executed
in the right order. Hence, a sequence

1 := 0 j 1 := 1+1

instantly yields 1=1. Only finitely many statements can be executed
simultaneously. One imposes a statically checked finiteness constraint
to forbid loops like

1 := 0 j loop 1 := 1+1 end

Temporal statements and signal handling

All statements described so far "take no time," except halt. We now
describe temporal statements that handle signals and can take time.

The signals can be either emitted by the program's environment or
by the program itself. To emit a signal S conveying the value of an
expression <exp>, one writes

emit S«exp»

or simply "emit S" if S is a pure signal. An emission is instantaneous.
H several emissions occur simultaneously, the values are combined, as
described on page 13.

§ 2.3 : Programming primitives 17

For signal reception, there are two primitive statements. The first
tests for the presence of a signal in the current event:

present S then <statementl> else <statement2> end

or, for a valued signal,

present S(I) then <statementl> else <statement2> end

The semantics is dear: if S is present in the current event, then
<state.ent1> is instantly started. Otherwise, <statement2> is in
stantly started. In the case of a valued signal, if the signal is present,
the variable 1 instantly takes the value conveyed by the signal.

The second statement is the most important ESTEREL construct. It
is called the watchdog and has the form

do
<state.ent>

watching <occ>

where <state.ent> is any statement and where <occ> is an occurrence
of a signal. An occurrence is either a signal name (e.g., SECOlm) possibly
preceded by the keyword iJlllllediate, or a signal name preceded by a
count fa.ctor (e.g., 3 SECORD). This statement defines a time limit for the
execution ofits body. The time limit is defined by the occurrence <occ>.
H <occ> has the form 5 (respectively, iJlllllediate S), the time limit is
the first event in the strict future of the current event (respectively, in
the future, induding the current event) that contains an occurrence of
the signal S. Similarly, for an occurrence n 5, the time limit is the nth
event in the strict future to contain 5.

The body <statement> is started simuItaneously with the watehing
statement (except if <occ> has the form iJlllllediate Sand if S is
present). It is executed up to the time limit excluded:

• H the body terminates strict1y before the limit, the whole
watching statement terminates synchronouslYi

• H the body is not terminated when the limit occurs, the body is
instantly killed - without being e:recuted at that time - and the
watehing statement terminates.

18 Chapter 2 : The imperative language Esterel

Notice that the nesting of vatching statements establishes a natural
preemption priority. Consider the following example:

do

do

<statement1>

vatching Si;

<statement2>
vatching S2

If S1 and S2 occur simultaneously, then the outermost vatching state
ment is terminated, and <statement2> is not executed. Hence S2 pre
empts a simultaneous S1.

Let us also notice that we have now two basic ways to kill a statement
<stat> on the occurrence of a signal S:

- the interrupt do <stat> vatching S, and

- the withdrawa12

trap T in
<stat>; exit T

11

avait S; exit T
end

The difference is that in the first case, when S occurs, the statement
<stat> is not executed at that time (the interruption precedes the reac
tion), whereas in the second case, <stat> reacts before being killed (it
can express its last wishes!).

Derived statements

Many useful temporal statements can be derived from primitive ones.

For instance, one writes

avait <occ>

and

instead of
do

halt

watching <occ>

2 see the defiuitiou of the awai t statemeut iu the uext sectiOll

§ 2.3 : Programming primitives

do
<.tat>

upto <oee>
instead of

do
<.tat>; halt

watehing <oee>

19

The avait statement has its intuitive meaning: it does nothing and
terminates as soon as the awaited occurrence <oee> happens. Notice
that many "real-time" languages off er such a statement (often with less
precise semantics) as a primitive. However, though avai t can be derived
from the vatehing statement, the converse is not true. So, the vatehing
statement is more primitive and powerful. The difference between the
upto and the vatehing statements is that "da <stat> upto <oee>"
does not terminate when its body does, but always waits for <ace>. The
vatehing statement could have been derived from the upto by writing

trap T in
do do

<.tat>; exit T
upto S

instead of <stat>
watehing S

end

It is often useful to add a timeout clause to a watchdogj this clause is
executed if the time limit occurs before termination of the body. We
will then write

do
<stat1>

watehing<oee>
timeout

<.tat2>
end

instead of

trap T in
do

end

<stat1> ; exit T
watehing <oee>;
<stat2>

If <stat1> terminates strictly before <oee>, the block "trap" IS m

stantly exited, and the timeout clause <stat2> is ignored.

Guarded loops are often used, by writing

loop
<.tat>

eaeh 3 METER
instead of

loop
do

end

<stat>
upto 3 METER

20 Chapter 2 : The imperative language Esterel

and
every 5 SECOND do

<atat>
end

instead of

awai t 5 SECOND;
loop

<stat>
each 5 SECOID

In a "loop ... each <occ>" statement, the body starts immediately and
is restarted on every occurrence of <occ>j an "every <OCC> do ... "
first waits for the first occurrence of <OCC>.

Multiple waiting of signals is written

await

end

caae <occl> do <atatl>
caae <occ2> do <stat2>

caae <occn> do <statn>

Unlike similar statements in asynchronous languages, this selection is
deterministic: the first occurrence determines the statement to be exe
cuted. If several occurrences simultaneously happen, the statement cor
responding to the first such occurrence in the list is selected (therefore,
the order in the list establishes a priority relation between simultaneous
occurrences). The expansion of the multiple waiting is of the form

do
do

do
halt

watehing <occn>
time out <statn> end

watehing <occ2>
timeout <stat2> end

watehing <occl>
timeout <atati> end

A last useful derived statement allows the emission of a signal at each
program reaction. It makes use of the predefined "always present signal"
tick (cf. page 13). One can write

§ 2.4 : Programming style and first examples

auatain S instead of
loop

emit S
each tick

2.4 Programming style and first examples

21

Before giving some examples, we illustrate some specific aspects of
ESTEREL programming: the use of several time scales, the use of signal
broadcasting, and simultaneity.

2.4.1 Using signals as time units

The multiform-time point of view, generally adopted in synchronous
programming, has been described before. In ESTEREL, this point of
view consists in using any signal as a "time unit" to count "delays."
An illustrating example appears in the "reflex game," which will be
treated later (§2.6). The core of the system must satisfy the following
specification:

Wait lor a hit on a READY button within a time limit 01
10 SECOID; in case 01 timeout, emit an ALARM; while waiting,
any hit on the srop button should ring a BELL.

The corresponding pro gram could be

do
do

every STOP do emit RING-BELL end
upto READY

watching 10 SECOID
timeout emit !LllM end

(Here "upto READY" is equivalent to "watehing READY;" we prefer using
upto whenever we are not interested in the termination of the body)

Let us now consider the following specification:

Wait lor 10 SECOllD; il srop is hit during that time, termi
nate and emit an ALARM; while waiting, any hit on READY
should ring the BELL.

22 Chapter 2 : The imperative language Esterel

This leads to the following pro gram:

do
do

every READY do emit RING-BELL end
upto 10 SECOND

watehing STOP

timeout emit ALARM end

In some sense, this program appears to be dual to the first onej it can
be read as

Wait /or 10 SECOlm within a time limit 0/ STOP; in case 0/
timeout, emit an ALARM; while waiting ...

This symmetry comes from the fact that all signals play a similar role.
The symmetry would completely disappear in a language like ADA,

where the "real-time" (counted in seconds) plays a particular role and
is handled by specific statements.

2.4.2 Use of broadcasting

Broadcasting simplifies process communication and improves modular
ityj when a process emits a signal, it does not need to know who is
listening to that signal; conversely, when a process receives a signal, it
does not need to know the emitter(s).

We illustrate this with the wristwatch example described in detail
in [Ber91b). A wristwatch is an excellent example of a reactive sys
tem; it is relatively small, but surprisingly complex, and has many fea
tures encountered in other systems: folding numerous commands into
few buttons by using command modes, showing numerous data in few
displays using display modes, and establishing communications and in
stantaneous dialogues between submodules. The wristwatch has five
submodules: a WATCH that acts as a regular timekeeper, a STOPWATCH,
an ALARM, a BUTTOlLINTERPRETER that interprets wristwatch buttons as
commands directed to the other modules according to the current com
mand mode, and a DISPLAY _HANDLER that handles the various displays.
Broadcasting makes life easier in several places:

§ 2.4 : Programming style and first examples 23

• The extern al signal SECOND is automaticaIly broadcast to all the
modules that need it.

• Hitting a particular button in a particular mode provokes the tog
gling !rom 24H to AM/PM time display mode. This change con
cerns the watch and the alarm. The button interpreter broadcasts
a message TOGGLE_24HJ(ODE_COMM.AND without worrying about who
is expecting this message. Adding a second alarm would not mod
ify the corresponding code.

• The timekeeper broadcasts a VATCH_TIME signal whenever its in
ternal time changes. This signal is used by both the alarm and the
display handler. Adding a second alarm can be done without any
modification of the VATCH and ALARM modules.

2.4.3 Instantaneous dialogue

The synchrony hypothesis allows a new form of communication, the
instantaneous dialogue. A typical example appears in the wristwatch
code, more precisely in the body of the stopwatchj it will be abstracted
here. An instantaneous dialogue can be used whenever the behavior of
a process P depends on some property of the interna! state of another
process Q. For simplification, assume that Q is a flip-flop on some
signal FLIP_FLOP_COMMAND and that P must perform <stat1> if Q is in
the "flip" state and <stat2> otherwise. Then we introduce two signals
ARE_YOU_FLIP and LAM-FLIP and writes Q as folIows:

loop
do

end

11

loop
emi t LAM..FLIP

each ARE_YOU..FLIP

<flip state code>
upto FLIP-FLOP_COMMAND;
do

<flop state code>
upto FLIP-FLOP_COMMAND

24 Chapter 2 : The imperative language Esterel

Now, the intended behavior of P is ensured by the following code:

emit ARE_YOU-FLIP
present I-AM-FLIP then

<stat1>
else

<stat2>
end

This example has been given to show the power of the assumption of
simultaneity. However, instantaneous dialogues can often be avoided by
using the sustain statement (tick and sustain were introduced late in
the design of ESTEREL). A simpler solution of the above example could
be

'I. Code for Q
loop

end

do
sustain I-AM-FLIP

11

<flip state code>
upto FLIP-FLOP_CDMMAND;
do

<flop state code>
upto FLIP-FLDP_CDMMAND

'I. Code for P
present I-AM-FLIP then

<stat1>
else

<stat2>
end

Another way to avoid instantaneous dialogue is to use Boolean-valued
signals: whenever Q enters its "flip" state, it emits FLIP (true); when
ever it enters the "flop" state, it emits FLIP Cf alse). Then P only has
to check ?FLIP to know the state of Q:

'I. Code for Q
loop

end

emit FLIP(true);
do <flip state code>
upto FLIP-FLDP_COMMAND;
emit FLIP(false);
do <flop state code>
upto FLIP-FLDP_COMMAND

'I. Code for P
if ?FLIP then

<stat1>
else

<stat2>
end

§ 2.4 : Programming style and first examples 25

All these salut ions behave in exactly the same way, although the code
generated for the last one may be slightly less efficient, since apart of
the program control is hidden in a Boolean value (see §6.1).

2.4.4 A stopwatch

Let us write an ESTEREL program implementing the stopwatch of the
digital watch presented in [Ber91bJ. We will successively consider sev
eral versions, highlighting the language modularity: each version will be
built from the previous version.

Simple stopwatch

The basic stopwatch receives an input signal START_STOP that alterna
tively puts it in "running" and "stopped" states. Initially the stopwatch
is stopped. It also receives a signal HS each 1/100 second. The stop
watch computes an integer TIME, whose value is the total amount of time
(counted in 1/100 second) spent in the "running" state. The program
is the following:

module BASIC_STOPWATCH
input START_STOP. HS;
output TIME (integer);
var TlME:=O: integer in

loop % stopped state
emit TIME(TIME);
await START_STOP;
do % running state

end
end.

every HS do

end

TIME : = TIME+1;
emit TIME(TIME);

upto START_STOP

This program computes a local variable TIME, initialized to 0, which
will contain the value always conveyed by the signal TIME. This signal
is emitted whenever the stopwatch becomes "stopped" (therefore it is
emitted at the initialization, so as to give a value to ?TIME). It is also

26 Chapter 2 : The imperative language Esterel

emitted, with incremented value, whenever a 1/100 second occurs in the
"running" state. The alternation between the "stopped" and "running"
states is realized in a fashion similar to the "flip-flop" program (§2.4.3).

Stopwatch with "reset"

The second version ofthe stopwatch receives another input signal RESET,
whose occurrence puts the stopwatch back in its initial state. ESTEREL

allows a modular solution of this problem: whenever RESET occurs, a
new basic stopwatch is instanciated. Intuitively, this is like throwing
away the old stopwatch and taking a new one!

module STOPWATCH_1 :
input START_STOP, HS, RESET;
output TIME (integer);
loop

run BASIC_STOPWATCH
each RESET.

Intermediate time handling

Let us again complexify our example. A new input signal LAP now
allows us to re cord an intermediate time (for instance, the time spent
by a runner for one track lap) while continuing to measure the global
time. One occurrence of LAP freezes the time on display, while the
internal stopwatch time continues to be computed as before. The next
occurrence of LAP puts the stopwatch back in astate displaying the
running time. Once again, this new version is built from the previous
one by putting it in parallel with a "lap-filter." The role of the lap-filter
is to manage the display state ("time frozen" or "time running") and
to prevent the output of the signal TIME in the "frozen" state. The
following pro gram runs in parallel the previous stopwatch - with the
signal TIME renameel as INTERNALTIME - anel the lap-filter, which is
again similar to the "flip-flop." Initially, anel whenever RESET occurs,
it enters the "running time" state, where it transmits any occurrence
of the INTERNALTIME to the environment. The LAP signal alternatively
COlllmutes between this state anel the "frozen time" state, where the
INTERNALTIME is no longer transmitteel.

§ 2.4 : Programming style and first examples

module STOPWATCH_2 :
input STiRT_STOP, HS, lESET, LAP;
output TIME (integer);
signal lITERNAL_TIME (integer) in

run STOPWATCH_1 [signal INTERNAL_TlME I TIME]
11 1. lap-filter

loop
do

do % running time
every INTERNAL_TIME do

emit TIME(?INTERNAL_TIME)
end

upto LAP;
1. frozen time
emit TlME(?INTERNAL_TlME);
await LAP

watehing RESET
end % loop

end.

General stopwatch

An actual stopwatch has only two buttons:

• the first one corresponds to the START_STOP signal .

27

• the interpretation of the second one depends on the global state of
the stopwatch. When the stopwatch is stopped and the displayed
time is running, it is interpreted as aRESET command; otherwise
it corresponds to a LAP signal.

Such a folding of logical inputs onto a small number of physical inputs
is very common in reactive systems. In order to preserve the modularity
of our program, this folding will be entrusted to a "button interpreter,"
which computes the global state of the stopwatch. The corresponding
module is the parallel composition of two flip-flops, computing the "run
ning/stopped" state and the "running-time/frozen-time" state, with a
process interpreting the signal BUTTOlL2 according to these states.

28 Chapter 2 : The imperative language Esterel

module BUTTON_INTERPRETER :
input START_STOP, BUTTON_2;
output USET, UP;
signal STOPWiTCH-RUNNING, FROZEN_TIME in

every BUTTON_2 do
present STOPWiTCH_RUNNING then emit LAP
else 7. the stopwatch is stopped

present FROZEN_TIME then emit UP
else emit RESET
end

end
end

11 7. flip-flop "running/stopped"
loop 1. stopped state

end

await STiRT_STOP;
do 7. running state

austain STOPWATCH-RUNNING
upto START_STOP

11 7. flip-flop "running-time/frozen-time"
loop 1. running-time state

end
end.

await LAP;
do 7. frozen-time state

sustain FROZEN_TIME
upto LiP

The whole stopwatch program is the following:

module FULL_STOPWATCH:
input START_STOP, HS, BUTTON_2;
output TIME (integer);
relation START_STOP # HS # BUTTON_2;
signal USET, LAP in

run CHRONO_2
11

run BUTTON_INTERPRETER
end.

However, this program is refused by the ESTEREL compiler, which emits
the following error message:

§ 2.5 : Causality problems in Esterel 29

user error: causality error:
Signals: RESET LAP FROZEN_TIME

This signals that our program contains a "causality loop." This type
of error is specrnc to synchronous programs and will be analyzed in the
following section.

2.5 Causality problems in Esterel

The synchronous hypothesis may cause temporal paradoxes, similar to
short-circuits or oscillations in electronics or to deadlocks in parallel
programming. We show here two kinds of such paradoxes, illustrated by
short examples.

2.5.1 Lack of behavior

Let us cOllsider the following pro gram:

signal S in
present S then

nothing
else

end

emit S
end

The local signal S must be emitted if and only if it is absent, which
is clearly nonsense. This program behaves more or less like a "not"
gate with output plugged on input. This kind of phenomenon caused
the error in our stopwatch: in the button interpreter, the process in
terpreting the signal BUTTOlL2 decides to emit the LAP signal according
to the presence of the signal FROZEN_TIME. Assume that the flip-flop
in charge of this signal is in its "do ... upto LAP" statement. Either
it emits FROZEN_TIME, and the button interpreter synchronously emits
LAP, which should have killed the upto, thus preventing the emission
of FROZEN_TIME; or FROZEN_TIME is not emitted, so neither is LAP, and
FROZEN_TIME should have been emitted.

The following example of a pro gram without behavior is similar to
the positive feedback obtained by plugging the output of an amplifier

30 Chapter 2 : The imperative Ianguage Esterei

into its input:

signal S(combine integer with PLUS) in
emit S(O) j

emit S(1S+1)
end

The integer value 15 conveyed by 5 should satisfy 15 = 1S+1!

2.5.2 Multiple behavior

A slight modification of the previous exampie shows a second kind of
paradox:

signal S in
present S then

emit S
else

nothing
end

end

N ow, the Iocal signal S must be present if and onIy if it is present! There
are obviously two possible behaviors. Beiow is another pro gram, which
has infinitely many behaviors:

signal S(integer) in
emit S(1S)

end

The integer value conveyed by S is completely undetermined. ESTEREL
considers such pro grams as erroneous, since determinism is one of its
main goals.

Formally, all these problems come from the fact that the current
event is a fixpoint of some function. Now, since this function is not al
ways monotone, it can have 0, 1, or several fixpoints. ESTEREL seman
tics (in contrast with most semantics given to STATECHARTS [HPSS86,
HGd88]) only give sense to programs that have one and onIy one fix
point. We will see in §5.1 how this feature is statically checked by the
ESTEREL compiler.

§ 2.6 : Another example: the reflex game 31

2.5.3 Putting right the stopwatch

In order to avoid the causality loop in the stopwatch button interpreter,
we only need to admit that the "frozen/running" time state of the stop
watch changes at the end 0/ the reaction, when the signal LAP occurs.
We have to replace, in the corresponding flip-flop, an interrupt by a
withdrawal (cf. definitions, page 18):

% flip-flop "running-time/frozen-time"
loop % running-time state

end
end.

avait LAP;
trap T in

sustain FiOZEN_TIME
11

avait LAP; exit T
end

Now, when LAP occurs, FROZEN_TIME 1S emitted before exiting the
"trap T" block.

2.6 Another example: the reflex game

2.6.1 Specifications

We consider a machine allowing a player to test his reflexes [Bou91]. The
player controls the ma.chine with three commands: putting a coin in a
COIR slot to start the game, pressing a READY button to start a reflex
measure, and pressing a STOP button to end a measure.

The machine reacts to these commands by operating the following
devices: a numerical DISPLAY that shows reflex times, a GO lamp that
signals the beginning of a measure, a GAME_OVER lamp that signals the
end of agame, a RED lamp that signals that the player has tried to cheat
or has abandoned the game, and a BELL that rings when the player hits
a wrong button.

When the machine is turned on, the DISPLAY shows 0, the GAME_OVER
lamp is on, the GO and RED lamps are off. The player then starts agame
by inserting a COIR, which turns off the GAME_OVER lamp. Each game

32 Chapter 2 : The imperative language Esterel

consists of a fixed lIUMBER of reflex measures. A measure starts when the
player presses the READY button; then, after a random amount of time,
the GO lamp turns on and the player must press the STOP button as fast
as he can. When he does so, the GO lamp turns off and the reflex time,
measured in milliseconds, is displayed on the numerical DISPLAY. A new
measure starts when the player presses READY again. When the cycle of
IUMBER measures is completed, the average reflex time is displayed after
a pause ofPAUSE..LElIGTH milliseconds and the GAME_OVER lamp is turned
on.

There are five exception cases. Two of them are simple mistakes and
make the BELL ring:

• the player presses STOP instead of READY to start a measurej or

• the player presses READY during a measure.

In the other three cases, the RED and GAME_OVER lamps are turned on,
the GO lamp is turned off, and the game ends:

• the player does not press the READY button within TIME_LIMIT
milliseconds when he is expected to (one assumes that the player
has abandoned the game);

• the player does not press the STOP button within TIME_LIMIT mil
liseconds when he is expected to (i.e., after the GO lamp turns on;
this is also assumed to be an abandon);

• the player presses the STOP button after he has pressed the READY
button but before the machine turns the GO lamp on, or at the
same time that this happens (this is cheating!).

A last anomaly appears if the player inserts a COII during agame. Then
a new game is started at once.

2.6.2 Interface

Three parameters of the machine are declared as integer constants: the
IUMBER ofmeasures and the delays PAUSE..LElIGTH and TIME..LIMIT. They
must be defined in the host language. An external function RAIDOM is

§ 2.6 : Another example: the reflex game 33

used to determine the random delay at which the GO lamp turns on
after the READY button is hit. The input signals are the millisecond
time unit MS and the three user commands. As far as input relations
are concerned, all input signals are assumed incompatible except MS and
STOP: if the player presses STOP simultaneously with the occurrence of
MS which terminates the random delay, then he must be considered as
a cheater. To control a lamp (say GO), we introduce two output signals
01 and OFF (hence GO_OI and GO_OFF). We also have output signals for
the displayand to ring the bell:

module REFLEX_GAME :
conatant lUMBER, PAUSE-LEiGTH, TIME-LIMIT integer;
function RANDoM() : integer;
input MS, CoIl, READY, SToP;
relation MS # CoII # READY,

Coll # SToP,
READY # SToP;

output Go_ol, GD_OFF,
GAME_oVER_ol, GAME_oVER_oFF,
RED_ol, RED_OFF,
DISPLlY(integer),
RIIG-BELL;

2.6.3 Computation of the average reflex time

We use a submodule to compute the average response time. This simple
module emits AVERAGE_VALUE whenever it receives an UPDATE_AVERAGE
signal with a new measure result:

module AVERJ.GE :
input UPDATE-AVERAGE(integer);
output AVERJ.GE_VALUE(integer);
var MEASURE..1lUMBER: = 0 ,

end

TOTAL_TIME := 0: integer in
every immediate UPDATE-AVERAGE do

TOTAL_TIME := TOTAL_TIME + ?UPDATE-AVERAGE;
MEASURE.-IUMBER : = MEASURE.-IUMBER + 1;
emit AVERAGE_VALUE(ToTAL_TIME/MEASURE~BER)

end

34 Chapter 2 : The imperative language Esterel

Notiee the keyword illlllediate, whieh ensures that even an update oe
curring at the initial instant is handled.

2.6.4 The program body

The body is made of two sueeessive parts: some overall initializations
and a main loop over a single game that is restarted whenever a eoin
is inserted. This main loop is simply eontrolled by an "every COIR"
statement.

Within a single game, we declare an ERROR trap to handle the eheat
ing tentatives and an ERD_GAME trap to handle the normal game termina
tion. Whenever the loop is entered, an instanee of the module AVERAGE
is put in parallel with the main proeess, with whieh it eommunieates
by means of the two loeal signals UPDATE_AVERAGE and AVERAGE_VALUE.
The general structure of the pro gram is thus the following:

<overall initializations>
every conr do

end

<game initializations>
trap END_GAME in

end

trap ERROR in

end

signal UPDATE-AVERAGE(integer).

"
end

AVERAGE_VALUE(integer) in
run AVERAGE

<main process>

<errors handling>

<end of agame>

Overall initializations consist in turning off the GO and RED lamps, turn
ing on the GAME_OVER lamp, and initializing the display to o. The game
initializations only differ by turning off the GAME_OVER lamp.

The main proeess of agame eonsists in performing NUMBER measures,
and then in displaying the average time:

§ 2.6 : Another example: the reflex game

repeat NUMBER times
<measure>

end;
await PAUSE_TIME MS;
emit DISPLAY(?AVERAGE_VALUE);
exi t END_GAME

Each measure consists of three steps:

35

1. Wait for the READY signal within a time limit of TIME_LIMIT. In
case of timeout, an error is detected. While waiting, any occur
rence of STOP rings the bell (this is the short example given in
§2.4.1):

'I. step (1)

do
do

every STOP do emit RING-BELL end
upto READY

w,atching TIME_LIMIT MS
timeout exit ERROR end

2. Wait for a random delay, and after this delay, switch on the GO
lamp. While waiting, any hit on the STOP button causes an error.
Since an error must be detected even when the STOP button is hit
simultaneously with the end of the random delay, the interrupt by
STOP is given priority over the random delay. While waiting, any
hit on the READY button rings the bell:

'I. step (2)

do
do

every READY do emit RING-BELL end
upto RANDOM() MS;
emi t GO_ON

watehing STOP
timeout exit ERROR end;

3. Wait for the STOP signal, counting milliseconds, within a
TIME-LIMIT delay. In case of timeout, an error is detected. While
waiting, any hit on the READY button rings the bell. When the STOP

36 Chapter 2 : The imperative language Esterel

signal occurs, the GO lamp is turned off and the counted measure
is displayed:

y. .tep (3)

do
var TIME := 0: integer in

do

end

every MS do TIME := TIME+1 end
11

every lEIDY do emi t B.I1G...BELL end
upto STOP;
emit DISPLAY(TIME);
emit UPDATE-1VEB.AGE(TIME);
emit GO_OFF

vatching TIME-LIMIT MS
timeout exit EB.B.OB. end;

If an error occurs, the RED lamp is turned on, and the GO lamp is
turned off. At the end of agame, the GAME_OVER lamp is turned on. The
whole program is given in Figure 2.1.

§ 2.6 Another example: the reflex game

_dul.. ID'LI.I-GAO :
con.tant IVXBl.l, PAUSI.-LUGTB, TIKILLIXIT int.,.r;
fuDction unoxo: int.,.r;
input XS, COIR, ll.!DY, STOP;
r.lation XS • COIR' lI.!DY, COIR' STOP, tuDY • STOP;
output GO-llR, GO_OlP, GiJILOftl-llR, GAXI._OYl.Lll",

lI.D_OR, 1I.D-II", DISPLAY(int.,.r), lIRGJBI.LL;
X ov.rall initialia.tion.
_it GO-lllP; emit UD-II"; _it GAJlLOftl-llR; emit DISPLH(O);
.v.rr COIR do

X , ... initialisation.
_it GO-ll,,; eait lBD_O"; emit GAXI.-DYIl_O"; .. it DISPLAY(O);
trap UDJUD in

trap DlOl in
.isnal UPDA11LiftlAGI.(inte,er), AYDAGI._YALUI.(inte,.r) in

run AygAGI.
11 X .. in proc •••

repeat RUMBl.l time.
do X .tep (1)

.nd
end;

do every STOP do emit lIRGJBKLL .nd
upto lUDY

•• tchin, TID-LIXIT XS timeout exit DlOR .. nd;
do X .tep (2)

do .v .. ry ll.ADY do .. mit RI.GJBKLL end
upto lA.DOX() XS;
_it GO_O •

•• tchin, STOP timeout exit I.RROR end;
do X .tep (3)

var TIXI. : = 0: int .. ,er in
do

.. v .. ry XS do TIO := TIXI.+1 .. nd

11
every RI.ADY do emit RI.GJBKLL .. nd

upto STOP;

end

emit DISPLAY(TID); _it UPD1Tl.-lYD1GI.(TIXI.);
.. mit GD_On'

•• tchin, TID-LIXIT XS timeout .. xit DRDR .. nd;
end;
X normal .. nd: di.pl.y of th.. .v .. r.,e tim ..
••• it PAUSI.-LI..GTB XS;
emit DISPLAY(?AYDAGK-YALUI.); exit I.&D_GAD

X .rror. handlin,
.. it UD_O.; emit GO_O'F

end;
X.ndof.'
_it GAXI._OYKR_OR

end.

Figure 2.1: The whole program of the reflex game

37

Chapter 3

Graphie formalisms:
the language Argos

This chapter is devoted to graphical formalisms based on parallel and
hierarchie automata. The best known of such formalisms is proba
bly STATECHARTS [Har87], which have been defined by D. Harel and
A. Pnueli. However, we prefer to describe another formalism, appar
ently very elose to STATECHARTS: the language ARGOS [Mar89, Mar90],
under development at IMAG (Grenoble). This choice is motivated by
the following reasons:

• The STATECHARTS semantics seems to still be under discus
sion [HPSS86, HGd88]. On the other hand, the given semantics is
not completely synchronous, since parallel composition may give
rise to nondeterministic behaviors .

• ARGOS solves some problems existing in STATECHARTS, in par
ticular those concerning modularity and causality loops. It is a
simpler language, whose semantics is completely formalized and
thoroughly compatible with the synchronous point of view adopted
in ESTEREL.

39

40 Chapter 3 : Graphie fonnalisms: the language Argos

3.1 Automata and operators

In an ARGOS program, basie proeesses are finite automata that reeeive
and emit signals, exactly as in ESTEREL. These automata ean be put
in parallel; ea.ch of their states ean be refined into a proeess, whieh is
activated whenever its ''father'' -automaton enters the eonsidered state,
and whieh is killed whenever its father leaves this state. In any proeess,
three kinds of signal are distinguished: internal signals are signals that
have been declared loeal either in the proeess or in one of its "aneestors";
other signals are either input signals of the whole program, in whieh ease
they eannot be emitted by the program, or output signals of the whole
program, in whieh ease they eannot be used as input in any transition
of any automaton in the program.

3.1.1 Simple automata

In ARGOS, a simple proeess is direetly deseribed as an automaton
(ef. Figure 3.1). States are named, transitions are labeled, and an au
tomaton has one and only one initial state (signaled by a small ineoming
arrow). Transition labels eonsist of an input part and an output part,
eaeh of whieh is made of signals, that belong to aglobaI voeabulary
E = {a, b, c, ... }. The input part is a eonjunction of signals (at least
one) and of signal negations. The output part ean only eontain signals.
When the output part of a label is empty, it ean be omitted. The intu
itive semantics of the automaton of Figure 3.1 is that, when the process

1 a.e/b.c.d
a

A g/h B

J e

f
C D

Figure 3.1: An ARGOS automaton

§ 3.1 : Automata and operators 41

is in state 1. and if the signal a occurs and the signal e does not, then
the process enters state B while simultaneously emitting signals b, c,
and d. In this example, {a, e , f , g} is the set of input signals of the
process, and {b, c , d, h} is the set of its output signals. When the pro
cess is in state B and if the signal a (respectively, e) occurs, the state
D (respectively, C) is entered .without any output emission. Clearly, if
a and e simultaneously occur, the process behavior is nondeterminis
tic. Such an ezplicit nondeterminism is allowed in ARGOS (which only
forbids the implicit nondeterminism, involved, for instance, by parallel
composition). However, a compiler option enables us to check that this
nondeterminism disappears in the whole program (e.g., because a and e
are internal signals that are never simultaneously emitted).

3.1.2 Argos operators

Operators on behaviors are tightly connected with design methods. In
ARG OS, two design methods are handled by operators: parallel decom
position and hierarchical decomposition.

"Parallel" operator

In ARGOS (as in STATECHARTS), the parallel composition of two pro
cesses is noted by drawing them in a box, separated from each other by a
dotted line. Figure 3.2 shows two examples, in which involved processes
are automata (of course, they could themselves be compound processes).

Process semantics will always be given by means of automata with
the same behaviors as the considered process. First, the set of states
of a parallel process is the Carlesian product of the sets of states of
its component processes. The initial state is the pair of components
initial states. Each component runs in an environment made of the
global environment and of the other component. In each global state,
the global reaction is defined by the following rules:

• Whenever a component can react to an input, it must react. There
fore, the communication mechanism is similar to signal broadcast
ing in ESTEREL. Depending on the input, either none, or one, or
both components participate in the reaction.

42 Chapter 3 : Graphie fonnalisms: the language Argos

(a) (b)

Figure 3.2: Parallel eomposition

+ +
U,A2 Al,A2

ac/7 I ~/a' ab/ I
A1,B2 ac/a'e' B1,A2

a~~~c'
Al ,B2 alb

a~~
B1,B2 B1,B2

(a) (b)

Figure 3.3: Behavior of parallel proeesses

• When both eomponents react, the global output is the conjunction
of eomponents outputs.

• Components eommunieate with each other during the re action.
Internal signals emitted by eaeh of them are eonsidered as inputs
by the other in the same reaction.

Figure 3.3 gives the automata equivalent to the proeesses given by Fig
ure 3.2, under the assumption that b is an internal signal (sinee it ap
pears in both the input and output parts of transitions), i.e., a loeal
signal to a "parent" proeess of the given proeess.

§ 3.1 : Automata and operators 43

t
A,B,C

1·
A' ,B' ,C'

(a) (b)

Figure 3.4: Local signal definition

So far, only binary parallel composition has been considered. How
ever, since the parallel composition is commutative and associative, it
can be generalized to any number of arguments.

Local signal definition

Some signals can be made loeal to a given process by putting this
process into a box (if it is not already in a box) with a cartouche where
these signals are indicated (cf. Figure 3.4(a)). This operation has two
consequences:

• From a static point of view, these signals become internal to the
process and to any of its subprocesses. Therefore, they may appear
both in the input parts and in the output parts of their transitions .

• From adynamie point of view, this operation limits the broad
casting of these signals, which are not transmitted - and cannot
come from - outside of the box. This definition is very similar tü
the local signal declaration in ESTEREL.

Figure 3.4(b) gives the behavior of the process shown in Figure 3.4(a).
Since the signals band c have been made local, a is the only input
signal of the process. When a occurs, it causes the reaction of the first

44 Chapter 3 : Graphie fonnalisms: the language Argos

two components of the "parallel" operator, and therefore b and c are
emitted. The signal b is lost (since no process of its scope is listening to
it). The occurrence of c causes the third component's reaction.

Hierarchical decomposition

The hierarchie al decomposition of an automaton A consists in consider
ing some of its states to be themselves processes. Syntactically, such a
decomposition is expressed by representing the subprocess inside the box
associated with the decomposed state (cf. Figure 3.5{a)). The following

rules define the behavior of this operator:

1. When A enters astate containing a subprocess, this subprocess is
activated in its initial state (it becomes active);

2. When Aleaves such astate, the subprocess is killed (it becomes
inactive), and all information about its current state is lost.

3. The signals emitted by active subprocesses of A, if they are not
local to these processes, are visible from A;

4. Conversely, any signal visible from A can be seen from an active
subprocess, if this subprocess eloes not have a local signal with the
same name; anel

5. A subprocess does not participate in the reaction that activates
it, but participates in the transition that kills it (the interruption

takes place at the enel of the reaction).

Let us notice that, from rule 2, the father process can interrupt its
subprocesses, whereas from rule 5, a subprocess can commit suicide by
forcing its father to interrupt it.

Figure 3.5{b) gives the behavior of the process shown in Fig
ure 3.5{ a), under the assumption that b is an internal signal. Initially,

the process is in the state X of the subprocess associated with its state
A. From this state,

• if signal c occurs anel signal b does not, the subprocess enters its
Y state while emitting e;

§ 3.2 : Causality problems 45

A

~c/e

u,c ""

B

ac/b A,Y

/.
(a) (b)

Figure 3.5: Hierarchical decomposition

• if signal b occurs alone, the transition A--tB of the father process
kills the subprocess (which has nothing to dO)j

• if signal a occurs and signal c does not, the subprocess enters its
Z state while emitting b. This emission of b simultaneously causes
the father process to leave its Astate (thus killing the subprocess)
to enter Bj and

• if b and c simultaneously occur, the subprocess performs its tran
sition X--tY while emitting e, and at the same time the transition
A--tB of the father process kills the subprocess.

When the subprocess is in state Y, the process only reacts to b, which
kills the subprocess. Finally, in state B, the subprocess is inactive. It is
activated again (in its initial state X) when C occurs.

3.2 Causality problems

As one might expect, temporal paradoxes exist in ARGOS as weIl as in
ESTEREL. Some processes do not have any behaviorj other processes
present implicit nondeterminism. In the latter case, the detection will

46 Chapter 3 : Graphic formalisms: the language Argos

Figure 3.6: Absence of behavior

be a bit more difficult, since the implicit nondeterminism must be dis
tinguished from the explicit one, which is allowed in ARGOS automata.

We only give an example of each type of paradox. A process without
behavior is shown in Figure 3.6: if the external signal p occurs when
the local signal a does not, the transition A--tA' happens, involving the
emission of b. Thus the transition B--tB' is activated, and a and 0 are
emitted. Now, since a is present, the transition A--tA' should not have
happened.

Figure 3. 7(a) shows an implicitly nondeterministic process: if p oc
curs, either both transitions A--tA' and B--tB' are activated, emitting a
and b needed for their activation, or neither happens and no signal is
emitted (Figure 3.7.(b)).

3.3 Programming style

The hierarchical decomposition mechanism, with interrupt or "sui
eide," is the only mechanism to kill a process in ARGOS (in contrast
with ESTEREL, which has three such mechanisms: simple termination,
withdrawal by me ans of a "trap ... exi t," and interrupt by means of
"do ... vatching"). The following discussion suggests that this single
mechanism can simulate the othersj this simulation, however, cannot be

§ 3.3 : Programming style 47

A,B 8 p

1 pi.

A' ,B'

(a) (b)

Figure 3.7: Implicit nondeterminism

modularly performed.

3.3.1 Termination by exception

Assume that a subprocess containing states A and A' (respectively, B
and B') "abnormally" terminates when signal a occurs in state A (re
spectively, when signal b occurs in state B). It can signal this abnormal
situation by emitting a signal s (respectively, t). Now, an exception
handler can be written that kills the subprocess and activates a process
managing the exception, possibly taking into account some priority rules
among exceptions (e.g., the exception raised by s has priority over the
one raised by t). This kind of construction is shown in Figure 3.8.

3.3.2 Normal termination

Normal termination is not built in in ARGOS. It differs from abnor
mal termination because a "parallel" construct abnormally terminates
as soon as one of its components abnormally terminates, whereas it nor
mally terminates only when every component is terminated. In order
to express this notion, assume that each component emits a special ter
mination signal when it enters a final state (without successor state).

48 Chapter 3 : Graphie fonnalisms: the language Argos

s
1-----1.,. Y

I------l~ Z
T

Figure 3.8: Exeeption handling

Figure 3.9: Normal termination

Figure 3.9 shows how these signals ean be handled to realize the overall
normal termination.

§ 3.4 : Examples 49

p

Figure 3.10: Process interrupt

3.3.3 Interrupt

Making a father-process interrupt one of its subprocesses (as performed
by a "do ... watching" in ESTEREL) is more complicated, since the inter
rupt must take place be/ore the re action ofthe subprocess. The proposed
solution consists in inhibiting any transition of the subprocess when the
interrupt occurs. An interrupt signal (p in the example shown in Fig
ure 3.10) is emitted by each transition interrupting the subprocess, and
each transition of the subprocess is conditioned by the absence of this
signal.

3.4 Examples

3.4.1 The stopwatch

The stopwatch is not a very illustrative example in ARGOS, on the one
hand because it is a single automaton, and on the other hand because the
language does not yet allow actions (such as time incrementation and
reset) to be placed on transitions. Figure 3.11 only gives the control
automat on.

3.4.2 Control logic of the digital watch

A more interesting example, again extracted from the digital watch,
concerns the management of the watch running modes [Ber91bJ. The
watch is driven by me ans of four buttons: ul, 11, ur, Ir ("up-Ieft,"

50 Chapter 3 : Graphie formalisms: the language Argos

button_2/reset

button_2/lap

stopped
frozen

button_2/lap

hs

button_2/lap

hs

Figure 3.11: The control automaton of the stopwatch

"low-left," "up-right," and "low-right," respectively). It has five running
modes, as follows:

• The TlMER mode is the initial one, where the time is displayed. In
that mode,

- the 11 button changes to STOPWATCH mode;

- the ul button changes to TIME_UPDATE mode;

- the Ir button alternatively toggles the time-display mode
(24H or AM-PM);

- the ur button switches the light on .

• In the TIME_UPDATE mode,

the 11 button changes the updated item (seconds, minutes,
hours, etc ...);

the Ir button updates the selected item;

the ul button changes back to TIMER mode.

§ 3.4 : Examples 51

• In the STOPWATCH mode,

- the 11 button changes to ALARM mode;

- the Ir button is the "start_stop button" of the stopwatch;

- the ur button is the "button_2" of the stopwatch.

• In the ALARM mode,

- the 11 button changes to TIMER mode;

- the ul button changes to ALARM_UPDATE mode;

- the Ir button alternatively switches the chime on and offj

'- the ur button alternatively switches the alarm on and off.

• In the ALARM_UPDATE mode,

- the 11 button changes the updated itemj

- the ul button changes back to ALARM modej

- the Ir button updates the selected item.

In any mode, the ur button stops the bell.

Figure 3.12 shows the corresponding ARGOS program.

52 Chapter 3 : Graphie fonnalisms: the language Argos

TIMEB.
Ir l1/change_item

ul

~ ur/light
ul

11
lr/start_stop

11

11 ur/button_2

ALARM
ur ll/change_item 9" ur·C ALAlULOB) ~u:..:I"--,-::-:::-=-,\----1

----------------------6 Ir r--tiiu ~~ "Ie CHlME) .. Ir - -

~.tOP_b.ll

Figure 3.12: The running modes of the digital wateh

Chapter 4

Declarative languages
Lustre and Signal

4.1 Introduction

• •

Reactive systems belong to a field in which many users come from control
science or electronics rather than from computer science. It is therefore
appealing to provide these users with description tools that are sim
ilar to the traditional tools used in control theory: these traditional
tools often consist, at a higher level, of equational formalisms (differen
tial or finite-difference equations, Boolean equations, etc ...), and at a
lower level, of varlous graphie formalisms to describe operator networks
(block diagrams, analog schemas, switch or gate diagrams, etc ...). All
these formalisms belong to the "data-flow" model, which is weIl known
in computer science [Kah74, Gra82]. In this model, a system is a net
work of interconnected operators, running in parallel and activated by
input arrivals (cf. Figure 4.1). This model was initially proposed for
general programming. However, it has not enjoyed much success in this
context, on the one hand because it goes against uses that are firmly
rooted in users'mind, and on the other hand because no reasonably
efficient implementations have been proposed for data-flow languages.
Now, though this model goes against the habits of computer scientists,
it is very natural to control scientists, who must unfortunately translate
their "data-flow" point of view into the classical imperative models used

53

54 Chapter 4 : Declarative languages : Lustre and Signal

2

x = 2xY + Z
x

W=X+1

W

Figure 4.1: Equational and graphical descriptions of a data-fiow system

in computer science. Even from the computer scientist's point of view,
the data-fiow model has many advantages:

• 1t is a fine-grained parallel model. Conceptually, as soon as an
operator is provided with its inputs, it can compute its output. So
the only synchronization constraints come from dependence rela
tions between data. At a time when computer scientists are seek
ing models and languages that take advantage of the increasing
parallelism of computers, it seems paradoxical that same users far
whom parallelism is a natural point of view must translate it into
more or less sequential formalisms. A fine-grained parallel descrip
tion allows a wide range of implement at ions, from the sequential
one to the implementation on massively parallel architectures, or
even on hardware. It is indeed much more difficult to parallelize a
sequential program than to sequentialize a parallel ane.

• Generally, data-fiow formalisms are "mathematically cleaner" than
imperative ones, in which not ions such as memory and assignment
may involve complex side effects. This mathematical cleanness
makes easier the use of formal methods for program analysis, de
sign, and verification.

• An operator net directly provides a graphical representation of pro
grams. Moreover, this representation straightforwardly supports
hierarchical decomposition: a subnet Can be encapsulated into an

§ 4.2 : The language LUSTRE 55

operator. The existence of a textual formalism - the equational
one - equivalent to the graphie al formalism allows the advantages
of both approaches to be combined. While the graphical descrip
tion is convenient at macroscopic levels, it becomes soon extremely
complex at detailed levels .

• The importance of hardware implementations has already been
outlined. Another advantage of the description using operator
nets is that it leads very naturally to such implementations (cf.
Chapter 8).

The data-flow approach is consequently appealing in the field of reactive
systems. However, most data-flow languages are essentially asynchro
nous [Kah74, KQ77, Gra82, AW85, Bro89]. A natural way to introduce
time in the data-flow model consists in relating the time to the rate of
data arrivals. The considered variables can be naturally interpreted as
functions oftime. For instance, the descriptions given Figure 4.1 express
the following relations:

Vt, X(t) = 2Y(t) + Z(t) and W(t) = X(t) + 1

The temporal dimension therefore underlies any description in such a
model.

Such a temporal interpretation of data-flow networks involves some
semantic restrictions. The maximal reaction time of a pro gram must
be measurable, which forbids, for instance, the dynamic creation of
processes (which is allowed, e.g., in Kahn's nets). More generally, a
synchronous data-flow network should be implementable by me ans of
an eztended finite automaton with bounded memory. In L USSfRE and
SIGNAL, these restrictions result in dock constraints.

4.2 The language Lustre

LUSTRE is a textual data-flow language, defined at the IMAG Institute
in Grenoble. Its design started in 1984. A graphical programming envi
ronment, called SAGA, was developed by Merlin-Gerin Company, which
used it to program nuclear-plant control systems. The whole environ
ment SAGA+LuSTRE has been industrialized by the French software
company Verilog.

56 Chapter 4 : Dedarative languages : Lustre and Signal

Basic cydes 1 2 3 4 5 6 7 8
Values of C true false true true false true false true
Cydes on C 1 2 3 4 5

Values of C1 false true false true true
Cydes on C1 1 2 3

Table 4.1: Boolean flows and docks

4.2.1 Flows and docks

In LUSTRE, any variable or expressions refer to a Jlow, which is a pair
made of

• a (possibly infinite) sequence of values, of some type; and

• a dock, which represents a sequence of instants.

A flow has the nth value of its sequence of values at the nth instant of its
dock. Any program (or program fragment) has a cydic behavior, which
defines its basic dock, from which any other dock is derived. A flow
whose dock is the basic dock takes its nth value at the nth execution
cyde of the pro gram. Other, slower docks can be defined by me ans of
Boolean-valued flows: any Boolean flow can be used to define a dock,
which is the sequence of instants where the value of the flow is true. For
instance, Table 4.1 gives the time-scales defined by a flow C on the basic
dock, and by a flow C1, whose dock is the one defined by C. The first
row gives the basic cyde numbers, and the second row gives the values
of C at each of these cydes. The sequence of cydes on the dock defined
by C is numbered on the third row, while the fourth and the fifth rows
give the values of C1 on this dock and the sequence of cydes of the dock
defined by C1, respectively.

The notion of dock is not necessarily related to physical time. In par
ticular, the basic dock must be considered as defining the finest "grain"
of time that the pro gram can distinguish, rather than as a physical time
scale. As usual in synchronous programming, the physical time will be
perceived as an input to the program: for instance, a Boolean flow, any
true value of which signals the elapsing of a "millisecond." This point

§ 4.2 : The language LUSTRE 57

of view meets the multiform time notion: the millisecond is a flow like
any other, and any Boolean flow can be used to define a time scale.

4.2.2 Variables, equations, expressions, and assertions

LUST RE variables refer to flows. Each variable is dedared with the
type of its values. Any variable that is not an input to the pro gram is
defined by one and only one equation. Equations must be understood

in their mathematical sense: the equation "X = E" defines a complete
synonymy between the variable X and the expression Ej they have the
same sequences of values and the same dock. This expresses one of
the main principles of the language, the substitution principle: such an
equation allows X to be substituted by E anywhere in the program and
conversely. Another basic LUSTRE principle is the definition principle:
a variable is thoroughly defined from its dedaration and the equation
in the left part of which it appears. In particular, no information can
be inferred from the way the variable is used. 1 A consequence of these
principles is that a LUSTRE pro gram is written as a mathematical system
of equations: the order of the equations is irrelevant, and introducing
auxiliary variables to name subexpressions has no consequences for the
pro gram semantics.

LUSTRE contains only elementary predefined data types - integers,
Boolean, and reals - and a tuple constructor. One can use imported
types, defined in a host language and handled as abstract data types,
exactly as in ESTEREL.

Expressions appearing in the right-hand sides of equations are built
of constant, variables, and operators. Constants either belong to pre
defined types or are imported from the host language. They represent
constant-valued flows on the basic dock.

Standard operators on predefined types (arithmetic, Boolean, con
elitional operators) are available, together with importeel functions. All
these operators, hereafter referred to as data operators, can only be ap
plieel to operanels on the same dock on which they operate pointwise. For
instance, if X anel Y are integer-valueel flows on the basic dock, with re
spective sequences ofvalues (Xl,X2, ... ,Xn , .•.) anel (Yl,Y2, ... ,Yn, ...),

1 This is the llla.i.ll diff"rellce betweell Lnstre aud Sigual.

58 Chapter 4 : Dedarative languages : Lustre and Signal

the expression "if 1>0 then Y+1 else 0" is the flow on the basic dock
whose nth value, for any n, is Yn + 1 if :en > 0, and 0 otherwise.

In addition to those data operators, LUSTRE has only four sequence
operators that explicitly operate on flows.

• The "previous" operator "pre" memorizes the value of its argu
ment at the preceding instant of its dock: if (el,e2, ... ,en , •••)

is the sequence of values of the expression E, pre (E) is a
flow on the same dock as E, whose sequence of values is
(nil,el,e2, ... ,en -I, ...), where nil is an undefined value (akin to
the value of an uninitialized variable in imperative languages).

• The "->" operator (read "followed by") is used to define initial
values: if E and F are two expressions on the same dock and of the
same type, with respective sequences of values (eI, e2, ... , en , •••)

and (11,12, .. . , In, .. .), "E -> F" is a flow on the same dock as E
and F, whose sequence of values is (eI, 12, /3 ... , In, .. .). In other
words, "E -> F" is initially equal to E, and then forever equal to
F.

As a very first example, the equation "N = 0 -> pre(N) + 1" defines
the variable N to be initially 0, and then forever to be its preceding value
incremented by 1. Since the constants 0 and 1 are on the basic dock, so
is N. N is, in some sense, a counter of basic cydes. The following table
shows the involved flows:

Basic cydes 1 2 3 4 5 6
0 0 0 0 0 0 0
1 1 1 1 1 1 1

pre(N) nil 0 1 2 3 4
pre(N) + 1 nil 1 2 3 4 5

o -> pre(N) + 1 0 1 2 3 4 5

The last two operators, whose effects are shown in Table 4.2, permit
us to define expressions on different docks:

• The "when" operator is used to "filter" its first argument according
to a slower dock: if E is an expression, and if B is a Boolean
expression on the same dock as E, "E when B" is a flow on the

§ 4.2 : The language LUSTRE 59

Z

B false true false true false false true
X Xl X2 X3 X4 X5 X6 X7

Y = X when B X2 X4 X7

currentCY) nil X2 X2 X4 X4 X4 X7

Table 4.2: Filtering and projection

dock defined by B, whose sequence of values is extracted from the
sequence of E by selecting only those corresponding to an instant
when B is true. In other words, it is the sequence of values of E

when B is true .

• The last operator is used to "project" an expression on a faster
dock. Let E be an expression on a dock defined by some Boolean
expression B (so E is not on the basic dock). Then "current CE)"
is a flow on the same dock as B, whose value at each instant of
this dock is the value of E at the last instant where B was true.
Notice that, for this definition to make sense, any nonbasic dock is
syntactically associated with the Boolean expression that defines

it.

The body of a LUSTRE program consists of equations and assertions.
Assertions generalize equations: an assertion is a Boolean LUSTRE ex
pression that is assumed to be always equal to true at any instant of its
dock. Assertions also generalize ESTEREL relations: they are gene rally
used to specify to the compiler some known properties of the program en
vironment for optimization purposes. For instance, if two input events,
represented by two Boolean flows x and y, are known to be exdusive,
this can be expressed by the assertion "assert notCx and y)." In the

same way, the assertion

assert (true -) not(x and pre(x)))

expresses that the event x never occurs twice consecutively. Notice
the initialization to true, which is necessary to avoid a nil value: an
assertion, a dock, and an output flow may not take the value nil.

60 Chapter 4 : Declarative languages : Lustre and Signal

o
R

1-~ ..

Figure 4.2: Operator net of the counter

Let us remark that an equation "I=E" is equivalent to the assertion
"assert (I-E)." Initially introduced for optimization purposes, like
ESTEREL relations, LUSTRE assertions play an essential role in program
verification (cf. Chapter 9).

4.2.3 Program structure

As mentioned in the introduction, a LUSTRE system of equations can be
graphically represented as an operator net. For instance, the equation

R - 0 -) pre(H) + 1;

corresponds to the net shown in Figure 4.2. This graphical representa
tion naturally suggests a not ion of subprogram: a subnet can be encap
sulated into a new operator. Such a LUSTRE user-defined operator is
called anode. Anode declaration consists of an interface specification
- giving the input and output parameters, with their types and possi
bly their clocks - and a system of equations and assertions that defines
the outputs, and possibly local variables, as functions of inputs.

For instance, the following declaration defines a general counter, pa
rameterized with the initial value, the increment value, and areset event:

§ 4.2 : The language LUSTRE

B
(O,1,fal ••) .b.n B

couaTll«O,1,fal ••) .hen B)
COUlTla(O,1,fal ••)

(COUITIa(O,1,fal •• » .hen B

true la"'e
(O,l,la"'e)

o
o 1
o

true lal"e
(0,1 Ja/se)

1
2 3
2

Table 4.3: Nodes and docks

61

true
(O,l,lal .. ")

2
4
4

node COUlTER(init_value,incr_value: intj reset: bool)
returns (I: int)j

1et
1 • init_value -> if reset then init_value

else pre(l) + incr_valuej

tel.

Once dedared, such anode can be used in any expression as a function.
One can write

even • COUITER(O, 2, false)j
modulo5 = COUlTER(O, 1, pre(modulo5)=4)j

to define the sequence of even numbers and the cydic sequence of integers
modulo 5 on the basic dock.

Anode can return several output parameters; in that case, the result
is a tuple. With respect to docks, in accordance with the data-flow point
of view, the basic dock of anode is defined from the dock of its actual
input parameters. For instance, the call

COUlTER((0, 1, false) vhen B)

only counts when B is true. In that example, the "vhen" operator
is applied to the tuple (0, 1, false). 2 Table 4.3 shows the result
of this expression, together with the difference with the expression
"COUlTER(O, 1, false) vhen B," where the node outputs are filtered
instead of its inputs.

Anode can take input parameters on different docks. If the dock of

2 An equivalent expression would be "COUNTER(O lI'hen B. 1 lI'hen B. false lI'hen
B)."

62 Chapter 4 : Dedarative languages : Lustre and Signal

an input parameter is not the basic dock of the node, that dock must be
a parameter and must appear in the interface. In the following example

node I(millisecond:bool;
(x:int ; y:bool) vhen millisecond) returns ...

the node I takes a Boolean parameter ''millisecond'' on its basic dock,
and two parameters "x" and "y" on the dock defined by "millisecond."
Anode can also return parameters on different docks, with the con
straint that these docks must be visible from outside the node.

4.2.4 Causality in LUSTRE

Causality problems, already encountered in ESTEREL and ARGOS, ap
pear in LUSTRE as cydic definitions: a variable may not instantaneously
depend on itself, since the compiler does not give sense to irnplicit def
initions like "I - 3*1 + 1." Such adefinition is similar to a deadlock.
These deadlocks are detected by a single analysis of static dependencies.
LUSTRE forbids also "false" deadlocks, such as

1 - if ethen Y else Zj
Y = if ethen Z else Xj

since the exact detection of deadlocks, in the general case, is obviously
an undecidable problem.

4.2.5 Some examples

Watchdogs

We will first write three versions of a "watchdog," a device to manage
deadlines. The first version receives three events: two commands to
switch the watchdog on and off, and a "deadline" event. The watchdog
must emit an "alarm" whenever the deadline occurs when the watchdog
is on. Initially it is turned off.

All the events are represented by Boolean variables, whose "true"
value indicates an occurrence of the event. The watchdog is a LUSTRE
node, taking as inputs three Boolean parameters "set," "reset," and

§ 4.2 : The language LUSTRE 63

"deadline," and returning a Boolean variable "alarm." We get the
interface:

node WATCHDOG1 (set, reset, deadline: bool)
returns (alarm: bool);

Since the equation order is irrelevant, we can first define the output:
"alarm" is true when and only when "deadline" is true when the watch
dog is on. Let us introduce an auxiliary variable "vatchdog_is_on" that
records the state of the watchdog. Then we can write

alarm = deadline and vatchdog_is_on

The auxiliary variable "vatchdog_is_on" remains to be defined. Its
initial value is false, it becomes true whenever the input "set" is true,
and it is turned to false whenever the input "reset" is true:

if set then true
else if reset then false
else pre(vatchdog_is_on)

Moreover, one can assume that the "set" and "reset" commands never
occur at the same time, which is expressed by an assertion. The whole
pro gram is the following:

node WATCHDOG1 (set, reset, deadline: bool)
returns (alarm: bool);

var watchdog_is_on: bool;
let

tel

alarm = deadline and watchdog_is_on;
watchdog_is_on = false -) if set then true

else if re set then false
else pre(watchdog_is_on);

assert not(set and reset);

We consider now a second version, in which the watchdog receives
the "set" and "reset" commands again, but must emit an alarm when
it has remained set for a given delay, counted as a number of basic
cycles. The new pro gram makes use of the previous one, providing it
with a suitable parameter "deadline": whenever it is switched on, the

64 Chapter 4 : Dedarative languages : Lustre and Signal

watchdog initializes a counter to the current value of the delay. The
counter is then decremented at each cyde, and the "deadline" is true
when the counter reaches zero. It is defined by me ans of anode "EDGE,"
of general usage, which returns true whenever its parameter has a rising
edge (i.e., is switched from false to true):

node EDGE (b: bool) returns (edge: bool);
let

edge = false -) (b and not pre(b»;
tel

node WATCBDOG2 (set. reset: bool; delay: int)
returns (alarm: bool);

var remaining_delay: int; deadline: bool;
1et

tel

alarm = WATCHDOG1(set. reset. deadline);
deadline = EDGE(remaining_delay = 0);

remaining_delay if set then delay else
(0 -) pre(remaining_delay)-1);

Let us finally assume that a watchdog similar to the previous one
is desired, but that the delay mus.t be counted according to some time
unit, i.e., as a number of occurrences of some event "time_unit." We
only have to call WATCHDOG2 on some suitable dock: WATCHDOG2 must
perceive any occurrence of "time_uni t," any switching command, and
the initialization:

node WATCBDOG3 (set. reset. time_unit: bool;
delay: int)

returns (alarm: bool);
var clock: bool; let

tel

alarm current(WATCBDOG2
«set. reset. delay) when clock»;

clock = true -) set or reset or time_unit;

From these examples, one could discuss the advantages of such a

declarative expression with respect to an imperative one. It is doubtful
that an imperative language would allow such a natural and modular
expression of this simple problem.

§ 4.2 : The language LUSTRE 65

The stopwatch

We will now progressively3 build the stopwatch program, while attemt
ing to show that the program is straightforwardly derived from its in
formal specmcations.

Simple stopwatch: The first version has only two buttons,
"start_atop" and "reset," which will be handled by Boolean vari
ables, as usual. It receives also the 1/100 second by means of a Boolean
parameter "ha." It returns a "time" together with its state "running."
The program interface is the foUowing:

node Simple_Stopvatch (start_atop, reset, hs: bool)
returns (time: intj running: bool)j

The computed "time" is initially zero, it is incremented whenever the
event "ha" occurs while the stopwatch is "running," and it is reset to
zero whenever the event "reset " occurs:

time • 0 -> if hs and running then pre(time) + 1
else if reset then 0 else pre(time)

We could also use the node COUNTER, defined in §4.2.3, called on a suit
able dock:

time - current(COUNTER«O,1,reset) vhen clock»j
clock - (hs and running) or (true -> reset)j

The state of the stopwatch is initially "stopped" and changes whenever
the button "atart_stop" is pushed:

running = false -> if start_stop then not pre(running)
else pre(running)

The whole program is as folIows:

3However, we cannot build the stopwatch with "reset" from a versiou without
"reset," 8.Ii is done in Esterel. Because of the lack of control structure, the possibility
or resetting the stopwatch must be taken into accollut from the begiuuiug.

66 Chapter 4 : Declarative languages : Lustre and Signal

node Simple_Stopwatch (start_stop, reset, hs: bool)
returns (time: inti running: bool) i

let

tel

time = 0 -) if hs and running then pre(time) + 1
else if reset then 0 else pre(time) i

running = false -) if start_stop then
not pre(running)
else pre(running)i

General stopwatch: The seeond version permits us to reeord an
intermediate time. The stopwateh now manages two times: the
"internaLtime," eomputed as before, and the "displayed_time,"
whieh remains eonstant when the stopwateh is "frozen" and whieh equals
the "internaLtime" otherwise. The "reset" button is used to toggle
the state "frozen/not frozen" of the stopwateh. Initially the stopwateh
is not frozenj if "reset" oeeurs when the stopwateh is running and not
frozen, it beeomes frozenj when "reset" is pushed when the stopwateh
is frozen, it beeomes not frozen. The "reset " button is interpreted as
an actual reset eommand only when it is pushed when the stopwateh is
stopped and not frozen.

The node interface is the following:

node Stopwatch(start_stop, reset, hs: bool)
returns(displayed_time: inti running, frozen: bool) i

As usual, we start by the definition of outputs. The definition of the
variable "frozen" is straightforwardly dedueed from the specifieation:

frozen = false -)
if reset and pre(running) then true
else if reset and pre(frozen) then false
else pre(frozen)

The "displayed_tme" is defined by means of the "internaLtime" (a
loeal variable to be defined):

§ 4.2 : The language LUSTRE 67

diaplayed_time = if frozen then pre(displayed_time)
else internal_time

It can also be defined by using a dock:

diaplayed_time =

current(internal_time .hen not frozen)

The node "Simple_Stop.atch" is used to define the "internaLtime"
and the output "running":

(internal_time, running) =
Simple_Stop.atch(start_stop, actual_reset, hs)

As stated in the specification, the stopwatch is only reset when the
"reset" button is pushed when the stopwatch is stopped and not frozen:

actuaL.reset =

reset and pre(not running and not frozen)

The final pro gram is shown below:

node Stop.atch(start_stop, reset, hs: bool)
returns(displayed_time: intj running, frozen: bool)j

var internal_time: intj actual_reset: boolj
let

frozen = false -)
if reset and pre(running) then true
else if reset and pre(frozen) then false
else pre(frozen)j

displayed_time =
current(internal_time .hen not frozen)j

(internal_time, running) =
Simple_Stop.atch(start_stop, actual_reset, hS)j

actual_reset =

reset and pre(not running and not frozen)j
tel

68 Chapter 4 : Declarative languages : Lustre and Signal

4.3 The language SIGNAL

SIGNAL was developed in IRISA (Rennes, France) by a team directed by
Albert Benveniste and Paul Le Guernic. SIGNAL has been industrialized
by the Company TNI. Like LUSTRE, SIGNAL is a declarative language,
where a program expresses relationships between timed sequences of
values. However, these two languages differ significantly:

• LUSTRE is a functional language: any program (fragment) - if
we ignore assertions - and any operator define a function from
its input sequences to its output sequences. From this point of
view, LUSTRE is truly a "data-fiow" language, since the "input
fiows" completely determine the program behavior .

• In contrast, SIGNAL is a relational language: gene rally speaking,
a SIGNAL program defines a relation between its input and output
fiows. The way an output fiow is used may constrain the input
fiows of the operator that pro duces it (some operators behave as
"data pumps"). The programming style in SIGNAL is then elose
to "programming by constraint": any program component induces
its own constraints, which restrict the nondeterminism of the pro
gram. The conjunction of all these constraints must result in a
deterministic description: this will be checked by the compiler.

Here, we will only give a sketchy description of the language. The in
terested reader can consult the bibliography [LBBG85, BL90, GGB87,
LGLL91].

4.3.1 Signals, docks, and operators

A signal is a sequence of values associated with a dock.

Data domains: In addition to usual scalar types (Boolean, integer,
fioat) , SIGNAL contains arrays of arbitrary dimension with scalar el
ements, and the predefined type event, which has only one value (a
signal of type event can only be present or absent; it is similar to a
"pure" signal in ESTEREL).

§ 4.3 : The language SIGNAL 69

Clocks: A dock is a discrete set of instants, taken from a totally or
dered set. With each signal X is associated a dock Cx , which defines
(like in LUSTRE) the sequence of instants when its values are present.
Therefore, a signal can be viewed as a function from its associated dock
onto its domain of values. X = (Xt)tEex .

Given a dock C, let us introduce the following notations:

• Oe = min{t I tE C}

e
• Vt E C, ti- Oe, t - 1 = max{t' E C, t' < t}.

• More generally

e "e e
t - (k + 1) = max{t E C, t < t - k}, ift - k i- Oe

A dock itself can be considered as a signal of type event.

Operators: Signals are defined by elementary processes, which are
written using two kinds of operators:

• usual operators (arithmetic, Boolean) extended, as in LUSTRE,

to operate pointwise on sequences. One writes "Y : = f (Xi,
••• J Xn)." Applying such an operator induces the constraint that
all of its arguments must have the same dock, which is also the
dock of the result.

• three specific temporal operators:

The delay: "Y : = X $ k" specifies that X and Y have the
e

same dock C, and that Vt E C such that t - k exists, yt =
Xc. Initial values can be specified in the dedaration of Y.

t-k

The extraction: "Y: = X vhen B," where B is a Boolean
signal, specifies that the dock Cy of Y is the set of instants

tE Cx n Cn such that B t = true, and that at each of these
instants we have Yi. = Xt.

70 Chapter 4 : Dedarative languages : Lustre and Signal

- The deterministic merge: "Y : = X defaul t Z" specifies that
the dock Gy of Y is the union of the docks of X and Z, and
that

Vt E Gx uCz, v _ {Xt if tE Cx
.Lt -

Zt otherwise

An equation is an elementary process. Two operators are used to com
pose processes:

• The parallel composition: H P and Q are processes, "P I Q" is
the process resulting of their parallel composition. This process
specifies the conjunction of the constraints specified by P and Q.

The parallel composition is commutative and associative.

• The scoping restriction: If P is a process and if X is a signal identi
fier, "p\x" is the process obtained by considering X as being local
to P (Le., X is not visible from outside p).

Example: The following SIGNAL process builds a signal MIN, emit
ted each minute, from a dock SEC coming from its environment and
supposed to occur each second:

(I S := (0 vhen MIN) default (ZS + 1)

I ZS :- S • 1
IMIN := SEC vhen (ZS=59)
I synchro {S,SEC} I)

Let us explain this example:

• "S:" (0 vhen MIN) de faul t (ZS + 1) ": the integer signal S
counts the number of occurrences of SEC modulo 60: it is reset
to zero at each occurrence of MINj otherwise it is set to its previ
ous value (ZS) incremented by 1j

• "zs := S • 1" defines ZS to always carry the previous value of Sj
both signals are implicitly synchronousj

• "MIN : = SEC vhen (ZS=59)": the signal MIN occurs whenever
SEC happens when the previous value of the counter is 59: MIN
occurs every 60 secondsj

§ 4.3 : The language SIGNAL 71

• "synchro{S, SEC}" forces the synchrony between the counter S
and the input signal SEC: S counts seconds; synchro is an operator
without outputs, whose only role is to constrain its inputs to be
synchronous.

Remarks:

• The conditional operator is not built in in SIGNAL. Conditional
selection can be performed by combining extraction and merge.
To express that 1 equals either Y or Z according to the value of a
Boolean signal B, we can write "I := (Y .hen B) default Z."
Notice that this construction is not equivalent to the LUSTRE

equation "I = if B then Y else Z," since here there are no con
straints on the docks of Y, Z, and B.

• A specific feature of SIGNAL is the existence of pro grams that emit
outputs at a fast er rate than their inputs. In that sense, a SIGNAL
program is not necessarily reactive: the following process emits 10
occurrences of S for each receptions of E:

(I 1 :- (0 .hen E) default (ZN + 1)
I ZI := 1 • 1
I synchro{I,S}
I synchro{E, N .hen (ZN = 9)} I)

4.3.2 Progratn structure

SIGNAL is a modular language in the same sense as LUSTRE:

• Signals are defined by composing (elementary or compound) pro
cesses.

• A set of signal definitions can be encapsulated into a model (like
a LUSTRE node) that can be used as a "black box," by means
of an interface that describes its static parameters (dimensions,
initializations) and its connections (input/output signals).

• Such a model can use other submodels, or even external models
that are only known by their interfaces.

72 Chapter 4 : Declarative languages : Lustre and Signal

SEC SIGRIL(59) h---------------------------~MIR

SIGRAL(59) HOUR

SIGI1L(23) DIY

Figure 4.3: Model instanciation

Example: The model SIGI1L contains the process presented above,
where the value 59 becomes a static parameter I, and the signals SEC
and MIR are renamed into the connection signals IT and OT:

processus SIGIAL = {integer I} { ? event IT ! event OT }
(I synchro {S, IT}

1 ZS := S • 1

1 OT :-IT vhen (ZS=I)
1 S :- (0 vhen OT) default (ZS +1) I)

vhere
integer S, ZS init 1

end

To emit signals ea.ch minute (MII), ea.ch hour (HOUR), and each day
(D1Y), one can use this model as in the following process (graphically
represented by Figure 4.3):

(I MIR
1 HOUR :,..
1 D1Y

:= SIGI1L(59){SEC}
SIGIAL(59){MII}

:= SIGI1L(23){HOUR} I)

Part 11

Compilation

Chapter 5

Static verifications

5.1 Causality checking in Esterel

As seen in §2.5, an ESTEREL program can raise some temporal para
doxes, which involve either the absence of any behavior or a non
deterministic behavior. This phenomenon, which appears in all really
synchronous languages, comes from the fact that a pro gram reaction,
while considered instantaneous, is made up of a sequence of elementary
actions (sometimes called "microsteps" [HPSS86]) that are performed in
foced orderr: the first statement of a sequence is performed "before" the
second one, a "present 5 do <stat>" statement checks the presence
of 5 "before" any signal emission involved by "<stat>," and so forth.

In ESTEREL this point of view is expressed by the "execution seman
tics" [BG88J. Let us sketch he re how this semantics allows the detec
tion of causality problems. H we admit that the statements "present,"
"do ... vatching," and any statement containing an expression "15"
correspond to signal readings, while an "emi t" is a signal writing, then a
signal may only be read, in areaction, once all the writing of this signal
has been performed. In particular, one may not conclude that a signal

1 Another, more formal poiut of view ou these problems is to denne the program
reactiou as the least fixpowt of some fuuction. Microsteps correspond to iteratious iu
the iterative computatiou of this fixpoiut. Now, siuce the iuvolved functious are uot
always monotone, it may happeu that either they do uot have auy fixpoiut (iu whlch
case a "no behavior" paradox appears) or they admit several minimal nxpowts (iu
whlch case a "nondeterminism" paradox occurs).

75

76 Chapter 5 : Static verifications

is absent as long as its emission by some process remains possible. An
swering such a question obviously raises undecidable problems (since a
signal emission can depend on conditions involving arbitrary data). The
ESTEREL compiler performs an approximate analysis, which can result,
in some cases, in rejecting intuitively consistent programs.

This analysis consists in associating with each program fragment
a potentia~ which is the set of signals that can be emitted during its
first re action. The definitive status (presentjabsent) of a signal is only
fixed, at a pro gram control point, when this signal does not belong to its
associated potential. Actions that read this signal are then freed, and
the control advances consequently. When this derivation happens to be
blocked because all the processes are waiting for the status or the value
of a signal that belongs to the current potential, the compiler detects a
causality cyde and rejects the program.

We illustrate this analysis on a program fragment extracted from the
Stopwatch, where a causality cyde appears (cf. §2.4.4):

signal FROZEN_TIME in
1 every BUTTON_2 do
2 present STOPWATCH_RUNNING then emit LAP
3 else present FROZEN_TIME then emit LAP
4 else emit RESET
5 end
6 end
7 end
8 11
9 loop
10 avait LAPj
11 do
12 sustain FROZEN_TIME
13 upto LAP
14 end

end.

The first step of the analysis is as folIows: Initially, the con
trol is stopped at lines 1 and 10. The corresponding potential is
{LAP,RESET ,FROZEN_TIME}. Now,

§ 5.2 : Causality checking in ARGOS 77

• H the external signals BUTTOlL2 and STOPWATCH_RUNNING both oc
cur, when the control reaches lines 2 and 10, the signal LAP is
emitted. Its status becomes "present," and the second process
progresses to line 12 and emits FROZEI_TIME (which is ignored
since nobody listens to it). The re action terminates with control
at lines 1 and 12.

• H the erlemal signal BUTTON_2 occurs alone, the control jumps to
lines 3 and 10 with the same potential. Since FROZEN_TIME belongs
to that potential, the first process cannot decide its status and is
blocked. In the same way, for the second process, the emission
of FROZEI_TIME depends on the presence of LAP, whose status is
still unknown since it belongs to the potential. Therefore, both
processes are blocked, and the causality cycle is detected.

5.2 Causality checking in Argos

The ARGOS compiler thoroughly checks program causality. As a matter
of fact, since there are no numerical data in ARGOS, causality checking is
decidable. On the other hand, the problem is simpler than in ESTEREL,

because of some features of the language:

• there is no sequence operator (semicolon);

• there is one interruption operator only; and

• output signals cannot be read.

However, there is a price in complexity: causality checking is quadratic
in ESTEREL, and exponential in ARGOS.

Causality loops are detected when the local signal operator is applied.
Only local signals can involve causality loops, since they can appear in
both the input and output parts of transitions. When some signals are
made local to a process, one must check:

• that the resulting process is complete, i.e., that any input event
(input signal combination) can be accepted in any of its states;
and

78 Chapter 5 : Statie verifieations

A.B~
p.a.b
p.a.b
p.&.b
p.a.b

p.&.b/b.a.o
p.&.b/b.a.o

A'B'

Figure 5.1: Lack of behavior

• that no implicit nondeterminism take plaee.

p.a.b/a.o
p.&.b/a.o
p.a.b/a.o

AB'

Intuitively, the following proeedure is applied:

• The whole automaton of the proeess is built, so that the input
parts oC the transitions are complete monomials of input and Ioeal
signals.

• lllegal transitions are removed. A transition is illegal in two eases:

when it eontains both a signal and its negation; or

when its input part eontains a loeal signal that does not ap
pear in its output part.

• One checks the existenee of one and only one transition from eaeh
state and for each monomial of input signals.

Let us illustrate this procedure on the example processes eonsidered in
§3.2:

• Figure 5.1 gives the process ofFigure 3.6 with its whole automaton.
One can easily check that all the transitions involving the signal p
are illegal.

§ 5.2 : Causality checking in ARG OS

::Jp.a.b
p.a.b

AB p.ll.b

A'B A'B'

p.ll.b
p.a.b

AB'

79

/)p.a.b
AB----Jp·a.b

p.ll.b/ll.b.o

A'B'

Figure 5.2: Nondeterminism

• Figure 5.2 gives the process of Figure 3.7, its whole automaton,
and the result of removing aH the illegal transitions. This result is
clearly nondeterministic.

This procedure does not distinguish between implicit and explicit
nondeterminism. To accept explicit nondeterminism, one can hide it
first by introducing some auxiliary signals (whose role is to distinguish
transitions with identical input parts), and then apply the procedure,
detect the implicit nondeterminism, and remove the auxiliary signals.

80 Chapter 5 : Static verifications

5.3 Clock checking in Lustre

In this section we will briefiy show how dock consistency is checked
by the LUSTRE compiler, since this verification is a specific feature of
the language. The compiler associates a dock with each expression
appearing in the program, and then checks that any operator is applied
to operands on suitable docks, i.e.:

• any basic operator with more than one argument IS applied to
operands on the same dock; and

• the docks associated with actual parameters of any node instan
ciation satisfy the constraints imposed by the node interface.

First, we have to make precise what we mean by "the same dock." Ide
ally, two expressions are on the same dock if their docks are defined by
identical Boolean fiows. Now, the equality of two Boolean fiows being
obviously undecidable - since it would involve the proof of theorems
such as "whenever x>y holds, we have z=2*u, and conversely" - the
compiler considers a more restrictive notion: two Boolean expressions
B1 and B2 define the same dock if and only if they can be made syntac
tically identical by applying syntactic substitutions. So, in the following
example:

x - a vhen (y>z)j
y = b+cj
U = d vhen (b+c>z)j
v • e vhen (z<Y)j

x and u are on the same dock, which is considered different from the
dock of v.

The rules for computing c;locks are formally described in [CPHP87,
Pla88]. These rules satisfy the definition principle: the dock of a vari
able cannot be inferred from the use of the variable. For instance, the
following program, where M and N are nodes returning results on the
same dock as their inputs contains a dock error:2

2Notice that, if the output of either M or N depends olllyon the strid past of its
input, this program does not contain a deadlock.

§ 5.4 : The dock calculus of SIGNAL 81

I ., M(Y)j Y = R(I)j Z = I+Y+lj

As a matter of fact, although one can infer from the definition of Z that
I and Y should be on the same dock as 1 (i.e., the basic dock), this
information does not result from the definition of I and Y. From their
definition, one can only infer that they are on the same dock.

5.4 The clock calculus of Signal

Clocks playa much more important role in SIGNAL than in LUSTRE,
since they are used in any conditional definition. In contrast with
LUSTRE, where a.ll docks are built by sampling a faster dock, SIGNAL

docks are implicitly defined by a set of constraints scattered in the pro
gram. The goal of the clock calculus is the synthesis of these constraints,
and the verification of their consistency (they admit a solution) and of
their completeness (they admit only one solution). Moreover, the con
straints must uniquely determine each dock with respect to a master
clock, which is not necessarily the fastest one.

Let us first introduce some notations:

• Any signal S has an associated dock, which is noted Cs.

• Any Boolean signal B defines a dock ttB, w hich is the set of instants
t E OB such that Bt = true (so, ttB ~ CB).

Each SIGNAL operator induces dock constraints on its parameters
and its result, together with constraints on the values of its Boolean
parameters. The following table subsurnes these constraints:

1 Y :z f(Il, ... ,In) Gy = GIl = ... = GIn
2 Y := I * k Gy = CI
3 Y := I .hen B Gy = GI n tts
4 Y := I default Z Gy = GI U Gz

Line 1 expresses that all the arguments of a data operator must be
on the same dock, which is also the dock of the result. Line 2 expresses
that the * operator returns a result that is on the same dock as its input
argument. Line (3) specifies that the result of a .hen operator is present

82 Chapter 5 : Static verifications

whenever both of its argument are present while the value of its second
argument is true. Line 4 specifies that the result of adefaul t operator
is present whenever one of its arguments is present.

These constraints, together with standard evaluation rules for
Boolean expressions, provide a system of equations. In the SIGNAL
compiler, these equations are encoded and analyzed in the finite field
7L 13Z of integers modulo 3, where 0 encodes signal absence, 1 and -1
encode true and false values respectively , and 1 encodes the presence
of a non-Boolean signal. The analysis of such a system of equations
provides an answer to some important questions (see [BL90)):

• Does a program admit a behavior? H the only solution of the
equation system consists of assigning the empty set to each dock,
then surely the program cannot execute. This happens in the
following example:

(I x := a when (a>O)
I y :- a when not(a>O)
I z := x + y I)

which provides tta>o = Ca \ tta>o, i.e., since tta>o ~ Ca, Ca = 0.

• H the pro gram admits a behavior, is this behavior infinite? H
some input values are not accepted, the pro gram can deadlock.
For instance,

(I x := a when (a>O)
I z := x + a I)

provides tta>o = Ca, which means that the input a must always
be positive.

• Is the program deterministic? H there exists more than one master
dock, some parts of the program can run at independent rates. In
the following example:

(I x := (x * 0) + 1
I y := x when c I)/x

§ 5.4 : The dock calculus of SIGNAL 83

we get only one equation hy = hx n tte , which leaves the docks
of x and c unrelated. The variable x is a counter that is not
synchronized by any external signal. Thus, its computation rate is
left undetermined, and the output y, which sampIes the values ofx
when the input c is true, can be any subsequence of the sequence
of integers.

• H the program is deterministic, is it

- a function from input signals, where docks are obtained by
sampling a basic dock, as in LUSTRE (this is the case when
all the docks in the solution are functions of the input signal
docks), or

a function of input signals that restricts these input signals
according to some computed docks?

A last consequence of the dock calculus is the precise determination of
dependendes among variables. The compiler builds a conditional depen
dence graph, which specifies, for any pair (X,Y) of signals, under what
condition the signal X instantly depends on Y. The verification that the
program does not contain cydic definition is then made by computing
the conjunction of all the conditions associated with each loop of the
conditional dependence graph, and by checking that this conjunction
is identically false. The detection of causality cyde is then more pre
eise than in LUSTRE, where only static (unconditional) dependencies are
considered (cf. §4.2.4).

Chapter 6

Sequential code generation

6.1 The Esterel compiler

The compiling method that synthesizes the sequential code control struc
ture as a finite automaton was first introduced in the ESTEREL compiler.
This method was applied later on to LUSTRE and ARGOS. Our presen
tation basically follows [BCG87].

6.1.1 Principles

The operational semantics of ESTEREL is described in [BG88, Gon88] by
me ans of structural inference rules in the style of [Plo8!]. Let us consider
an ESTEREL program P containing pure signals only and no variables.
If the pro gram does not raise causality problems, then for each input
event e, the semantic rules uniquely determine the corresponding output
event s - which is made of signals emitted by P in response to e -
together with a new program Q - which represents the continuation of

P after receiving e. The notation "P '=-tQ" expresses that "in presence ..
0/ the input event e, the program P emits the output event s, and will
afterwards behave as Q." The language determinism exactly corresponds
to the uniqueness of this transition for a given e.

Since P only has a finite and known number of input signals, it also
admits a finite number of input events, and any continuation Q admits
the same set of input events. Let {el, e2, ... , en } be this set of input

85

86 Chapter 6 : Sequential code generation

events, and let us note gi P the continuation of P (often called deriva

tive) according to ei: For all i = 1 ... n, we have P ~ gi P. More gen er

ally, for any finite word w = Wl.W2 ••• Wk on the alphabet {I, 2, ... , n},
we note -j!;P the continuation obtained from P after reacting succes-

sively to input events eW1 , eW2 , ••• ,ew •• Formally, {}W~Wk P = a!. (-l;; P).
Computing these derivatives simply consists in developing the behavior
of P into an infinite tree. The following result states that this tree can
be folded into a finite graph:

Proposition 1 Any program P admits only a finite number 0/ syntac
tically distinct derivatives, i.e., the set {;",P I W E {1,2, ... ,n}"} is
finite.

This result is closely related with Brzozowski's theorem [Brz64, BS87]
which expresses the termination of the algorithm of the "residual" on
regular expressions. The finite graph, whose vertices are derivatives, and

whose edges correspond to the relation ~, is a finite automaton whose
ß

behavior is equivalent to that of P. Once this graph is built, the deriva-
tives associated with vertices can be withdrawn and replaced by state
numbers. In fact, as we will see in the example, each derivative corre
sponds to a set of control points of the program, and the computation
of the next derivatives consists in moving these control points.

For general programs, involving variables and valued signals, the
same technique can be applied, but operations on values are considered
at a purely symbolic level. Transitions will be labeled by actions on
variables and signal values (in fact, transitions are branching, because
of conditional statements). A finite control automaton is built, extended
with an interpretation that handles the memory operations.

6.1.2 Example

Let us illustrate this method on the "Button Interpreter" of the stop
watch (cf. §2.5.3):

§ 6.1 : The ESTEREL compiler

module BUTTON_INTERPRETER :
input START_STOP. BUTTON_2;
relation START_STOP # BUTTON_2;
output RESET. LlP;
signal STOPWATCHJlUNNING. FROZEN_TIME in

every BUTTON_2 do

end
11

present STOPWATCH_RUNNING then emit LAP
else present FROZEN_TIME then emit LAP

else emit RESET
end

end

loop
await START_STOP;
do sustain STOPWATCHJlUNNING
upto START_STOP

end
11 loop

end
end.

await LAP;
trap T in

sustain FROZEN_TIME
11

await LAP; exit T
end

87

This program has two input signals, so it can admit four input events,

{}, { STAaT ...5TOP }, { BUTTO.-2 }, { ST UT ...5TOP, BUTTO.-2 }

or, more precisely,

{ tick}, {tick, ST.lRT..5TOP}, {tick, BUTTO._2}, {tiCk, ST.lBT..5TOP, BUTTO.-2}

The latter event is forbidden by the relation "START_STOP # BUTTOIL2"
which states that the input signals are exclusive. The body of the pro
gram is first translated into basic statements. The resulting program is
shown below:

88 Chapter 6 : Sequential code generation

1 signal STOPWATCH_10lNING. FlOZEN_TlME in
2 loop
3 do halt watching BUTTON_2;
4 present STOPWATCHJlOlNING then emit LAP
5 else present FlOZEN_TIME then emit LAP
6 else emit lESET
7 end
8
9
10 11
11
12
13
14
15
16
17
18
19
20
21
22 11
23
24
25

26
27
28
29

30
31
32
33
34
35

end;
end
1. flip-flop "running/stopped"
loop

do halt watching STA1T_STOP;
do 1. running state

loop
do

emit STOPWATCH-1UNNING; halt
watching tick

end;
halt

watching STA1T_STOP
end
1. flip-flop "running-time/frozen-time"
loop 1. running-time state

do halt watching LAP;
trap T in

11

end
end

loop

end

do
emit FIOZEN_TlME; halt

watching tick

do halt watching LAP;
exit T

36 end.

lnitially, the control is stopped at halt statements, lines 3, 12, and
24.1 From this first state (let us call it So),

1 In general, tbis control state is reached after a first step, in which initial values
are assigned to variables and which does not properly correspond to areaction.

§ 6.1 : The ESTEREL compiler 89

• H no input signal occurs, the control does not progress, since no
active statement is waiting for tick. So

• H START_STOP occurs, the "do ... vatching" line 12 is interrupted,
and the control of the second process progresses until being
stopped by the halt statement, line 16, thus emitting the local
signal STOPWATCHJlUlßlIIlG, which has no effect. The new global
state is made of the halt statements lines 3, 16, and 24. Let 81
be this state. We have

S STUT-STOP 8
o ' 1

• H BUTTOI_2 occurs, the "do ... vatching" line 3 is interrupted.
Since,neither STOPWATCH_RUlIlIlG nor FROZEILTIME can be present
at that time, the first process emits the output signal RESET, and
comes back to the halt statement line 3. So, the global state is
again 80.

8 B1JT1'O._2 8
o USKT '0

Computing in the same way the successor states of 81, we successively
get:

• From 81, which corresponds to lines 3, 16, and 24,

- 81 ~81' with a useless emission of the local signal

STOPWATCH_RUlIlIIlGj
8 STUT-STOP S d

- 1 ' Oj an

- 8 1 ~.-2 '82, with an internal transmission ofFROZEll_TlME,

where 82 is the state where the control is stopped at halt
statements lines 3, 16, 28, and 32.

• From 82, which corresponds to lines 3, 16, 28, and 32,

8 tick 8 . h I - 2 ~ 2, Wlt use ess emissions of STOPWATCH_RUDIIiG

and FROZEll_TIMEj

90 Chapter 6 : Sequential code generation

START STOP

BUTTON 2
/LAP -

START STOP

Figure 6.1: The control automaton of the button interpreter

STlaT-STDP • 82)83, wIth a useless emlSSlon of FROZEILTIME,

where 83 is the state where the control is stopped at halt
statements lines 3, 12, 28, and 32j and

- 82 ~; • ..2)81, with an interna! transmission ofFROZElLTIME .

• From 83, which corresponds to lines 3, 12, 28, and 32,

- 83 ~83' with useless emission of FROZElLTIMEj

- 83 STUT-STDP)82, while STOPWATCH-RUNNING and FROZEN_

TIME are uselessly emittedj and

- 83 B~; • ..2)80, with an interna! transmission ofFROZEN_TIME.

All the reached states have been processed. The result is then an au
tomaton with four states, represented in Figure 6.1. The corresponding
sequentia! code could be:

§ 6.1 : The ESTEREL compiler

SO:if BUTTON_2 then emit RESETi goto SO
else if STiRT_STOP then goto Si
else goto SO

S1:if BUTTON_2 then eait LiPi goto S2
else if STiRT_STOP then goto SO
else goto Si

S2:if BUTTON_2 then emit LiPi goto Si
else if STiRT_STOP then goto S3
else goto S2

S3:if BUTTON_2 then emit LiPi goto SO
else if STiRT_STOP then goto S2
else goto S3

6.1.3 Comments

91

This technique is nothing but an exhaustive exploration of the set of
control states of the pro gram. It can be applied to any language that
forbids the creation of dynamic process (an obvious condition for ter
mination), and thus, to many asynchronous languages. However, in the
asynchronous case, it involves a tremendous explosion of the number of
states, which makes the technique inapplicable in practice. Synchrony
generally reduces this explosion for the following reason: in an asyn
chronous language, each internal statement corresponds to a transition
leading to a particular state. In contrast, in a synchronous language,
transitions are only triggered by input events, and all the internal state
ments involved in such areaction are factorized on the corresponding
transition. All the states that are built are "real" states with respect to
the input/output behavior, and there is no "intermediate" state due to
the internal behavior.

Several remarks can be made about this technique:

• It is useless to minimize the resulting automaton, since experience
shows that, generally, it is already minimal.

92 Chapter 6 : Sequential code generation

• The algorithm translates the initial parallel pro gram into a strictly
equivalent, purely sequential one. Running such a pro gram does
not involve any process management, so it is simpler and fast er.
The whole interprocess communication is compiled away and en
coded in the automaton.

• As noted in the introduction (§1.2), automata constitute an ideal
execution scheme for most real-time systems. The transition time
is near optimal, and does not depend on the size of the automaton.
H we know the execution time of the elementary computations put
on the transitions, the maximal re action time can be accurately
bounded, and then the validity of the synchrony hypothesis can
be checked.

• Many statements, like internal communications, do not generate
any code in the object program. This is an exceIlent way to run
infinitely fast!

• Once the automaton is built, existing automata-based verification
tools [QS82, CES86, BRdSV90] can be applied to it (cf. Chap
ter 10).

• The correspondence between the source program and the gener
ated code is far from being obvious. The slightest change in the
ESTEREL program can involve a complete modification of the au
tomaton. This phenomenon is weIl known for gramm ars and reg
ular expressions. It shows that writting automata by hand is dif
ficult and unreasonable.

First implemented in the ESTEREL-V2.2 compiler [Cou90], this tech
nique has been greatly optimized in the V3 compiler, thanks to Georges
Gonthier's work [Gon88]. This new compiler uses an intermediate code,
called IC [SP90], which is a good candidate to be used for any imperative
synchronous languages. A translator of ARGOS into IC has been imple
mented, that allows the automaton generator to be shared by ESTEREL
and ARGOS.

§ 6.2 : The LUSTRE compiler 93

6.2 The Lustre compiler

6.2.1 Node expansion

The LUSTRE compiler generates a purely sequential code. Now, it is
wen known that, from a concurrent program, sequential code cannot
be generated, in general, in a modular way: one cannot sequentialize
a concurrent subprogram independently of its context of use. A very
simple LUSTRE pro gram (suggested by [Gon85]) illustrates this problem.
Let us consider the following node:

node two_copies (a,b: int) returns (X,Yi int)i
let x = a i Y = b end

Obviously, there are two possible sequential codes implementing a single
reaction ofthis "program": either" x:=a i y:=bi "or "y:=bi x:=ai."
The problem that arises is that the suitable choice between these two
codes may depend on the way the node is called within another node.
For instance, for the call

(x,y) = two_copies(a,x) i

which corresponds to Figure 6.2, the first code only is correct.

a two_copies x

----- -------------~ y

Figure 6.2: A looping call

Thus, before code generation, the compiler first expands recursively
each node call in the source program, 2 i.e., replaces each node call by the
node body, after a suitable renaming of parameters, local variables, and

2 The Esterel compiler proceeds in the same way, by expalldillg the "run"
statements.

94 Chapter 6 : Sequential code generation

clocks. So, the code generation starts from a "Hat" program, without
node calls.3

6.2.2 Single loop

The most obvious way to translate a LUSTRE pro gram into an imper
ative code consists in building an infinite loop whose body performs a
basic cycle of the program. To obtain this body, one has to choose the
variables of the target code (the output variables and the least possible
number of local variables, which implement either memories or tempo
rary buffers), to build the actions that update these variables, and to
put these actions in the right order, according to the dependencies be
tween variables induced by the network structure of the node. As an
illustration of this simple technique, let us consider an expanded version
of the program WATCHDOG3 (cf. §4.2.5):

node WATCBDOG4(set. reset. time_unit: boolj delay: int)
returns (alarm: bool)j
var vatchdog_is_on: boolj remaining_delay: intj
let

alarm; vatchdog_is_on and (remaining_delay ; 0) and
pre(remaining_delay»Oj

vatchdog_is_on ; false -> if set then true
else if reset then false
else pre(vatchdog_is_on)j

remaining_delay ;
o -> if set then delay

else if time_unit and pre(remaining_delay»O
then pre(remaining_delay)-1

else pre(remaining_delaY)j
assert not (set and reset)

tel

The single loop code could be the following:

3However, it has been shown in [Ray88] that a Lustre node ea1l he separately
eompiled thanb to a preliminary restrueturing into a set of nodes that eannot be
called in loop - and that ean thus be separately eompiled - together with a mai1l
node that subsumes their sequeneing eonstrai1lts. 01l1y this main node must be
expanded in the calling program.

§ 6.2 : The LUSTRE compiler

_init := true,
while true do

read(.et.re.et.time_unit.delay),
if _init then % fir.t cycle %

watchdos_is_on := false; remainins_delay := 0;
alarm := fal.e, _init := false;

else % other cycles %
if set then

watchdos_is_on:= true, remainins_delay:= deIay,
else

if re.et then watchdos_is_on:= false endif;
if time_unit and (_pre_remaininS_delay>O) then

remainins_delay := _pre_remainins_delay-l,
endif,

endif
alarm := watchdos_is_on and (remainins_deIay=O) and

<_pre_remainins_delay>O);
endif
write(alarm); _pre_remainins_delay ;= remaining_deIay;

endwhile;

Remarks:

95

• To generate this code, the compiler has introduced some auxil
iary variables (w hose identifiers begin with an "underscore" char
acter): the variable _ini t - the value of which is true at the
first cyde only, and which is used to implement the "->" operator
- and the variable _pre_remaining_delay - which stores the
previous value of remaining_delay. Notice that the expression
"pre(vatchdog_is_on" did not result in the creation of a memory
variable, since the compiler found a way to avoid it .

• While it is quite easy to find a computation order that is compat
ible with dependency relations among variables (the static causal
ity checking ensures that such an order exists), choosing a "good"
order is difficult. In particular, the order according to which con
ditional statements are opened and closed is critical with respect
to code length.

96 Chapter 6 : Sequential code generation

• The code speed could be improved. The most obvious inefficiency
appears from the fact that the variable -ini t is checked at each
cyde. A solution consists in using more complex control structures
than the single-Ioop structure. This is now discussed.

6.2.3 Compiling Lustre into automata

According to some options, the LUSTRE compiler can improve the code
performances by synthesizing a more or less involved control structure.
This synthesis is borrowed from the ESTEREL compiling technique, and
is based on the following remarks:

• In a declarative language like LUSTRE, control structures, which
are available in imperative language, are replaced by operations
on Boolean expressions (conditional, dock changes).

• Obviously, if a condition or a dock depends on values of a Boolean
variable computed at previous cydes - by means of an expression
like pre (B) or current (B) - the code of the current cyde can be
made simpler if that value is known. In other words, the code to
be executed at the next cyde could be selected according to the
current value of B.

The control structure synthesis consists in choosing a set of state
variables, which are Boolean expressions, and in simulating, at compile
time, the behavior of these variables. There are several possible choices
of state variables among

• Boolean expressions returned by pre and current operators; and

• auxiliary variables _ini t_Ck, which represent, for each dock Ck
appearing in the program, the expression "(true vhen Ck) ->
(false vhen Ck)"; these variables, whose value indicates whether
the current cyde is the first one on the dock Ck, are used to im
plement the "->" operators.

Starting from the initial configuration of the state variables, and for each
reached configuration, the simulation consists in building a different code

§ 6.2 : The LUSTRE compiler 97

for the rest of the program. The result is a finite automat on, w hose tran
sitions are associated with the code corresponding to a pro gram reaction.
We illustrate the method on the program WATCHDOG4(cf. §6.2.2):

We choose "pre{vatchdog_is_on)" and "_init" (an auxiliary vari
able that stands for "true -> false") as state variables.

1. The first cyde yields "pre{watchdog_is_on)=nil" and
"_init-true." Let 50 be this initial state. Since "_init-true"
in this state, all "->" operators evaluate as their first operand.
Thus, "vatchdog_is_on=false," and "remaining_delay-O." El
ementary Boolean computation yields "alarm=false." Further
more, since vatchdog_is_on evaluates to false, this will be the
value of "pre{vatchdog_is_on)" at the next cyde. The next
state, 51, thus corresponds to "pre{watchdog_is_on)=false" and
"_init-false." The code corresponding to 50 looks like:

SO : remaining_delay := 0;

alarm := false;
_pre_remaining_delay := remaining_delay;
goto S1;

2. In state 51, since "pre (vatchdog_is_on)" is assumed to be false,

watchdog_is_on evaluates to true if and only if the input set is
true. Let 52 be the state where "pre (vatchdog_is_on)" is true
and _init is false. The code for Sl is

S1 : if set then
remaining_delay := delay;
alarm := (remaining_delay = 0) and

(_pre_remaining_delay > 0);
_pre_remaining_delay := remaining_delay;
goto S2;

else
remaining_delay :=

if time_unit and _pre_remaining_delay > 0
then _pre_remaining_delay - 1
else _pre_remaining_delay;

98 Chapter 6 : Sequential code generation

alarm := falsej
_pre_remaining_delay := remaining_delaYj
goto Si j

endif

3. The code of the state S2, where "pre(vatchdog_is_on)" IS as
sumed to be true and _ini t is false, is as folIows:

S2 : if set then
remaining_delay := delaYj
alarm := (remaining_d~lay = 0) and

(_pre_remaining_delay > O)j
_pre_remaining_delay :- remaining_delaYj
goto S2j

else
remaining_delay :=

if time_unit and _pre_remaining_delay > 0
then _pre_remaining_delay - 1
else _pre_remaining_delayj

if reset then
alarm := falsej
_pre_remaining_delay := remaining_delayj
goto Slj

else
alarm := (remaining_delay = 0) and

(_pre_remaining_delay > O)j
_pre_remaining_delay := remaining_delayj
goto S2j

endif
endif

All the reached states have been processed, so the code generation is
terminated. Figure 6.3 displays the resulting automaton.

Remarks:

• The obtained transition codes (particularly for So and SI) are
much simpler than the single-Ioop code. This reduction is often
more impressive for larger programs.

§ 6.2 : The LUSTRE compiler 99

-, set --, reset

Figure 6.3: The control automat on of the watchdog

• In contrast, the overalilength of the code may become very large.
That is why, in practice, an action code table is built that uniquely
identmes actions that may belong to several transitions, and tran
sition codes refer to actions by means of their indexes in the table.

• Boolean express ions depending on non-Boolean variables, which
are needed to compute state variables (integer comparison for in
stance), are handled as inputs by means of tests on their value.

• Assertions are taken into account. Assertions are computed in
the same way as state variables, and any branch yielding a false
assertion is deleted. Astate whose total code has been deleted is
then declared unreachable, and branches already computed that
lead to that state are recursively deleted. It should be noticed that
assertions may increase the number of state variables and reachable
states, as weIl as increase code length, by involving extra tests and
computations.

• In contrast with ESTEREL automata, the obtained LUSTRE au
tomata are often far from being minimal. This entails a need
for minimization. The LUSTRE-V3 compiler uses an original algo
rithm [BFH+92, HRR91] directly generating a minimal automa
ton.

100 Chapter 6 : Sequential code generation

6.3 The oe code and associated tools

Automata generated by ESTEREL and LUSTRE compilers are encoded
into a common intermediate format, called OC ("object code") [PS87]).
As mentioned at the end of §6.1, ARGOS can be compiled into the inter
mediate format IC [SP90] used by the ESTEREL compiler before generat
ing the automatonj thus, ARGOS can also be translated into OC. From
an OC file, several common tools can be applied (cf. Figure 6.4) :

Code generators: Translators to high-level host languages (C, ADA,
...) are available. They generate a procedure whose call performs a
reaction of the automaton. To activate this procedure, one has to write
a main program that handles physical inputs and deals with outputs.
The interface protocol is as follows [BBB89]:

• For each input signal X, the code generator provides a procedure
LX, which must be called - with the carried value as parameter
- to signal the presence of X to the automatonj

• For each output signal Y, one has to write a procedure O_Y -
taking the carried value as parameter - which is called by the
autOInaton when Y is emitted.

The overall structure of the main program is thus the following:

Initializations
Infinite loop

Input handling
Call 01 the selected L. .. procedures
Call 01 the automaton

(which will call some 0_ ... procedures by itsell)
end loop

Automaton minimizer: The minimization tool ALDEBARAN [Fer90]
has been connected with the OC code. The resulting tool, called OCMIN,
allows minimal equivalent automata to be obtained in OC, and this is
particularly useful in the case of LUSTRE.

§ 6.3 : The OC code and associated tools

Graphie
simulation

interface
generation

visualization generation

101

Automata

minimization

Figure 6.4: The common environment ESTEREL/LuSTRE/ ARGOS

Interfaces with vermcation tools: Automata are a common basic
model in many analysis and verification tools for parallel systems. It was
therefore appealing to experiment with the use of such tools operating
on OC automata. Thus, OC has been interfaced with AUTO [BRdSV90]
(see Chapter 10). Some experiments have also been performed with
EMC [CES86] and XESAR [RRSV87].

102 Chapter 6 : Sequential code generation

LIGHTS

DISPLAY

COIN

END

I READY I I STOP i
RED

Figure 6.5: The SAHARA intrument panel of the reflex game

Display tools: The oe format has been designed for internal code
representation, and thus it is hardly readable. For checks and debugging
purposes, translators towards readable representations, and agraphie
display based on the AUTOGRAPH [RdS90] tool, have been developed.

Graphie interface generator: As noted before, reactive programs
are genera.lly embedded into more complex programs. In particular, to
run such a program, one has to write a main pro gram implementing the
interface (input/output handling), and this often is a tedious task. To
make easier the experiments on reactive programs, the interface gen
erator SAHARASahara [Ghe92] is available. A simple language allows
the deseription of a graphie instrument panel (buttons, lamps, displays,
etc.) eonnected with an oe program. The SAHARA compiler generates
a main program that aetivates the reactive program in connection with
this graphie panel. For instance, Fig. 6.5 shows an instrument panel
corresponding to the reflex game (cf. §2.6).

Distributed code generation: We will see in §7.3 a method to gen
erate distributed code from an oe program.

Chapter 7

Distributed code
generation

7.1 Introduction

Reactive systems are often implemented on distributed architectures, for
several reasons:

• the code distribution is imposed by the physical architecture (sen
sor and actuator localization, protocols, etc.);

• the code is implemented concurrently to improve its performances;
and

• the code distribution is performed to achieve fault-tolerance (re
dundancy, degraded behavior, etc.).

Such a distributed implementation is made of several cooperating pro
grams running on different processors connected by a suitable communi
cation network. Several methods are available to build such programs:

• The separate programming of each processor is a difficult and
error-prone task. Settling and debugging a distributed program
is difficult, because of the absence of global view on the program
state and because oft he indeterminism that results from execution
and communication tim es.

103

104 Chapter 7 : Distributed code generation

• General parallellanguages, like ADA or OCCAM, allow an easy pro
gramming of distributed systems, since no assumption is made on
the target architecture. A program can be developed and debugged
on a single processor, and then implemented on a network of com
municating processors. However, to achieve this transparency with
respect to the actual architecture, these languages are nondeter
ministic, which makes program development more difficult.

The automatie distribution of a synchronous, deterministic pro gram is
difficult. We briefly describe two very different approaches, which have
been initially proposed, respectively, for SIGNAL and LUSTRE.

7.2 Code distribution in Signal

The code distribution proposed for SIGNAL is based on the structure of
the source program. Ideally, from a program P = (I P11 P21 ... I Pn I),
we would like to obtain a sequential code for each process Pi, in such
a way that the parallel execution of these codes implements the initial
program. However, such a translation is not possible, in general, for the
same reasons that make impossible the separate compilation (cf. §6.2.1):
Let us consider, for instance, the following program:

P • (I y := g(b) I x := f(a) I)

where f and g are arbitrary functions. As in the example considered in
§6.2.1, two sequential codes are possible:

loop
read(b); y:= g(b); vrite(y);
read(a); x:= f(a) ; write(x)

end

and

loop
read(a); x:= f(a) ; vrite(x)
read(b); y:= g(b); write(y);

end

§ 7.2 : Code distribution in SIGNAL 105

but if P is executed in parallel with the program Q = (I a : = h (y) I) ,

the latest code will involve a deadlock, since P waits for a value for a,
while Q needs y to compute a. However, let us notice that the pro gram

PIQ • (I a := h(y) I y := g(b) I x := f(a) I)

may be restructured into (I R I SI), where

R • (I a := h(y) I y := g(b) I)
and

S • (I x := f(a) I)

For this structure, one can separately generate sequential codes for R
and S, without regards to their running context. As a matter of fact,
these processes have the property that all their outputs instantly depend
on all their inputs. No running context can introduce an instantaneous
dependence from an output to an input, without involving an intrinsie
deadlock in the global program.

This simple example illustrates the problem we are faced with. We
want to restructure a pro gram into a set of parallel processes, each of
which having the following property. Let ">-" be the partial order ex
pressing the instantaneous dependence between inputs and outputs of a
process: "i >- 0" {or {i. o} E ">-") means that the current value of the
input i is needed in the current computation of the output o. We want
">-" to be strengthened into a total order >, in such a way that, for
any pair {o. i}, if the relation ">" augmented with the pair {o. i} is no
longer an order, neither is ">-" augmented with {o. i }. In other words,
the desired property states that there exists a sequential code such that
any legal (deadlock-free) loop from an output into an input does not
induce a deadlock in the sequential code.

7.2.1 Static dependences

First, we only consider static dependences {without clocks}. This case
has been studied in [Ray88] to separately compile LUSTRE programs.
Two solutions can be applied:

106 Chapter 7 : Distributed code generation

Functional restructuring: A process is said to be "functional" if all
its outputs instantly depend on all its inputs. Such a process can only be
started, at a given cycle, when all its input values are available (no legal
loop). The sequential code corresponding to an execution cycle can be
generated as a function, taking all the input values as parameters and
returning all the output values.

In our example, the processes R and S are functional. The corre
sponding functions are

FR = read(b); y := g(b); a := h(y); write(y); write(a)
Fs = read(a); x := f(a); write(x)

Coroutine restructuring: Let 0 be an output of the process. Let
1(0) be the set of inputs needed for computing the current value of 0
(1(0) = {i I i >- o}). We define the following partial order among the
process outputs:

o~o' <===:;. 1(0) 21{0')

Then, if 0 ~ 0', any loop of 0 onto an input belonging to 1{ 0') is
illegal, since it introduces a deadlock on o. So 0 can be computed after
0' without introducing additional deadlocks. This remark entails the
following result: if the relation "~" is a total order, the process can
be translated into a coroutine - reading its inputs and emitting its
outputs within its execution cycle. The code is generated by dealing
with outputs according to increasing "~" order; dealing with an output
o consists in generating the code that reads the inputs that are strictly
needed to compute 0 and still unavailable, together with the code that
computes and emits o. For instance, let us consider the process

p' = (I y := g(b) I x := f(a,b) I)

We have

l{y) = {b} ~ {a, b} = l{x)

so, x~y. The coroutine code for P' could be

read(b); y := g(b); vrite(y) i
read(a); x := f(a,b); vrite(x)

§ 7.3 : OC code distribution 107

which allows an external loop from y onto a.

7.2.2 Dynamic dependences

The solution actually applied in SIGNAL is more complicated, since it
does not only consider static dependences. Dependence relations among
variables are now conditioned by docks (cf. §5.4). Let us note "I ';>-h Y"
the fact that at any instant of the dock h, the value of Y depends of
the current value of I. This relation is extended to any pair (i, 0) of
input/output variables: A dependence path from i to 0 is any set of
variables c = {IO, 11, ... , Ik} such that

Let

h(c) = n hi
l~i~k

and let C(i, 0) be the set of dependence pathes from i to o. Then the
input/output conditional dependence relation is defined by

i ';>-h 0 iff h = U h(c) =1= 0
cEC(i,o)

An analysis ofthese input/output conditional dependence relations pro
vides a partition of the set of instants, and, when possible, allows the
generation of a coroutine code, whose sequential ordering varies accord
ing to dock values. The SIGNAL distributed code generator restructures
a program into processes that can be compiled into such coroutines and
that are activated by a control process. The physical distribution is then
performed by the tool SYNDEX [GMP+90], which provides also a mea
sure of the performances of the distributed code. Further details can be
found in [LGLL91, LeG89].

7.3 oe code distribution

We consider now another approach to generate distributed code, which
was initially developed for LUSTRE [BCP88]. In fact, it works on the

108 Chapter 7 : Distributed code generation

common object code oe (cf. §6.3), and so it can also be applied to
ESTEREL and ARG OS.

This approach aims at generating a distributed code when the dis
tribution is imposed apriori. Thus, we do not look for a "good" dis
tribution with respect to performance improvement. We assume that
a set {S1' ... ,sn} of execution sites (processors) is given, and that the
user (or an optimization tool) has associated an execution site with each
action of the oe automaton. For LUSTRE programs, this association is
specified by assigning a computation site to each variable of the main
node. Propagating this assignment inside internal nodes provides a site
assignment for each variable in the expanded program. 1

In the remainder of this section, we will assume that each site is
responsible for the computation of some variables.

The basic idea of the method is extremely simple:

• the code of the automaton is replicated on each site;

• on each replication, the instructions that do not concern the con
sidered site are erased;

• for any pair (s;, Sj) of sites, since we know in what order Si com
putes its own variables and in what order Sj uses these variables,
we can introduce statements to communicate values computed by
Si and used by Sj, without introducing deadlocks. These commu
nications are made by simple FIFO queues; and

• auxiliary "dummy" communications are added for synchroniza
tion.

The communication scheme consists of a queue for each ordered pair of
sites. The processor of the site Si can send a value v to the site S j by
executing a statement "put C v, j)"; this corresponds to writing v in the
Qi,j queue, and does not involve any waiting. Sj can read and extract
the first value in the Qi.j queue by performing "get Ci)"; if the queue is
empty, this statement stops the processor until Si writes a value on the
queue.

1 The synt.act.ic means t.o specify a sit.e assignlllent in Esterel aud Argos remaiu to
he st.udied.

§ 7.3 : oe code distribution 109

Using a short example, let us sketch the method to generate the
code. We consider a transition of an oe automaton, 2 and we show how
this code is distributed on three sites. We give the transition code,
with the index of the concerned sites in front of each statement (control
statements concern all the sites):

read(11) j (I)
read(I2) j (2)
read(13)j (3)
L3 :- F(12)j (3)
02 :- G(12.L3)j (2)
if 13 then (1,2,3)

03 :- truej (3)
01 :-H(11.L3)j (I)
goto STATE2j (1,2,3)

else
03 :- 1(11.12)j (3)
goto STATElj (1,2,3)

7.3.1 Code replication

The code is copied in three versions (one for each site). In each copy, we
erase the statements that do not concern the considered sitej however,
when the erased statement uses some variables that are computed on
that site, this information is recorded (as a comment). The result is
shown in Table 7.1.

7.3.2 Placement of emission statements

First, we place, in each copy, the emission statements ("put"). We use
the information about the variables computed by the considered site
and used by the other sites. The following strategy is used: Values are
emitted as soon as possible (in order to minimize the possible waiting)
but only when needed. The informations concerning variable uses are
propagated backward in the program: when a variable is computed by
the current statement, if it appears in the list of variables used by some

20f course, we use a readable version of the oe code.

110 Chapter 7 : Distributed code generation

Code of 8} Code of 82 Code of 83

read(I1) ;
read(I2) ;

read(I3);
% 3 uses 12 % L3 := F(I2);
02 := G(I2.L3); % 2 uses L3 %

% 1 and 2 use 13 %
if 13 then if 13 then if 13 then

03 := true;
01 := B(I1.L3); % 1 uns L3 %
goto SUTE2; goto STATE2; goto STATE2;

else else else
% 3 uns 11 % % 3 uses 12 % 03 := K(I1.12);

goto SUTE1; goto SUTE1; goto SUTE1

Table 7.1: Code replication

other sites, it is sent to them and removed from the lists; the remainder
of the lists is back-propagated to the previous statement. If the state
ment is a conditional, we get two lists Lthen and LelJje of used variables,
corresponding to the two branches of the conditional. In the "then"
(respectively, "else") branch, the variables belonging to Lthen \ LelJj,! (re
spectively, LelJj(! \ L then) are emitted, and the intersection L then n L elJje

is back-propagated. We give in Table 7.2 the result on our example.

7.3.3 Useless emission elimination

The preceding procedure sometimes causes useless value emISSIOn. In
our example, it is the case of the second emission of 12 from 82 to 83. It
is due to the fact that 83 uses 12 twice, the second use being conditional.
Thus, we can withdraw any emission of a variable that is already known
by the receiver site, as long as this variable has not been updated since
its last emission. This elimination process uses a forward propagation of
the available variables of each site: At the beginning of the transition,
the sites do not know any variable value. After a "put(X,j)" statement,
the site 8i knows the value of X but loses it after each assignment to X.
Any "put(X,j)" statement executed when 8j knows X can be withdrawn.

§ 7.3 : oe code distribution 111

Code of B1 Code of 82 Code of 83

read(I1) ;
read(I2);
put(I2.3); read(I3);

put(I3.1) ;
put(I3.2)j
L3 ;= F(12)j

02 :::: G(I2.L3)j put(L3.2);
if I3 then if I3 then if I3 then

put(L3.1);
03 ;= true;

01 ;= H(I1.L3);
goto STiTE2; goto STiTE2; goto STATE2j

elae else elae
put(I1.3) ; put(I2.3); 03 ;= K(I1.12);
goto STiTE1; goto STATEi ; goto STAU1

Table 7.2: Placement of emission statements

This procedure eliminates the last "put (I2, 3)" in the code of S2.

7.3.4 Placement of receiving statements

We have now to insert the "get" statements, so that, on each site Si, the
statements "x ., get (j)" appear in the same order as the statements
"put(x,i)" in the code of Sj. Hthe communication network is assumed
to preserve the message order, then the transmitted value will always
correspond to the same variable on both sites, without need of any
additional identification.

The algorithm for placing the "get" statements is the following: We
simulate the state of each queue Qi,j, i.e., the list of variables emitted
from Si to 8j and still unread by Sj' These images of the queues are
propagated forward in the global program as folIows:

• Each "put (x, j)" statement performed by Si adds the identifier x
at the end of (the image of) Qi,j .

• When 8j has to perform a statement using a variable x that belongs

112 Chapter 7 : Distributed code generation

to Bi, then one of the three following situations occurs:

1. The identifier x does not appear in Qi,j. Since its value has
necessarily been emitted, therefore the value has already been
read (by a "x = get(i)" statement), and there is not hing to
do.

2. x appears in front of Qi,j, and a "x = get(i)" must be in
serted to extract the value. The identifier is removed from
the (image of) the queue.

3. Other identifiers appear before x in Qi,i. The corresponding
values must be extracted first, by me ans of a sequence of
"get" statements.

• When a conditional is opened, the queue images are duplicated
along each branch .

• Before closing a conditional, the suitable "get" statements are in
serted on each branch, so that the queue images become the same.
The complements of the greatest common suffix are extracted.

This algorithm is illustrated in Table 7.3.

7.3.5 Synchronization

The method applied so far provides a deadlock-free distributed pro gram,
whose functional semantics is the same as the initial program. However,
nothing ensures that the temporal semantics is preserved. For instance,
if some sites produce value to other sites only, they can take an arbi
trary lead over other sites ("pipeline" behavior). The not ion of cycle of
the initial program is lost, and such a behavior may need unbounded
communication queues. Several synchronization solutions can be pro
posed, according to the degree of "time fidelity" we want to achieve,
with respect to the centralized program:

Strict synchronization: To strictly preserve the temporal semantics
of the initial program, no process may start its (n + 1)th reaction before
all the others have terminated their nth reaction. To ensure this prop
erty, we have to force synchronization, for instance by introducing some

~

g:

('D
 :4

~

"'0
 f ('D

 s ('D
 a o '"
I ~ ('D
 <
 =' O

'Q

CA
 ~

('D
 s ('D
 a CA

C
od

e
of

 "
1

C

od
e

of
 "

2

re
a
d

(I
1

)
j

re
ad

(1
2

)j

p
u

t(
1

2
.3

)j

1
3

:=
g

et
(3

)j

L
3

:=
g

et
(3

)j

1
3

:=
g

et
(3

)j

0
2

:=
G

(1
2

.L
3

)j

if

13
 t

h
en

if

I3

 t
h

en

L
3

:=
g

et
(3

)j

0
1

:=
H

(I
1

.L
3

)j

g
o

to

ST
A

TE
2j

g

o
to

ST

A
TE

2j

e
ls

e

e
ls

e

p
u

t(
I1

,3
)j

g
o

to
 S

TA
TE

1;

g
o

to

ST
A

TE
1;

C
od

e
of

 "
3

Q1

2
Q

u
Q2

1

re
ad

(1
3

)j

p
u

t(
1

3
.0

 j
p

u
t(

1
3

.2
)j

1

2
:=

g
e
t(

2
)j

L

3
:=

F
(1

2
)j

p

u
t(

L
3

.2
)j

if

13
 t

h
en

p

u
t(

L
3

.0
 j

0
3

:=
tr

u
ej

g
o

to

ST
A

TE
2j

e
ls

e

I1

I1
 :=

g
et

 (
0

 j
0

3
:=

K
(I

1
,1

2
)j

g

o
to

ST

A
TE

1

Q2
S

Q3
1

12

12

13

12

13

13

13

13

13

13

L3

Q
u

13

13

13

L
3.

13

L3

c.
o'

>

-
.)

~
 o C

') n o ~

('D

~
 CA

 '"
I [g' """ """ W

114 Chapter 7 : Distributed code generation

additional "dummy" communications at the beginning of the reaction,
so that any ordered pair of processes are connected by the transitive
closure of the relation "8i has emitted a dummy message to 8j."

Weak synchronization: Ta avoid the proliferation of dummy mes
sages needed in the preceding case, one can prefer a weaker property:
the nth reactions of two arbitrary processes must overlap. H the prob
lem specifications can tolerate such a loose temporal interpretation, the
corresponding synchronization is much less expensive, because the nor
mal communications participate in the synchronization: if a value is
transmitted from Bi to Bj, then the emission precedes the reception. An
analysis of these precedence relations allows the determination of a re
duced set of additional "dummy" communications that ensures the weak
synchronization. In our example, the solution given in Table 7.4 only
adds two dummy communications - one from 81 to 82 and one from 82

to 81 - to ensure the weak synchronization, since

• the beginning of the reaction of 81 precedes the emission of the
dummy message by BI, which precedes the reception of the dummy
message by 82, which precedes both

the end of the reaction of 82, and

the emission of 12 from 82 to 83, which precedes the reception
of 12 by 83, which precedes the end of the reaction of 83;

• the beginning of the reaction of 82 precedes the dummy commu
nication between' 82 and 81 which precedes the end of the reaction
of BI; and

• 82 and B3 exchange messages.

7.3.6 Final processing

Applying this method to each transition of the initial oe automaton, we
get n communicating oe programs, whose cooperation exactly imple
ments the semantics of the initial program. Each program can separately
be optimized (for instance, by minimizing the corresponding automaton)
without modifying the global behavior.

§ 7.3 : oe code distribution

Code of 81

put_dUJIIDy(2);
read(I!);

13 := get(3);
if 13 theu

L3 := get(3);
01 := H(I1.L3);
get_dWllllJ (2) ;
goto SUTE2;

e1.e
put(I1.3);

get_dWllllJ(2) ;
goto SUTE1;

Code of 82

read(I2);
get_dUJllllly(1);
put(I2.3);

13 ::;: get(3);
L3 := get(3);
02 := G(I2.L3);
if 13 theu

Code of 83

read(I3).
put(I3.1);
put(I3.2).
12 := get (2) ;
L3 := F(I2);
put(L3.2).

if 13 theu
put(L3.1).
03 := true;

goto STATE2; goto STATE2;
else else

11 := get(1);
03 := K(I1.I2);

goto STATE1; goto STATE1

Table 7.4: Example of distributed code

115

Chapter 8

Circuit generation from
synchronous programs

8.1 Introduction

As noted in the first chapter, the problem of time constraints in syn
chronous programming reduces to the property that the maximum re
action time of a program is shorter than the minimum delay separating
two successive external events. Minimizing this reaction time is there
fore a basic goal in compiling a synchronous program. The compilation
into extended automata is a software approach to that goal. Another,
more radical approach to obtain very short reaction times consists in
implementing a synchronous program on a circuit. Synchronous lan
guages are good candidates for silicon compiling, since most circuits can
be considered as synchronous machines from some level of abstraction.
Some synchronous languages [Be85, BL85] have been designed to de
scribe hardware.

One can wonder about the practical value of a hardware implemen
tation because of the cost of circuit manufacturing. A first answer to
this question has already been given : in practice, many reactive sys
tems are actually implemented, at least in part, on hardware. Another
answer is provided by new configurable circuits ("field programmable
gate arrays)." The hardware implementatioIis of ESTEREL and LUSTRE,

which are described in this chapter, are tested on a Programmable Active

117

118 Chapter 8 : Circuit generation from synchronous programs

Memory (PAM [BRV90]) designed in the Paris Research Laboratory of
Digital Equipment Corp. (DEC-PRL). The PAM is a board that can be
configured into any circuit by loading a bit-stream - an operation that
requires only a few milliseconds. The reaction times of the resulting
circuit are then of the order of 50-200 nanoseconds.

An implementation of LUSTRE on the PAM [RH91a] will be pre
sented first, since it is very simple thanks to the data-flow nature of
the language. Then we will present the hardware implementation of
ESTEREL [Ber91a], which can be viewed as a translation of ESTEREL
into LUSTRE.

8.2 Implementing Lustre
on a programmable active memory

8.2.1 Programmable active memories

The general concept of "programmable active memory" is defined as
follows in [BRV90]:

A P AM is a uniform matrix of identical cells, all connected in
the same repetitive fashion. Each cell, called a PAB {for "pro
grammable active bit)," must be general enough so that the
following holds true: Any synchronous digital circuit can be
realized (through suitable programming) on a large enough
PAM for a slow enough dock.

To support intuition, we will consider a particular PAM, each PAB of
which has (see Figure 8.1{a)):

• Four bits ofinput < io,i1,i2,i3 >

• One bit of output 0

• A one-bit register (flip-flop) with input Rand output r, synchro
nized on the PAM 's global dock

• A universal combinatorial gate, with inputs< i o, i 1 , i 2 , i 3 , r > and
outputs< 0, R >. This gate can be configured into any Boolean
function with five inputs and two outputs, by means of 2 x 25 = 64
control bits, which specify the truth table of the function.

§ 8.2 : A hardware implementation of LUSTRE

-------------- ,"""
~:...=....----"'-----..,

~o --.....('
~l
~2 --......

1-__ --1:1.°"" ' , ,

,
, ,

,

119

t3 --......

,,'~======~tt======~~======~
,

(a)

, , , ,
,

(b)

Figure 8.1: A simple programmable active memory

Between the rows and the columns of cells, there are communication
lines (see Figure 8.1(b)) to which the pins ofthe cells can be connected.
These connections and the connections between horizontal and vertical
lines can also be configured by means of additional control bits.

Such a PAM, with n active bits, Can be configured by downloading a
sequence of control bits to configure the PABs and their connections.

We will keep this simple model as intuitive support, although the ac
tual target machine of the prototype compilers is slightly more compli
cated. The target machine is the Perle family, studied and built in DEC
PRL, and based on Logic Cell Arrays designed by Xilinx Inc. [XiI88].
The presently available Perle-O prototype is a matrix of 40 x 80 (double)
PABS, and the next version will be about four times larger.

Building the control bitstream corresponding to a given circuit con
figuration is, of course, a nontrivial problem, in spite of available tools.
In the case of Perle, the standard tools provided by Xilinx, together with
the tools developed in DEC-PRL, take as input a logical description of
each PAB, together with optional placement indications. They finish the

120 Chapter 8 : Circuit generation from synchronous programs

placement, perform automatie routing, and produce the bitstream. The
goal is to translate a LUSTRE program into a description that is usable
as the input of these tools.

8.2.2 Translation of Boolean Lustre

We briefly describe the translation of a Boolean LUSTRE program into
a layout for the PAM (see [Roc89, RB9Ia, RB9Ib] for more details). It
requires

• translating LUSTRE operators m terms of hardware operators
(gates, flip-flops); and

• implementing the resulting operator net by me ans of connected
PABS.

Translation of Lustre operators

The first step of the compilation of a Boolean program consists in trans
lating its corresponding operator net into a net of gates and flip-flops.

The operator net corresponding to a Boolean L USTRE program con
tains Boolean operators (or, and, not, =), conditional (if_then_else),

and temporal (pre, -)} operators. 1

Notice that what we call "Boolean operators" in LUSTRE are not
strictly Boolean because of the undefined value nil. Bowever, although
most of the LUSTRE operators are strict with respect to nil, in a le
gal LUSTRE program, the occurrence of a nil value may not influence
the outputs of the pro gram. This property is checked by the com
piler. So, in a legal pro gram we can replace the undefined value by
any Boolean value without changing the outputs of the program. As a
consequence, LUSTRE Boolean operators can be straightforwardly trans
lated into gates. The conditional operator can also be translated into a
set of gates, using the Boolean identity

if Athen B else C = (B and A) or (C and not A)

1 We do not consider docks here, though they are not much more diflicllit to
implement.

§ 8.2 : A hardware implementation of LUSTRE 121

The "previous" operator will be obviously implemented by means of
a flip-flop (noted "Flop"). In the technology used, the initial value of
flip-flops is 0, so nil is considered to be O. The "followed-by" operator
is implemented by means of the reset input of the circuit:

A -) B = if RESET then A else B
= (RESET and A) or (not RESET and B)

For instance, the equation

vatchdog_is_on = false -) if set then true

will be translated into

vatchdog_is_on

(false and RESET) or

else if reset then false
else pre{vatchdog_is_on)

{not RESET and {(true and set) or
(not on and «false and reset) or
(not reset and Flop(vatchdog_is_on))))))

which obviously can be simplified into

vatchdog_is_on = not RESET and
(set or (not reset and FlopCvatchdog_is_on)))

"Packing" operators into PABS

The next task concerns the expression of the resulting net of gates
and flip-flops by means of PABs. The simplest way to perform this task
consists in using one P AB for each operator in the net. Of course, this
solution is very inefficient, but we will use it as a starting point. It is

then improved by applying a set of packing rules. Figure 8.2(b) shows
some of these rules, using the notations of Figure 8.2(a). The rules are

applied according to some simple heuristics. For instance, the net that
computes the variable vatchdog_is_on (see Figure 8.3) may be packed
into one P AB.

122 Chapter 8 : Circuit generation from synchronous programs

D
Combinatorial gate Flip-flop Cell

(a) Notations

(b) Rules

Figure 8.2: Some rules for packing operators into P ABs

§ 8.2 : A hardware implementation of LUSTRE 123

RESET

set

reset

Figure 8.3: The cell computing the variable "vatchdog_is_on"

8.2.3 Translating full Lustre

We have shown that the implementation ofBoolean LUSTRE on the PAM

is quite straightforward. If we want to deal with a larger subset of the
language, we have to implement integer variables by vectors of bits. On
the other hand, LUSTRE is a good candidate as a high-levellanguage to
program the PAM, but lacks some features concerning regular structures
(arrays) and net geometry. Some extensions to the language have been
proposed [RH91a, RH91b], which permit

• to deal with a greater subset of L USTRE than the purely Boolean
part. In particular, integers will be considered as vectors of bits .

• to make easier its use to describe circuits. Arrays will be available
to describe regular structures. They will also carry placement
informations.

Arrays in Lustre

Although they were considered in the very first design of the language,
arrays have not yet been introduced in LUSTRE, since their translation to
sequential code raises difficult problems concerning the order of compu
tations. These problems disappear when a fully parallel implementation
is considered. We propose here a notion of array, compatible with the
principles of the language. Introducing arrays will allow integer values

124 Chapter 8 : Circuit generation from synchronous programs

to be considered as Boolean arrays, with arithmetic operators operat
ing on arrays. Considering a number as, e.g., a 32-bit array instead of
32 unrelated Boolean variables, is also interesting for placement on the
P AM: it strongly suggests implementing it as a register.

In LUSTRE, the only way to build compound types is by tupling: if
7'0, 7'b ... , 7'n are types, so is [7'0,7'1, ... ,7'nl, which is the type of tuples
[10,11, ... ,Inl of LUSTRE variables, where Ii is of type 7'i. H I is an
expression of type tuple and i is an integer constant, I Ei] denotes the
(i + l)th component of I (tupIe components are numbered from 0).

The proposed notion of array is a special case of tuple. Let us define
an index to be a nonnegative integer constant, known at compile time.
H 7' is a type and n is an index, then 7'~n is the type of arrays of n
elements of type 7', numbered from 0 to n-1 (this notation refers to
Cartesian power of 7'). An array is a tuple, all components of which
have the same type. As a consequence, if I is an array of type 7'~n and
i is an index, I Ei] denotes the ith component of I (provided O:$i<n).
One can also access a slice of an array: if I is as above and i and j are
indexes sm aller than n, then I [i .. j] is the array

• [I[i] .I[i+1] •...• I[j]] of type 7'~(j-i+1), if i:$j

• [1[1] .I[i-1] •...• I[j]] of type 7'~(i-j+1), otherwise.

HEl, E2, ... , En are expressions ofthe same type 7', then [El.E2 •...• En]
denotes the array whose ith component is Ei. By extension, E~n denotes
the array [E.E •...• E].

Of course, polymorphie LUSTRE operators can be applied to arrays.
We introduce also the following not ion of polymorphism: any operator
op of the sort

71 x 7'2 x ... 7'i

(i.e., taking i parameters of respective types 71,7'2, ••• ,7'i and returning j
results of respective types 7'~, 7'2" .. ,7'j) is implicitly overloaded to have
the sort

... , ... I ... I ...
71 n x 7'2 n x ... 7'i n ~ Tl n x T2 n x ... Tj n

for any index n. For instance, the operator and, of sort bool x bool ~
bool may be applied to two arrays A and B of type bool~n, returning
the array C such that C Ei] = (A Ei] and B [i]), for any i=O ... n-1.

§ 8.2 : A h8.1'dw8.1'e implementation of LUSTRE 125

A[O] A[1] A[2] . A[n-1]

null

IULL[O] [n-1]

Figure 8.4: The net of the zero comp8.1'ator

Implementing the fuU watchdog

We will translate the program WATCHDOG4 (see §6.2.2) into a Boolean
program. First, we have to express arithmetic operators as operating on
Boolean vectors. Let us give a comparator to zero and a combinatorial
decrementer:

Zero comparator: It takes a vector of Booleans, representing an
integer, together with its size, and returns true if and only if the repre
sented integer is zero (see the resulting net in Figure 8.4):

node IULL(const n:int; A: bool-n) returns(null:bool);
var IULL: bool-n;
let

null = NULL [n-1] ;
IULL[t. .n-1] = NULL [0 .. n-2] and not A[t. .n-i] ;
IULL[O] = not A[O];

tel;

Combinatorial decrementer: It is made of a general adder:

node DEC1(const n:int; A:bool-n) returns (D:bool-n);
var carry_out: bool;
1et

(S.carry_out) = ADD(n.A.true-n);
tel;

The n-bits adder is standard; it is made of none-bit adders:

126 Chapter 8 Circuit generation from synchronous programs

node ADD(const n:int:A,B:bool·n)
returns (S:bool·n: carry_out:bool):
var CARRY: bool·n+i:
let

CARRY[O] = false:
(S,CARRY[l .. n]) = ADi(A,B,CARRY[O .. n-i]):
carry_out = CARRY[n]:

tel;

node ADi(a,b,carry_in: bool)
returns (s, carry_out: bool);
let

s = XOR(a, XOR(b,carry_in));
carry_out = (a and b) or

(b and carry_in) or (carry_in and a);
tel;

Full watchdog: Using these Boolean implementations of arithmetic
operators, the watchdog pro gram can be translated into a Boolean pro
gram. Here we choose an eight-bits representation of integers:

const size = 8j
type Int = bool-sizej
node WATCHDOG4(set, reset, millisecond: bool; delay: Int)

returns (alarm: bool)j
var watchdog_is_on: boolj remaining_delay: Intj
let

alarm = watchdog_is_on and NULL(size,remaining_delay);
watchdog_is_on = false -)

if set then true
else if reset then false
else pre(watchdog_is_on);

remaining_delay =

telj

if set·size then delay
else if (watchdog_is_on and millisecond)·size
then DECR(size, pre(remaining_delay))
else preCremaining_delaY)j

The automatie translation of the initial program into this one is not
yet implemented. However, a prototype silicon compiler, called POLLUX,

§ 8.2 : A hardware implementation of LUSTRE

I I
PR[3] I I c:D----1 D [3]

C[2] I :

I I

(a)

~
PR[2] I I D [2]

I I

CU] I I C[2]
I I

(b)

~
PR[1] I I D[i]

I I

C[O] I I C[i]
I I

(e)

PR[O]

~
I D[O]
I I

I
I I
I C[O]
I I

(d)

WiO~ rd[O] I

rd[i] I alarm
rd[2] I
rd[3] I

I I

(i)

.------,
.etl~pR[3]

decr I I
I

D[3] rd[3]
delay[3] _______ ~

(e)

.------,
.et~lpR[2]

decrl I
D[2] I

I rd[2] de1ay[2] _______ _

(f)

.------,
setl~PR[1]

decrl I
D[i] I

I rd[i] delay[i] _______ _

set

decr
D[O]

delay[O]

(g)

I I

~ I : PR[O]

I rd[O]

(h)

I I

I I
set I I ~ I wio

reset

RESET -------- decr
(j)

Figure 8.5: Layout of the watehdog on Perle-O

127

128 Chapter 8 : Cireuit generation from synehronous programs

translates the above pro gram into the layout (for Perle-O) shown in
Figure 8.5 (where "rd" and "vio" stand for "remaining_delay" and
"vatchdog_is_on," respectively), deseribed in a format that ean be pro
vided to standard CAD tools. This layout must be interpreted as folIows:

• Cell (a) eomputes the fourth bit of remaining_delay-l, aeeording
to the equation

D[3] = PI[3] xor 1 xor C[2]

• Cells (b) and (e), respectively, eompute the third and seeond bits
of remaining_delay-l and the eorresponding earry, aceording to
the equations

D[2]
C[2]
D[1]
C[1]

= PI[2]
PI [2]
PI[1]

= PI[1]

xor 1 xor C [1]
or C [1]
xor 1 xor C [0]
or C[O]

• Cell (d) eomputes its first bit and the first earry

D [0] = not PR [0]
C[O] = PI[O]

• Cells (e), (f), (g), and (h) eompute the four bits of
remaining_delay and pre (remaining_delay), aecording to the
equations:

PI [i] = Flop (remaining_delay [i])
remaining_delay Ei] =

(set and delay[i]) or (decr and D[i]) or PR[i]

• Cell (i) eomputes

alarm = watchdog_is_on and not(remaining_delay[O] or
remaining_delay[1] or remaining_delay[2] or
remaining_delay[3])

§ 8.3 : Hardware implementation of pure ESTEREL

• Cell (j) compu tes

watchdog_is_on = set or (not re.et and not RESET and
Flop(watchdog_is_on))

decr = watchdog_is_on and millisecond

129

Its critical path is of about 60ns (much less than the time needed by a
MC-68000 to perform a "load register" statement!).

8.3 Hardware implementation of pure Esterel

hnplementing ESTEREL on hardware is much less obvious. The trans
lation method is formally derived from ESTEREL behavioral semantics,
and its correctness, which is not straight forward, is proven in [Ber91a].
The following intuitive presentation is essentially borrowed from the sec
tion 5 of [Ber91a].

8.3.1 Basic components

We here consider pure ESTEREL programs, i.e., programs handling pure
signals only, without variables. The translation is structural. It results
in a network of interconnected basic cells. There are five basic cells,
which can be described in LUSTRE. In that sense, the translation can
be viewed as a compilation of ESTEREL into LUSTRE. The basic cells
are the following:

• The Boot cell has no input, and returns an output b, which is true
at the initial instant, and always false afterward:

b '"' true -> falsej

• The Halt cell has two inputs c and r, and returns two outputs s
and c' defined as folIows:

s - false -> pre(c and not r)j

c' '"' c j

130 Chapter 8 : Circuit generation from synchronous programs

• The Watch cell has three inputs a, c, and 5, and returns three
outputs a', c', and 5':

a' - Cj

c' - sand a
s' '" s j

• The Present cell has two inputs c and s and two outputs ct and
cf:

ct • c and Sj

cf - c and not Sj

• Finally, a family of Parallel cells is defined, the Parallel [n] cell
computing n + 4 outputs from its n + 4 inputs:

S' '" S j

c' = c j

c' i '" Ci and

a' = aj

r' = r or c2 or c3
not(Ci+l or Ci+2 or ...

8.3.2 First eXaIIlple

Let us consider the following pro gram:

module M:
input I. Rj
output Oj
loop

loop
avait I

end
each R.

avait Ij emit 0

or ... or cn

or cn)

After an initial instant when the input signals are ignored, it emits
the signal 0 whenever it has received two occurrences of the input sig
nal I, unless it is reset by an occurrence of R. Expanded into kernel
statements, the body becomes

§ 8.3 : Hardware implementation of pure ESTEREL

loop
do

loop
do

halt
watehing Ii
do

halt
vatching Ii
emit 0

end
vatching R

end

131

The corresponding circuit is represented by Figure 8.6. Signals are
represented by wires - which carry the value 1 (or true) at a given
clock cyde, if and only if the corresponding signal occurs. The circuit
contains three kinds of wires: the selection wires 50-54, the activation
wires aO-a4, and the control wires cO-c8. The unconnected pins ofHalt
cells are assumed to carry O. Whenever two wires go to the same place,
they are implicitly assumed to be combined by an or gate ("wired or").

The seledion and activation wires go in reverse directions and form a
tree, which is called the skeleton ofthe circuit. This tree is determined by
the nesting of halt, vatching, and parallel statements in the source
program, as revealed by the source code indentation. The leftmost HaI t
and \latch cells correspond to the first avait statement, the rightmost
ones to the second avait. The selection wires are used to determine
which part of the circuit can be active in a given state: in our example,
both avai t statements are in mutual exclusion, and one of them only
can be active at a time. When the first avait is active, the wires 52,
51, and 150 are on and select the leftmost branch of the tree. When the
second avai t is active, the wires 54, 53, and 50 are on. The sources of
the selection wires are the HaI t cell registers.

The activation and control wires bear the flow of control. The acti
vation wires handle preemption between vatching statements.

132 Chapter 8 : Circuit generation from synchronous programs

,--__ --.82

Boot
b

b

Halt

sO

a c
Watch

s

cO

Halt

Figure 8.6: First circuit

R

A sampie execution: At boot time, the HalteeIl registers contain
0, and the selection wires are all o. The boot control wire b is set and
loads the leftmost Halt register.

On the next dock tick, assume that I is present and R is absent.

§ 8.3 : Hardware implementation of pure ESTEREL 133

Then s2, si, and sO are set by the leftmost Halt register. The wires sO
and aO being identical, the control flows down from aO to cO in order to
test for R in the upper Present cello Since R is not there, the control flows
through the cf pin and sets c2, which is connected to the c pin of the
upper Watch cello This pin is directly connected to the activation wires
a1 and a4. Since both s2 and a1 are on, the leftmost Watch cell sets c3
and the leftmost Present cell sets c4, since I is present. This loads the
rightmost Halt register. Having no incoming control set, the leftmost
HaI t register is reset. This terminates the first "a.ai t I" statement.

On the next dock tick, if I is present, the execution is symmetrical:
the rightmost Halt is reset and the leftmost one is set. The wires set to 1
are s3, s4, sO-aO, cO, c2, a1=a4, c6, and c7. Since c7 is also connected
to the output 0, this output is set. H instead R is present, the wires set
are s3, s4,sO-aO, cO, and ci which loads the leftmost HaI t register, and
one is back to the state just after boot. If no signal is present, the wires
set are s3, s4,sO-aO, cO, c2, a1=a4, c6, c8, and a3, the rightmost Halt
register is loaded, and the state is simply restored.

8.3.3 Translating Parallel and Exceptions

The most complex operator is, of course, the "parallel," since it must
synchronize the termination of its branches and propagate exceptions.
Consider the following pro gram fragment:

trap T in
a.ait S

11
present I then exit T end

end

The corresponding circuit fragment is shown in Figure 8.7. The
leftmost Watch-Present-Halt cell group is generated by "a.ait S."
The rightmost Present cell is generated by "present 1." The branches
are simply put in parallel and synchronized by the Parallel cello The
circuit fragment starts when it receives control by the cO wire.

The Parallel cell has two parts: the fork part, which involves the
six leftmost pins, and the synchronization part, which involves the eight
rightmost ones. The fork part is simple: selection wires are gathered, and

134 Chapter 8 : Circuit generation from synchronous programs

8

82

8

Halt

80 aO cO rO cS c9 cl0

a c r C'OC'IC'2

Parallel
8 a' c' r' Co Cl c2

Figure 8.7: Second circuit

activation and control are dispatched to branches. The synchronization
part is more subtle. A branch can stop in one of three cases (we will
speak of termination levels):

(level 0) The branch tenninates normally. In our example, the first
branch normally tenninates when 5 is present, and the second
branch normally tenninates when I is absent.

(level 1) The branch stops, waiting for a signal. In our example, the
first branch stops, waiting for 5 when it is absent.

§ 8.3 : Hardware implementation of pure ESTEREL 135

(level 2) The branch executes an "exi t," like the second branch of our
example, in the presence of I (in fact, we should consider n + 2
levels instead of three, for a process nested in n trap statements).

The basic observation is that the termination level of a "parallel"
statement is the maximum termination level of its branches:

• H both branches normally terminate {level 0), so does the
"parallel. "

• Habranch stops and waits (level 1) and if the ot her da es not
execute an "exi t" (level:::; 1), then the "parallel" waits.

• Habranch executes an "exi t" from a "trap" at n levels (level
n + 1), the "parallel" is killed and performs the "exit."

The synchronization part of the Parallel cell computes this maximum
level.

In our example, the left branch can halt, as signaled by wire e5, or
terminate, as signaled by wire e3. The rightmost branch can terminate
or exit T, as signaled by wires e7 and e6, respectively. According to
the maximum termination level, the leftmost branch is killed by the
wire rl (which sends an inhibition signal to the Halt register), and the
termination level is transmitted to the global context by means of wires
e8, e9, and el0.

A sampie execution: Assurne that the circuit receives control by eO
and therefore sets e 1. Then consider the following cases:

• Assume I is present. Then e5 is set by the HalteeIl, and e6 is set
by the right Present cello The parallel cell selects the appropriate
continuation el0 and inhibits the Halt register by setting rl.

• Assume instead that I is absent. Then e5 is set by the HalteeIl
and eS is set by the right Present cell. The selected continuation
is e9, which signals halting to the global context. Since the reset
wire r 1 is not set, the Ha! t cell register is loaded. The circuit
remains in the same state as long as the activation wire aO is set
and S is not present: the wires set are 52, 51, 50, al, e2, e4 a2, eS,

136 Chapter 8 : Circuit generation from synchronous programs

and eg. H aO remains high and S occurs, the wires set are s2, s1,
sO, a1, e2, e3, and eS. The whole construct termin at es and the
register is reset, since c 1 and a2 are low. The ineoming activation
wire aO ean also get down before S oeeurs, for instanee beeause an
enclosing watchdog elapses. Then the Hal t register is also reset.

Optimization

Hardware experts will find that the obtained eireuits are of very bad
quality beeause of many useless gates and wires. This is because these
circuits are obtained by a struetural translation process, and there is
much room for automatie optimization. Many wires are simply eon
nected with each other; many logical functions are readily grouped by
logic optimizers. Constant folding ean also be used: for instanee, the top
activation wire is always set; using this fact, one can statically simplify
many gates. Therefore, these eircuits should be first treated by logic op
timizers before actual implementation. For instance, optimizers based on
Binary Decision Diagrams (BDD [Bry86]); see [BHSV90, CM90, STB91J
drastically reduee the actual size of the cireuit. They can also discover
redundancies between registers and suppress some of them [BCM90aJ.

Let us reiterate that we have only tried here to provide an intuitive
understanding about this translation from ESTEREL to circuits. The
exact technique is more subtle (see [Ber91a]).

Part 111

Program Verification

Chapter 9

Lustre program
verification: the tool Lesar

As noted in the introduction, reactive systems often concern critical
applications, and thus program verification is a key issue. However,
many practitioners in the field are skeptical about the use of formal
verification methods, and convincing arguments need to be provided in
order to support the claim that such methods are indeed of practical
interest. This is the object of the following discussion.

The research on program verification, which started in the early
1970s, intended to provide complete proofs of very general programs.
Though this work has led to important contributions concerning pro
gramming techniques and language design, one should admit that its
use is very limited in practice.

However, the goal concerning reactive systems may be less ambitious.
Almost always, the safety of a critical application does not depend on
the total correctness of its control program, but rather on an small set of
properties that the program should fulfill. For instance, the occurrence
of a critical situation should raise an alarm within a given delay. From
our experience, the proof of such properties can often be handled within
the framework of simple decidable theories, since these properties seI dom
depend on numerical relations and computations.

Furthermore, most of these properties are "safety" properties, which
state that a given situation should never appear or that a given state-

139

140 Chapter 9 : Lustre pro gram verification: the tool Lesar

ment should always hold, in contrast with "liveness" properties, which
state that a given situation should eventually appear in the future. 1 For
instance, a relevant question is not that a train will eventually stop, but
that it will never cross a red light. This is an important point because
proof techniques for safety properties are known to be much simpler
than for liveness properties:

• A safety property can be checked on an abstraction of the actual
program. Informally, if a safety property holds for a program, it
also holds for programs whose set of behaviors is a subset of the
initial one. Thus it is possible to abstract pro grams by ignoring
details, for instance, numerical computationsj their set ofbehaviors
will become larger, and properties that hold on these abstractions
will also hold on the actual programs.

• A safety property can be verified by simply checking properties of
reachable states, instead of execution pathes. This allows the use
of very efficient methods based on reachability [HoI87].

• Safety properties can be checked modularly. Properties of sub
modules can be combined so as to derive a property of the wh oIe
module. This allows proof complexities to be reduced, thanks to
modular decomposition according to a pro gram structure.

In view of this discussion, we will propose methods to specify and check
simple safety properties about LUSTRE programs.

9.1 Speciftcation of safety properties

Many formalisms have been proposed in order to express properties of
real-time parallel programs. Two main approaches can be distinguished:
those based on temporallogics (e.g., [Pnu77, MM84]), and those based
on automata theory (Petri nets, STATECHARTS, timed graphs [ACD90],
and process calculi [MiI83]).

Such formalisms should clearly allow any interesting property to be
expressed, but they should also provide an easy and readable expression

lIu lad, liveuess properties orten result {rom abstracting time {rom areal-time
constraint. In a readive system, time constraints are Cully taken into account.

§ 9.1 : Specification of safety properties 141

of itj proving a given property does not have much value if one cannot
be convinced that it is actually the desired property of the system!

From its declarative nature, LUSTRE appears to be also a good lan
guage to express properties of LUSTRE pro grams [HPOG89, RHR91].
This claim is based on the following arguments:

• LUSTRE can be considered as a subset of a temporallogic [PH88,
BFH90]. The proposal is then to express any safety property P by
a Boolean expression B, such that P holds if and only if expression
B keeps holding true during any execution of the program. Ac
cording to [BFH90], any safety property can be expressed in that
way.

• The above proposal is easily implementable by using the assertion
mechanism of LUSTRE: LUSTRE assertions are already a way to
express properties of a program's environment.

• The use of a programming language to express both pro grams and
their properties is interesting, since all the structuring facilities of
the language become available for readability and expressiveness.
For instance, as we will show, the node concept will allow the user
to define its own temporal operators.

Let us show here how some useful nontrivial temporal operators can be
expressed as LUSTRE nodes. Consider the following property:

"Any occurrence of a critical situation must be followed by
an alarm within a five-second delay."

Such a property relates three events: the critical situation occurrence,
the alarm, and the deadline. The latter can be provided externally, and
it can also be easily expressed in LUSTRE. A general pattern for this
property is the following:

"Any occurrence of event A is followed by an occurrence of
event B before the next occurrence of event C."

However, this formulation is not direct1y translatable into LUSTRE, since
it refers to what happens in the future following an A occurrence, while
L USTRE only allows references to the past with respect to the current

142 Chapter 9 : Lustre pro gram verification: the tool Lesar

instant. That is why it is first translated into the equivalent past ex
preSSIOn:

"Anytime G occurs, either A has never occurred previously,
or B has occurred since the last occurrence of A."

Let us define anode, taking three Boolean input parameters A. B. C,
and returning a Boolean output X such that X is always true if and only
if the property holds:

node onceBfromAtoC(A,B.C: bool) returns (X: bool)j
let

X - implies(C. never(A) or since(B.A))
tel

The equation defining X uses three auxiliary nodes:

• The node implies implements the ordinary logical implication:

node implies(A, B: bool) returns (AimpliesB: bool)j
let AimpliesB = not A or B tel

• The node never returns the value true as long as its input has
never been equal to true. Then it returns /alse forever:

node never(B: bool) returns (neverB: bool)j
let

neverB = (not B) -> (not B and pre(neverB))
tel

o Finally, the node since has two inputs, and it returns true if and
only if either its second input has still not been true, or its first
input has been true at least once since the last true value of the
second input:

node since(X,Y: bool) returns (XsinceY: bool)j
let

XsinceY = if Y then X
else (true -> X or pre(XsinceY))

tel

§ 9.2 : Verification 143

A realistic example has been studied in [Glo89]: most critical prop
erties of a nuclear plant monitoring program have been expressed in
LUSTRE, thanks to a sm all set of general purpose temporal operators
similar to "onceBfromAtoC," "never" or "since."

9.2 Verification

The proposed verification method is very similar to "model check
ing" [CES86, RRSV87]: first, the state graph of the program is built
(this obviously assurnes a finite number of states), and then each prop
erty is checked on this state graph. The critical issue in this approach
is clearly the number of states, which can be very large for realistic pro
grams. We will see that the restriction to safety properties, and the
expression of properties in the same language as the program, may help
in solving this problem.

In the' LUSTRE case, astate graph already exists corresponding to the
control automaton built by the compiler. This graph is an abstraction
of the actual state graph, since it only expresses the control and ignores
many details concerning non-Boolean variables and Boolean variables
that do not infiuence that control. As noticed above, if properties to be
checked essentially depend on Booleans taken into account in the control
graph, and if these properties are safety ones, such an abstract ion is a
sensible one for checking purposes and generally yields much sm aller
graphs.

An important observation to decrease the total graph size consists in
taking into account the property to be checked when building the state
graph. In the case of L USTRE this is easily achieved, since the same
language applies to properties and programs: in order to prove that an
expression B is an invariant of the pro gram P, we build a new pro gram
P' made of the body of P and of the system of equations defining B, and
whose only output is B (cf. Figure 9.1). Since the compiler is then only
requested to compute B, it will only take into account the part of the
program concerning that computation, and this can be expected to yield
a sm aller graph. Given that graph, verifying the property corresponds to
checking that in none of the states does the code perform an assignment
of the output to false.

144 Chapter 9 : Lustre program verification: the tool Lesar

p ~

I I B,
I I

p'

Figure 9.1: Verification program

A third issue in reducing the size of the graph consists in using
assertions to express assumptions under which the property is intended
to hold. Assertions are also useful to express properties of numbers that
would otherwise be ignored by the compiler. For instance, if a program
uses numerical tests such as X<=Z and Y<=Z, the assertion

assert iaplies(X<=Y and Y<=Z, X<=Z)j

prevents the compiler from generating states satisfying Z<XS;YS;Z, which
of course would not be reachable by the actual program.

As an example, let us consider the following general purpose node,2
which represents a switch: its output alternates from true to false ac
cording to input events 01 and OFF; a third input defines its initial value.
A first version of this node could be

node SWITCH_1(01, OFF, IIIT: bool) returns (STATE: bool)j
let

STATE = IIIT -) if 01 then true

tel.

else if OFF then false
else pre(STATE)j

2Su ch anode could have been used in defining the variable vatchdog..in..on in the
WATCHDDG programs, and in defining the states of the STOPWATCH.

§ 9.2 : Verification 145

Bowever, this version has a fiaw: in the call

state - SWITCH_l(buttoa, button, init)

the output does not change each time the button is pushed, as we might
expect. Thus a more general version should take into account the pre
vious STiTE when checking the inputs ON and OFF:

node SWITCH(ON, OFF, INIT: bool) returns (STATE: bool);
let

STATE • INIT -) if ON and not pre(STATE) then true
else if OFF and pre(STATE) then false
else pre(STATE);

tel.

We could wish to verify that this generalization is correct, in the sense
that both versions behave in the same way as long as the inputs ON and
OFF are never true at the same time. This is achieved by constructing a
comparison node that calls both nodes with the same inputs and com
pares their outputs, under the assumption that ON and OFF inputs are
exclusive (cf. Figure 9.2):

node COMPARE(ON, OFF, INIT: bool) returns (OK: bool);
var state, state_l : bool;
let

state .. SWITCH(ON, OFF, INIT);
state_l • SWITCH_l(ON, OFF, INIT);
OK • (state = state_l);
assert not(ON and OFF);

tel.

Compiling this node yields a five-state automaton, each transition of
which assigns the value true to the output OK.

The last way to tackle the state explosion problem is modular veri
fication. Baving to prove that an expression B is always true during the
execution of a program P calling anode Q (cf. Figure 9.3{a)), the idea
is to decompose the proof into a subproof concerning Q and a subproof
concerning P without Q:

146 Chapter 9 : Lustre pro gram verification: the tool Lesar

r----------------------
nUT

~ SWITCH
j

Oll =
I-~ t I........- SWITCH_l

OFF

Figure 9.2: Assumption-dependent equivalence of pro grams

p p

assert C

(a) b

Figure 9.3: Modular verification

• Find (by intuition) a property of Q, i.e., an expression C on the
input/output parameters of Q, and prove that C is always true
during any execution of Q •

• Now, consider Q as being part of the environment of P, i.e., replace
in P the call to Q by the assertion assert C. Then try to prove
the invariance of B on the modified program (cf. Figure 9.3(b)).

An example making use of this modular decomposition may be found
in [HL90].

A prototype verification tool called LESAR (by analogy with the CESAR

§ 9.2 : Verification 147

family of model checkers) has been implemented: given a program with
a single Boolean output, it goes through the states and checks that the
output is never assigned false. H such a situation is found, a diagnostic
is provided. Otherwise, LESAR concludes that the property is satisfied.
In fact, two "verification engines" are available:

• The first engine explicitly enumerates the reachable states, as done
by standard model checkers [CES86, QS82]. The main limitation
of such an approach is obviously the number of states that can be
considered. The present version of the tool deals with programs of
about one million states in a reasonable time (less than one hour).

• The second engine proceeds symbolically: starting from a Boolean
formula Fo, characterizing the set of states where the output is
true, it iteratively computes a sequence FI , F2, ... , Fn of formu
las, where FHI characterizes the set of states, belonging to Fi and
necessarily leading (in one execution step) into Fi. As so on as the
initial state does not satisfy F i , we can conclude that the property
is not satisfied, since there exists an execution path leading to a
state where the output is false. Otherwise, since the state space
is finite, the sequence of formulas converges after a finite number
of steps. Our tool performs symbolic computations over formu
las using binary decision diagrams [Bry86], a compact canonical
encoding of Boolean formulas. This approach is sometimes called
"symbolic model checking" [BCM+90b, CBM89, CMB90].

The two approaches are complementary: in some cases, the enumerative
method is more efficient than the symbolic one, and conversely.

Of course, the validity of the proof reHes on the satisfaction of the
synchrony hypothesis: the whole proof is performed "inside" the syn
chronous model, and has nothing to do with performance analysis. As
mentioned before, checking the validity of the synchrony hypothesis
amounts to evaluate the maximum reaction time of the pro gram on
a given machine.

Chapter 10

Using Auto for Esterel
program verification

Another approach to program verification, also based on automata, has
been applied to ESTEREL. It starts from the statement that program
specmcation is a difficult task, almost as error-prone as pro gram writ
ing. The basic idea, therefore, is not to write a specification, but rather
simply to observe the behavior of the generated automaton. Of course,
a complete automaton cannot be manually analyzed; even a small au
tomaton, of about ten states, can be quite complex. The proposed
approach offers reduction methods, providing partial views on the au
tomaton, on which one can easily detect anomalies and check properties.
The verification tool AUTO [Ver86, BRdSV90, RdS90] has been devel
oped at INRIA, in order to perform such reductions. The graphie editor
AUTOGRAPH [RS89, Roy90] allows (reduced) automata to be visualized.

The main goal of AUTO is automat on reduction. These reductions
preserve some semantic properties. They are based on process calcu
lus and mainly use the notions of bisimulation and observation erite
ria [Mil80].

Let us illustrate this approach for synchronous program verification
by means of a simple example borrowed from [BS91]. This example is
an ESTEREL pro gram implementing a lift controller. The fuH automa
ton produced by ESTEREL compilation is shown on Figure 10.1 in its
AUTOGRAPH postscript output. Each transition corresponds to a pro-

149

150 Chapter 10 : Using Auto for Esterel program verification

OPEN_DOOR?
.FLOOR_STOPl
.OPEN_DOOR_COMMAND!

FLOOR_SENSOR?
.STOP _UFJ" _COMMAND?
.CURRENT _FLOOR!
.STOP _MOTOR!

FLOOR SENSOR?
.CURRENT _FLOOR!

DOOR_CLOSED?
.DIRECI10N!
.READY_TO_START!

SECOND?

Figure 10.1: The full automaton of a lift controller

gram reaction. Transitions are labeled by received (S?) and emitted (S!)
signals.

Now, assume we want to check that the lift cannot move while the
door is open. Even for such a simple program, the automat on is rather
complex and this property is not obvious. For the considered prop
erty, the only relevant signals are the input signals LIFT_STOPPEn and
DOOR_CLOSEn and the output signals OPEN_DOOR_COMMAND and MOTOR. In
order to observe the behavior of the automaton with respect to these sig
nals, AUTO first renames any other signal by the same "dummy" name,
which is usually denoted by T. The resulting simplified automaton is
given by Figure 10.2.

The automaton reduction then consists in considering some states as
being equivalent. Of course, the choice of a "good" equivalence relation
is critical: the coarser it is, the most effective the reduction is, but if

Chapter 10 : Using Auto for Esterel pro gram verification

Mo TORI

laU

DOOR_ CLOSED?

LIFf STOPPED?
.OPEN_DOOR_COMMAND!

Figure 10.2: Simplified automaton

151

laU

it is too coarse, it may not preserve some properties. Here, we will
use the obseMJational congruence, whose construction is illustrated now.
Reducing an automaton according to this relation consists of two steps:

• The "r-saturation" aims at assimilating any sequence of transi
tions (~)*~(~)* - made of some dummy transitions, fol
lowed by a significant transition, followed by some dummy tran
sitions - with the significant transition~. This is made by
adding transitions to the automaton. The result in our example is
shown by the transition table 10.1.

• The "r-saturated" automaton is then reduced by bisimulation. We
detail this second step below.

Let A = (8, L, ---t) be an automaton, where 8 is a set of states, L is
a set of labels, and ---t is a transition relation included in 8 x L x 8. Let

152 Chapter 10 : Using Auto for Esterel pro gram verification

83 T 83

80 T 80 83 T 85

80 T 81 83 T 86

80 OPEN.DOOILCOMMÄND! 82 83 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 82

80 OPEN.DOOILCOMMÄND! 87 83 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 87

80 OPEN.DOOR_COMMÄND! 84 83 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 84

80 MOTOR! 83 84 T 84

80 MOTOR! 85 84 OPEN .DOOR_COMMÄND! 82

80 MOTOR! 86 84 DOOR_CLOSED? 81

81 T 81 85 T 85

81 OPEN.DOOR_COMMÄND! 82 85 T 86

81 OPEN.DOOILCOMMÄND! 87 85 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 82

81 OPEN.DOOR-COMMÄND! 84 85 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 87

81 MOTOR! 83 85 LIFT _STOPPED?OPEN.DOOR_COMMÄND! 84

81 MOTOR! 85 86 T 86

81 MOTOR! 86 86 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 82

82 T 82 86 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 87

82 T 87 86 LIFT_STOPPED?OPEN.DOOR_COMMÄND! 84

82 T 84 87 T 87

82 OPEN.DOOR_COMMÄND! 82 87 T 84

82 DOOR_CLOSED? 81 87 OPEN..DOOR_COMMÄND! 82

87 DOOR_CLOSED? 81

Table 10.1: Transition table of the T-saturated automaton

us recall that a relation:::::: among the states of A is abisimulation if and
only if V 81, 82 E 8,

81 :::::: 82 {:=:::::>

V8~ such that 81~8~, 38~:::::: 8~ such that 82~8~
and V8~ such that 82~8~, 38~:::::: 8~ such that 81~8~

The reduction of A according to abisimulation:::::: is the automaton
AI :::::: = (81 ::::::, L, ~), whose states are equivalence classes of ::::::, and
such that, VGl, G2 E 8/::::::,

GI ~G2 iff 381 E GI, 382 E G2 such that 81 ~82

Chapter 10 : Using Auto for Esterel pro gram verification 153

80 T CO
0

So OPEN.DOOR-COMMAND! cg
80 MOTOR! cg
S1 T cg

84 T c::
84 OPEN.DOOR_COMMAND! cg
84 DOOR_CLOSED? cg
85 T cg

81 OPEN.DOOR-COMMAND! cg
81 MOTOR! cg 85

LIFT _STOPPED? cg OPEN.DOOR_COMMAND!

82 T cg
82 OPEN.DOOR..COMMAND! CO

0
86 T cg

82 DOOR-CLOSED? cg
83 T CO

0
811

LIFT _STOPPED? c:: OPEN.DOOR_COMMAND!

83
LIFT_STOPPED? CO

OPEN.DOOR-COMMAND! 0
87 T c::
87 OPEN.DOOR-COMMAND! c::
87 DOOR-CLOSED? cg

Table 10.2: Result of the first reduction step

The reduction of an automaton according to the coarsest bisimulation
is a well-known problem, and efficient algorithms have been proposed
for its construction [AHU74, PT87J. For simplicity, we apply here a
straightforward algorithm. We will build a sequence (po, Pt, ... , Pn, ...)
of equivalence relations as folIows:

• Po is the trivial equivalence (all the states are equivalent).

• Let {Cö, Ci, ... , Ci:} be the equivalence classes of Pn. We note by
s~Ci the fact that there exists s' in Ci such that s~s'. The
relation Pn+l is defined from Pn as folIows:

The algorithm stops when Pn
iterations take place:

Pn+t. In our example the following

• Initially, all the states are considered equivalent. Let c8 be the
unique equivalence class. All the transitions are thus considered
to lead to c8. The transition table is given by Table 10.2. In this

154

80

80

80

81

81

81

82

82

82

83

83

Chapter 10 : Using Auto for Esterel program verification

T CJ
OPEN.DOOR-COMMÄND! cl

MOTOR! C~
T CJ

84 T Cl
84 OPEN.DOOR_COMMÄND! Cl
84 DOOR-CLOSED? CJ
85 T C~

OPEN.DOOR..COMMÄND! cl
MOTOR! C~

85
LIFT _STOPPED? cl OPEN..DOOR_COMMÄND!

T Cl
OPEN.DOOR_COMMÄND! cl

86 T C~

DOOR-CLOSED? CJ 86
LIFT _STOPPED? cl OPEN..DOOR_COMMÄND!

T C~
87 T Cl

LIFT_STOPPED? cl OPEN.DOOR_COMMÄND! 87 OPEN..DOOR_COMMÄND! cl
87 DOOR-CLOSED? Cl

0

Table 10.3: Result of the second reduction step

table, three classes obviously appear (the states of a given class
have the same outgoing transitions):

CJ = {80, 8l} , cf = {82' 84, 87} , C~ = {83' 85, 86}

• Replacing, in the initial transition table, each target state by the
unique class to which it belongs, we get Table 10.3, which gives
the same classes as before. All the states belonging to a given class
have the same outgoing transitions. The algorithm has converged,
and we have the classes of the coarsest bisimulation.

The result of the reduction is given in Figure 10.3. In this figure, the
property is obvious if we assume that

• the door is initially closedj

• the door can only be opened between an emission of
OPEI...DOOR_COMMAND and the next reception of DOOR_CLOSEDj and

• the lift can only be moving between an emission of MOTOR and the
next reception of LIFT _STOPPED.

Chapter 10 : Using Auto for Esterel pro gram verification 155

DOOR-CLOSED?

MOTOR!

Figure 10.3: Reduced automat on

Chapter 11

Conclusion

The ESTEREL, LUSTRE, and SIGNAL compilers are now commercial
products (see the industrial contacts given in the Foreword). The indus
trialization of ARGOS will start soon.

As a conclusion, we will present an ongoing project that aims at
nonnalizing a common environment for synchronous languages, and we
will outline some works in progress and perspectives.

11.1 The common environment of synchro
nons langnages

In Section 6.3, we have presented the common tools developed around
ESTEREL and LUSTRE and presently used also by ARGOS through the
lC fonnat. A more ambitious ongoing project concerns a common en
vironment to be used by all the synchronous languages. This project
consists of defining and nonnalizing a set of common formats on which
many tools of general usage will be connected. Experiences with IC and
OC show that this goal is more realistic than defining a single common
fonnat. As a matter of fact, to minimize the translation effort from
source languages to a common format, we were led to distinguish a for
mat weH suited to imperative languages (an extension of IC is under
nonnalization) and a fonnat adapted to declarative languages (this new
format will be called GC, for "graph code") on which specific tools will
be available. A translator from IC to GC, called icgc, will be built,

157

158 Chapter 11 : Conclusion

Other imperative Other declarative
Esterel Argos lang)1ages Signal Ludre l~!Ulages

"" \\ ,,' ~,' """"
':<~ \ ,.,. ~ / ~""" . , , ,.

: ~ : ~ Analysis and
: icgc : optimization tools

Linker <-:.... Ie Ge ~-
: Linker -...... -, : , : ,.
~

~
Distributed code

generator

Silicon compiler

oe

Simulation tools

Verification tools

Interface

I
••••••••••••.•••••••••• L ••••••••.•••••••.••••••

I ,
Sequelltial code generators

Simulation tools

Verification tools

Interface generator

Distributed code generator

generator

Figure 11.1: The common environment of synchronous languages

which is inspired from the hardware implementation of ESTEREL. So Je
and Ge form the input level of the environment. At a low level, the oe

code will be used as a target format for sequential code. Two compilers
to this code will remain, one from Je (which corresponds to the present
ieoe module of the ESTEREL compiler) and one from Ge, since the au
tomaton generation from declarative languages needs the minimization
of the target automaton [HRR91].

The projected environment is pictured in Figure 11.1. An important
goal of this project is to permit several modules, written in various
languages, to be interfaced at the internal formats level.

§ 11.2 : Works in progress 159

11.2 VVorks in progress

In addition to this common project, some extensions to each language
are under investigation (some of them are already implemented):

Asynchronous tasks in ESTEREL: A new primitive is being added
to ESTEREL [Par92, AMP92] that allows external asynchronous tasks to
be called from an ESTEREL program. The statement "exec T" launches
the external task T and waits for its termination. Nontrivial problems
arise because of the interactions of this new statement with the inter
ruption mechanisms provided by the language: when a program frag
ment running an external task is interrupted, the task must be killed
if it is not already terminated. Moreover, several instances of the same
task can run at the same time, and the suitable instance only must be
killed. Many applications of this mechanism have been identified, e.g.,
in robotics [CM91].

Adding actions to ARGOS: Some work remains to be done in order to
make ARGOS a fuIl programming language. Obviously, an ARGOS pro
gram must be able to handle variables and to perform actions on them.
Until now, emphasis has been placed on specific control structures, but
the data part will be readily added to the language.

Arrays in LUSTRE: We have seen in §8.2.3 that an array mechanism
has been added to LUSTRE in order to describe regular hardware de
vices. This mechanism is being inserted in the standard language, but
its compilation must be further studied: it is presently performed by
"macro-expansion," by associating a variable with each array element.
Compiling LUSTRE arrays into real arrays raises many problems con
cerning causality checking and finding the right computation order.

Randomized SIGNAL: An probabilistic extension of SIGNAL is under
investigation [Ben91], which takes advantage of the fact that SIGNAL
allows the description of nondeterministic systems. The idea is to re
strict this nondeterminism by means of probabilistic laws. Applications
concern fault-tolerant systems and simulation of random processes.

Bibliography

[ACD90]

[ADA83]

[AHU74]

[AMP92]

[AW85]

[BBB89]

[BC85]

[BCG87]

R. Alur, C. Courcoubetis, and D. Dill. Model checking of
real-time systems. In Fifth IEEE Symposium on Logic in
Computer Science, Philadelphia, 1990.

ADA. The Programming Language ADA Reference Manual,
LNCS 155. Springer Verlag, 1983.

A. Aho, J. Hopcroft, and J. Ullman. Design and analysis
of computer Algorithms. Addison Wesley, 1974.

C. Andre, J.P. Marmorat, and J.P. Paris. Execution ma
chines for Esterel. In 1st European Control Conference,
Grenoble, July 1992.

E. A. Ashcroft and W. W. Wadge. LUCID, the data-flow
programming language. Academic Press, 1985.

R. Bernhard, G. Berry, and F. Boussinot. The occ c gen
erated code interface manual. Technical Report Ecole Na
tionale Superieure des Mines de Paris, December 1989.

M. C. Browne and E. M. Clarke. SML - a high-level
language for the design and verification of finite state ma
chines. Research Report CMU-CS-85-179, Carnegie Mellon
University, 1985.

G. Berry, P. Couronne, and G. Gonthier. Programmation
synchrone des systemes reactifs, le langage ESTEREL. Tech
nique et Science Informatique, 4:305-316, 1987.

161

162

[BCG88]

BIBLIOGRAPHY

G. Berry, P. Couronne, and G. Gonthier. Synchronous pro
gramming of reactive systems, an introduction to ESTEREL.

In K. Fuchi and M. Nivat, editors, Programming 0/ Future
Generation Computers. Elsevier Science Publisher B.V.
(North Holland), 1988. INRIA Report 647.

[BCH+85] J-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and
E. Pilaud. Outline of areal-time data-flow language. In
1985 Real-Time Symposium, San Diego, December 1985.

[BCHP86] J-L. Bergerand, P. Caspi, N. Halbwachs, and J. Plaice.
Automatie control systems programming using areal-time
declarative Ianguage. In IFAC/IFIP Symp. 'SOCOCO 86,
Graz, May 1986.

[BCM90a] C. Berthet, O. Coudert, and J. C. Maclre. New ideas on
symbolic manipulations of finite state machines. In Inter
national Con/erence on Computer Design (ICCD) , Cam
bridge, September 1990.

[BCM+90b] J.R. Bureh, E.M. Clarke, K.L. Me Millan, D.L. Dill, and
J. Hwang. Symbolic model checking: 1020 states and be
yond. In Fifth IEEE Symposium on Logic in Computer
Seien ce, Philadelphia, 1990.

[BCP88]

[Ben91]

[Ber89]

B. Buggiani, P. Caspi, and D. Pilaud. Programming dis
tributed automatie control systems: a language and com
piler solution. Technical Report SPECTRE L4, IMAG,
GrenobIe, July 1988.

A. Benveniste. Constructive probability and the SIG
N ALEA language: building and handling stochastic pro
cesses via programming. RR 1532, INRIA, 1991.

G. Berry. Real time programming: Special purpose or gen
eral purpose languages. In IFIP World Computer Congress,
San Francisco, 1989.

BIBLIOGRAPHY 163

[Ber91a] G. Berry. A hardware implementation of pure ESTEREL.
In ACM Workshop on Formal Methods in VLSI Design,
Miami, January 1991.

[Ber91b] G. Berry. Programming a digital watch in ESTEREL v3_2.
Technical Report 08/91, Centre de Mathematiques Ap
pliquees, Ecole des Mines de Paris, Sophia-Antipolis, 1991.

[BFH90] A. Bouajjani, J. C. Fernandez, and N. Halbwachs. On the
verification of safety properties. Technical Report SPEC
TRE L12, IMAG, Grenoble, March 1990.

[BFH+92] A. Bouajjani, J. C. Fernandez, N. Halbwachs, P. Raymond,
and C. Ratel. Minimal state graph generation. Seienee 0/
Computer Programming, 18:247~269, 1992.

[BG88] G. Berry and G. Gonthier. The synchronous pro gram
ming language ESTEREL, design, semantics, implementa
tion. Technical Report 842, INRlA, 1988. To appear in
Seienee 0/ Computer Programming.

[BHSV90] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni
Vincentelli. Multilevel logic synthesis. Proeeedings 0/ the
IEEE, 78(2), 1990.

[BL85] D. Borrione and C. Le Faou. Overview oft he CASCADE mul
tilevel hardware description language and its mixed mode
simulation mechanisms. In Computer Hardware Deserip
tion Languages and Their Applieations. Elsevier Science,
North Holland, 1985.

[BL90]

[Bou91]

A. Benveniste and P. LeGuernic. Hybrid dynamical systems
theory and the SIGNAL language. IEEE Transactions on
Automatie Control, 35(5):535-546, May 1990.

F. Boussinot. Programming a reflex game in Esterel v3_2.
Research Report 07/91, Centre de Mathematiques Ap
pliquees, Ecole des Mines de Paris, Sophia-Antipolis, 1991.

184 BIBLIOGRAPHY

[BRdSV90] G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Pro
cess calculi, !rom theory to practice: Verification tools. In
International Workshop on Automatie Verifieation Methods
for Finite State Systems, Grenoble, LNCS 407. Springer
Verlag, 1990.

[Bro89] M. Broy. Functional specification of time sensitive commu
IPcating systems. In REX Workshop, 1989.

[BRV90] P. Bertin, D. Roncin, and J. Vuillemin. Introduction to pro
grammable a.ctive memories. In J. McCanny, J. Me Whirter,
and E. Swartzlander, editors, Systolie Array Processors.
Prentice-Hall, 1990.

[Bry86] R. E. Bryant. Graph-ba.sed algorithms for boolean func
tion manipulation. IEEE Transactions on Computers, C-
35(8):677-692, 1986.

[Brz64] J. A. Brzozowski. Derivative ofregular expressions. JACM,
11(4), 1964.

[BS87] G. Berry and R. Sethi. From regular expressions to deter
ministic automata. TCS, 25(1), 1987.

[BS91] F. Boussinot and R. de Simone. The ESTEREL language.
Proceedings of the IEEE, 79(9):1293-1304, September 1991.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Verification of
synchronous sequential machines based on symbolic execu
tion. In International Workshop on Automatie Verifieation
Methods for Finite State Systems, Grenoble, LNCS 407 ..
Springer Verlag, 1989.

[CES86]

[CM90]

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatie
verification of finite-state concurrent systems using tempo
rallogic specifications. ACM TOPLAS, 8(2), 1986.

O. Coudert and J. C. Madre. A unified framework for the
formal verification of sequential circuits. In International
Conferenee on Computer Aided Design (ICCAD), Santa
Clara, 1990.

BIBLIOGRAPHY 185

[CM91] E. Coste-Maniere. Synchronisme et asynchronisme dans la
programm at ion des systemes robotiques: apport du lan
gage Esterel et de concepts objets. Thesis, Ecole Nationale
Superieure des Mines de Paris, 1991.

[CMB90] O. Coudert, J. C. Madre, and C. Berthet. Verifying tem
poral properties of sequential machines without building
their state diagrams. In R. Kurshan, editor, Intemational
Workshop on Computer Aided Verijication, Rutgers, June
1990.

[Cou90] Ph. Couronne. Le systeme ESTEREL v2. Thesis, Universite
Paris VII, December 1990.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE:
a declarative language for programming synchronous sys
tems. In 14th ACM Symposium on Principles of Program
ming Languages, Munchen, January 1987.

[Fer90] J. C. Fernandez. An implementation of an efficient algo
rithm for bisimulation equivalence. Science of Computer
Programming, 13(2-3), May 1990.

[GGB87] T. Gauthier, P. Le Guernic, and L. Besnard. Signal, a
declarative language for synchronous programming of real
time systems. In Proc. 3rd. Conf. on Functional Program
ming Languages and Computer Architecture, LNCS 274.
Springer Verlag, 1987.

[Ghe92] G. Gherardi. Sahara: un environnement de mise au point
graphique pour les programmes Esterel (in Preparation).
Thesis, Universite de Nice, 1992.

[Glo89] A-C. Glory. Verification de proprietes de programmes Hots
de donnees synchrones. Thesis, Universite Joseph Fourier,
Grenoble, December 1989.

[GMP+90] N. Ghezal, S. Matiatos, P. Piovezan, Y. Sorel, and
M. Sorine. SYNDEX, un environnement de programm at ion

166 BIBLIOGRAPHY

pour multi-processeur de traitement du signal. Mecanismes
de communication. Technical Report 1236, INRIA Roc
quencourt, France, 1990.

[Gon85] G. Gonthier. Private communication. 1985.

[Gon88] G. Gonthier. Semantiques et modeles d'execution des lan
gages reactifs synchrones; application a. ESTEREL. Thesis,
University of Paris VI, 1988.

[Gra82] J. R. Mc Graw. The VAL language: Description and anal
ysis. ACM TOPLAS, 4(1), January 1982.

[Har87] D. Harel. Statecharts: A visual approach to complex sys
tems. Science 0/ Computer Programming, 8(3), 1987.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language LUSTRE. Pro
ceedings 0/ the IEEE, 79(9):1305-1320, September 1991.

[HGd88] C. Huizing, R. Gerth, and W. P. de Roever. Modelling Stat
echarts behaviour in a fully abstract way. In 13th CAAP,
LNCS 299. Springer Verlag, 1988.

[HL90] N. Halbwachs and F. Lagnier. An experience in proving
regular networks of processes by modular model checking.
Technical Report SPECTRE L13 (to appear in Acta Infor
matica), IMAG, Grenoble, March 1990.

[Ho187] G. J. Holzmann. On limits and possibilities of automated
protocols analysis. In IFIP WG-6.1 7th. International Con
/erence on Protocol Specijication, -Testing and Verijication.
North Holland, 1987.

[HP85] D. Harel and A. Pnueli. On the development of reactive sys
tems. In Logic and Models 0/ Concurrent Systems, NATO
Advanced Study Institute on Logics and Models /or Veri
fication and Specijication 0/ Concurrent Systems. Springer
Verlag, 1985.

BIBLIOGRAPHY 167

[HPOG89] N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.C.
Glory. Specifying, programming and verifying real-time
systems, using a synchronous declarative language. In
Workshop on Automatie Verifieation Methods for Finite
State Systems, Grenoble, LNCS 407. Springer Verlag, June
1989.

[HPSS86] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On
the formal semantics of Statecharts. In Logie in Computer
Scienee, 1986.

[HRR91] N. Halbwachs, P. Raymond, and C. Rate!. Generating effi
cient code from data-flow programs. In Third International
Symposium on Programming Language Implementation and
Logie Programming, Passau, August 1991.

[INM84] INMOS Ltd. The Oeeam Programming Manual. Prentice
Hall International, 1984.

[Kah74] G. Kahn. The semantics of a simple language for parallel
programming. In IFIP 74. North Holland, 1974.

[KQ77] G. Kahn and D. B. Mac Queen. Coroutines and networks
of parallel processes. In IFIP Congress, 1977.

[LBBG85] P. LeGuernic, A. Benveniste, P. Bournai, and T. Gautier.
SIGNAL: a data-flow oriented language for signal process
ing. RR 378, INRIA, 1985.

[LeG89] B. LeGoff. Inference de controle hierarchique, application
au temps ree!. Thesis, Universite Rennes 1, June 1989.

[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire.
Programming real time applications with SIGNAL. Proeeed
ings of the IEEE, 79(9):1321-1336, September 1991.

[Mar89] F. Maraninchi. Argonaute: graphical description, seman
tics and verification of reactive systems by using a process
algebra. In International Workshop on Automatie Verifi
eation Methods for Finite State Systems, Grenoble, LNCS
407. Springer Verlag, 1989.

168

[Mar90]

[Mil80]

[MiI83]

[MM84]

[par92]

[PH87]

[PH88]

[pla88]

[Plo81]

[Pnu77]

[PS87]

BIBLIOGRAPHY

F. Maraninchi. Argos, un langage graphique pour la con
ception, la description et la validation des systemes reactifs.
Thesis, Universite Joseph Fourier, Grenoble, 1990.

R. Milner. A Calculus 0/ Communicating Systems, LNCS
9t. Springer Verlag, 1980.

R. Milner. Calculi for synchrony and asynchrony. TCS,
25(3), July 1983.

B. Moszkowski and Z. Manna. Reasoning in interval tem
poral logic. In Workshop on Logics 0/ Programs, LNCS
164. Springer Verlag, 1984.

J-P. Paris. Execution de t8.ches asynchrones depuis Esterel.
Thesis, University of Nice, 1992.

J. A. Plaice and N. Halbwachs. LUSTRE-v2 user's guide and
reference manual. Technical Report SPECTRE L2, IMAG,
Grenoble, October 1987.

D. Pilaud and N. Halbwachs. From a synchronous declar
ative language to a temporal logic dealing with multiform
time. In M. Joseph, editor, Symposium on Formal Tech
niques in Real- Time and Fault- Tolerant Systems, LNCS
331. Springer Verlag, September 1988.

J. A. Plaice. Semantique et compilation de LUSTRE, un lan
gage declaratif synchrone. Thesis, Institut National Poly
technique de Grenoble, 1988.

G. D. Plotkin. A structural approach to operational seman
tics. Lecture notes, Aarhus University, 1981.

A. Pnueli. The temporallogic of programs. In 18th Symp.
on the Foundations 0/ Computer Science. IEEE, 1977.

J. A. Plaice and J-B. Saint. The LUSTRE-EsTEREL portable
format. Unpublished report, INRIA, Sophia Antipolis,
1987.

BIBLIOGRAPHY 169

[PT87]

[QS82]

[Ray88]

[RdS90]

[RH91a]

[RH91b]

[RHR91]

[Roc89]

[Roy90]

R. Paige and R. Tarjan. Three partition refinement algo
rithms. SIAM J. Comput., 16(6), 1987.

J. P. Queille and J. Sifakis. Specification and verification of
concurrent systems in CES AR. In International Symposium
on Programming, LNCS 137. Springer Verlag, April 1982.

P. Raymond. Compilation separee de programmes LUSTRE.
Technical Report SPECTRE L5, IMAG, Grenoble, June
1988.

V. Roy and R. de Simone. Auto and Autograph. In R. Kur
shan, editor, International Workshop on Computer Aided
Verification, Rutgers, June 1990.

F. Rocheteau and N. Halbwachs. Implementing reac
tive pro grams on circuits, a hardware implementation of
LUSTRE. In REx Workshop on Real-Time: Theory in Prac
tice, DePlasmolen {Netherlands}, LNCS 600, pages 195-
208. Springer Verlag, June 1991.

F. Rocheteau and N. Halbwachs. POLLUX, a LUSTRE
based hardware design environment. In P. Quinton and
Y. Robert, editors, Conference on Algorithms and Parallel
VLSI Architectures II, Chateau de Bonas, June 1991.

C. Ratei, N. Halbwachs, and P. Raymond. Pro gram
ming and verifying critical systems by means of the syn
chronous data-fiow programming language LUSTRE. In
ACM-SIGSOFT'91 Conference on Software for Critical
Systems, New Orleans, December 1991.

F. Rocheteau. Programmation d'un circuit massivement
parallele a. l'aide d'un langage declaratif synchrone. Tech
nical Report SPECTRE LI0, IMAG, Grenoble, June 1989.

V. Roy. AUTOGRAPH, un outil de visualisation pour les
calculs de processus. Thesis, University of Nice, 1990.

170 BIBLIOGRAPHY

[RRSV87] J. L. Riehier, C. Rodriguez, J. Sifakis, and J. Voiron. Ver
IDeation in XESAR of the sliding window protoeol. In IFIP
WG-6.1 7th. International Conference on Protocol Speciji
cation, Testing and Verijication. North Holland, 1987.

[RSS9] V. Roy and R. de Simone. An AUTOGRAPH primer. Teeh
nie al Report INRIA, May 1989.

[SP90] J-B. Saint and J-P. Paris. Les instructions du eode in
termediaire, description syntaxique. Unpublished report,
INRIA, Sophia Antipolis, 1990.

[STB91] H. Savoj, H. Touati, and R. K. Brayton. The use of im
age eomputation teehniques in extracting Ioeal don't eares
and network optimization. In International Conference on
Computer Aided Design (ICCAD), November 1991.

[Ver86] D. Vergamini. Verifieation by means of observational equiv
alenee on automata. Technieal Report 501, INRIA, 1986.

[Xil88] XiIinx, Ine. The Programmable Gate Array Data Book.
Product Specifieation, 1988.

Index

ADA 4, 5, 22, 100, 104
AFCET xii
ALDEBARAN 100
ARGOS 39-51, xii, xiii, 7, 8, 77,

85, 92, 100, 108, 157,
159

arrays (in LUSTRE) 123, 124,
159

assertion (in LUSTRE) 57,59,60,
63,68,99,141,144,146

AUTO 101, 149-155
AUTOGRAPH 102, 149
automat on 3, 6, 8, 11, 39, 40,

49, 78, 79, 85, 86, 90,
91, 92, 96-101, 108, 109,
114, 117, 143, 145, 149,
150, 151

- (in ARGOS) 40,41, 42, 44, 46
- (minimization) 99, 100, 158
avait-case (ESTEREL) 20
avait (ESTEREL) 18, 19
basic dock (LUSTRE) 56, 57, 58,

59, 61, 62, 81
Benveniste A. xii, xiii, 68
Berry G. xii, xiii, 11
binary decision diagram (BDD)

136, 147
bisimulation 149, 151-154

171

broadcasting (of signals) 4, 12,
13, 21, 22, 23, 41, 43

Brzozowski J.A. 86
Caspi P. xii, xiii

causality 8, 29, 31, 39, 45, 62,
75-79, 83, 85, 95, 159

CISI xiii, 11
dock 8, 55, 105, 107, 118, 120,

131, 132, 133
- (in LUSTRE) 56-62,64,65,67,

80, 81, 94, 96
- (in SIGNAL) 68-71, 81-83
complex system 6
control structure 8, 65, 85, 96
coroutine 106, 107
current (LUSTRE) 59, 96
current value of a signal (Es-

TEREL) 12, 14
data-flow 53, 54, 55, 61, 68, 118
data management 7

data operator 57, 58, 81
data structure 7

DEC-PRL 118, 119

default (SIGNAL) 70
delay (in SIGNAL) 69

dependence 54, 62, 83, 105, 107
derivative 86

172

determinism 2, 4, 5, 30, 41, 45,
46, 68, 75, 78, 79, 85,
159

deterministic merge (in SIGNAL)

70
distributed code 8, 102, 103-116
do-upto (ESTEREL) 19
do-vatching (ESTEREL) 17
dummy communication 108, 114
EMC 101
emi t (ESTEREL) 16
ENSMP xi, xiii, 11
environment xi, 1, 5, 6, 11, 12,

14, 16, 26, 41, 59, 70,
141, 146

ESTEREL 11-36, xi, xiii, 7, 8, 39,
40, 41, 43, 45, 46, 49,
57, 59, 60, 62, 65, 68,
75, 77, 85, 93, 96, 99,
100, 108, 117, 118, 129,
149, 157, 158, 159

event 6
- (external) 5
- (in ESTEREL) 13, 17, 30, 85,

86, 87, 91
every (ESTEREL) 19
exception handling (in ARGOS)

47
extraction operator (SIGNAL) 69
flow (in LUSTRE) 56
followed-by (LUSTRE) 58
gate array 117
hal t (ESTEREL) 15
hardware 2, 3, 54, 55, 117-136,

158, 159
Barel D. 39

INDEX

hierarchical decomposition (AR-

GOs) 41, 44
history 6, 13
host language 7, 13, 32, 57, 100
IC 92, 100, 157, 158
ILOG xiii, 11
IMAG xi, xii, xiii, 39, 55
immediate (ESTEREL) 17, 34
INRIA xi, xiii, 11, 149
instantaneous dialogue 22-24
interactive system 1, 2, 7
interface 1, 6, 7, 14, 32, 60, 62,

63, 65, 66, 71, 80, 101,
158

- generator 102
interrupt 2, 3, 4, 7
- (in ARGOS) 44, 46, 49
- (in ESTEREL) 15, 18, 31, 35,

46, 89, 159
IRISA xi, xiii, 68
L.O xi, xii
Le Guernic P. xii, xiii, 68
liveness property 140
local signal
- (in ARGOS) 40, 42-44,46, 77,

78
- (in ESTEREL) 15, 29, 30, 34,

89
loop-each (ESTEREL) 19
LUSTRE 55-67, xi, xii, xiii, 7,

8, 53, 68, 69, 71, 79,
81, 83, 85, 93, 100, 104,
105, 107, 108, 117, 118,
129, 140, 141, 143, 157,
159

Maraninchi F. xii, xiii

INDEX

Merlin Gerin 55
model checking 143, 147
- (symbolic) 147
modular vermcation 140, 146
module (ESTEREL) 13, 15, 16
node (LUSTRE) 60, 61
- and docks (L USTRE) 61
- expansion (LUSTRE) 93, 94
normal termination (ARGOS) 47
nothing (ESTEREL) 15
observation 3, 8, 149
observational congruence 151
OC 8, 100-102, 108, 109, 114,

157, 158
OCCAM 4, 104
OCMIN 100
operating system xi, 1, 2, 3, 4, 6
PAM 118-:120, 123, 124
parallel
- composition (SIGNAL) 70
- operator (ARGOS) 41, 44, 47
- statement (ESTEREL) 15, 16
Petri net 3
Pnueli A. 39
potential 76, 77
present (ESTEREL) 17
previous operator (LUSTRE) 58
priority 2, 4, 18, 20, 35, 47
process calculus 140, 149
programmable active bit 118
protocol xii, 1, 100, 103
pure signal (ESTEREL) 12, 13,

16, 68, 85
reaction 6, 7, 41, 42, 43, 44, 49,

75, 76, 77, 88, 91, 93,
97, 100, 112, 114, 150

173

- time 55, 92, 117, 118, 147
reactive
- kernel 7
- system xi, 1, 2, 3, 5, 22, 27,

53, 55, 103, 117, 139,
140

reduction (of automata) 3, 149-
155

reflex game 21, 31, 102
relations (in ESTEREL) 14, 33,

59, 60, 87
reliability 1, 2
rendez-vous 4
run statement (ESTEREL) 15, 16
safety property 139, 140, 141,

143
SAHARA 102
sensor 7, 103
- (in ESTEREL) 11, 12, 14
sequential code 8, 85-102, 104-

106, 158
SIGNAL 68-72, xi, 7, 8, 55, 81,

82, 104, 107, 15~ 159
signal
- (in ARGOS) 40
- (in ESTEREL) 11
- (in SIGNAL) 68
- combination (ESTEREL) 13,

16
- top 12
silicon compiling 8, 117-136
simultaneous, simultaneity 5, 6,

12, 13, 16, 17, 18, 20,
21, 24, 41, 45

single loop 94-96, 98
SML xi

174

STATECHARTS xi, xii, 30, 39, 41
state graph 143
stopwatch 14, 23, 25, 29, 31, 49,

65, 76, 86
substitution principle 57
sustain (ESTEREL) 20, 24
synchronous, synchrony xi, xii,

5, 6, 7, 11, 12, 16, 17,
21, 23, 29, 39, 55, 56,
70, 71, 75, 91, 92, 104,
11~ 118, 14~149, 157

synchro (SIGNAL) 71
task based model 4
temporallogic 3, 140, 141
tick 13, 20, 24, 87, 89, 132, 133
timed graph 140
time out (ESTEREL) 19
time
- (execution) xi, 2, 3,6,92,103
- (multiform) 5, 21, 57
- (physical) 5, 56

TNI xiii, 68
transformation al system 1, 7
trap-ex i t (ESTEREL) 15
valued signal (ESTEREL) 12
verification 2, 3, 8, 54, 60, 92,

101, 139-155

- (static) 8, 75-83
Verilog xiii, 55
watch 14, 22,49
watchdog 17, 19, 62, 63, 64, 94,

125, 136, 144
vhen operator
- (in LUSTRE) 58
- (in SIGNAL) 69

INDEX

withdrawal (in ESTEREL) 18, 31,
46

XESAR 101

