

Hard Real-Time Computing Systems

Real-Time Systems Series

Series Editor

John A. Stankovic

University of Virginia, Virginia, USA

For further volumes:

http://www.springer.com/series/6941

Giorgio C. Buttazzo

Hard RealTime Computing
Systems

Predictable Scheduling Algorithms
and Applications

Third Edition

�

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

 ISB

Library of Congress Control Number: 2011937234

Springer New York Dordrecht Heidelberg London

e-ISBN 978-1-4614-0676-1
DOI 10.1007/978-1-4614-0676-1

 e-ISSN 1867-3228ISSN 1867-321X

© Springer Science+Business Media, LLC 2011

N 978-1-4614-0675-4

Scuola Superiore San Anna

@s

Giorgio C. Buttazzo
RETIS Lab

Pisa
Italy
g.buttazzo ssup.it

All rights reserved. This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

t’

CONTENTS

Preface ix

1 A GENERAL VIEW 1

1.1 Introduction 1

1.2 What does real time mean? 4

1.3 Achieving predictability 13

2 BASIC CONCEPTS 23

2.1 Introduction 23

2.2 Types of task constraints 25

2.3 Definition of scheduling problems 34

2.4 Scheduling anomalies 42

3 APERIODIC TASK SCHEDULING 53

3.1 Introduction 53

3.2 Jackson’s algorithm 54

3.3 Horn’s algorithm 58

3.4 Non-preemptive scheduling 63

3.5 Scheduling with precedence constraints 70

3.6 Summary 76

4 PERIODIC TASK SCHEDULING 79

4.1 Introduction 79

4.2 Timeline scheduling 84

4.3 Rate Monotonic scheduling 86

4.4 Earliest Deadline First 100

4.5 Deadline Monotonic 103

4.6 EDF with constrained deadlines 110

4.7 Comparison between RM and EDF 116

v

vi

5 FIXED-PRIORITY SERVERS 119

5.1 Introduction 119

5.2 Background scheduling 120

5.3 Polling Server 121

5.4 Deferrable Server 130

5.5 Priority Exchange 139

5.6 Sporadic Server 143

5.7 Slack stealing 149

5.8 Non-existence of optimal servers 153

5.9 Performance evaluation 155

5.10 Summary 157

6 DYNAMIC PRIORITY SERVERS 161

6.1 Introduction 161

6.2 Dynamic Priority Exchange Server 162

6.3 Dynamic Sporadic Server 167

6.4 Total Bandwidth Server 171

6.5 Earliest Deadline Late Server 174

6.6 Improved Priority Exchange Server 178

6.7 Improving TBS 181

6.8 Performance evaluation 185

6.9 The Constant Bandwidth Server 189

6.10 Summary 201

7 RESOURCE ACCESS PROTOCOLS 205

7.1 Introduction 205

7.2 The priority inversion phenomenon 206

7.3 Terminology and assumptions 209

7.4 Non-Preemptive Protocol 210

7.5 Highest Locker Priority Protocol 212

7.6 Priority Inheritance Protocol 214

7.7 Priority Ceiling Protocol 226

7.8 Stack Resource Policy 234

7.9 Schedulability analysis 246

7.10 Summary 247

Contents

Contents vii

8 LIMITED PREEMPTIVE SCHEDULING 251

8.1 Introduction 251

8.2 Non-preemptive scheduling 257

8.3 Preemption thresholds 261

8.4 Deferred Preemptions 266

8.5 Task splitting 270

8.6 Selecting preemption points 274

8.7 Assessment of the approaches 279

9 HANDLING OVERLOAD CONDITIONS 287

9.1 Introduction 287

9.2 Handling aperiodic overloads 293

9.3 Handling overruns 316

9.4 Handling permanent overloads 326

10 KERNEL DESIGN ISSUES 349

10.1 Structure of a real-time kernel 349

10.2 Process states 351

10.3 Data structures 356

10.4 Miscellaneous 361

10.5 Kernel primitives 366

10.6 Intertask communication mechanisms 385

10.7 System overhead 392

11 APPLICATION DESIGN ISSUES 397

11.1 Introduction 398

11.2 Time constraints definition 401

11.3 Hierarchical design 408

11.4 A robot control example 413

12 REAL-TIME OPERATING SYSTEMS AND

STANDARDS 419

12.1 Standards for real-time operating systems 419

12.2 Commercial real-time systems 428

12.3 Linux related real-time kernels 432

12.4 Open-source real-time research kernels 437

12.5 Development Tools 452

viii

13 SOLUTIONS TO THE EXERCISES 457

487

REFERENCES 497

INDEX 515

Contents

GLOSSARY

PREFACE

Real-time computing plays a crucial role in our society since an increasing number
of complex systems rely, in part or completely, on computer control. Examples of
applications that require real-time computing include nuclear power plants, railway
switching systems, automotive and avionic systems, air traffic control, telecommuni-
cations, robotics, and military systems. In the last several years, real-time computing
has been required in new applications areas, such as medical equipments, consumer
electronics, multimedia systems, flight simulation systems, virtual reality, and interac-
tive games.

Despite this large application domain, most of the current real-time systems are still
designed and implemented using low-level programming and empirical techniques,
without the support of a scientific methodology. This approach results in a lack of
reliability, which in critical applications may cause serious environmental damage or
even loss of life.

This book is a basic treatise on real-time computing, with particular emphasis on pre-
dictable scheduling algorithms. The main objectives of the book are to introduce the
basic concepts of real-time computing, illustrate the most significant results in the
field, and provide the basic methodologies for designing predictable computing sys-
tems useful in supporting critical control applications.

This book is written for instructional use and is organized to enable readers without a
strong knowledge of the subject matter to quickly grasp the material. Technical con-
cepts are clearly defined at the beginning of each chapter, and algorithm descriptions
are corroborated through concrete examples, illustrations, and tables.

ix

x

Contents of the chapters

Chapter 1 presents a general introduction to real-time computing and real-time op-
erating systems. It introduces the basic terminology and concepts used in the book,
discusses the typical application domains, and clearly illustrates the main characteris-
tics that distinguish real-time processing from other types of computing.

Chapter 2 introduces the general problem of scheduling a set of tasks on a uniprocessor
system. Objectives, performance metrics, and hypotheses are clearly presented, and
the scheduling problem is precisely formalized. The different algorithms proposed
in the literature are then classified in a taxonomy, which provides a useful reference
framework for understanding the different approaches. At the end of the chapter, a
number of scheduling anomalies are illustrated to show that real-time computing is
not equivalent to fast computing.

The rest of the book is dedicated to specific scheduling algorithms, which are pre-
sented as a function of the task characteristics.

Chapter 3 introduces a number of real-time scheduling algorithms for handling aperi-
odic tasks with explicit deadlines. Each algorithm is examined in regard to the task set
assumptions, formal properties, performance, and implementation complexity.

Chapter 4 treats the problem of scheduling a set of real-time tasks with periodic ac-
tivation requirements. In particular, three classical algorithms are presented in detail:
Rate Monotonic, Earliest Deadline First, and Deadline Monotonic. A schedulability
test is derived for each algorithm.

Chapter 5 deals with the problem of scheduling hybrid sets consisting of hard peri-
odic and soft aperiodic tasks, in the context of fixed-priority assignments. Several
algorithms proposed in the literature are analyzed in detail. Each algorithm is com-
pared with respect to the assumptions made on the task set, its formal properties, its
performance, and its implementation complexity.

Chapter 6 considers the same problem addressed in Chapter 5, but in the context of a
dynamic priority assignment. Performance results and comparisons are presented at
the end of the chapter.

Chapter 7 introduces the problem of scheduling a set of real-time tasks that may in-
teract through shared resources and hence have both time and resource constraints.
Three important resource access protocols are described in detail: the Priority Inher-
itance Protocol, the Priority Ceiling Protocol, and the Stack Resource Policy. These
protocols are essential for achieving predictable behavior, since they bound the max-

Preface

Preface xi

imum blocking time of a process when accessing shared resources. The latter two
protocols also prevent deadlocks and chained blocking.

Chapter 8 is dedicated to non-preemptive and limited preemptive scheduling, often
used in industrial applications to make task execution more predictable and reduce the
run time overhead introduced by arbitrary preemptions. Different solutions are pre-
sented, analyzed, and compared in terms of implementation complexity, predictability,
and efficacy.

Chapter 9 deals with the problem of real-time scheduling during overload conditions;
that is, those situations in which the total processor demand exceeds the available
processing time. These conditions are critical for real-time systems, since not all tasks
can complete within their timing constraints. This chapter introduces new metrics
for evaluating the performance of a system and presents a new class of scheduling
algorithms capable of achieving graceful degradation in overload conditions.

Chapter 10 describes some basic guidelines that should be considered during the de-
sign and the development of a hard real-time kernel for critical control applications.
An example of a small real-time kernel is presented. The problem of time predictable
inter-task communication is also discussed, and a particular communication mecha-
nism for exchanging asynchronous messages among periodic tasks is illustrated. The
final section shows how the runtime overhead of the kernel can be evaluated and taken
into account in the guarantee tests.

Chapter 11 discusses some important issues related to the design of real-time applica-
tions. A robot control system is considered as a specific example for illustrating why
control applications need real-time computing and how time constraints can be de-
rived from the application requirements, even though they are not explicitly specified
by the user. Finally, the basic set of kernel primitives presented in Chapter 9 is used to
illustrate a concrete programming example of real-time tasks for sensory processing
and control activities.

Chapter 12 concludes the book by presenting a number of real-time operating systems,
including standard interfaces (like RT-Posix, APEX, OSEK, and Micro-ITRON), com-
mercial operating systems (like VxWorks, QNX, OSE), and open source kernels (like
Shark, Erika, Marte, and Linux real-time extensions).

xii

Difference with the second edition

This book contains several changes and additions with respect to the previous edition.
Several parts have been added to illustrate the most recent methods proposed in the
real-time literature, mistakes and typos have been corrected, and some concepts have
been further clarified, based on the observations received from the readers.

The most significant additions are the following:

In Chapter 1, the introduction has been extended by presenting new applications
domains. A description of the Ariane 5 accident has been added to explain the im-
portance of analyzing the characteristic of the system and the environment. The
list of desirable features for a real-time system has been revised and expanded.
Additional notes on the cache behavior have been included in the section about
predictability.

Chapter 2 has been enhanced in several parts. The section on resource constraints
has been extended by a concrete example that illustrates the importance of us-
ing semaphores to guarantee data consistency when accessing shared resources.
Other examples of scheduling anomalies have been added at the end of the chap-
ter to highlight critical situations that can occur when running an application at
different speeds and when self-suspending a task using a delay primitive.

In Chapter 4, the schedulability analysis of fixed priority tasks has been extended
by introducing the workload-based test, which in several conditions is more effi-
cient than the response time test.

In Chapter 5, the analysis of fixed priority servers has been also extended un-
der the Hyperbolic Bound and the Response Time Analysis and a procedure for
dimensioning the server parameters has been included.

Given the popularity that the CBS algorithm received in the real-time community,
Chapter 6 has been extended by introducing a section on how to determine the
CBS parameters for minimizing the average response time of the served tasks.

Chapter 7 has been substantially revised. Two protocols, Non-Preemptive Pro-
tocol and Highest Locker Priority, have been described and analyzed, as they
are often used in legacy applications to deal with shared resources. The second
protocol, also known as Immediate Priority Ceiling, is specified in the OSEK
standard for the development of automotive systems. Finally, a new section has
been added at the end of the chapter to show how schedulability tests can be
extended in the presence of blocking terms.

Preface

Preface xiii

A new chapter (8) on Limited Preemptive Scheduling has been added, describing
a set of scheduling methods that can reduce the overhead introduced by preemp-
tions. Limited preemptive techniques are very effective in practical applications
and represent a solution to increase the predictability and the efficiency of real-
time systems.

Chapter 9 has been substantially restructured. The concepts of overload and over-
run have been formally defined. An example has been added to explain the re-
jection strategy of the RED algorithm. The section on Resource Reservation has
been expanded, discussing how to perform schedulability analysis, bandwidth
adaptation, and resource sharing. Job skipping and elastic scheduling have also
been revisited and expanded with examples, considerations, and implementation
issues.

Chapter 12 has been significantly revised and updated by adding the most recent
developments achieved in the Linux community and in the research laboratories.
The AUTOSAR specification has been included in the section on standards and
a new section has been added on the development tools for the analysis and the
simulation of real-time systems.

New exercises has been added.

The bibliography has been updated with more recent references.

xiv

Acknowledgments

This work is the result of 20 years of research and teaching activity in the field of
real-time systems. The majority of the material presented in this book is based on
class notes for an operating systems course taught at the University of Pisa, at the
University of Pavia, and at the Scuola Superiore Sant’Anna of Pisa.

Though this book carries the name of a single author, it has been positively influenced
by a number of people to whom I am indebted. Foremost, I would like to thank all my
students, who have directly and indirectly contributed to improve its readability and
clarity.

A personal note of appreciation goes to Paolo Ancilotti, who gave me the opportunity
to teach these topics. Moreover, I would like to acknowledge the contributions of John
Stankovic, Krithi Ramamritham, Herman Kopetz, John Lehoczky, Gerard Le Lann,
Alan Burns, Gerhard Fohler, Sanjoy Baruah, and Lui Sha. Their inputs enhanced the
overall quality of this work. I would also like to thank the Springer editorial staff for
the support I received during the preparation of the manuscript.

Special appreciation goes to Marco Spuri and Fabrizio Sensini, who provided a sub-
stantial contribution to the development of dynamic scheduling algorithms for aperi-
odic service; Benedetto Allotta, who worked with me in approaching some problems
related to control theory and robotics applications; Luca Abeni, for his contribution
on resource reservation; Giuseppe Lipari and Marco Caccamo, for their work on re-
source sharing in dynamic scheduling; and Enrico Bini, for his novel approach on the
analysis of fixed priority systems.

I also wish to thank Marko Bertogna, for his a valuable support in revising the chapter
on limited preemptive scheduling, and Claudio Scordino for his contribution in the
description of Linux related kernels.

A very special thanks goes to Paolo Gai, who developed the SHARK operating system
and the ERIKA kernel (currently used as an educational kernels in several real-time
courses around the world), and to all the people who are now involved in their main-
tenance (Tullio Facchinetti for SHARK, Mauro Marinoni and Gianluca Franchino for
ERIKA).

Preface

Giorgio C. Buttazzo is Full Professor of Computer Engineering at the Scuola Superiore

Sant’Anna of Pisa (Italy), where he teaches courses on Real-Time Systems and

Computer Architectures. His main research interests include real-time operating

systems, dynamic scheduling algorithms, quality of service control, multimedia systems,

advanced robotics applications, and neural networks.

He graduated in Electrical Engineering at the University of Pisa in 1985, received a

Master in Computer Science at the University of Pennsylvania in 1987, and a Ph.D. in

Computer Engineering at the Scuola Superiore Sant’Anna of Pisa in 1991. During

1987, he worked on active perception and real-time control at the G.R.A.S.P.

Laboratory of the University of Pennsylvania, in Philadelphia. From 1991 to 1998, he

held a position of Assistant Professor at the Scuola Superiore Sant’Anna of Pisa,

where he founded and coordinated the RETIS Laboratory, one of the world leading

research groups on real-time systems. From 1998 to 2005, he held a position

of Associate Professor at the University of Pavia, where he directed the He was a

co-founder of Evidence s.r.l. (http://www.evidence.eu.com), a spin-off company of the

Scuola Superiore Sant’Anna providing software solutions for real-time embedded

systems.

Prof. Buttazzo has been Program Chair and General Chair of the major international

conferences on real-time systems. He is Editor-in-Chief of the Journal of Real-Time

Systems (Springer), the major journal on real-time computing, Associate Editor of

the IEEE Transactions on Industrial Informatics, and Chair of the IEEE Technical

Committee on Real-Time Systems.

He has authored 6 books on real-time systems and over 200 papers in the field of real-

time systems, robotics, and neural networks.

1
A GENERAL VIEW

1.1 INTRODUCTION

Real-time systems are computing systems that must react within precise time con-
straints to events in the environment. As a consequence, the correct behavior of these
systems depends not only on the value of the computation but also on the time at
which the results are produced [SR88]. A reaction that occurs too late could be use-
less or even dangerous. Today, real-time computing plays a crucial role in our society,
since an increasing number of complex systems rely, in part or completely, on com-
puter control. Examples of applications that require real-time computing include the
following:

Chemical and nuclear plant control,

control of complex production processes,

railway switching systems,

automotive applications,

flight control systems,

environmental acquisition and monitoring,

telecommunication systems,

medical systems,

industrial automation,

robotics,

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _1,

 Springer Science+Business Media, LLC 2011©

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms 1

and Applications 1 4614 676 1

2 Chapter 1

military systems,

space missions,

consumer electronic devices,

multimedia systems,

smart toys, and

virtual reality.

In many cases, the real-time computer running the application is embedded into the
system to be controlled. Embedded systems span from small portable devices (e.g.,
cellular phones, cameras, navigators, ECG Holter devices, smart toys) to larger sys-
tems (e.g., industrial robots, cars, aircrafts).

Despite this large application domain, many researchers, developers, and technical
managers have serious misconceptions about real-time computing [Sta88], and most
of today’s real-time control systems are still designed using ad hoc techniques and
heuristic approaches. Very often, control applications with stringent time constraints
are implemented by writing large portions of code in assembly language, program-
ming timers, writing low-level drivers for device handling, and manipulating task and
interrupt priorities. Although the code produced by these techniques can be optimized
to run very efficiently, this approach has the following disadvantages:

Tedious programming. The implementation of large and complex applications
in assembly language is much more difficult and time consuming than high-level
programming. Moreover, the efficiency of the code strongly depends on the pro-
grammer’s ability.

Difficult code understanding. Except for the programmers who develop the
application, very few people can fully understand the functionality of the software
produced. Clever hand-coding introduces additional complexity and makes a
program more difficult to comprehend.

Difficult software maintainability. As the complexity of the application soft-
ware increases, the modification of large assembly programs becomes difficult
even for the original programmer.

Difficult verification of time constraints. Without the support of specific tools
and methodologies for code and schedulability analysis, the verification of timing
constraints becomes practically impossible.

A General View 3

The major consequence of this approach is that the control software produced by em-
pirical techniques can be highly unpredictable. If all critical time constraints cannot
be verified a priori and the operating system does not include specific mechanisms
for handling real-time tasks, the system could apparently work well for a period of
time, but it could collapse in certain rare, but possible, situations. The consequences
of a failure can sometimes be catastrophic and may injure people, or cause serious
damages to the environment.

A high percentage of accidents that occur in nuclear power plants, space missions, or
defense systems are often caused by software bugs in the control system. In some
cases, these accidents have caused huge economic losses or even catastrophic conse-
quences, including the loss of human lives.

As an example, the first flight of the space shuttle was delayed, at considerable cost,
because of a timing bug that arose from a transient overload during system initializa-
tion on one of the redundant processors dedicated to the control of the aircraft [Sta88].
Although the shuttle control system was intensively tested, the timing error was not
discovered. Later, by analyzing the code of the processes, it was found that there was
only a 1 in 67 probability (about 1.5 percent) that a transient overload during initial-
ization could push the redundant processor out of synchronization.

Another software bug was discovered on the real-time control system of the Patriot
missiles, used to protect Saudi Arabia during the Gulf War.1 When a Patriot radar
sights a flying object, the onboard computer calculates its trajectory and, to ensure
that no missiles are launched in vain, it performs a verification. If the flying object
passes through a specific location, computed based on the predicted trajectory, then
the Patriot is launched against the target, otherwise the phenomenon is classified as a
false alarm.

On February 25, 1991, the radar sighted a Scud missile directed at Saudi Arabia, and
the onboard computer predicted its trajectory, performed the verification, but classified
the event as a false alarm. A few minutes later, the Scud fell on the city of Dhahran,
causing injuries and enormous economic damage. Later on, it was discovered that, be-
cause of a long interrupt handling routine running with disable interrupts, the real-time
clock of the onboard computer was missing some clock interrupts, thus accumulating
a delay of about 57 microseconds per minute. The day of the accident, the computer
had been working for about 100 hours (an exceptional situation never experienced
before), thus accumulating a total delay of 343 milliseconds. Such a delay caused a
prediction error in the verification phase of 687 meters! The bug was corrected on

1L’Espresso, Vol. XXXVIII, No. 14, 5 April 1992, p. 167.

4 Chapter 1

February 26, the day after the accident, by inserting a few preemption points inside
the long interrupt handler.

The examples of failures described above show that software testing, although impor-
tant, does not represent a solution for achieving predictability in real-time systems.
This is mainly due to the fact that, in real-time control applications, the program flow
depends on input sensory data and environmental conditions, which cannot be fully
replicated during the testing phase. As a consequence, the testing phase can provide
only a partial verification of the software behavior, relative to the particular subset of
data provided as input.

A more robust guarantee of the performance of a real-time system under all possi-
ble operating conditions can be achieved only by using more sophisticated design
methodologies, combined with a static analysis of the source code and specific oper-
ating systems mechanisms, purposely designed to support computation under timing
constraints. Moreover, in critical applications, the control system must be capable of
handling all anticipated scenarios, including peak load situations, and its design must
be driven by pessimistic assumptions on the events generated by the environment.

In 1949, an aeronautical engineer in the U.S. Air Force, Captain Ed Murphy, observed
the evolution of his experiments and said: “If something can go wrong, it will go
wrong.” Several years later, Captain Ed Murphy became famous around the world,
not for his work in avionics but for his phrase, simple but ineluctable, today known
as Murphy’s Law [Blo77, Blo80, Blo88]. Since that time, many other laws on exis-
tential pessimism have been formulated to describe unfortunate events in a humorous
fashion. Due to the relevance that pessimistic assumptions have on the design of real-
time systems, Table 1.1 lists the most significant laws on the topic, which a software
engineer should always keep in mind.

1.2 WHAT DOES REAL TIME MEAN?

1.2.1 THE CONCEPT OF TIME

The main characteristic that distinguishes real-time computing from other types of
computation is time. Let us consider the meaning of the words time and real more
closely.

The word time means that the correctness of the system depends not only on the logical
result of the computation but also on the time at which the results are produced.

A General View 5

Murphy’s General Law

If something can go wrong, it will go wrong.

Murphy’s Constant

Damage to an object is proportional to its value.

Naeser’s Law

One can make something bomb-proof, not jinx-proof.

Troutman Postulates

1. Any software bug will tend to maximize the damage.

2. The worst software bug will be discovered six months after the field test.

Green’s Law

If a system is designed to be tolerant to a set of faults, there will always exist

an idiot so skilled to cause a nontolerated fault.

Corollary

Dummies are always more skilled than measures taken to keep them from

harm.

Johnson’s First Law

If a system stops working, it will do it at the worst possible time.

Sodd’s Second Law

Sooner or later, the worst possible combination of circumstances will hap-

pen.

Corollary

A system must always be designed to resist the worst possible combination

of circumstances.

Table 1.1 Murphy’s laws on real-time systems.

6 Chapter 1

The word real indicates that the reaction of the systems to external events must occur
during their evolution. As a consequence, the system time (internal time) must be
measured using the same time scale used for measuring the time in the controlled
environment (external time).

Although the term real time is frequently used in many application fields, it is subject
to different interpretations, not always correct. Often, people say that a control system
operates in real time if it is able to quickly react to external events. According to this
interpretation, a system is considered to be real-time if it is fast. The term fast, how-
ever, has a relative meaning and does not capture the main properties that characterize
these types of systems.

In nature, living beings act in real time in their habitat independently of their speed.
For example, the reactions of a turtle to external stimuli coming from its natural habitat
are as effective as those of a cat with respect to its habitat. In fact, although the turtle
is much slower than a cat, in terms of absolute speed, the events that it has to deal with
are proportional to the actions it can coordinate, and this is a necessary condition for
any animal to survive within an environment.

On the contrary, if the environment in which a biological system lives is modified
by introducing events that evolve more rapidly than it can handle, its actions will no
longer be as effective, and the survival of the animal is compromised. Thus, a quick
fly can still be caught by a fly-swatter, a mouse can be captured by a trap, or a cat
can be run down by a speeding car. In these examples, the fly-swatter, the trap, and
the car represent unusual and anomalous events for the animals, out of their range of
capabilities, which can seriously jeopardize their survival. The cartoons in Figure 1.1
schematically illustrate the concept expressed above.

The previous examples show that the concept of time is not an intrinsic property of
a control system, either natural or artificial, but that it is strictly related to the envi-
ronment in which the system operates. It does not make sense to design a real-time
computing system for flight control without considering the timing characteristics of
the aircraft.

As a matter of fact, the Ariane 5 accident occurred because the characteristics of
the launcher were not taken into account in the implementation of the control soft-
ware [Bab97, JM97]. On June 4, 1996, the Ariane 5 launcher ended in a failure 37
seconds after initiation of the flight sequence. At an altitude of about 3,700 meters,
the launcher started deflecting from its correct path, and a few seconds later it was de-
stroyed by its automated self-destruct system. The failure was caused by an operand
error originated in a routine called by the Inertial Reference System for converting
accelerometric data from 64-bit floating point to 16-bit signed integer.

A General View 7

Figure 1.1 Both the mouse (a) and the turtle (b) behave in real time with respect to their
natural habitat. Nevertheless, the survival of fast animals such as a mouse or a fly can be
jeopardized by events (c and d) quicker than their reactive capabilities.

One value was too large to be converted and the program was not explicitly designed to
handle the integer overflow error, so the Inertial Reference System halted, as specified
in other requirements, leaving the luncher without inertial guidance. The conversion
error occurred because the control software was reused from the Ariane 4 vehicle,
whose dynamics was different from that of the Ariane 5. In particular, the variable
containing the horizontal velocity of the rocket went out of range (since larger than
the maximum value planned for the Ariane 4), thus generating the error that caused
the loss of guidance.

The examples considered above indicate that the environment is always an essential
component of any real-time system. Figure 1.2 shows a block diagram of a typical
real-time architecture for controlling a physical system.

Some people erroneously believe that it is not worth investing in real-time research
because advances in computer hardware will take care of any real-time requirements.
Although advances in computer hardware technology will improve system throughput
and will increase the computational speed in terms of millions of instructions per sec-
ond (MIPS), this does not mean that the timing constraints of an application will be
met automatically.

8 Chapter 1

System

Sensory

System

Control

Actuation

System

ENVIRONMENT

Figure 1.2 Block diagram of a generic real-time control system.

In fact, whereas the objective of fast computing is to minimize the average response
time of a given set of tasks, the objective of real-time computing is to meet the indi-
vidual timing requirement of each task [Sta88].

However short the average response time can be, without a scientific methodology we
will never be able to guarantee the individual timing requirements of each task in all
possible circumstances. When several computational activities have different timing
constraints, average performance has little significance for the correct behavior of the
system. To better understand this issue, it is worth thinking about this little story: 2

There was a man who drowned crossing a stream with an average depth of

six inches.

Hence, rather than being fast, a real-time computing system should be predictable.
And one safe way to achieve predictability is to investigate and employ new method-
ologies at every stage of the development of an application, from design to testing.

At the process level, the main difference between a real-time and a non-real-time task
is that a real-time task is characterized by a deadline, which is the maximum time
within which it must complete its execution.

2From John Stankovic’s notes.

A General View 9

In critical applications, a result produced after the deadline is not only late but wrong!
Depending on the consequences that may occur because of a missed deadline, a real-
time task can be distinguished in three categories:

Hard: A real-time task is said to be hard if producing the results after its deadline
may cause catastrophic consequences on the system under control.

Firm: A real-time task is said to be firm if producing the results after its deadline
is useless for the system, but does not cause any damage.

Soft: A real-time task is said to be soft if producing the results after its deadline
has still some utility for the system, although causing a performance degradation.

A real-time operating system that is able to handle hard real-time tasks is called a
hard real-time system. Typically, real-world applications include hard, firm, and soft
activities; therefore a hard real-time system should be designed to handle all such
task categories using different strategies. In general, when an application consists
of a hybrid task set, all hard tasks should be guaranteed off line, firm tasks should be
guaranteed on line, aborting them if their deadline cannot be met, and soft tasks should
be handled to minimize their average response time.

Examples of hard tasks can be found in safety-critical systems, and are typically re-
lated to sensing, actuation, and control activities, such as the following:

Sensory data acquisition;

data filtering and prediction;

detection of critical conditions;

data fusion and image processing;

actuator servoing;

low-level control of critical system components; and

action planning for systems that tightly interact with the environment.

Examples of firm activities can be found in networked applications and multimedia
systems, where skipping a packet or a video frame is less critical than processing it
with a long delay. Thus, they include the following:

10 Chapter 1

Video playing;

audio/video encoding and decoding;

on-line image processing;

sensory data transmission in distributed systems.

Soft tasks are typically related to system-user interactions. Thus, they include:

The command interpreter of the user interface;

handling input data from the keyboard;

displaying messages on the screen;

representation of system state variables;

graphical activities; and

saving report data.

1.2.2 LIMITS OF CURRENT REAL-TIME SYSTEMS

Most of the real-time computing systems used to support control applications are
based on kernels [AL86, Rea86, HHPD87, SBG86], which are modified versions of
timesharing operating systems. As a consequence, they have the same basic features
found in timesharing systems, which are not suited to support real-time activities. The
main characteristics of such real-time systems include the following:

Multitasking. A support for concurrent programming is provided through a set
of system calls for process management (such as create, activate, terminate, de-

lay, suspend, and resume). Many of these primitives do not take time into account
and, even worse, introduce unbounded delays on tasks’ execution time that may
cause hard tasks to miss their deadlines in an unpredictable way.

Priority-based scheduling. This scheduling mechanism is quite flexible, since
it allows the implementation of several strategies for process management just by
changing the rule for assigning priorities to tasks. Nevertheless, when application
tasks have explicit time requirements, mapping timing constraints into a set of
priorities may not be simple, especially in dynamic environments. The major
problem comes from the fact that these kernels have a limited number of priority
levels (typically 128 or 256), whereas task deadlines can vary in a much wider
range. Moreover, in dynamic environments, the arrival of a new task may require
the remapping of the entire set of priorities.

A General View 11

Ability to quickly respond to external interrupts. This feature is usually ob-
tained by setting interrupt priorities higher than process priorities and by reducing
the portions of code executed with interrupts disabled. Note that, although this
approach increases the reactivity of the system to external events, it introduces
unbounded delays on processes’ execution. In fact, an application process will be
always interrupted by a driver, even though it is more important than the device
that is going to be served. Moreover, in the general case, the number of interrupts
that a process can experience during its execution cannot be bounded in advance,
since it depends on the particular environmental conditions.

Basic mechanisms for process communication and synchronization. Binary
semaphores are typically used to synchronize tasks and achieve mutual exclusion
on shared resources. However, if no access protocols are used to enter critical
sections, classical semaphores can cause a number of undesirable phenomena,
such as priority inversion, chained blocking, and deadlock, which again introduce
unbounded delays on real-time activities.

Small kernel and fast context switch. This feature reduces system overhead,
thus improving the average response time of the task set. However, a small aver-
age response time on the task set does not provide any guarantee on the individual
deadlines of the tasks. On the other hand, a small kernel implies limited func-
tionality, which affects the predictability of the system.

Support of a real-time clock as an internal time reference. This is an essential
feature for any real-time kernel that handles time-critical activities that interact
with the environment. Nevertheless, in most commercial kernels this is the only
mechanism for time management. In many cases, there are no primitives for
explicitly specifying timing constraints (such as deadlines) on tasks, and there is
no mechanism for automatic activation of periodic tasks.

From the above features, it is easy to see that those types of real-time kernels are de-
veloped under the same basic assumptions made in timesharing systems, where tasks
are considered as unknown activities activated at random instants. Except for the pri-
ority, no other parameters are provided to the system. As a consequence, computation
times, timing constraints, shared resources, or possible precedence relations among
tasks are not considered in the scheduling algorithm, and hence no guarantee can be
performed.

The only objectives that can be pursued with these systems is a quick reaction to
external events and a “small” average response time for the other tasks. Although
this may be acceptable for some soft real-time applications, the lack of any form of
guarantee precludes the use of these systems for those control applications that require
stringent timing constraints that must be met to ensure a safe behavior of the system.

12 Chapter 1

1.2.3 DESIRABLE FEATURES OF REAL-TIME

SYSTEMS

Complex control applications that require hard timing constraints on tasks’ execution
need to be supported by highly predictable operating systems. Predictability can be
achieved only by introducing radical changes in the basic design paradigms found in
classical timesharing systems.

For example, in any real-time control system, the code of each task is known a priori
and hence can be analyzed to determine its characteristics in terms of computation
time, resources, and precedence relations with other tasks. Therefore, there is no
need to consider a task as an unknown processing entity; rather, its parameters can be
used by the operating system to verify its schedulability within the specified timing
requirements. Moreover, all hard tasks should be handled by the scheduler to meet
their individual deadlines, not to reduce their average response time.

In addition, in any typical real-time application, the various control activities can be
seen as members of a team acting together to accomplish one common goal, which
can be the control of a nuclear power plant or an aircraft. This means that tasks are not
all independent and it is not strictly necessary to support independent address spaces.

In summary, there are some very important basic properties that real-time systems
must have to support critical applications. They include the following:

Timeliness. Results have to be correct not only in their value but also in the time
domain. As a consequence, the operating system must provide specific kernel
mechanisms for time management and for handling tasks with explicit timing
constraints and different criticality.

Predictability. To achieve a desired level of performance, the system must be
analyzable to predict the consequences of any scheduling decision. In safety
critical applications, all timing requirements should be guaranteed off line, before
putting system in operation. If some task cannot be guaranteed within its time
constraints, the system must notify this fact in advance, so that alternative actions
can be planned to handle the exception.

Efficiency. Most of real-time systems are embedded into small devices with
severe constraints in terms of space, weight, energy, memory, and computational
power. In these systems, an efficient management of the available resources by
the operating system is essential for achieving a desired performance.

A General View 13

Robustness. Real-time systems must not collapse when they are subject to peak-
load conditions, so they must be designed to manage all anticipated load sce-
narios. Overload management and adaptation behavior are essential features to
handle systems with variable resource needs and high load variations.

Fault tolerance. Single hardware and software failures should not cause the
system to crash. Therefore, critical components of the real-time system have to
be designed to be fault tolerant.

Maintainability. The architecture of a real-time system should be designed ac-
cording to a modular structure to ensure that possible system modifications are
easy to perform.

1.3 ACHIEVING PREDICTABILITY

One of the most important properties that a hard real-time system should have is pre-
dictability [SR90]. That is, based on the kernel features and on the information associ-
ated with each task, the system should be able to predict the evolution of the tasks and
guarantee in advance that all critical timing constraints will be met. The reliability of
the guarantee, however, depends on a range of factors, which involve the architectural
features of the hardware and the mechanisms and policies adopted in the kernel, up to
the programming language used to implement the application.

The first component that affects the predictability of the scheduling is the processor it-
self. The internal characteristics of the processor, such as instruction prefetch, pipelin-
ing, cache memory, and direct memory access (DMA) mechanisms, are the first cause
of nondeterminism. In fact, although these features improve the average performance
of the processor, they introduce non-deterministic factors that prevent a precise esti-
mation of the worst-case execution times (WCETs). Other important components that
influence the execution of the task set are the internal characteristics of the real-time
kernel, such as the scheduling algorithm, the synchronization mechanism, the types of
semaphores, the memory management policy, the communication semantics, and the
interrupt handling mechanism.

In the rest of this chapter, the main sources of nondeterminism are considered in more
detail, from the physical level up to the programming level.

14 Chapter 1

1.3.1 DMA

Direct memory access (DMA) is a technique used by many peripheral devices to trans-
fer data between the device and the main memory. The purpose of DMA is to relieve
the central processing unit (CPU) of the task of controlling the input/output (I/O) trans-
fer. Since both the CPU and the I/O device share the same bus, the CPU has to be
blocked when the DMA device is performing a data transfer. Several different transfer
methods exist.

One of the most common methods is called cycle stealing, according to which the
DMA device steals a CPU memory cycle in order to execute a data transfer. During
the DMA operation, the I/O transfer and the CPU program execution run in parallel.
However, if the CPU and the DMA device require a memory cycle at the same time,
the bus is assigned to the DMA device and the CPU waits until the DMA cycle is
completed. Using the cycle stealing method, there is no way of predicting how many
times the CPU will have to wait for DMA during the execution of a task; hence the
response time of a task cannot be precisely determined.

A possible solution to this problem is to adopt a different technique, which requires the
DMA device to use the memory time-slice method [SR88]. According to this method,
each memory cycle is split into two adjacent time slots: one reserved for the CPU and
the other for the DMA device. This solution is more expensive than cycle stealing but
more predictable. In fact, since the CPU and DMA device do not conflict, the response
time of the tasks do not increase due to DMA operations and hence can be predicted
with higher accuracy.

1.3.2 CACHE

The cache is a fast memory that is inserted as a buffer between the CPU and the random
access memory (RAM) to speed up processes’ execution. It is physically located after
the memory management unit (MMU) and is not visible at the software programming
level. Once the physical address of a memory location is determined, the hardware
checks whether the requested information is stored in the cache: if it is, data are read
from the cache; otherwise the information is taken from the RAM, and the content of
the accessed location is copied in the cache along with a set of adjacent locations. In
this way, if the next memory access is done to one of these locations, the requested
data can be read from the cache, without having to access the memory.

This buffering technique is motivated by the fact that statistically the most frequent ac-
cesses to the main memory are limited to a small address space, a phenomenon called

A General View 15

program locality. For example, it has been observed that with a 1 Mbyte memory and
a 8 Kbyte cache, the data requested from a program are found in the cache 80 percent
of the time (hit ratio).

The need for having a fast cache appeared when memory was much slower. Today,
however, since memory has an access time almost comparable to that of the cache,
the main motivation for having a cache is not only to speed up process execution but
also to reduce conflicts with other devices. In any case, the cache is considered as a
processor attribute that speeds up the activities of a computer.

In real-time systems, the cache introduces some degree of nondeterminism. In fact,
although statistically the requested data are found in the cache 80 percent of the time,
it is also true that in the other 20 percent of the cases the performance degrades. This
happens because, when data is not found in the cache (cache fault or miss), the access
time to memory is longer, due to the additional data transfer from RAM to cache.
Furthermore, when performing write operations in memory, the use of the cache is
even more expensive in terms of access time, because any modification made on the
cache must be copied to the memory in order to maintain data consistency. Statistical
observations show that 90 percent of the memory accesses are for read operations,
whereas only 10 percent are for writes. Statistical observations, however, can provide
only an estimation of the average behavior of an application, but cannot be used for
deriving worst-case bounds.

In preemptive systems, the cache behavior is also affected by the number of preemp-
tions. In fact, preemption destroys program locality and heavily increases the number
of cache misses due to the lines evicted by the preempting task. Moreover, the cache-
related preemption delay (CRPD) depends on the specific point at which preemption
takes place; therefore it is very difficult to precisely estimate [AG08, GA07]. Bui et al.
[BCSM08] showed that on a PowerPC MPC7410 with 2 MByte two-way associative
L2 cache the WCET increment due to cache interference can be as large as 33 percent
of the WCET measured in non-preemptive mode.

1.3.3 INTERRUPTS

Interrupts generated by I/O peripheral devices represent a big problem for the pre-
dictability of a real-time system because, if not properly handled, they can introduce
unbounded delays during process execution. In almost any operating system, the ar-
rival of an interrupt signal causes the execution of a service routine (driver), dedicated
to the management of its associated device. The advantage of this method is to encap-
sulate all hardware details of the device inside the driver, which acts as a server for the

16 Chapter 1

application tasks. For example, in order to get data from an I/O device, each task must
enable the hardware to generate interrupts, wait for the interrupt, and read the data
from a memory buffer shared with the driver, according to the following protocol:

<enable device interrupts>
<wait for interrupt>

<get the result>

In many operating systems, interrupts are served using a fixed priority scheme, accord-
ing to which each driver is scheduled based on a static priority, higher than process
priorities. This assignment rule is motivated by the fact that interrupt handling routines
usually deal with I/O devices that have real-time constraints, whereas most applica-
tion programs do not. In the context of real-time systems, however, this assumption is
certainly not valid, because a control process could be more urgent than an interrupt
handling routine. Since, in general, it is very difficult to bound a priori the number of
interrupts that a task may experience, the delay introduced by the interrupt mechanism
on tasks’ execution becomes unpredictable.

In order to reduce the interference of the drivers on the application tasks and still
perform I/O operations with the external world, the peripheral devices must be handled
in a different way. In the following, three possible techniques are illustrated.

APPROACH A

The most radical solution to eliminate interrupt interference is to disable all external
interrupts, except the one from the timer (necessary for basic system operations). In
this case, all peripheral devices must be handled by the application tasks, which have
direct access to the registers of the interfacing boards. Since no interrupt is generated,
data transfer takes place through polling.

The direct access to I/O devices allows great programming flexibility and eliminates
the delays caused by the drivers’ execution. As a result, the time needed for trans-
ferring data can be precisely evaluated and charged to the task that performs the op-
eration. Another advantage of this approach is that the kernel does not need to be
modified as the I/O devices are replaced or added.

The main disadvantage of this solution is a low processor efficiency on I/O operations,
due to the busy wait of the tasks while accessing the device registers. Another minor
problem is that the application tasks must have the knowledge of all low-level details
of the devices that they want to handle. However, this can be easily solved by encap-

A General View 17

sulating all device-dependent routines in a set of library functions that can be called
by the application tasks. This approach is adopted in RK, a research hard real-time
kernel designed to support multisensory robotics applications [LKP88].

APPROACH B

As in the previous approach, all interrupts from external devices are disabled, except
the one from the timer. Unlike the previous solution, however, the devices are not
directly handled by the application tasks but are managed in turn by dedicated kernel
routines, periodically activated by the timer.

This approach eliminates the unbounded delays due to the execution of interrupt drivers
and confines all I/O operations to one or more periodic kernel tasks, whose computa-
tional load can be computed once and for all and taken into account through a specific
utilization factor. In some real-time systems, I/O devices are subdivided into two
classes based on their speed: slow devices are multiplexed and served by a single
cyclical I/O process running at a low rate, whereas fast devices are served by ded-
icated periodic system tasks, running at higher frequencies. The advantage of this
approach with respect to the previous one is that all hardware details of the peripheral
devices can be encapsulated into kernel procedures and do not need to be known to
the application tasks.

Because the interrupts are disabled, the major problem of this approach is due to the
busy wait of the kernel I/O handling routines, which makes the system less efficient
during the I/O operations. With respect to the previous approach, this case is charac-
terized by a higher system overhead, due to the communication required among the
application tasks and the I/O kernel routines for exchanging I/O data. Finally, since
the device handling routines are part of the kernel, it has to be modified when some
device is replaced or added. This type of solution is adopted in the MARS system
[DRSK89, KDK+89].

APPROACH C

A third approach that can be adopted in real-time systems to deal with the I/O devices
is to leave all external interrupts enabled, while reducing the drivers to the least pos-
sible size. According to this method, the only purpose of each driver is to activate
a proper task that will take care of the device management. Once activated, the de-
vice manager task executes under the direct control of the operating system, and it is
guaranteed and scheduled just like any other application task. In this way, the priority
that can be assigned to the device handling task is completely independent from other

18 Chapter 1

priorities and can be set according to the application requirements. Thus, a control
task can have a higher priority than a device handling task.

The idea behind this approach is schematically illustrated in Figure 1.3. The occur-
rence of event E generates an interrupt, which causes the execution of a driver asso-
ciated with that interrupt. Unlike the traditional approach, this driver does not handle
the device directly but only activates a dedicated task, JE , which will be the actual
device manager.

with event E

Activation

ETask J

event E

Driver associated

EJ E

of event

Handling
of task

Figure 1.3 Activation of a device-handling task.

The major advantage of this approach with respect to the previous ones is to eliminate
the busy wait during I/O operations. Moreover, compared to the traditional technique,
the unbounded delays introduced by the drivers during tasks’ execution are also drasti-
cally reduced (although not completely removed), so the task execution times become
more predictable. As a matter of fact, a little unbounded overhead due to the execu-
tion of the small drivers still remains in the system, and it should be taken into account
in the guarantee mechanism. However, it can be neglected in most practical cases.
This type of solution is adopted in the ARTS system [TK88, TM89], in HARTIK
[BDN93, But93], and in SPRING [SR91].

1.3.4 SYSTEM CALLS

System predictability also depends on how the kernel primitives are implemented. In
order to precisely evaluate the worst-case execution time of each task, all kernel calls
should be characterized by a bounded execution time, used by the guarantee mecha-
nism while performing the schedulability analysis of the application. In addition, in
order to simplify this analysis, it is desirable that each kernel primitive be preempt-
able. In fact, any non-preemptable section could possibly delay the activation or the
execution of critical activities, causing a timing fault to hard deadlines.

A General View 19

1.3.5 SEMAPHORES

The typical semaphore mechanism used in traditional operating systems is not suited
for implementing real-time applications because it is subject to the priority inversion
phenomenon, which occurs when a high-priority task is blocked by a low-priority
task for an unbounded interval of time. Priority inversion must absolutely be avoided
in real-time systems, since it introduces nondeterministic delays on the execution of
critical tasks.

For the mutual exclusion problem, priority inversion can be avoided by adopting par-
ticular protocols that must be used every time a task wants to enter a critical section.
For instance, efficient solutions are provided by Basic Priority Inheritance [SRL90],
Priority Ceiling [SRL90], and Stack Resource Policy [Bak91]. These protocols will
be described and analyzed in Chapter 7. The basic idea behind these protocols is to
modify the priority of the tasks based on the current resource usage and control the
resource assignment through a test executed at the entrance of each critical section.
The aim of the test is to bound the maximum blocking time of the tasks that share
critical sections.

The implementation of such protocols may require a substantial modification of the
kernel, which concerns not only the wait and signal calls but also some data structures
and mechanisms for task management.

1.3.6 MEMORY MANAGEMENT

Similarly to other kernel mechanisms, memory management techniques must not in-
troduce nondeterministic delays during the execution of real-time activities. For exam-
ple, demand paging schemes are not suitable to real-time applications subject to rigid
time constraints because of the large and unpredictable delays caused by page faults
and page replacements. Typical solutions adopted in most real-time systems adhere to
a memory segmentation rule with a fixed memory management scheme. Static parti-
tioning is particularly efficient when application programs require similar amounts of
memory.

In general, static allocation schemes for resources and memory management increase
the predictability of the system but reduce its flexibility in dynamic environments.
Therefore, depending on the particular application requirements, the system designer
has to make the most suitable choices for balancing predictability against flexibility.

20 Chapter 1

1.3.7 PROGRAMMING LANGUAGE

Besides the hardware characteristics of the physical machine and the internal mech-
anisms implemented in the kernel, there are other factors that can determine the pre-
dictability of a real-time system. One of these factors is certainly the programming
language used to develop the application. As the complexity of real-time systems in-
creases, high demand will be placed on the programming abstractions provided by
languages.

Unfortunately, current programming languages are not expressive enough to prescribe
certain timing behavior and hence are not suited for realizing predictable real-time
applications. For example, the Ada language (required by the Department of Defense
of the United States for implementing embedded real-time concurrent applications)
does not allow the definition of explicit time constraints on tasks’ execution. The delay

statement puts only a lower bound on the time the task is suspended, and there is no
language support to guarantee that a task cannot be delayed longer than a desired upper
bound. The existence of nondeterministic constructs, such as the select statement,
prevents the performing of a reliable worst-case analysis of the concurrent activities.
Moreover, the lack of protocols for accessing shared resources allows a high-priority
task to wait for a low-priority task for an unbounded duration. As a consequence, if
a real-time application is implemented using the Ada language, the resulting timing
behavior of the system is likely to be unpredictable.

Recently, new high-level languages have been proposed to support the development
of hard real-time applications. For example, Real-Time Euclid [KS86] is a program-
ming language specifically designed to address reliability and guaranteed schedula-
bility issues in real-time systems. To achieve this goal, Real-Time Euclid forces the
programmer to specify time bounds and timeout exceptions in all loops, waits, and
device accessing statements. Moreover, it imposes several programming restrictions,
such as the ones listed below:

Absence of dynamic data structures. Third-generation languages normally per-
mit the use of dynamic arrays, pointers, and arbitrarily long strings. In real-time
languages, however, these features must be eliminated because they would pre-
vent a correct evaluation of the time required to allocate and deallocate dynamic
structures.

Absence of recursion. If recursive calls were permitted, the schedulability ana-
lyzer could not determine the execution time of subprograms involving recursion
or how much storage will be required during execution.

A General View 21

Time-bounded loops. In order to estimate the duration of the cycles at compile
time, Real-Time Euclid forces the programmer to specify for each loop construct
the maximum number of iterations.

Real-Time Euclid also allows the classification of processes as periodic or aperiodic
and provides statements for specifying task timing constraints, such as activation time
and period, as well as system timing parameters, such as the time resolution.

Another high-level language for programming hard real-time applications is Real-

Time Concurrent C [GR91]. It extends Concurrent C by providing facilities to specify
periodicity and deadline constraints, to seek guarantees that timing constraints will
be met, and to perform alternative actions when either the timing constraints cannot
be met or guarantees are not available. With respect to Real-Time Euclid, which has
been designed to support static real-time systems, where guarantees are made at com-
pile time, Real-Time Concurrent C is oriented to dynamic systems, where tasks can
be activated at run time. Another important feature of Real-Time Concurrent C is
that it permits the association of a deadline with any statement, using the following
construct:

within deadline (d) statement-1

[else statement-2]

If the execution of statement-1 starts at time t and is not completed at time (t + d),
then its execution is terminated and statement-2, if specified, is executed.

Clearly, any real-time construct introduced in a language must be supported by the
operating system through dedicated kernel services, which must be designed to be
efficient and analyzable. Among all kernel mechanisms that influence predictability,
the scheduling algorithm is certainly the most important factor, since it is responsible
for satisfying timing and resource contention requirements.

In the rest of this book, several scheduling algorithms are illustrated and analyzed
under different constraints and assumptions. Each algorithm is characterized in terms
of performance and complexity to assist a designer in the development of reliable
real-time applications.

22 Chapter 1

Exercises

1.1 Explain the difference between fast computing and real-time computing.

1.2 What are the main limitations of the current real-time kernels for the develop-
ment of critical control applications?

1.3 Discuss the features that a real-time system should have for exhibiting a pre-
dictable timing behavior.

1.4 Describe the approches that can be used in a real-time system to handle periph-
eral I/O devices in a predictable fashion.

1.5 Which programming restrictions should be used in a programming language
to permit the analysis of real-time applications? Suggest some extensions that
could be included in a language for real-time systems.

2
BASIC CONCEPTS

2.1 INTRODUCTION

Over the last few years, several algorithms and methodologies have been proposed in
the literature to improve the predictability of real-time systems. In order to present
these results we need to define some basic concepts that will be used throughout the
book. We begin with the most important software entity treated by any operating
system, the process. A process is a computation that is executed by the CPU in a
sequential fashion. In this text, the term process is used as synonym of task and thread.
However, it is worth saying that some authors prefer to distinguish them and define a
process as a more complex entity that can be composed by many concurrent tasks (or
threads) sharing a common memory space.

When a single processor has to execute a set of concurrent tasks – that is, tasks that
can overlap in time – the CPU has to be assigned to the various tasks according to
a predefined criterion, called a scheduling policy. The set of rules that, at any time,
determines the order in which tasks are executed is called a scheduling algorithm. The
specific operation of allocating the CPU to a task selected by the scheduling algorithm
is referred as dispatching.

Thus, a task that could potentially execute on the CPU can be either in execution (if it
has been selected by the scheduling algorithm) or waiting for the CPU (if another task
is executing). A task that can potentially execute on the processor, independently on
its actual availability, is called an active task. A task waiting for the processor is called
a ready task, whereas the task in execution is called a running task. All ready tasks
waiting for the processor are kept in a queue, called ready queue. Operating systems
that handle different types of tasks may have more than one ready queue.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

23

2

 Springer Science+Business Media, LLC 2011©

24 Chapter 2

activation terminationdispatching

scheduling

preemption

Execution

Figure 2.1 Queue of ready tasks waiting for execution.

In many operating systems that allow dynamic task activation, the running task can
be interrupted at any point, so that a more important task that arrives in the system
can immediately gain the processor and does not need to wait in the ready queue. In
this case, the running task is interrupted and inserted in the ready queue, while the
CPU is assigned to the most important ready task that just arrived. The operation of
suspending the running task and inserting it into the ready queue is called preemption.
Figure 2.1 schematically illustrates the concepts presented above. In dynamic real-
time systems, preemption is important for three reasons [SZ92]:

Tasks performing exception handling may need to preempt existing tasks so that
responses to exceptions may be issued in a timely fashion.

When tasks have different levels of criticality (expressing task importance), pre-
emption permits executing the most critical tasks, as soon as they arrive.

Preemptive scheduling typically allows higher efficiency, in the sense that it al-
lows executing a real-time task sets with higher processor utilization.

On the other hand, preemption destroys program locality and introduces a runtime
overhead that inflates the execution time of tasks. As a consequence, limiting preemp-
tions in real-time schedules can have beneficial effects in terms of schedulability. This
issue will be investigated in Chapter 8.

Given a set of tasks, J = {J1, . . . , Jn}, a schedule is an assignment of tasks to the
processor, so that each task is executed until completion. More formally, a schedule
can be defined as a function σ : R

+ → N such that ∀t ∈ R
+, ∃t1, t2 such that

t ∈ [t1, t2) and ∀t′ ∈ [t1, t2) σ(t) = σ(t′). In other words, σ(t) is an integer step
function and σ(t) = k, with k > 0, means that task Jk is executing at time t, while
σ(t) = 0 means that the CPU is idle. Figure 2.2 shows an example of schedule
obtained by executing three tasks: J1, J2, J3.

Basic Concepts 25

idle idle

t
t t t3 42

3

2

1

t 1

σ (t)

J 1 J 2 J 3

Figure 2.2 Schedule obtained by executing three tasks J1, J2, and J3.

At times t1, t2, t3, and t4, the processor performs a context switch.

Each interval [ti, ti+1) in which σ(t) is constant is called time slice. Interval
[x, y) identifies all values of t such that x ≤ t < y.

A preemptive schedule is a schedule in which the running task can be arbitrarily
suspended at any time, to assign the CPU to another task according to a pre-
defined scheduling policy. In preemptive schedules, tasks may be executed in
disjointed interval of times.

A schedule is said to be feasible if all tasks can be completed according to a set
of specified constraints.

A set of tasks is said to be schedulable if there exists at least one algorithm that
can produce a feasible schedule.

An example of preemptive schedule is shown in Figure 2.3.

2.2 TYPES OF TASK CONSTRAINTS

Typical constraints that can be specified on real-time tasks are of three classes: tim-
ing constraints, precedence relations, and mutual exclusion constraints on shared re-
sources.

26 Chapter 2

t

σ (t)

t

tJ 2

t

J 3

J 1

3

2

1

Figure 2.3 Example of a preemptive schedule.

2.2.1 TIMING CONSTRAINTS

Real-time systems are characterized by computational activities with stringent timing
constraints that must be met in order to achieve the desired behavior. A typical timing
constraint on a task is the deadline, which represents the time before which a process
should complete its execution without causing any damage to the system. If a deadline
is specified with respect to the task arrival time, it is called a relative deadline, whereas
if it is specified with respect to time zero, it is called an absolute deadline. Depending
on the consequences of a missed deadline, real-time tasks are usually distinguished in
three categories:

Hard: A real-time task is said to be hard if missing its deadline may cause catas-
trophic consequences on the system under control.

Firm: A real-time task is said to be firm if missing its deadline does not cause
any damage to the system, but the output has no value.

Soft: A real-time task is said to be soft if missing its deadline has still some utility
for the system, although causing a performance degradation.

In general, a real-time task τi can be characterized by the following parameters:

Basic Concepts 27

i

iC

a d if is i

i tτ

Figure 2.4 Typical parameters of a real-time task.

Arrival time ai is the time at which a task becomes ready for execution; it is also
referred as request time or release time and indicated by ri;

Computation time Ci is the time necessary to the processor for executing the
task without interruption;

Absolute Deadline di is the time before which a task should be completed to
avoid damage to the system;

Relative Deadline Di is the difference between the absolute deadline and the
request time: Di = di − ri;

Start time si is the time at which a task starts its execution;

Finishing time fi is the time at which a task finishes its execution;

Response time Ri is the difference between the finishing time and the request
time: Ri = fi − ri;

Criticality is a parameter related to the consequences of missing the deadline
(typically, it can be hard, firm, or soft);

Value vi represents the relative importance of the task with respect to the other
tasks in the system;

Lateness Li: Li = fi − di represents the delay of a task completion with respect
to its deadline; note that if a task completes before the deadline, its lateness is
negative;

Tardiness or Exceeding time Ei: Ei = max(0, Li) is the time a task stays active
after its deadline;

Laxity or Slack time Xi: Xi = di − ai − Ci is the maximum time a task can be
delayed on its activation to complete within its deadline.

Some of the parameters defined above are illustrated in Figure 2.4.

28 Chapter 2

φ

(a)

t

t

i

th

i

C i

τ i

φ + (k-1) T i

i

instance
first D i

T i

D

J

C

a

k
instance

D i

C i

i2

i

i

a d i2d i1i1

(b)

Figure 2.5 Sequence of instances for a periodic task (a) and an aperiodic job (b).

Another timing characteristic that can be specified on a real-time task concerns the
regularity of its activation. In particular, tasks can be defined as periodic or aperiodic.
Periodic tasks consist of an infinite sequence of identical activities, called instances or
jobs, that are regularly activated at a constant rate. For the sake of clarity, from now
on, a periodic task will be denoted by τ i, whereas an aperiodic job by Ji. The generic
kth job of a periodic task τi will be denoted by τi,k.

The activation time of the first periodic instance (τ i,1) is called phase. If φi is the phase
of task τi, the activation time of the kth instance is given by φi + (k − 1)Ti, where Ti

is the activation period of the task. In many practical cases, a periodic process can be
completely characterized by its phase φi, its computation time Ci, its period Ti, and
its relative deadline Di.

Aperiodic tasks also consist of an infinite sequence of identical jobs (or instances);
however, their activations are not regularly interleaved. An aperiodic task where con-
secutive jobs are separated by a minimum inter-arrival time is called a sporadic task.
Figure 2.5 shows an example of task instances for a periodic and an aperiodic task.

2.2.2 PRECEDENCE CONSTRAINTS

In certain applications, computational activities cannot be executed in arbitrary order
but have to respect some precedence relations defined at the design stage. Such prece-
dence relations are usually described through a directed acyclic graph G, where tasks

Basic Concepts 29

4

J 1

J 1

1

J

J
J 2

J 1

J 3

J 5

2

J

J 2

J 4

J 4

J 1

Figure 2.6 Precedence relations among five tasks.

are represented by nodes and precedence relations by arrows. A precedence graph G
induces a partial order on the task set.

The notation Ja ≺ Jb specifies that task Ja is a predecessor of task Jb, meaning
that G contains a directed path from node Ja to node Jb.

The notation Ja → Jb specifies that task Ja is an immediate predecessor of Jb,
meaning that G contains an arc directed from node Ja to node Jb.

Figure 2.6 illustrates a directed acyclic graph that describes the precedence constraints
among five tasks. From the graph structure we observe that task J 1 is the only one that
can start executing since it does not have predecessors. Tasks with no predecessors
are called beginning tasks. As J1 is completed, either J2 or J3 can start. Task J4 can
start only when J2 is completed, whereas J5 must wait for the completion of J2 and
J3. Tasks with no successors, as J4 and J5, are called ending tasks.

In order to understand how precedence graphs can be derived from tasks’ relations,
let us consider the application illustrated in Figure 2.7. Here, a number of objects
moving on a conveyor belt must be recognized and classified using a stereo vision
system, consisting of two cameras mounted in a suitable location. Suppose that the
recognition process is carried out by integrating the two-dimensional features of the
top view of the objects with the height information extracted by the pixel disparity on
the two images. As a consequence, the computational activities of the application can
be organized by defining the following tasks:

30 Chapter 2

Figure 2.7 Industrial application that requires a visual recognition of objects on a con-
veyor belt.

Two tasks (one for each camera) dedicated to image acquisition, whose objec-
tive is to transfer the image from the camera to the processor memory (they are
identified by acq1 and acq2);

Two tasks (one for each camera) dedicated to low-level image processing (typical
operations performed at this level include digital filtering for noise reduction and
edge detection; we identify these tasks as edge1 and edge2);

A task for extracting two-dimensional features from the object contours (it is
referred as shape);

A task for computing the pixel disparities from the two images (it is referred as
disp);

A task for determining the object height from the results achieved by the disp

task (it is referred as H);

A task performing the final recognition (this task integrates the geometrical fea-
tures of the object contour with the height information and tries to match these
data with those stored in the data base; it is referred as rec).

From the logic relations existing among the computations, it is easy to see that tasks
acq1 and acq2 can be executed in parallel before any other activity. Tasks edge1 and
edge2 can also be executed in parallel, but each task cannot start before the associated

Basic Concepts 31

H

edge2

rec

disp shape

edge1

acq2acq1

Figure 2.8 Precedence task graph associated with the industrial application illustrated in
Figure 2.7.

acquisition task completes. Task shape is based on the object contour extracted by the
low-level image processing; therefore, it must wait for the termination of both edge1

and edge2. The same is true for task disp, which however can be executed in parallel
with task shape. Then, task H can only start as disp completes and, finally, task rec

must wait the completion of H and shape. The resulting precedence graph is shown in
Figure 2.8.

2.2.3 RESOURCE CONSTRAINTS

From a process point of view, a resource is any software structure that can be used by
the process to advance its execution. Typically, a resource can be a data structure, a
set of variables, a main memory area, a file, a piece of program, or a set of registers of
a peripheral device. A resource dedicated to a particular process is said to be private,
whereas a resource that can be used by more tasks is called a shared resource.

To maintain data consistency, many shared resources do not allow simultaneous ac-
cesses by competing tasks, but require their mutual exclusion. This means that a task
cannot access a resource R if another task is inside R manipulating its data structures.
In this case, R is called a mutually exclusive resource. A piece of code executed under
mutual exclusion constraints is called a critical section.

32 Chapter 2

τDτ

int y = 2;
plot(x,y);

W R

int x = 1;

x = 4;

y = 8;

Figure 2.9 Two tasks sharing a buffer with two variables.

τ

R R

RD

τW

x=4 y=8

plot(x,y)

t

(4,2) (4,8)(1,2)

Figure 2.10 Example of schedule creating data inconsistency.

To better understand why mutual exclusion is important for guaranteeing data consis-
tency, consider the application illustrated in Figure 2.9, where two tasks cooperate to
track a moving object: task τW gets the object coordinates from a sensor and writes
them into a shared buffer R, containing two variables (x, y); task τD reads the vari-
ables from the buffer and plots a point on the screen to display the object trajectory.

If the access to the buffer is not mutually exclusive, task τW (having lower priority
than τD) may be preempted while updating the variables, so leaving the buffer in an
inconsistent state. The situation is illustrated in Figure 2.10, where, at time t, the (x, y)
variables have values (1,2). If τW is preempted after updating x and before updating
y, τD will display the object in (4,2), which is neither the old nor the new position.

To ensure a correct access to exclusive resources, operating systems provide a synchro-
nization mechanism (e.g., semaphores) that can be used to create critical sections of
code. In the following, when we say that two or more tasks have resource constraints,
we mean that they share resources that are accessed through a synchronization mech-
anism.

Basic Concepts 33

τD

wait(s)

signal(s)

critical

section

wait(s)

signal(s)

critical

section

τW

shared
resource

R

Figure 2.11 Structure of two tasks that share a mutually exclusive resource protected by
a semaphore.

τ

R

D

τW

x=4

R

R

y=8

plot(x,y)

t

(1,2) (4,2) (4,8)

blocked

Figure 2.12 Example of schedule when the resource is protected by a semaphore.

To avoid the problem illustrated in Figure 2.10, both tasks have to encapsulate the
instructions that manipulate the shared variables into a critical section. If a binary
semaphore s is used for this purpose, then each critical section must begin with a
wait(s) primitive and must end with a signal(s) primitive, as shown in Figure 2.11.

If the resource is free, the wait(s) primitive executed by τW notifies that a task is using
the resource, which becomes locked until the task executes the signal(s). Hence, if
τD preempts τW inside the critical section, it is blocked as soon as it executes wait(s),
and the processor is given back to τW . When τW exits its critical section by executing
signal(s), then τD is resumed and the processor is given to the ready task with the
highest priority. The resulting schedule is shown in Figure 2.12.

34 Chapter 2

WAITING

READY

scheduling

preemption

activation termination

busy resource
wait on

free resource
signal

RUN

Figure 2.13 Waiting state caused by resource constraints.

A task waiting for an exclusive resource is said to be blocked on that resource. All
tasks blocked on the same resource are kept in a queue associated with the semaphore
protecting the resource. When a running task executes a wait primitive on a locked
semaphore, it enters a waiting state, until another task executes a signal primitive that
unlocks the semaphore. Note that when a task leaves the waiting state, it does not
go in the running state, but in the ready state, so that the CPU can be assigned to the
highest-priority task by the scheduling algorithm. The state transition diagram relative
to the situation described above is shown in Figure 2.13.

2.3 DEFINITION OF SCHEDULING PROBLEMS

In general, to define a scheduling problem we need to specify three sets: a set of n
tasks Γ = {τ1, τ2, . . . , τn}, a set of m processors P = {P1, P2, . . . , Pm} and a set of
s types of resources R = {R1, R2, . . . , Rs}. Moreover, precedence relations among
tasks can be specified through a directed acyclic graph, and timing constraints can
be associated with each task. In this context, scheduling means assigning processors
from P and resources from R to tasks from Γ in order to complete all tasks under the
specified constraints [B+93]. This problem, in its general form, has been shown to be
NP-complete [GJ79] and hence computationally intractable.

Indeed, the complexity of scheduling algorithms is of high relevance in dynamic real-
time systems, where scheduling decisions must be taken on line during task execution.
A polynomial algorithm is one whose time complexity grows as a polynomial function
p of the input length n of an instance. The complexity of such algorithms is denoted by
O(p(n)). Each algorithm whose complexity function cannot be bounded in that way
is called an exponential time algorithm. In particular, NP is the class of all decision
problems that can be solved in polynomial time by a nondeterministic Turing machine.

Basic Concepts 35

A problem Q is said to be NP-complete if Q ∈ NP and, for every Q ′ ∈ NP, Q’ is
polynomially transformable to Q [GJ79]. A decision problem Q is said to be NP-hard

if all problems in NP are polynomially transformable to Q, but we cannot show that
Q ∈ NP.

Let us consider two algorithms with complexity functions n and 5n, respectively, and
let us assume that an elementary step for these algorithms lasts 1 µs. If the input
length of the instance is n = 30, then it is easy to calculate that the polynomial algo-
rithm can solve the problem in 30 µs, whereas the other needs about 3 · 10 5 centuries.
This example illustrates that the difference between polynomial and exponential time
algorithms is large and, hence, it may have a strong influence on the performance of
dynamic real-time systems. As a consequence, one of the research objectives in real-
time scheduling is to identify simpler, but still practical, problems that can be solved
in polynomial time.

To reduce the complexity of constructing a feasible schedule, one may simplify the
computer architecture (for example, by restricting to the case of uniprocessor sys-
tems), or one may adopt a preemptive model, use fixed priorities, remove precedence
and/or resource constraints, assume simultaneous task activation, homogeneous task
sets (solely periodic or solely aperiodic activities), and so on. The assumptions made
on the system or on the tasks are typically used to classify the various scheduling
algorithms proposed in the literature.

2.3.1 CLASSIFICATION OF SCHEDULING

ALGORITHMS

Among the great variety of algorithms proposed for scheduling real-time tasks, the
following main classes can be identified:

Preemptive vs. Non-preemptive.

– In preemptive algorithms, the running task can be interrupted at any time
to assign the processor to another active task, according to a predefined
scheduling policy.

– In non-preemptive algorithms, a task, once started, is executed by the pro-
cessor until completion. In this case, all scheduling decisions are taken as
the task terminates its execution.

36 Chapter 2

Static vs. Dynamic.

– Static algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before their activation.

– Dynamic algorithms are those in which scheduling decisions are based on
dynamic parameters that may change during system evolution.

Off-line vs. Online.

– A scheduling algorithm is used off line if it is executed on the entire task
set before tasks activation. The schedule generated in this way is stored in
a table and later executed by a dispatcher.

– A scheduling algorithm is used online if scheduling decisions are taken at
runtime every time a new task enters the system or when a running task
terminates.

Optimal vs. Heuristic.

– An algorithm is said to be optimal if it minimizes some given cost function
defined over the task set. When no cost function is defined and the only
concern is to achieve a feasible schedule, then an algorithm is said to be
optimal if it is able to find a feasible schedule, if one exists.

– An algorithm is said to be heuristic if it is guided by a heuristic function
in taking its scheduling decisions. A heuristic algorithm tends toward the
optimal schedule, but does not guarantee finding it.

Moreover, an algorithm is said to be clairvoyant if it knows the future; that is, if it
knows in advance the arrival times of all the tasks. Although such an algorithm does
not exist in reality, it can be used for comparing the performance of real algorithms
against the best possible one.

GUARANTEE-BASED ALGORITHMS

In hard real-time applications that require highly predictable behavior, the feasibility
of the schedule should be guaranteed in advance; that is, before task execution. In this
way, if a critical task cannot be scheduled within its deadline, the system is still in
time to execute an alternative action, attempting to avoid catastrophic consequences.
In order to check the feasibility of the schedule before tasks’ execution, the system
has to plan its actions by looking ahead in the future and by assuming a worst-case
scenario.

Basic Concepts 37

In static real-time systems, where the task set is fixed and known a priori, all task
activations can be precalculated off line, and the entire schedule can be stored in a
table that contains all guaranteed tasks arranged in the proper order. Then, at runtime,
a dispatcher simply removes the next task from the table and puts it in the running
state. The main advantage of the static approach is that the runtime overhead does
not depend on the complexity of the scheduling algorithm. This allows very sophis-
ticated algorithms to be used to solve complex problems or find optimal scheduling
sequences. On the other hand, however, the resulting system is quite inflexible to
environmental changes; thus, predictability strongly relies on the observance of the
hypotheses made on the environment.

In dynamic real-time systems (typically consisting of firm tasks), tasks can be created
at runtime; hence the guarantee must be done online every time a new task is created.
A scheme of the guarantee mechanism typically adopted in dynamic real-time systems
is illustrated in Figure 2.14.

If Γ is the current task set that has been previously guaranteed, a newly arrived task
τnew is accepted into the system if and only if the task set Γ ′ = Γ ∪ {τnew} is found
schedulable. If Γ′ is not schedulable, then task τnew is rejected to preserve the feasi-
bility of the current task set.

It is worth noting that since the guarantee mechanism is based on worst-case assump-
tions a task could unnecessarily be rejected. This means that the guarantee of firm
tasks is achieved at the cost of a lower efficiency. On the other hand, the benefit of
having a guarantee mechanism is that potential overload situations can be detected in
advance to avoid negative effects on the system. One of the most dangerous phenom-
ena caused by a transient overload is called domino effect. It refers to the situation
in which the arrival of a new task causes all previously guaranteed tasks to miss their
deadlines. Let us consider for example the situation depicted in Figure 2.15, where
five jobs are scheduled based on their absolute deadlines.

READY RUNNING

preemption

scheduling

terminationactivation

test
acceptance

YES

NO

signal
free resource

wait on
busy resource

WAITING

Figure 2.14 Scheme of the guarantee mechanism used in dynamic real-time systems.

38 Chapter 2

t

J

J 2

J 3

J 4

J new

t

t

t

t

t 0

1

Figure 2.15 Example of domino effect.

At time t0, if job Jnew were accepted, all the other jobs (previously schedulable)
would miss their deadlines. In planned-based algorithms, this situation is detected at
time t0, when the guarantee is performed, and causes job Jnew to be rejected.

In summary, the guarantee test ensures that, once a task is accepted, it will complete
within its deadline and, moreover, its execution will not jeopardize the feasibility of
the tasks that have been previously guaranteed.

BEST-EFFORT ALGORITHMS

In certain real-time applications, computational activities have soft timing constraints
that should be met whenever possible to satisfy system requirements. In these systems,
missing soft deadlines do not cause catastrophic consequences, but only a performance
degradation.

For example, in typical multimedia applications, the objective of the computing sys-
tem is to handle different types of information (such as text, graphics, images, and
sound) in order to achieve a certain quality of service for the users. In this case, the
timing constraints associated with the computational activities depend on the qual-
ity of service requested by the users; hence, missing a deadline may only affect the
performance of the system.

To efficiently support soft real-time applications that do not have hard timing require-
ments, a best-effort approach may be adopted for scheduling.

Basic Concepts 39

A best-effort scheduling algorithm tries to “do its best” to meet deadlines, but there is
no guarantee of finding a feasible schedule. In a best-effort approach, tasks may be
enqueued according to policies that take time constraints into account; however, since
feasibility is not checked, a task may be aborted during its execution. On the other
hand, best-effort algorithms perform much better than guarantee-based schemes in
the average case. In fact, whereas the pessimistic assumptions made in the guarantee
mechanism may unnecessarily cause task rejections, in best-effort algorithms a task is
aborted only under real overload conditions.

2.3.2 METRICS FOR PERFORMANCE EVALUATION

The performance of scheduling algorithms is typically evaluated through a cost func-
tion defined over the task set. For example, classical scheduling algorithms try to
minimize the average response time, the total completion time, the weighted sum of
completion times, or the maximum lateness. When deadlines are considered, they are
usually added as constraints, imposing that all tasks must meet their deadlines. If some
deadlines cannot be met with an algorithm A, the schedule is said to be infeasible by
A. Table 2.1 shows some common cost functions used for evaluating the performance
of a scheduling algorithm.

The metrics adopted in the scheduling algorithm has strong implications on the perfor-
mance of the real-time system [SSDNB95], and it must be carefully chosen according
to the specific application to be developed. For example, the average response time is
generally not of interest for real-time applications, because there is not direct assess-
ment of individual timing properties such as periods or deadlines. The same is true
for minimizing the total completion time. The weighted sum of completion times is
relevant when tasks have different importance values that they impart to the system
on completion. Minimizing the maximum lateness can be useful at design time when
resources can be added until the maximum lateness achieved on the task set is less
than or equal to zero. In that case, no task misses its deadline. In general, however,
minimizing the maximum lateness does not minimize the number of tasks that miss
their deadlines and does not necessarily prevent one or more tasks from missing their
deadline.

Let us consider, for example, the case depicted in Figure 2.16. The schedule shown in
Figure 2.16a minimizes the maximum lateness, but all tasks miss their deadline. On
the other hand, the schedule shown in Figure 2.16b has a greater maximum lateness,
but four tasks out of five complete before their deadline.

40 Chapter 2

Average response time:

tr =
1

n

n
∑

i=1

(fi − ai)

Total completion time:

tc = max
i

(fi) − min
i

(ai)

Weighted sum of completion times:

tw =

n
∑

i=1

wifi

Maximum lateness:

Lmax = max
i

(fi − di)

Maximum number of late tasks:

Nlate =
n
∑

i=1

miss(fi)

where

miss(fi) =

{

0 if fi ≤ di

1 otherwise

Table 2.1 Example of cost functions.

Basic Concepts 41

24

d1

10 12 14 16 18 20 22 266 842

t

0

(a)

(b)

L1 = 23 L2 = -4 L3 = -5 L4 = -5 L5 = -4

d4d2 d5d3

J 3 J 4 J 5

d1

5

d5

JJ 2J 1

d2

J

J

3

d3 d4

J 4

16 18 20 22 24 2612 148

L

1J 2

L1 = 3 L2 = 2 L3 = 1 L4 = 1 L5 = 2

= L1 = 23max

10

L max = L1 = 3

0 2 4 6

t

Figure 2.16 The schedule in (a) minimizes the maximum lateness, but all tasks miss their
deadline. The schedule in (b) has a greater maximum lateness, but four tasks out of five
complete before their deadline.

When tasks have soft deadlines and the application goal is to meet as many deadlines
as possible (without a priori guarantee), then the scheduling algorithm should use a
cost function that minimizes the number of late tasks.

In other applications, the benefit of executing a task may depend not only on the task
importance but also on the time at which it is completed. This can be described by
means of specific utility functions, which describe the value associated with the task
as a function of its completion time.

Figure 2.17 illustrates some typical utility functions that can be defined on the applica-
tion tasks. For instance, non-real-time tasks (a) do not have deadlines, thus the value
achieved by the system is proportional to the task importance and does not depend
on the completion time. Soft tasks (b) have noncritical deadlines; therefore, the value
gained by the system is constant if the task finishes before its deadline but decreases
with the exceeding time. In some cases (c), it is required to execute a task on-time;
that is, not too early and not too late with respect to a given deadline. Hence, the
value achieved by the system is high if the task is completed around the deadline, but
it rapidly decreases with the absolute value of the lateness. Such types of constraints
are typical when playing notes, since the human ear is quite sensitive to time jitter.

42 Chapter 2

softnon real−time

firm
on−time

v(f)i

f i
id

v(f)i

f i

v(f)i

f i

v(f)i

f i
idid

Figure 2.17 Example of cost functions for different types of tasks.

In other cases (d), executing a task after its deadline does not cause catastrophic con-
sequences, but there is no benefit for the system, thus the utility function is zero after
the deadline.

When utility functions are defined on the tasks, the performance of a scheduling al-
gorithm can be measured by the cumulative value, given by the sum of the utility
functions computed at each completion time:

Cumulative value =

n
∑

i=1

v(fi).

This type of metrics is very useful for evaluating the performance of a system during
overload conditions, and it is considered in more detail in Chapter 9.

2.4 SCHEDULING ANOMALIES

In this section we describe some singular examples that clearly illustrate that real-
time computing is not equivalent to fast computing, since, for example, an increase of
computational power in the supporting hardware does not always cause an improve-
ment of performance. These particular situations, called Richard’s anomalies, were
described by Graham in 1976 and refer to task sets with precedence relations executed
in a multiprocessor environment.

Basic Concepts 43

J

J

(2)

3

4

J (2)2

J

J

J

JJ

(9)

(4)

(4)

(4)

(4)

9

8

7

6

(2)

(3)1

priority(J)i jpriority(J)> i < j∀

J

5

Figure 2.18 Precedence graph of the task set J ; numbers in parentheses indicate compu-
tation times.

Designers should be aware of such insidious anomalies to take the proper countermea-
sures to avoid them. The most important anomalies are expressed by the following
theorem [Gra76, SSDNB95]:

Theorem 2.1 (Graham, 1976) If a task set is optimally scheduled on a multiproces-

sor with some priority assignment, a fixed number of processors, fixed execution times,

and precedence constraints, then increasing the number of processors, reducing ex-

ecution times, or weakening the precedence constraints can increase the schedule

length.

This result implies that, if tasks have deadlines, then adding resources (for example,
an extra processor) or relaxing constraints (less precedence among tasks or fewer exe-
cution times requirements) can make things worse. A few examples can best illustrate
why this theorem is true.

Let us consider a task set consisting of nine jobs J = {J1, J2, . . . , J9}, sorted by
decreasing priorities, so that Ji priority is greater than Jj priority if and only if i < j.
Moreover, jobs are subject to precedence constraints that are described through the
graph shown in Figure 2.18. Computation times are indicated in parentheses.

If this task set is executed on a parallel machine with three processors, where the
highest priority task is assigned to the first available processor, the resulting schedule
σ∗ is illustrated in Figure 2.19, where the global completion time is t c = 12 units of
time.

44 Chapter 2

1

10 111 9 151413120 32 4 5 6 7 8

5

J

P

P1

7J4 J

P

J

3J

9J

2

J3

2J

8J6

t

Figure 2.19 Optimal schedule of task set J on a three-processor machine.

P

1 2 50 13 14 151193 4 8 121076

J

1 J

3J

2

4J

3P

2P

1

5 9

4P

8J

JJ

7J

6J

t

Figure 2.20 Schedule of task set J on a four-processor machine.

Now we will show that adding an extra processor, reducing tasks’ execution times, or
weakening precedence constraints will increase the global completion time of the task
set.

NUMBER OF PROCESSORS INCREASED

If we execute the task set J on a more powerful machine consisting of four processors,
we obtain the schedule illustrated in Figure 2.20, which is characterized by a global
completion time of tc = 15 units of time.

COMPUTATION TIMES REDUCED

One could think that the global completion time of the task set J could be improved by
reducing tasks’ computation times of each task. However, we can surprisingly see that,
reducing the computation time of each task by one unit of time, the schedule length
will increase with respect to the optimal schedule σ∗, and the global completion time
will be tc = 13, as shown in Figure 2.21.

Basic Concepts 45

P

112 151413120 1 3 104 5 6 7 8 9

3

1

7J

6J

5J

J

8

2J

3P

2P

J

J 4 9J

1J

t

Figure 2.21 Schedule of task set J on three processors, with computation times reduced
by one unit of time.

(9)J

(2)2

J

J

J

J

J

(4)

4

(4)

(4)

(4)

9

8

7

6

J

3

(2)

1 (3)

J

J

(2)

5

(a)

P

10 111 9 151413 t120 2 3 4 5 6 7 8

JJ

3J

4 5J

3P

2P 2

J

J

1 9J

6

1 8J

7J

16

(b)

Figure 2.22 a. Precedence graph of task set J obtained by removing the constraints on
tasks J7 and J8. b. Schedule of task set J on three processors, with precedence constraints
weakened.

PRECEDENCE CONSTRAINTS WEAKENED

Scheduling anomalies can also arise by removing precedence constraints from the
directed acyclic graph depicted in Figure 2.18. For instance, removing the precedence
relations between job J4 and jobs J7 and J8 (see Figure 2.22a), we obtain the schedule
shown in Figure 2.22b, which is characterized by a global completion time of t c = 16
units of time.

46 Chapter 2

2

12

0

4 6 8 10 16140 18 20 22
t

2

(b)

10
t

2 4 6 8 1412 16 18 20 22

P

P 4

P2

1 1J

t = 22

J 5

c

J

c

J1P J 1

J

2

J

3 J 5

t = 17

J

3

2

J 4

(a)

Figure 2.23 Example of anomaly under resource constraints. If J2 and J4 share the same
resource in exclusive mode, the optimal schedule length (a) increases if the computation
time of job J1 is reduced (b). Jobs are statically allocated on the processors.

ANOMALIES UNDER RESOURCE CONSTRAINTS

The following example shows that, in the presence of shared resources, the schedule
length of a task set can increase when reducing tasks’ computation times. Consider
the case illustrated in Figure 2.23, where five jobs are statically allocated on two pro-
cessors: jobs J1 and J2 on processor P1, and jobs J3, J4 and J5 on processor P2 (jobs
are indexed by decreasing priority). Moreover, jobs J 2 and J4 share the same resource
in exclusive mode; hence their execution cannot overlap in time. A schedule of this
task set is shown in Figure 2.23a, where the total completion time is t c = 17.

If we now reduce the computation time of job J1 on the first processor, then J2 can be-
gin earlier and take the resource before J4. As a consequence, job J4 must now block
over the shared resource and possibly miss its deadline. This situation is illustrated in
Figure 2.23b. As we can see, the blocking time experienced by J 4 causes a delay in
the execution of J5 (which may also miss its deadline), increasing the total completion
time of the task set from 17 to 22.

Basic Concepts 47

Notice that the scheduling anomaly illustrated by the previous example is particu-
larly insidious for hard real-time systems, because tasks are guaranteed based on their
worst-case behavior, but they may complete before their worst-case computation time.
A simple solution that avoids the anomaly is to keep the processor idle if tasks com-
plete earlier, but this can be very inefficient. There are algorithms, such as the one
proposed by Shen [SRS93], that tries to reclaim such an idle time, while addressing
the anomalies so that they will not occur.

If tasks share mutually exclusive resources, scheduling anomalies can also occur in
a uniprocessor system when changing the processor speed [But06]. In particular, the
anomaly can be expressed as follows:

A real-time application that is feasible on a given processor can become
infeasible when running on a faster processor.

Figure 2.24 illustrates a simple example where two tasks, τ1 and τ2, share a common
resource (critical sections are represented by light grey areas). Task τ 1 has a higher
priority, arrives at time t = 2 and has a relative deadline D1 = 7. Task τ2, having
lower priority, arrives at time t = 0 and has a relative deadline D2 = 23. Suppose that,
when the tasks are executed at a certain speed S1, τ1 has a computation time C1 = 6,
(where 2 units of time are spent in the critical section), whereas τ2 has a computation
time C2 = 18 (where 12 units of time are spent in the critical section). As shown in
Figure 2.24a, if τ1 arrives just before τ2 enters its critical section, it is able to complete
before its deadline, without experiencing any blocking. However, if the same task set
is executed at a double speed S2 = 2S1, τ1 misses its deadline, as clearly illustrated in
Figure 2.24b. This happens because, when τ1 arrives, τ2 already granted its resource,
causing an extra blocking in the execution of τ1, due to mutual exclusion.

Although the average response time of the task set is reduced on the faster processor
(from 14 to 9.5 units of time), note that the response time of task τ 1 increases when
doubling the speed, because of the extra blocking on the shared resource.

ANOMALIES UNDER NON-PREEMPTIVE SCHEDULING

Similar situations can occur in non-preemptive scheduling. Figure 2.25 illustrates an
anomalous behavior occurring in a set of three real-time tasks, τ 1, τ2 and τ3, running
in a non-preemptive fashion. Tasks are assigned a fixed priority proportional to their
relative deadline, thus τ1 is the task with the highest priority and τ3 is the task with
the lowest priority. As shown in Figure 2.25a, when tasks are executed at speed S 1,
τ1 has a computation time C1 = 2 and completes at time t = 6. However, if the same

48 Chapter 2

τ 1

τ 2

τ 1

τ 2

(a)

(b)

0 181262 4 8 10 14 16 20 22 24

20 22 240 181262 4 8 10 14 16

normal execution

critical section

deadline miss

Figure 2.24 Scheduling anomaly in the presence of resource constraints: task τ1 meets its
deadline when the processor is executing at a certain speed S1 (a), but misses its deadline
when the speed is doubled (b).

task set is executed with double speed S2 = 2S1, τ1 misses its deadline, as clearly
illustrated in Figure 2.25b. This happens because, when τ1 arrives, τ3 already started
its execution and cannot be preempted (due to the non-preemptive mode).

It is worth observing that a set of non-preemptive tasks can be considered as a special
case of a set of tasks sharing a single resource (the processor) for their entire execution.
According to this view, each task executes as it were inside a big critical section with
a length equal to the task computation time. Once a task starts executing, it behaves as
it were locking a common semaphore, thus preventing all the other tasks from taking
the processor.

Basic Concepts 49

τ 1

τ 2

τ 3

τ 1

τ 2

τ 3

(b)

(a)

0 186 93 12 15

0 186 93 12 15

deadline miss

Figure 2.25 Scheduling anomaly in the presence of non-preemptive tasks: task τ1 meets
its deadline when the processor is executing at speed S1 (a), but misses its deadline when
the speed is doubled (b).

ANOMALIES USING A DELAY PRIMITIVE

Another timing anomaly can occur when tasks using shared resources explicitly sus-
pend themselves through a delay(T) system call, which suspends the execution of the
calling task for T units of time. Figure 2.26a shows a case in which τ1 is feasible and
has a slack time of 6 units when running at the highest priority, suggesting that it could
easily tolerate a delay of two units. However, if τ1 executes a delay(2) at time t = 2,
it gives the opportunity to τ2 to lock the shared resource. Hence, when τ1 resumes,
it has to block on the semaphore for 7 units, thus missing its deadline, as shown in
Figure 2.26b.

50 Chapter 2

τ 1

τ 2

τ 1

τ 2

(a)

(b)

0 181262 4 8 10 14 16 20 22 24

20 22 240 181262 4 8 10 14 16

normal execution

critical section

delay(2) blocked deadline miss

Figure 2.26 Scheduling anomaly in the presence of a delay: τ1 has a slack of 6 units of
time when running at the highest priority (a), but cannot tolerate a self suspension of two
units (b).

The example shown in Figure 2.26 illustrates an anomaly in which a task with a large
slack cannot tolerate a self suspension of a much smaller value. Figure 2.27 shows
another case in which the suspension of a task can also cause a longer delay in a
different task, even without sharing any resource. When τ 1 is assigned a higher priority
than τ2, the resulting schedule shown in Figure 2.27a is feasible, with a slack for τ 1 of
3 units of time. However, if the third instance of τ1 executes a delay(1) after one unit
of execution, τ2 will miss its deadline.

Basic Concepts 51

τ 1

τ 2

τ 1

τ 2

(b)

0 181262 4 8 10 14 16 20 22 24

20 22 240 181262 4 8 10 14 16

(a)

deadline
miss

delay(1)

Figure 2.27 Scheduling anomaly in the presence of a delay: two tasks are feasible without
delays (a), but a delay in τ1 causes a deadline miss in τ2 (b).

Exercises

2.1 Give the formal definition of a schedule, explaining the difference between
preemptive and non-preemptive scheduling.

2.2 Explain the difference between periodic and aperiodic tasks, and describe the
main timing parameters that can be defined for a real-time activity.

2.3 Describe a real-time application as a number of tasks with precedence relations,
and draw the corresponding precedence graph.

2.4 Discuss the difference between static and dynamic, online and off-line, optimal,
and heuristic scheduling algorithms.

2.5 Provide an example of domino effect, caused by the arrival of a task J ∗, in a
feasible set of three tasks.

3
APERIODIC TASK SCHEDULING

3.1 INTRODUCTION

This chapter presents a variety of algorithms for scheduling real-time aperiodic tasks
on a single machine environment. Each algorithm represents a solution for a particular
scheduling problem, which is expressed through a set of assumptions on the task set
and by an optimality criterion to be used on the schedule. The restrictions made on
the task set are aimed at simplifying the algorithm in terms of time complexity. When
no restrictions are applied on the application tasks, the complexity can be reduced by
employing heuristic approaches, which do not guarantee to find the optimal solution
to a problem but can still guarantee a feasible schedule in a wide range of situations.

Although the algorithms described in this chapter are presented for scheduling aperi-
odic tasks on uniprocessor systems, many of them can be extended to work on multi-
processor or distributed architectures and deal with more complex task models.

To facilitate the description of the scheduling problems presented in this chapter we
introduce a systematic notation that could serve as a basis for a classification scheme.
Such a notation, proposed by Graham et al. [GLLK79], classifies all algorithms using
three fields α | β | γ, having the following meaning:

The first field α describes the machine environment on which the task set has to
be scheduled (uniprocessor, multiprocessor, distributed architecture, and so on).

The second field β describes task and resource characteristics (preemptive, inde-
pendent versus precedence constrained, synchronous activations, and so on).

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

53

3

 Springer Science+Business Media, LLC 2011©

54 Chapter 3

The third field γ indicates the optimality criterion (performance measure) to be
followed in the schedule.

For example:

1 | prec | Lmax denotes the problem of scheduling a set of tasks with precedence
constraints on a uniprocessor machine in order to minimize the maximum late-
ness. If no additional constraints are indicated in the second field, preemption is
allowed at any time, and tasks can have arbitrary arrivals.

3 | no preem | ∑ fi denotes the problem of scheduling a set of tasks on a
three-processor machine. Preemption is not allowed and the objective is to min-
imize the sum of the finishing times. Since no other constraints are indicated in
the second field, tasks do not have precedence nor resource constraints but have
arbitrary arrival times.

2 | sync | ∑Latei denotes the problem of scheduling a set of tasks on a two-
processor machine. Tasks have synchronous arrival times and do not have other
constraints. The objective is to minimize the number of late tasks.

3.2 JACKSON’S ALGORITHM

The problem considered by this algorithm is 1 | sync | Lmax. That is, a set J of n
aperiodic tasks has to be scheduled on a single processor, minimizing the maximum
lateness. All tasks consist of a single job, have synchronous arrival times, but can have
different computation times and deadlines. No other constraints are considered, hence
tasks must be independent; that is, cannot have precedence relations and cannot share
resources in exclusive mode.

Notice that, since all tasks arrive at the same time, preemption is not an issue in this
problem. In fact, preemption is effective only when tasks may arrive dynamically and
newly arriving tasks have higher priority than currently executing tasks.

Without loss of generality, we assume that all tasks are activated at time t = 0, so
that each job Ji can be completely characterized by two parameters: a computation
time Ci and a relative deadline Di (which, in this case, is also equal to the absolute
deadline). Thus, the task set J can be denoted as

J = {Ji(Ci, Di), i = 1, . . . , n}.

Aperiodic Task Scheduling 55

A simple algorithm that solves this problem was found by Jackson in 1955. It is called
Earliest Due Date (EDD) and can be expressed by the following rule [Jac55]:

Theorem 3.1 (Jackson’s rule) Given a set of n independent tasks, any algorithm that

executes the tasks in order of nondecreasing deadlines is optimal with respect to min-

imizing the maximum lateness.

Proof. Jackson’s theorem can be proved by a simple interchange argument. Let σ be
a schedule produced by any algorithm A. If A is different than EDD, then there exist
two tasks Ja and Jb, with da ≤ db, such that Jb immediately precedes Ja in σ. Now,
let σ′ be a schedule obtained from σ by exchanging Ja with Jb, so that Ja immediately
precedes Jb in σ′.

As illustrated in Figure 3.1, interchanging the position of Ja and Jb in σ cannot in-
crease the maximum lateness. In fact, the maximum lateness between Ja and Jb in σ
is Lmax(a, b) = fa − da, whereas the maximum lateness between Ja and Jb in σ′ can
be written as L′

max(a, b) = max(L′
a, L′

b). Two cases must be considered:

2. If L′
a ≤ L′

b, then L′
max(a, b) = f ′

b − db = fa − db, and, since da < db, we have
L′

max(a, b) < Lmax(a, b).

Since, in both cases, L′
max(a, b) < Lmax(a, b), we can conclude that interchanging Ja

and Jb in σ cannot increase the maximum lateness of the task set. By a finite number
of such transpositions, σ can be transformed in σEDD and, since in each transposition
the maximum lateness cannot increase, σEDD is optimal.

The complexity required by Jackson’s algorithm to build the optimal schedule is due
to the procedure that sorts the tasks by increasing deadlines. Hence, if the task set
consists of n tasks, the complexity of the EDD algorithm is O(n log n).

1. If L′
a ≥ L′

b, then L′
max(a, b) =f ′

a−da, and, since f ′
a < fa, we have L′

max(a, b)<
Lmax(a, b).

56 Chapter 3

J b J a

J bJ a

a 0 f af b

f a d aL
ab

max = −

d a bd

σ ’

f a
’ f b

’

L
ab

max = ba
’ ’max (L , L)’

L
ab

maxin both cases: <L
ab

max
’

f a d ad a

f a d ad b

>

<

thenif ()L L −− <f aL
ab

max = ’’ ’
a b

thenif ()L L −− <L
ab

max = f b
’’ ’

a b

’

’

t=

σ

Figure 3.1 Optimality of Jackson’s algorithm.

3.2.1 EXAMPLES

EXAMPLE 1

Consider a set of five tasks, simultaneously activated at time t = 0, whose parame-
ters (worst-case computation times and deadlines) are indicated in the table shown in
Figure 3.2. The schedule of the tasks produced by the EDD algorithm is also depicted
in Figure 3.2. The maximum lateness is equal to −1 and it is due to task J4, which
completes a unit of time before its deadline. Since the maximum lateness is negative,
we can conclude that all tasks have been executed within their deadlines.

Note that the optimality of the EDD algorithm cannot guarantee the feasibility of the
schedule for any task set. It only guarantees that if a feasible schedule exists for a task
set, then EDD will find it.

EXAMPLE 2

Figure 3.3 illustrates an example in which the task set cannot be feasibly scheduled.
Still, however, EDD produces the optimal schedule that minimizes the maximum late-
ness. Note that since J4 misses its deadline, the maximum lateness is greater than zero
(Lmax = L4 = 2).

Aperiodic Task Scheduling 57

d

1

2

= -1= 4LmaxL

3d

0

d

987654321
t

51

d

J

i

i 1C

J 5J 4J 3J 2

1

J

d 4d

2J4J3J 5

1

1J

8

3 2

57103

10

Figure 3.2 A feasible schedule produced by Jackson’s algorithm.

J

4

4J 3J 21

9

= 2=

10

5

8765

J

C

3

8452

411 2 2

J

id

i

4
t

d

1

5d2d3

5

1

J 4J 4LmaxL

d

J

20

d

3J 2J1

6

Figure 3.3 An infeasible schedule produced by Jackson’s algorithm.

58 Chapter 3

3.2.2 GUARANTEE

To guarantee that a set of tasks can be feasibly scheduled by the EDD algorithm, we
need to show that, in the worst case, all tasks can complete before their deadlines. This
means that we have to show that for each task, the worst-case finishing time f i is less
than or equal to its deadline di:

∀i = 1, . . . , n fi ≤ di.

If tasks have hard timing requirements, such a schedulability analysis must be done
before actual tasks’ execution. Without loss of generality, we can assume that tasks
J1, J2, . . . , Jn are listed by increasing deadlines, so that J1 is the task with the earliest
deadline. In this case, the worst-case finishing time of task J i can be easily computed
as

fi =

i
∑

k=1

Ck.

Therefore, if the task set consists of n tasks, the guarantee test can be performed by
verifying the following n conditions:

∀i = 1, . . . , n

i
∑

k=1

Ck ≤ di. (3.1)

3.3 HORN’S ALGORITHM

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks can
be activated dynamically during execution), then preemption becomes an important
factor. In general, a scheduling problem in which preemption is allowed is always
easier than its non-preemptive counterpart. In a non-preemptive scheduling algorithm,
the scheduler must ensure that a newly arriving task will never need to interrupt a
currently executing task in order to meet its own deadline. This guarantee requires a
considerable amount of searching. If preemption is allowed, however, this searching is
unnecessary, since a task can be interrupted if a more important task arrives [WR91].

In 1974, Horn found an elegant solution to the problem of scheduling a set of n in-
dependent tasks on a uniprocessor system, when tasks may have dynamic arrivals and
preemption is allowed (1 | preem | Lmax).

The algorithm, called Earliest Deadline First (EDF), can be expressed by the follow-
ing theorem [Hor74]:

Aperiodic Task Scheduling 59

Theorem 3.2 (Horn) Given a set of n independent tasks with arbitrary arrival times,

any algorithm that at any instant executes the task with the earliest absolute deadline

among all the ready tasks is optimal with respect to minimizing the maximum lateness.

This result can be proved by an interchange argument similar to the one used by Jack-
son. The formal proof of the EDF optimality was given by Dertouzos in 1974 [Der74]
and it is illustrated below. The complexity of the algorithm is O(n) per task, if the
ready queue is implemented as a list, or O(n log n) per task, if the ready queue is
implemented as a heap.

3.3.1 EDF OPTIMALITY

The original proof provided by Dertouzos [Der74] shows that EDF is optimal in the
sense of feasibility. This means that if there exists a feasible schedule for a task set
J , then EDF is able to find it. The proof can easily be extended to show that EDF
also minimizes the maximum lateness. This is more general because an algorithm
that minimizes the maximum lateness is also optimal in the sense of feasibility. The
contrary is not true.

Using the same approach proposed by Dertouzos, let σ be the schedule produced by
a generic algorithm A and let σEDF be the schedule obtained by the EDF algorithm.
Since preemption is allowed, each task can be executed in disjointed time intervals.
Without loss of generality, the schedule σ can be divided into time slices of one unit
of time each. To simplify the formulation of the proof, let us define the following
abbreviations:

σ(t) identifies the task executing in the slice [t, t + 1).1

E(t) identifies the ready task that, at time t, has the earliest deadline.

tE(t) is the time (≥ t) at which the next slice of task E(t) begins its execution
in the current schedule.

If σ
= σEDF , then in σ there exists a time t such that σ(t)
= E(t). As illustrated
in Figure 3.4, the basic idea used in the proof is that interchanging the position of
σ(t) and E(t) cannot increase the maximum lateness. If the schedule σ starts at time
t = 0 and D is the latest deadline of the task set (D = max

i
{di}) then σEDF can be

obtained from σ by at most D transpositions.

1[a,b) denotes an interval of values x such that a ≤ x < b.

60 Chapter 3

1

11

0

4 5 6 7 8 9 13122 10 14 15

t = 4 (b)

(a)

31

7

0

1 2 3 4 5 6 98 11 12 1310 14 15

t = 6

J

t

t

t

Et = 6

E

σ

σ

4

(t) = 2

(t) = 4E

σ (t) = 4

σ
t

J

t

3

J 2

J 3

J 4

t

t

E

t

J 1

J 2

J

(t) = 2

t = 4

Figure 3.4 Proof of the optimality of the EDF algorithm. a. schedule σ at time t = 4. b.

new schedule obtained after a transposition.

Aperiodic Task Scheduling 61

Algorithm: interchange

{
for (t=0 to D-1) {

if (σ(t)
= E(t)) {
σ(tE) = σ(t);

σ(t) = E(t);

}
}

}

Figure 3.5 Transformation algorithm used by Dertouzos to prove the optimality of EDF.

The algorithm used by Dertouzos to transform any schedule σ into an EDF schedule
is illustrated in Figure 3.5. For each time slice t, the algorithm verifies whether the
task σ(t) scheduled in the slice t is the one with the earliest deadline, E(t). If it is,
nothing is done, otherwise a transposition takes place and the slices at t and tE are
exchanged (see Figure 3.4). In particular, the slice of task E(t) is anticipated at time t,
while the slice of task σ(t) is postponed at time tE . Using the same argument adopted
in the proof of Jackson’s theorem, it is easy to show that after each transposition the
maximum lateness cannot increase; therefore, EDF is optimal.

By applying the interchange algorithm to the schedule shown in Figure 3.4a, the first
transposition occurs at time t = 4. At this time, in fact, the CPU is assigned to J4,
but the task with the earliest deadline is J2, which is scheduled at time tE = 6. As a
consequence, the two slices in gray are exchanged and the resulting schedule is shown
in Figure 3.4b. The algorithm examines all slices, until t = D, performing a slice
exchange when necessary.

To show that a transposition preserves the schedulability, note that at any instant each
slice in σ can be either anticipated or postponed up to tE . If a slice is anticipated, the
feasibility of that task is obviously preserved. If a slice of J i is postponed at tE and σ
is feasible, it must be (tE + 1) ≤ dE , being dE the earliest deadline. Since dE ≤ di

for any i, then we have tE + 1 ≤ di, which guarantees the schedulability of the slice
postponed at tE .

62 Chapter 3

3.3.2 EXAMPLE

An example of schedule produced by the EDF algorithm on a set of five tasks is shown
in Figure 3.6. At time t = 0, tasks J1 and J2 arrive and, since d1 < d2, the processor
is assigned to J1, which completes at time t = 1. At time t = 2, when J2 is executing,
task J3 arrives and preempts J2, being d3 < d2. Note that, at time t = 3, the arrival
of J4 does not interrupt the execution of J3, because d3 < d4. As J3 is completed, the
processor is assigned to J2, which resumes and executes until completion. Then J4

starts at t = 5, but, at time t = 6, it is preempted by J5, which has an earlier deadline.
Task J4 resumes at time t = 8, when J5 is completed. Notice that all tasks meet their
deadlines and the maximum lateness is Lmax = L2 = 0.

1

452

1 2 2

a i 0

0 10987654321

t

0

t

t

t

10 9

22

632

i

J

4J

3J

2J

1J

i

d

C

J 5J 4J 3J 2

5

J

t

Figure 3.6 Example of EDF schedule.

3.3.3 GUARANTEE

When tasks have dynamic activations and the arrival times are not known a priori, the
guarantee test has to be done dynamically, whenever a new task enters the system.
Let J be the current set of active tasks, which have been previously guaranteed, and

Aperiodic Task Scheduling 63

let Jnew be a newly arrived task. In order to accept Jnew in the system we have to
guarantee that the new task set J ′ = J ∪ {Jnew} is also schedulable.

Following the same approach used in EDD, to guarantee that the set J ′ is feasibly
schedulable by EDF, we need to show that, in the worst case, all tasks in J ′ will
complete before their deadlines. This means that we have to show that, for each task,
the worst-case finishing time fi is less than or equal to its deadline di.

Without loss of generality, we can assume that all tasks in J ′ (including Jnew) are
ordered by increasing deadlines, so that J1 is the task with the earliest deadline. More-
over, since tasks are preemptable, when Jnew arrives at time t some tasks could have
been partially executed. Thus, let ci(t) be the remaining worst-case execution time of
task Ji (notice that ci(t) has an initial value equal to Ci and can be updated whenever
Ji is preempted). Hence, at time t, the worst-case finishing time of task J i can be
easily computed as

fi =

i
∑

k=1

ck(t).

Thus, the schedulability can be guaranteed by the following conditions:

∀i = 1, . . . , n
i

∑

k=1

ck(t) ≤ di. (3.2)

Noting that fi = fi−1 + ci(t) (where f0 = 0 by definition), the dynamic guarantee
test can be performed in O(n) by executing the algorithm shown in Figure 3.7.

3.4 NON-PREEMPTIVE SCHEDULING

When preemption is not allowed and tasks can have arbitrary arrivals, the problem
of minimizing the maximum lateness and the problem of finding a feasible schedule
become NP-hard [GLLK79, LRKB77, KIM78]. Figure 3.8 illustrates an example
that shows that EDF is no longer optimal if tasks cannot be preempted during their
execution. In fact, although a feasible schedule exists for that task set (see Figure 3.8a),
EDF does not produce a feasible schedule (see Figure 3.8b), since J 2 executes one
unit of time after its deadline. This happens because EDF immediately assigns the
processor to task J1; thus, when J2 arrives at time t = 1, J1 cannot be preempted. J2

can start only at time t = 4, after J1 completion, but it is too late to meet its deadline.

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor re-
mains idle in the interval [0, 1) although J1 is ready to execute. If arrival times are not

64 Chapter 3

Algorithm: EDF guarantee(J , Jnew)

{
J ′ = J ∪ {Jnew}; /* ordered by deadline */

t = current time();

f0 = 0;

for (each Ji ∈ J ′) {
fi = fi−1 + ci(t);

if (fi > di) return(UNFEASIBLE);

}
return(FEASIBLE);

}

Figure 3.7 EDF guarantee algorithm.

(b)

(a)

1

1

t

t

87654320

0

t

t

8765432

7

4

0a i

5

2

J

id

iC

J 2

1

J

J

2

Optimal

schedule

schedule

EDF
1J

2J

1

1

Figure 3.8 EDF is not optimal in a non-preemptive model. In fact, although there exists
a feasible schedule (a), the schedule produced by EDF (b) is infeasible.

Aperiodic Task Scheduling 65

F F

empty schedule

F
schedule

schedule
feasible

complete

partial schedule

Figure 3.9 Search tree for producing a non-preemptive schedule.

known a priori, then no online algorithm can decide whether to stay idle at time 0 or
execute task J1. A scheduling algorithm that does not permit the processor to be idle
when there are active jobs is called a non-idle algorithm. By restricting to the case of
non-idle scheduling algorithms, Jeffay, Stanat, and Martel [JSM91] proved that EDF
is still optimal in a non-preemptive task model.

When arrival times are known a priori, non-preemptive scheduling problems are usu-
ally treated by branch-and-bound algorithms that perform well in the average case
but degrade to exponential complexity in the worst case. The structure of the search
space is a search tree, represented in Figure 3.9, where the root is an empty schedule,
an intermediate vertex is a partial schedule, and a terminal vertex (leaf) is a com-

plete schedule. Since not all leaves correspond to feasible schedules, the goal of the
scheduling algorithm is to search for a leaf that corresponds to a feasible schedule.

At each step of the search, the partial schedule associated with a vertex is extended by
inserting a new task. If n is the total number of tasks in the set, the length of a path
from the root to a leaf (tree depth) is also n, whereas the total number of leaves is n!
(n factorial). An optimal algorithm, in the worst case, may make an exhaustive search
to find the optimal schedule in such a tree, and this may require to analyze n paths of
length n!, with a complexity of O(n · n!). Clearly, this approach is computationally
intractable and cannot be used in practical systems when the number of tasks is high.

In this section, two scheduling approaches are presented, whose objective is to limit
the search space and reduce the computational complexity of the algorithm. The first
algorithm uses additional information to prune the tree and reduce the complexity in
the average case. The second algorithm adopts suitable heuristics to follow promis-

66 Chapter 3

ing paths on the tree and build a complete schedule in polynomial time. Heuristic
algorithms may produce a feasible schedule in polynomial time; however, they do not
guarantee to find it, since they do not explore all possible solutions.

3.4.1 BRATLEY’S ALGORITHM

(1 | NO PREEM | FEASIBLE)

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to solve the
problem of finding a feasible schedule of a set of non-preemptive tasks with arbitrary
arrival times. The algorithm starts with an empty schedule and, at each step of the
search, visits a new vertex and adds a task in the partial schedule. With respect to the
exhaustive search, Bratley’s algorithm uses a pruning technique to determine when
a current search can be reasonably abandoned. In particular, a branch is abandoned
when

the addition of any node to the current path causes a missed deadline;

a feasible schedule is found at the current path.

To better understand the pruning technique adopted by the algorithm, consider the task
set shown in Figure 3.10, which also illustrates the paths analyzed in the tree space.

To follow the evolution of the algorithm, the numbers inside each node of the tree indi-
cate which task is being scheduled in that path, whereas the numbers beside the nodes
represent the time at which the indicated task completes its execution. Whenever the
addition of any node to the current path causes a missed deadline, the corresponding
branch is abandoned and the task causing the timing fault is labeled with a (†).

In the example, the first task considered for extending the empty schedule is J 1, whose
index is written in the first node of the leftmost branch of the tree. Since J 1 arrives at
t = 4 and requires two units of processing time, its worst-case finishing time is f1 = 6,
indicated beside the correspondent node. Before expanding the branch, however, the
pruning mechanism checks whether the addition of any node to the current path may
cause a timing fault, and it discovers that task J2 would miss its deadline, if added. As
a consequence, the search on this branch is abandoned and a considerable amount of
computation is avoided.

In the average case, pruning techniques are very effective for reducing the search
space. Nevertheless, the worst-case complexity of the algorithm is still O(n · n!).

Aperiodic Task Scheduling 67

7

J

3

i

1

21

Number in the node = scheduled task

= task that misses its deadline

5

= feasible schedule

6

6

Number outside the node = finishing time

3

2

6

6

232
431

1 3 4

446

1 3
6

1

1ia

2

4

2

7 5

1

1

2

6

0

4

C

2J 3J 4J

d

i

J

i

1 J

J 2

3

J

J

4

3

J 2

J J 4

J 3

1

Figure 3.10 Example of search performed by Bratley’s algorithm.

For this reason, Bratley’s algorithm can only be used in off-line mode, when all task
parameters (including the arrival times) are known in advance. This can be the case
of a time-triggered system, where tasks are activated at predefined instants by a timer
process.

As in most off-line real-time systems, the resulting schedule produced by Bratley’s
algorithm can be stored in a data structure, called task activation list. Then, at run
time, a dispatcher simply extracts the next task from the activation list and puts it in
execution.

68 Chapter 3

3.4.2 THE SPRING ALGORITHM

Here we describe the scheduling algorithm adopted in the Spring kernel [SR87, SR91],
a hard real-time kernel designed at the University of Massachusetts at Amherst by
Stankovic and Ramamritham to support critical control applications in dynamic en-
vironments. The objective of the algorithm is to find a feasible schedule when tasks
have different types of constraints, such as precedence relations, resource constraints,
arbitrary arrivals, non-preemptive properties, and importance levels. The Spring algo-
rithm is used in a distributed computer architecture and can also be extended to include
fault-tolerance requirements.

Clearly, this problem is NP -hard and finding a feasible schedule would be too expen-
sive in terms of computation time, especially for dynamic systems. In order to make
the algorithm computationally tractable even in the worst case, the search is driven by
a heuristic function H, which actively directs the scheduling to a plausible path. On
each level of the search, function H is applied to each of the tasks that remain to be
scheduled. The task with the smallest value determined by the heuristic function H is
selected to extend the current schedule.

The heuristic function is a very flexible mechanism to easily define and modify the
scheduling policy of the kernel. For example, if H = a i (arrival time) the algorithm
behaves as First Come First Served, if H = Ci (computation time) it works as Shortest
Job First, whereas if H = di (deadline) the algorithm is equivalent to Earliest Deadline
First.

To consider resource constraints in the scheduling algorithm, each task J i has to de-
clare a binary array of resources Ri = [R1(i), . . . , Rr(i)], where Rk(i) = 0 if Ji

does not use resource Rk , and Rk(i) = 1 if Ji uses Rk in exclusive mode. Given a
partial schedule, the algorithm determines, for each resource R k, the earliest time the
resource is available. This time is denoted as EATk (Earliest Available Time). Thus,
the earliest start time that a task Ji can begin the execution without blocking on shared
resources is

Test(i) = max[ai,max
k

(EATk)],

where ai is the arrival time of Ji. Once Test is calculated for all the tasks, a possible
search strategy is to select the task with the smallest value of Test. Composed heuristic
functions can also be used to integrate relevant information on the tasks, such as

H = d + W · C
H = d + W · Test,

Aperiodic Task Scheduling 69

First Come First Served (FCFS)

H = C

EDF + ESTF

EDF + SJF

Earliest Start Time First (ESTF)

Earliest Deadline First (EDF)

Shortest Job First (SJF)

est

H = a

H = d + w T

H = d + w C

estH = T

H = d

Figure 3.11 Example of heuristic functions that can be adopted in the Spring algorithm.

where W is a weight that can be adjusted for different application environments. Fig-
ure 3.11 shows some possible heuristic functions that can be used in Spring to direct
the search process.

In order to handle precedence constraints, another factor E, called eligibility, is added
to the heuristic function. A task becomes eligible to execute (E i = 1) only when
all its ancestors in the precedence graph are completed. If a task is not eligible, then
Ei = ∞; hence, it cannot be selected for extending a partial schedule.

While extending a partial schedule, the algorithm determines whether the current
schedule is strongly feasible; that is, also feasible by extending it with any of the re-
maining tasks. If a partial schedule is found not to be strongly feasible, the algorithm
stops the search process and announces that the task set is not schedulable, otherwise
the search continues until a complete feasible schedule is met. Since a feasible sched-
ule is reached through n nodes and each partial schedule requires the evaluation of
most n heuristic functions, the complexity of the Spring algorithm is O(n 2).

Backtracking can be used to continue the search after a failure. In this case, the al-
gorithm returns to the previous partial schedule and extends it by the task with the
second smallest heuristic value. To restrict the overhead of backtracking, however, the
maximum number of possible backtracks must be limited. Another method to reduce
the complexity is to restrict the number of evaluations of the heuristic function. Due
to that, if a partial schedule is found to be strongly feasible, the heuristic function is
applied not to all the remaining tasks but only to the k remaining tasks with the earliest
deadlines. Given that only k tasks are considered at each step, the complexity becomes

70 Chapter 3

O(kn). If the value of k is constant (and small, compared to the task set size), then
the complexity becomes linearly proportional to the number of tasks.

A disadvantage of the heuristic scheduling approach is that it is not optimal. This
means that, if there is a feasible schedule, the Spring algorithm may not find it.

3.5 SCHEDULING WITH PRECEDENCE

CONSTRAINTS

The problem of finding an optimal schedule for a set of tasks with precedence re-
lations is in general NP -hard. However, optimal algorithms that solve the problem
in polynomial time can be found under particular assumptions on the tasks. In this
section we present two algorithms that minimize the maximum lateness by assuming
synchronous activations and preemptive scheduling, respectively.

3.5.1 LATEST DEADLINE FIRST

(1 | PREC, SY NC | LMAX)

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the maximum
lateness of a set of tasks with precedence relations and simultaneous arrival times. The
algorithm is called Latest Deadline First (LDF) and can be executed in polynomial
time with respect to the number of tasks in the set.

Given a set J of n tasks and a directed acyclic graph (DAG) describing their prece-
dence relations, LDF builds the scheduling queue from tail to head: among the tasks
without successors or whose successors have been all selected, LDF selects the task
with the latest deadline to be scheduled last. This procedure is repeated until all tasks
in the set are selected. At run time, tasks are extracted from the head of the queue,
so that the first task inserted in the queue will be executed last, whereas the last task
inserted in the queue will be executed first.

The correctness of this rule is proved as follows: Let J be the complete set of tasks
to be scheduled, let Γ ⊆ J be the subset of tasks without successors, and let J l be the
task in Γ with the latest deadline dl. If σ is any schedule that does not follow the EDL
rule, then the last scheduled task, say Jk, will not be the one with the latest deadline;
thus dk ≤ dl. Since Jl is scheduled before Jk, let us partition Γ into four subsets, so

Aperiodic Task Scheduling 71

that Γ = A∪ {Jl} ∪B ∪ {Jk}. Clearly, in σ the maximum lateness for Γ is greater or
equal to Lk = f − dk, where f =

∑n
i=1 Ci is the finishing time of task Jk .

We show that moving Jl to the end of the schedule cannot increase the maximum
lateness in Γ, which proves the optimality of LDF. To do that, let σ ∗ be the schedule
obtained from σ after moving task J l to the end of the queue and shifting all other
tasks to the left. The two schedules σ and σ∗ are depicted in Figure 3.12. Clearly, in
σ∗ the maximum lateness for Γ is given by

L∗
max(Γ) = max[L∗

max(A), L∗
max(B), L∗

k, L∗
l].

Each argument of the max function is no greater than Lmax(Γ). In fact,

L∗
max(A) = Lmax(A) ≤ Lmax(Γ) because A is not moved;

L∗
max(B) ≤ Lmax(B) ≤ Lmax(Γ) because B starts earlier in σ∗;

L∗
k ≤ Lk ≤ Lmax(Γ) because task Jk starts earlier in σ∗;

L∗
l = f − dl ≤ f − dk ≤ Lmax(Γ) because dk ≤ dl.

Γ

A
t

B

A B
t

f

*
kσ

J l J k

J lJ

d ld k

d k d l

σ

Figure 3.12 Proof of LDF optimality.

Since L∗
max(Γ) ≤ Lmax(Γ), moving Jl to the end of the schedule does not increase

the maximum lateness in Γ. This means that scheduling last the task J l with the latest
deadline minimizes the maximum lateness in Γ. Then, removing this task from J and
repeating the argument for the remaining n − 1 tasks in the set J − {J l}, LDF can
find the second-to-last task in the schedule, and so on. The complexity of the LDF
algorithm is O(n2), since for each of the n steps it needs to visit the precedence graph
to find the subset Γ with no successors.

72 Chapter 3

Consider the example depicted in Figure 3.13, which shows the parameters of six tasks
together with their precedence graph. The numbers beside each node of the graph indi-
cate task deadlines. Figure 3.13 also shows the schedule produced by EDF to highlight
the differences between the two approaches. The EDF schedule is constructed by se-
lecting the task with the earliest deadline among the current eligible tasks. Notice that
EDF is not optimal under precedence constraints, since it achieves a greater L max

with respect to LDF.

3C i

d i

J 1 2 3J J 4J 5J J 6

d

5

d 1 d 34 d 2 d 6d 5

DAG

5 4

2

63

0

EDF

t

1

6

1 1 1 1

52 4 53

1

6

J 5

d d

6

2

7

L max L 4= = 1JJ 5

1

2J 4J3JJ 1

4

2

J 1

J 2

J 6J

6

6543

5

J

JLDF

0

J

t

d 1 d 3d 4 d

2 J

74321

L3 max = 0J 1 J 65J4

5

Figure 3.13 Comparison between schedules produced by LDF and EDF on a set of tasks
with precedence constraints.

Aperiodic Task Scheduling 73

3.5.2 EDF WITH PRECEDENCE CONSTRAINTS

(1 | PREC, PREEM | LMAX)

The problem of scheduling a set of n tasks with precedence constraints and dynamic
activations can be solved in polynomial time complexity only if tasks are preemptable.
In 1990, Chetto, Silly, and Bouchentouf [CSB90] presented an algorithm that solves
this problem in elegant fashion. The basic idea of their approach is to transform a set
J of dependent tasks into a set J ∗ of independent tasks by an adequate modification
of timing parameters. Then, tasks are scheduled by the Earliest Deadline First (EDF)
algorithm. The transformation algorithm ensures that J is schedulable and the prece-
dence constraints are obeyed if and only if J ∗ is schedulable. Basically, all release
times and deadlines are modified so that each task cannot start before its predecessors
and cannot preempt their successors.

MODIFICATION OF THE RELEASE TIMES

The rule for modifying tasks’ release times is based on the following observation.
Given two tasks Ja and Jb, such that Ja → Jb (that is, Ja is an immediate predecessor
of Jb), then in any valid schedule that meets precedence constraints the following
conditions must be satisfied (see Figure 3.14):

sb ≥ rb (that is, Jb must start the execution not earlier than its release
time);

sb ≥ ra + Ca (that is, Jb must start the execution not earlier than the minimum
finishing time of Ja).

>s b Caar +

brb

b

s

d bd a
s brr a

Ca

Cb

J a

J b

>

Figure 3.14 If Ja → Jb, then the release time of Jb can be replaced by max(rb, ra +
Ca).

74 Chapter 3

Therefore, the release time rb of Jb can be replaced by the maximum between rb and
(ra + Ca) without changing the problem. Let r∗

b be the new release time of Jb. Then,

r∗b = max(rb, ra + Ca).

The algorithm that modifies the release times can be implemented in O(n 2) and can
be described as follows:

1. For any initial node of the precedence graph, set r ∗
i = ri.

2. Select a task Ji such that its release time has not been modified but the release
times of all immediate predecessors Jh have been modified. If no such task exists,
exit.

3. Set r∗i = max[ri, max(r∗h + Ch : Jh → Ji)].

4. Return to step 2.

MODIFICATION OF THE DEADLINES

The rule for modifying tasks’ deadlines is based on the following observation. Given
two tasks Ja and Jb, such that Ja → Jb (that is, Ja is an immediate predecessor of
Jb), then in any feasible schedule that meets the precedence constraints the following
conditions must be satisfied (see Figure 3.15):

fa ≤ da (that is, Ja must finish the execution within its deadline);

fa ≤ db − Cb (that is, Ja must finish the execution not later than the maximum
start time of Jb).

b - bCf da <

d aa

r

f J a

J b

ar b

Ca

Cb

f a d a d b

<

Figure 3.15 If Ja → Jb, then the deadline of Ja can be replaced by min(da, db − Cb).

Aperiodic Task Scheduling 75

Therefore, the deadline da of Ja can be replaced by the minimum between da and
(db − Cb) without changing the problem. Let d∗

a be the new deadline of Ja. Then,

d∗
a = min(da, db − Cb).

The algorithm that modifies the deadlines can be implemented in O(n 2) and can be
described as follows:

1. For any terminal node of the precedence graph, set d ∗
i = di.

2. Select a task Ji such that its deadline has not been modified but the deadlines of
all immediate successors Jk have been modified. If no such task exists, exit.

3. Set d∗
i = min[di, min(d∗

k − Ck : Ji → Jk)].

4. Return to step 2.

PROOF OF OPTIMALITY

The transformation algorithm ensures that if a feasible schedule exists for the modified
task set J ∗ under EDF, then the original task set J is also schedulable; that is, all tasks
in J meet both precedence and timing constraints. In fact, if J ∗ is schedulable, all
modified tasks start at or after time r∗

i and are completed at or before time d∗
i . Since

r∗i ≥ ri and d∗
i ≤ di, the schedulability of J ∗ implies that J is also schedulable.

To show that precedence relations in J are not violated, consider the example illus-
trated in Figure 3.16, where J1 must precede J2 (i.e., J1 → J2), but J2 arrives before
J1 and has an earlier deadline. Clearly, if the two tasks are executed under EDF, their
precedence relation cannot be met. However, if we apply the transformation algorithm,
the time constraints are modified as follows:

{

r∗1 = r1

r∗2 = max(r2, r1 + C1)

{

d∗
1 = min(d1, d2 − C2)

d∗
2 = d2

This means that, since r∗2 > r∗1 , J2 cannot start before J1. Moreover, J2 cannot
preempt J1 because d∗

1 < d∗
2 and, based on EDF, the processor is assigned to the task

with the earliest deadline. Hence, the precedence relation is respected.

In general, for any pair of tasks such that J i ≺ Jj , we have r∗i ≤ r∗j and d∗
i ≤ d∗j . This

means that, if Ji is in execution, then all successors of Ji cannot start before ri because

76 Chapter 3

d

1

2
*d

1
*d 2 C2

2

1Cr 1r 2
*

r

d

=

r

=

=

=

-=

+

1
*

1 d

*d

2J

r 2 2d

r *

*

1J

1r

1C 1
*d

22r

1

2J1J

2C

=

Figure 3.16 The transformation algorithm preserves the timing and the precedence con-
straints.

r∗i ≤ r∗j . Moreover, they cannot preempt J i because d∗
i ≤ d∗j and, according to EDF,

the processor is assigned to the ready task having the earliest deadline. Therefore,
both timing and precedence constraints specified for task set J are guaranteed by the
schedulability of the modified set J ∗.

3.6 SUMMARY

The scheduling algorithms described in this chapter for handling real-time tasks with
aperiodic arrivals can be compared in terms of assumptions on the task set and com-
putational complexity. Figure 3.17 summarizes the main characteristics of such al-
gorithms and can be used for selecting the most appropriate scheduling policy for a
particular problem.

Aperiodic Task Scheduling 77

sync. activation
preemptive

constraints

async. activation

non-preemptive

(Chetto et al. ’90)

Heuristic

Spring

Optimal

independent

Optimal Optimal

O(n n!)

Optimal

Optimal

precedence Ramamritham ’87)
(Lawler ’73)

async. activation

(Bratley ’71)
Tree search(Horn ’74)EDFEDD (Jackson ’55)

2O(n)

LDF (Stankovic &

2O(n)

*EDF

2O(n)

2O(n)O(n logn)

Figure 3.17 Scheduling algorithms for aperiodic tasks.

Exercises

3.1 Check whether the Earliest Due Date (EDD) algorithm produces a feasible
schedule for the following task set (all tasks are synchronous and start at time
t = 0):

J1 J2 J3 J4

Ci 4 5 2 3
Di 9 16 5 10

3.2 Write an algorithm for finding the maximum lateness of a task set scheduled
by the EDD algorithm.

3.3 Draw the full scheduling tree for the following set of non-preemptive tasks and
mark the branches that are pruned by the Bratley’s algorithm.

J1 J2 J3 J4

ai 0 4 2 6
Ci 6 2 4 2
Di 18 8 9 10

3.4 On the scheduling tree developed in the previous exercise find the path pro-
duced by the Spring algorithm using the following heuristic function: H =
a + C + D. Then find a heuristic function that produces a feasible schedule.

78 Chapter 3

3.5 Given seven tasks, A, B, C, D, E, F , and G, construct the precedence graph
from the following precedence relations:

A → C
B → C B → D
C → E C → F
D → F D → G

Then, assuming that all tasks arrive at time t = 0, have deadline D = 25, and
computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their arrival times
and deadlines to schedule them by EDF.

4
PERIODIC TASK SCHEDULING

4.1 INTRODUCTION

In many real-time control applications, periodic activities represent the major compu-
tational demand in the system. Periodic tasks typically arise from sensory data ac-
quisition, low-level servoing, control loops, action planning, and system monitoring.
Such activities need to be cyclically executed at specific rates, which can be derived
from the application requirements. Some specific examples of real-time applications
are illustrated in Chapter 11.

When a control application consists of several concurrent periodic tasks with indi-
vidual timing constraints, the operating system has to guarantee that each periodic
instance is regularly activated at its proper rate and is completed within its deadline
(which, in general, could be different than its period).

In this chapter, four basic algorithms for handling periodic tasks are described in detail:
Timeline Scheduling, Rate Monotonic, Earliest Deadline First, and Deadline Mono-
tonic. Schedulability analysis is performed for each algorithm in order to derive a
guarantee test for generic task sets. To facilitate the description of the scheduling
results presented in this chapter, the following notation is introduced:

Γ denotes a set of periodic tasks;

τi denotes a generic periodic task;

τi,j denotes the jth instance of task τi;

ri,j denotes the release time of the jth instance of task τi;

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

79

4

 Springer Science+Business Media, LLC 2011©

80 Chapter 4

Φi denotes the phase of task τi; that is, the release time of its first instance
(Φi = ri,1);

Di denotes the relative deadline of task τi;

di,j denotes the absolute deadline of the jth instance of task τ i (di,j = Φi +
(j − 1)Ti + Di).

si,j denotes the start time of the jth instance of task τi; that is, the time at
which it starts executing.

fi,j denotes the finishing time of the jth instance of task τ i; that is, the time
at which it completes the execution.

Moreover, in order to simplify the schedulability analysis, the following hypotheses
are assumed on the tasks:

A1. The instances of a periodic task τi are regularly activated at a constant
rate. The interval Ti between two consecutive activations is the period
of the task.

A2. All instances of a periodic task τi have the same worst-case execution
time Ci.

A3. All instances of a periodic task τi have the same relative deadline Di,
which is equal to the period Ti.

A4. All tasks in Γ are independent; that is, there are no precedence relations
and no resource constraints.

In addition, the following assumptions are implicitly made:

A5. No task can suspend itself, for example on I/O operations.

A6. All tasks are released as soon as they arrive.

A7. All overheads in the kernel are assumed to be zero.

Notice that assumptions A1 and A2 are not restrictive because in many control ap-
plications each periodic activity requires the execution of the same routine at regular
intervals; therefore, both Ti and Ci are constant for every instance. On the other hand,
assumptions A3 and A4 could be too tight for practical applications.

Periodic Task Scheduling 81

The four assumptions are initially considered to derive some important results on pe-
riodic task scheduling, then such results are extended to deal with more realistic cases,
in which assumptions A3 and A4 are relaxed. In particular, the problem of scheduling
a set of tasks under resource constraints is considered in detail in Chapter 7.

In those cases in which the assumptions A1, A2, A3, and A4 hold, a periodic task τ i

can be completely characterized by the following three parameters: its phase Φ i, its
period Ti and its worst-case computation time Ci. Thus, a set of periodic tasks can be
denoted by

Γ = {τi(Φi, Ti, Ci), i = 1, . . . , n}.
The release time ri,k and the absolute deadline di,k of the generic kth instance can
then be computed as

ri,k = Φi + (k − 1)Ti

di,k = ri,k + Ti = Φi + kTi.

Other parameters that are typically defined on a periodic task are described below.

Hyperperiod. It is the minimum interval of time after which the schedule repeats
itself. If H is the length of such an interval, then the schedule in [0, H] is the
same as that in [kK, (k + 1)K] for any integer k > 0. For a set of periodic
tasks synchronously activated at time t = 0, the hyperperiod is given by the least
common multiple of the periods:

H = lcm(T1, . . . , Tn).

Job response time. It is the time (measured from the release time) at which the
job is terminated:

Ri,k = fi,k − ri,k.

Task response time. It is the maximum response time among all the jobs:

Ri = max
k

Ri,k.

Critical instant of a task. It is the arrival time that produces the largest task
response time.

Critical time zone of a task. It is the interval between the critical instant and the
response time of the corresponding request of the task.

Relative Start Time Jitter of a task. It is the maximum deviation of the start
time of two consecutive instances:

RRJi = max
k

|(si,k − ri,k) − (si,k−1 − ri,k−1)|.

82 Chapter 4

Absolute Start Time Jitter of a task. It is the maximum deviation of the start
time among all instances:

ARJi = max
k

(si,k − ri,k) − min
k

(si,k − ri,k).

Relative Finishing Jitter of a task. It is the maximum deviation of the finishing
time of two consecutive instances:

RFJi = max
k

|(fi,k − ri,k) − (fi,k−1 − ri,k−1)|.

Absolute Finishing Jitter of a task. It is the maximum deviation of the finishing
time among all instances:

AFJi = max
k

(fi,k − ri,k) − min
k

(fi,k − ri,k).

In this context, a periodic task τi is said to be feasible if all its instances finish within
their deadlines. A task set Γ is said to be schedulable (or feasible) if all tasks in Γ are
feasible.

4.1.1 PROCESSOR UTILIZATION FACTOR

Given a set Γ of n periodic tasks, the processor utilization factor U is the fraction
of processor time spent in the execution of the task set [LL73]. Since C i/Ti is the
fraction of processor time spent in executing task τ i, the utilization factor for n tasks
is given by

U =
n
∑

i=1

Ci

Ti
.

The processor utilization factor provides a measure of the computational load on the
CPU due to the periodic task set. Although the CPU utilization can be improved by
increasing tasks’ computation times or by decreasing their periods, there exists a max-
imum value of U below which Γ is schedulable and above which Γ is not schedulable.
Such a limit depends on the task set (that is, on the particular relations among tasks’
periods) and on the algorithm used to schedule the tasks. Let Uub(Γ, A) be the upper
bound of the processor utilization factor for a task set Γ under a given algorithm A.
When U = Uub(Γ, A), the set Γ is said to fully utilize the processor. In this situation,
Γ is schedulable by A, but an increase in the computation time in any of the tasks will
make the set infeasible.

Figure 4.1 shows an example of two tasks (where τ1 has higher priority than τ2) in
which Uub = 5/6 ≃ 0.833. In fact, if any execution time is increased by epsilon, the

Periodic Task Scheduling 83

τ 1

τ 2

0 181262 4 8 10 14 16 20

Figure 4.1 A task set with Uub = 5/6.

τ 1

τ 2

0 181262 4 8 10 14 16 20

Figure 4.2 A task set with Uub = 0.9.

task set becomes infeasible, since the first job of τ2 misses its deadline. Figure 4.2
shows another example in which Uub = 0.9. Notice that setting T1 = 4 and T2 = 8,
Uub becomes 1.0.

For a given algorithm A, the least upper bound U lub(A) of the processor utilization
factor is the minimum of the utilization factors over all task sets that fully utilize the
processor:

Ulub(A) = min
Γ

Uub(Γ, A).

Figure 4.3 graphically illustrates the meaning of U lub for a scheduling algorithm A.
The task sets Γi shown in the figure differ for the number of tasks and for the con-
figuration of their periods. When scheduled by the algorithm A, each task set Γ i

fully utilizes the processor when its utilization factor U i (varied by changing tasks’
computation times) reaches a particular upper bound Uubi

. If Ui ≤ Uubi
, then Γi is

schedulable, else Γi is not schedulable. Notice that each task set may have a different
upper bound. Since Ulub(A) is the minimum of all upper bounds, any task set having
a processor utilization factor below Ulub(A) is certainly schedulable by A.

Ulub defines an important characteristic of a scheduling algorithm useful for easily
verifying the schedulability of a task set. In fact, any task set whose processor utiliza-
tion factor is less than or equal to this bound is schedulable by the algorithm. On the
other hand, when Ulub < U ≤ 1.0, the schedulability can be achieved only if the task
periods are suitably related.

84 Chapter 4

Γ

mub

U

U

U

U

U

10

NOYES

U

2

Γ

1

2

Γ3

4Γ

mΓ

U

U

ub

U
4ub

ub3

U

U
1ub

lub

?

Figure 4.3 Meaning of the least upper bound of the processor utilization factor.

If the utilization factor of a task set is greater than 1.0, the task set cannot be scheduled
by any algorithm. To show this result, let H be the hyperperiod of the task set. If
U > 1, we also have UH > H , which can be written as

n
∑

i=1

H

Ti
Ci > H.

The factor (H/Ti) represents the (integer) number of times τ i is executed in the hyper-
period, whereas the quantity (H/Ti)Ci is the total computation time requested by τi

in the hyperperiod. Hence, the sum on the left hand side represents the total computa-
tional demand requested by the task set in [0, H). Clearly, if the total demand exceeds
the available processor time, there is no feasible schedule for the task set.

4.2 TIMELINE SCHEDULING

Timeline Scheduling (TS), also known as a Cyclic Executive, is one of the most used
approaches to handle periodic tasks in defense military systems and traffic control
systems. The method consists of dividing the temporal axis into slots of equal length,
in which one or more tasks can be allocated for execution, in such a way to respect
the frequencies derived from the application requirements. A timer synchronizes the
activation of the tasks at the beginning of each time slot. In order to illustrate this
method, consider the following example, in which three tasks, A, B and C, need to
be executed with a frequency of 40, 20 and 10 Hz, respectively. By analyzing the

Periodic Task Scheduling 85

Major Cycle

Minor Cycle

0 25 50 75 100 125 150 t

task B

task A

task C

Figure 4.4 Example of timeline scheduling.

task periods (TA = 25 ms, TB = 50 ms, TC = 100 ms), it is easy to verify that the
optimal length for the time slot is 25 ms, which is the Greatest Common Divisor of the
periods. Hence, to meet the required frequencies, task A needs to be executed in every
time slot, task B every two slots, and task C every four slots. A possible scheduling
solution for this task set is illustrated in Figure 4.4.

The duration of the time slot is also called a Minor Cycle, whereas the minimum
interval of time after which the schedule repeats itself (the hyperperiod) is also called
a Major Cycle. In general, the major cycle is equal to the least common multiple of
all the periods (in the example, it is equal to 100 ms). In order to guarantee a priori
that a schedule is feasible on a particular processor, it is sufficient to know the task
worst-case execution times and verify that the sum of the executions within each time
slot is less than or equal to the minor cycle. In the example shown in Figure 4.4, if
CA, CB and CC denote the execution times of the tasks, it is sufficient to verify that

{

CA + CB ≤ 25ms
CA + CC ≤ 25ms

The main advantage of timeline scheduling is its simplicity. The method can be imple-
mented by programming a timer to interrupt with a period equal to the minor cycle and
by writing a main program that calls the tasks in the order given in the major cycle,
inserting a time synchronization point at the beginning of each minor cycle. Since the
task sequence is not decided by a scheduling algorithm in the kernel, but it is triggered
by the calls made by the main program, there are no context switches, so the runtime
overhead is very low. Moreover, the sequence of tasks in the schedule is always the
same, can be easily visualized, and it is not affected by jitter (i.e., task start times and
response times are not subject to large variations).

In spite of these advantages, timeline scheduling has some problems. For example, it
is very fragile during overload conditions. If a task does not terminate at the minor
cycle boundary, it can either be continued or aborted. In both cases, however, the

86 Chapter 4

system may run into a critical situation. In fact, if the failing task is left in execution,
it can cause a domino effect on the other tasks, breaking the entire schedule (timeline
break). On the other hand, if the failing task is aborted while updating some shared
data, the system may be left in an inconsistent state, jeopardizing the correct system
behavior.

Another big problem of the timeline scheduling technique is its sensitivity to appli-
cation changes. If updating a task requires an increase of its computation time or
its activation frequency, the entire scheduling sequence may need to be reconstructed
from scratch. Considering the previous example, if task B is updated to B’ and the
code change is such that CA + CB′ > 25ms, then task B’ must be split in two or
more pieces to be allocated in the available intervals of the timeline. Changing the
task frequencies may cause even more radical changes in the schedule. For example,
if the frequency of task B changes from 20 Hz to 25 Hz (that is TB changes from 50 to
40 ms), the previous schedule is not valid any more, because the new Minor Cycle is
equal to 5 ms and the new Major Cycle is equal to 200 ms. Note that after this change,
since the Minor cycle is much shorter than before, all the tasks may need to be split
into small pieces to fit in the new time slots.

Finally, another limitation of the timeline scheduling is that it is difficult to handle ape-
riodic activities efficiently without changing the task sequence. The problems outlined
above can be solved by using priority-based scheduling algorithms.

4.3 RATE MONOTONIC SCHEDULING

The Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns priorities
to tasks according to their request rates. Specifically, tasks with higher request rates
(that is, with shorter periods) will have higher priorities. Since periods are constant,
RM is a fixed-priority assignment: a priority Pi is assigned to the task before execu-
tion and does not change over time. Moreover, RM is intrinsically preemptive: the
currently executing task is preempted by a newly arrived task with shorter period.

In 1973, Liu and Layland [LL73] showed that RM is optimal among all fixed-priority
assignments in the sense that no other fixed-priority algorithms can schedule a task set
that cannot be scheduled by RM. Liu and Layland also derived the least upper bound
of the processor utilization factor for a generic set of n periodic tasks. These issues
are discussed in detail in the following subsections.

Periodic Task Scheduling 87

n

(a)

t

t

t

(b)

τ

τ

iτ

n

i+ 3 C

τ

nC

i+ 2 C

n

i

C

t

Figure 4.5 a. The response time of task τn is delayed by the interference of τi with higher
priority. b. The interference may increase advancing the release time of τi.

4.3.1 OPTIMALITY

In order to prove the optimality of the RM algorithm, we first show that a critical in-
stant for any task occurs whenever the task is released simultaneously with all higher-
priority tasks. Let Γ = {τ1, τ2, . . . , τn} be the set of periodic tasks ordered by in-
creasing periods, with τn being the task with the longest period. According to RM, τn

will also be the task with the lowest priority.

As shown in Figure 4.5a, the response time of task τn is delayed by the interference
of τi with higher priority. Moreover, from Figure 4.5b, it is clear that advancing the
release time of τi may increase the completion time of τn. As a consequence, the
response time of τn is largest when it is released simultaneously with τi. Repeating
the argument for all τi, i = 2, . . . , n − 1, we prove that the worst response time of a
task occurs when it is released simultaneously with all higher-priority tasks.

A first consequence of this result is that task schedulability can easily be checked at
their critical instants. Specifically, if all tasks are feasible at their critical instants, then
the task set is schedulable in any other condition. Based on this result, the optimality
of RM is justified by showing that if a task set is schedulable by an arbitrary priority
assignment, then it is also schedulable by RM.

Consider a set of two periodic tasks τ1 and τ2, with T1 < T2. If priorities are not
assigned according to RM, then task τ2 will receive the highest priority. This situation

88 Chapter 4

1 tτ

2τ
t

Figure 4.6 Tasks scheduled by an algorithm different from RM.

is depicted in Figure 4.6, from which it is easy to see that, at critical instants, the
schedule is feasible if the following inequality is satisfied:

C1 + C2 ≤ T1. (4.1)

On the other hand, if priorities are assigned according to RM, task T 1 will receive
the highest priority. In this situation, illustrated in Figure 4.7, in order to guarantee a
feasible schedule two cases must be considered. Let F = ⌊T2/T1⌋ be the number1 of
periods of τ1 entirely contained in T2.

Case 1. The computation time of τ1 (synchronously activated with τ2) is short
enough that all its requests are completed before the second request of
τ2. That is, C1 < T2 − FT1.

In this case, from Figure 4.7a, we can see that the task set is schedulable if

(F + 1)C1 + C2 ≤ T2. (4.2)

We now show that inequality (4.1) implies (4.2). In fact, by multiplying both sides of
(4.1) by F we obtain

FC1 + FC2 ≤ FT1,

and, since F ≥ 1, we can write

FC1 + C2 ≤ FC1 + FC2 ≤ FT1.

Adding C1 to each member we get

(F + 1)C1 + C2 ≤ FT1 + C1.

Since we assumed that C1 < T2 − FT1, we have

(F + 1)C1 + C2 ≤ FT1 + C1 < T2,

which satisfies (4.2).
1⌊x⌋ denotes the largest integer smaller than or equal to x, whereas ⌈x⌉ denotes the smallest integer

greater than or equal to x.

Periodic Task Scheduling 89

>

1F T

1F T

2

1

2

tcase (b)

T 1- F T2C

T

T

2

case (a) 1

τ

τ

2τ

1τ

< T1C 1- F T2

t

t

t

Figure 4.7 Schedule produced by RM in two different conditions.

Case 2. The computation time of τ1 (synchronously activated with τ2) is long
enough to overlap with the second request of τ2.
That is, C1 ≥ T2 − FT1.

In this case, from Figure 4.7b, we can see that the task set is schedulable if

FC1 + C2 ≤ FT1. (4.3)

Again, inequality (4.1) implies (4.3). In fact, by multiplying both sides of (4.1) by F
we obtain

FC1 + FC2 ≤ FT1,

and, since F ≥ 1, we can write

FC1 + C2 ≤ FC1 + FC2 ≤ FT1,

which satisfies (4.3).

Basically, it has been shown that, given two periodic tasks τ1 and τ2, with T1 < T2, if
the schedule is feasible by an arbitrary priority assignment, then it is also feasible by
RM. That is, RM is optimal. This result can easily be extended to a set of n periodic
tasks. We now show how to compute the least upper bound U lub of the processor
utilization factor for the RM algorithm. The bound is first determined for two tasks
and then extended for an arbitrary number of tasks.

90 Chapter 4

4.3.2 CALCULATION OF ULUB FOR TWO TASKS

Consider a set of two periodic tasks τ1 and τ2, with T1 < T2. In order to compute
Ulub for RM, we have to

assign priorities to tasks according to RM, so that τ1 is the task with the highest
priority;

compute the upper bound Uub for the task set by inflating computation times to
fully utilize the processor; and

minimize the upper bound Uub with respect to all the other task parameters.

As before, let F = ⌊T2/T1⌋ be the number of periods of τ1 entirely contained in
T2. Without loss of generality, the computation time C2 is adjusted to fully utilize the
processor. Again two cases must be considered.

Case 1. The computation time of τ1 (synchronously activated with τ2) is short
enough that all its requests are completed before the second request of
τ2. That is, C1 ≤ T2 − FT1.

In this situation, as depicted in Figure 4.8, the largest possible value of C 2 is

C2 = T2 − C1(F + 1),

and the corresponding upper bound Uub is

Uub =
C1

T1
+

C2

T2
=

C1

T1
+

T2 − C1(F + 1)

T2
=

= 1 +
C1

T1
− C1

T2
(F + 1) =

= 1 +
C1

T2

[

T2

T1
− (F + 1)

]

.

Since the quantity in square brackets is negative, Uub is monotonically decreasing in
C1, and, being C1 ≤ T2 − FT1, the minimum of Uub occurs for

C1 = T2 − FT1.

Periodic Task Scheduling 91

1

 0 1

τ 2

T 2F T

- F T

τ

1C1 < T2case (a)

Figure 4.8 The second request of τ2 is released when τ1 is idle.

Case 2. The computation time of τ1 (synchronously activated with τ2) is long
enough to overlap with the second request of τ2.
That is, C1 ≥ T2 − FT1.

In this situation, depicted in Figure 4.9, the largest possible value of C 2 is

C2 = (T1 − C1)F,

and the corresponding upper bound Uub is

Uub =
C1

T1
+

C2

T2
=

C1

T1
+

(T1 − C1)F

T2
=

=
T1

T2
F +

C1

T1
− C1

T2
F =

=
T1

T2
F +

C1

T2

[

T2

T1
− F

]

. (4.4)

Since the quantity in square brackets is positive, Uub is monotonically increasing in
C1 and, being C1 ≥ T2 − FT1, the minimum of Uub occurs for

C1 = T2 − FT1.

In both cases, the minimum value of Uub occurs for

C1 = T2 − T1F.

92 Chapter 4

1

C

2

τ 2

F T1

- F T 11

τ

> T2case (b)

T 0

Figure 4.9 The second request of τ2 is released when τ1 is active.

Hence, using the minimum value of C1, from equation (4.4) we have

U =
T1

T2
F +

C1

T2

(

T2

T1
− F

)

=

=
T1

T2
F +

(T2 − T1F)

T2

(

T2

T1
− F

)

=

=
T1

T2

[

F +

(

T2

T1
− F

)(

T2

T1
− F

)]

. (4.5)

To simplify the notation, let G = T2/T1 − F . Thus,

U =
T1

T2
(F + G2) =

(F + G2)

T2/T1
=

=
(F + G2)

(T2/T1 − F) + F
=

F + G2

F + G
=

=
(F + G) − (G − G2)

F + G
= 1 − G(1 − G)

F + G
. (4.6)

Since 0 ≤ G < 1, the term G(1 − G) is nonnegative. Hence, U is monotonically
increasing with F . As a consequence, the minimum of U occurs for the minimum
value of F ; namely, F = 1. Thus,

U =
1 + G2

1 + G
. (4.7)

Periodic Task Scheduling 93

Minimizing U over G we have

dU

dG
=

2G(1 + G) − (1 + G2)

(1 + G)2
=

=
G2 + 2G − 1

(1 + G)2
,

and dU/dG = 0 for G2 + 2G − 1 = 0, which has two solutions:

{

G1 = −1 −
√

2

G2 = −1 +
√

2.

Since 0 ≤ G < 1, the negative solution G = G1 is discarded. Thus, from equation
(4.7), the least upper bound of U is given for G = G2:

Ulub =
1 + (

√
2 − 1)2

1 + (
√

2 − 1)
=

4 − 2
√

2√
2

= 2(
√

2 − 1).

That is,
Ulub = 2(21/2 − 1) ≃ 0.83. (4.8)

Notice that, if T2 is a multiple of T1, G = 0 and the processor utilization factor be-
comes 1. In general, the utilization factor for two tasks can be computed as a function
of the ratio k = T2/T1. For a given F , from equation (4.5) we can write

U =
F + (k − F)2

k
= k − 2F +

F (F + 1)

k
.

Minimizing U over k we have

dU

dk
= 1 − F (F + 1)

k2
,

and dU/dk = 0 for k∗ =
√

F (F + 1). Hence, for a given F , the minimum value of
U is

U∗ = 2(
√

F (F + 1) − F).

Table 4.1 shows some values of k∗ and U ∗ as a function of F , whereas Figure 4.10
shows the upper bound of U as a function of k.

94 Chapter 4

F k∗ U∗

1
√

2 0.828
2

√
6 0.899

3
√

12 0.928
4

√
20 0.944

5
√

30 0.954

Table 4.1 Values of k∗
i

and U∗

i
as a function of F .

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

U
p
p
e
r

B
o
u
n
d
 o

f
P

ro
c
e
s
s
o
r

U
ti
liz

a
ti
o
n

k

Figure 4.10 Upper bound of the processor utilization factor as a function of the ratio
k = T2/T1.

Periodic Task Scheduling 95

4.3.3 CALCULATION OF ULUB FOR N TASKS

From the previous computation, the conditions that allow to compute the least upper
bound of the processor utilization factor are

⎧

⎨

⎩

F = 1
C1 = T2 − FT1

C2 = (T1 − C1)F,

which can be rewritten as
⎧

⎨

⎩

T1 < T2 < 2T1

C1 = T2 − T1

C2 = 2T1 − T2.

Generalizing for an arbitrary set of n tasks, the worst conditions for the schedulability
of a task set that fully utilizes the processor are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T1 < Tn < 2T1

C1 = T2 − T1

C2 = T3 − T2

. . .
Cn−1 = Tn − Tn−1

Cn = T1 − (C1 + C2 + . . . + Cn−1) = 2T1 − Tn.

Thus, the processor utilization factor becomes

U =
T2 − T1

T1
+

T3 − T2

T2
+ . . . +

Tn − Tn−1

Tn−1
+

2T1 − Tn

Tn
.

Defining

Ri =
Ti+1

Ti

and noting that

R1R2 . . . Rn−1 =
Tn

T1
,

the utilization factor may be written as

U =
n−1
∑

i=1

Ri +
2

R1R2 . . . Rn−1
− n.

To minimize U over Ri, i = 1, . . . , n − 1, we have

∂U

∂Rk
= 1 − 2

R2
i (
∏n−1

i�=k Ri)
.

96 Chapter 4

n Ulub

1 1.000
2 0.828
3 0.780
4 0.757
5 0.743

n Ulub

6 0.735
7 0.729
8 0.724
9 0.721

10 0.718

Table 4.2 Values of Ulub as a function of n.

Thus, defining P = R1R2 . . . Rn−1, U is minimum when
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R1P = 2
R2P = 2
. . .
Rn−1P = 2.

That is, when all Ri have the same value:

R1 = R2 = . . . = Rn−1 = 21/n.

Substituting this value in U we obtain

Ulub = (n − 1)21/n +
2

2(1−1/n)
− n =

= n21/n − 21/n + 21/n − n =

= n(21/n − 1).

Therefore, for an arbitrary set of periodic tasks, the least upper bound of the processor
utilization factor under the Rate Monotonic scheduling algorithm is

Ulub = n(21/n − 1). (4.9)

This bound decreases with n, and values for some n are shown in Table 4.2.

For high values of n, the least upper bound converges to

Ulub = ln 2 ≃ 0.69.

In fact, with the substitution y = (21/n − 1), we obtain n = ln 2
ln(y+1)

, and hence

lim
n→∞

n(21/n − 1) = (ln 2) lim
y→0

y

ln(y + 1)

Periodic Task Scheduling 97

and since (by the Hospital’s rule)

lim
y→0

y

ln(y + 1)
= lim

y→0

1

1/(y + 1)
= lim

y→0
(y + 1) = 1,

we have that
lim

n→∞
Ulub(n) = ln 2.

4.3.4 HYPERBOLIC BOUND FOR RM

The feasibility analysis of the RM algorithm can also be performed using a different
approach, called the Hyperbolic Bound [BBB01, BBB03]. The test has the same
complexity as the original Liu and Layland bound but it is less pessimistic, as it accepts
task sets that would be rejected using the original approach. Instead of minimizing
the processor utilization with respect to task periods, the feasibility condition can be
manipulated in order to find a tighter sufficient schedulability test as a function of the
individual task utilizations.

The following theorem provides a sufficient condition for testing the schedulability of
a task set under the RM algorithm.

Theorem 4.1 Let Γ = {τ1, . . . , τn} be a set of n periodic tasks, where each task τi

is characterized by a processor utilization Ui. Then, Γ is schedulable with the RM

algorithm if
n
∏

i=1

(Ui + 1) ≤ 2. (4.10)

Proof. Without loss of generality, we may assume that tasks are ordered by increasing
periods, so that τ1 is the task with the highest priority and τn is the task with the
lowest priority. In [LL73], as well as in [DG00], it has been shown that the worst-case
scenario for a set on n periodic tasks occurs when all the tasks start simultaneously
(e.g., at time t = 0) and periods are such that

∀i = 2, . . . , n T1 < Ti < 2T1.

Moreover, the total utilization factor is minimized when computation times have the
following relations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C1 = T2 − T1

C2 = T3 − T2

· · ·
Cn−1 = Tn − Tn−1

(4.11)

98 Chapter 4

and the schedulability condition is given by:

n
∑

i=1

Ci ≤ T1. (4.12)

From Equations (4.11), the schedulability condition can also be written as

Cn ≤ 2T1 − Tn (4.13)

Now, defining

Ri =
Ti+1

Ti
and Ui =

Ci

Ti
.

Equations (4.11) can be written as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

U1 = R1 − 1
U2 = R2 − 1
. . .
Un−1 = Rn−1 − 1.

(4.14)

Now we notice that:
n−1
∏

i=1

Ri =
T2

T1

T3

T2
· · · Tn

Tn−1
=

Tn

T1
.

If we divide both sides of the feasibility condition (4.13) by Tn, we get:

Un ≤ 2T1

Tn
− 1.

Hence, the feasibility condition for a task set that fully utilizes the processor can be
written as

Un + 1 ≤ 2
∏n−1

i=1 Ri

.

Since Ri = Ui + 1 for all i = 1, . . . , n − 1, we have

(Un + 1)
n−1
∏

i=1

(Ui + 1) ≤ 2

and finally
n
∏

i=1

(Ui + 1) ≤ 2,

which proves the theorem.

Periodic Task Scheduling 99

The new test can be compared with the Liu and Layland one in the task utilization
space, denoted as the U-space. Here, the Liu and Layland bound for RM is represented
by a n-dimensional plane that intersects each axis in U lub(n) = n(21/n − 1). All
points below the RM surface represent periodic task sets that are feasible by RM. The
new bound expressed by equation (4.10) is represented by a n-dimensional hyperbolic
surface tangent to the RM plane and intersecting the axes for U i = 1 (this is the reason
why it is referred to as the hyperbolic bound). Figure 4.11 illustrates such bounds for
n = 2. Notice that the asymptotes of the hyperbole are at U i = −1. From the plots,
we can clearly see that the feasibility region below the H-bound is larger than that
below the LL-bound, and the gain is given by the dark gray area.

U2

U1Ulub(2)

Ulub(2)

1

1

H-bound

EDF-bound

LL-bound

Figure 4.11 Schedulability bounds for RM and EDF in the utilization space.

It has been shown [BBB03] that the hyperbolic bound is tight, meaning that, if not
satisfied, it is always possible to construct an unfeasible task set with those utiliza-
tions. Hence, the hyperbolic bound is the best possible test that can be found using the
individual utilization factors Ui as a task set knowledge.

Moreover, the gain (in terms of schedulability) achieved by the hyperbolic test over
the classical Liu and Layland test increases as a function of the number of tasks, and
tends to

√
2 for n tending to infinity.

100 Chapter 4

4.4 EARLIEST DEADLINE FIRST

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that selects
tasks according to their absolute deadlines. Specifically, tasks with earlier deadlines
will be executed at higher priorities. Since the absolute deadline of a periodic task
depends on the current jth instance as

di,j = Φi + (j − 1)Ti + Di,

EDF is a dynamic priority assignment. Moreover, it is typically executed in preemp-
tive mode, thus the currently executing task is preempted whenever another periodic
instance with earlier deadline becomes active.

Note that EDF does not make any specific assumption on the periodicity of the tasks;
hence, it can be used for scheduling periodic as well as aperiodic tasks. For the same
reason, the optimality of EDF, proved in Chapter 3 for aperiodic tasks, also holds for
periodic tasks.

4.4.1 SCHEDULABILITY ANALYSIS

Under the assumptions A1, A2, A3, and A4, the schedulability of a periodic task set
handled by EDF can be verified through the processor utilization factor. In this case,
however, the least upper bound is one; therefore, tasks may utilize the processor up
to 100% and still be schedulable. In particular, the following theorem holds [LL73,
SBS95]:

Theorem 4.2 A set of periodic tasks is schedulable with EDF if and only if

n
∑

i=1

Ci

Ti
≤ 1.

Proof. Only if. We show that a task set cannot be scheduled if U > 1. In fact, by
defining T = T1T2 . . . Tn, the total demand of computation time requested by all tasks
in T can be calculated as

n
∑

i=1

T

Ti
Ci = UT.

If U > 1, that is, if the total demand UT exceeds the available processor time T , there
is clearly no feasible schedule for the task set.

Periodic Task Scheduling 101

1

idle

k

τ i

τ ov

τ m

τ

2tt

deadline miss

Figure 4.12 Interval of continuous utilization in an EDF schedule before a deadline miss.

If. We show the sufficiency by contradiction. Assume that the condition U < 1 is
satisfied and yet the task set is not schedulable. Let t2 be the first instant at which
a deadline is missed and let [t1, t2] be the longest interval of continuous utilization,
before t2, such that only instances with deadline less than or equal to t2 are executed
in [t1, t2] (see Figure 4.12 for explanation). Note that t1 must be the release time of
some periodic instance. Let Cp(t1, t2) be the total computation time demanded by
periodic tasks in [t1, t2], which can be computed as

Cp(t1, t2) =
∑

rk≥t1,dk≤t2

Ck =
n
∑

i=1

⌊

t2 − t1
Ti

⌋

Ci. (4.15)

Now, observe that

Cp(t1, t2) =

n
∑

i=1

⌊

t2 − t1
Ti

⌋

Ci ≤
n
∑

i=1

t2 − t1
Ti

Ci = (t2 − t1)U.

Since a deadline is missed at t2, Cp(t1, t2) must be greater than the available processor
time (t2 − t1); thus, we must have

(t2 − t1) < Cp(t1, t2) ≤ (t2 − t1)U.

That is, U > 1, which is a contradiction.

102 Chapter 4

1

(a)

(b)

EDF

τ

15

τ 2

τ 1

τ 2

20 25 305 100 35

0 7 14 21 28 35

15

time overflow

20 25 305 100 35

0 7 14 21 28 35

RM

Figure 4.13 Schedule produced by RM (a) and EDF (b) on the same set of periodic tasks.

4.4.2 AN EXAMPLE

Consider the periodic task set illustrated in Figure 4.13, for which the processor uti-
lization factor is

U =
2

5
+

4

7
=

34

35
≃ 0.97.

This means that 97 percent of the processor time is used to execute the periodic tasks,
whereas the CPU is idle in the remaining 3 percent. Being U > 2(

√
2−1) ≃ 0.83, the

schedulability of the task set cannot be guaranteed under RM, whereas it is guaranteed
under EDF. Indeed, as shown in Figure 4.13a, RM generates a deadline miss at time
t = 7, whereas EDF completes all tasks within their deadlines (see Figure 4.13b).
Another important difference between RM and EDF concerns the number of preemp-
tions occurring in the schedule. As shown in Figure 4.13, under RM every instance of
task τ2 is preempted, for a total number of five preemptions in the interval T = T 1T2.
Under EDF, the same task is preempted only once in the same interval. The smaller
number of preemptions in EDF is a direct consequence of the dynamic priority assign-
ment, which at any instant privileges the task with the earliest deadline, independently
of tasks’ periods.

Periodic Task Scheduling 103

4.5 DEADLINE MONOTONIC

The algorithms and the schedulability bounds illustrated in the previous sections rely
on the assumptions A1, A2, A3, and A4 presented at the beginning of this chapter. In
particular, assumption A3 imposes a relative deadline equal to the period, allowing an
instance to be executed anywhere within its period. This condition could not always
be desired in real-time applications. For example, relaxing assumption A3 would
provide a more flexible process model, which could be adopted to handle tasks with
jitter constraints or activities with short response times compared to their periods.

The Deadline Monotonic (DM) priority assignment weakens the “period equals dead-
line” constraint within a static priority scheduling scheme. This algorithm was first
proposed in 1982 by Leung and Whitehead [LW82] as an extension of Rate Mono-
tonic, where tasks can have relative deadlines less than or equal to their period (i.e.,
constrained deadlines). Specifically, each periodic task τ i is characterized by four
parameters:

A phase Φi;

A worst-case computation time Ci (constant for each instance);

A relative deadline Di (constant for each instance);

A period Ti.

These parameters are illustrated in Figure 4.14 and have the following relationships:
⎧

⎨

⎩

Ci ≤ Di ≤ Ti

ri,k = Φi + (k − 1)Ti

di,k = ri,k + Di.

i

τ

d

C i

iT

iD

i

Figure 4.14 Task parameters in Deadline-Monotonic scheduling.

104 Chapter 4

According to the DM algorithm, each task is assigned a fixed priority P i inversely
proportional to its relative deadline Di. Thus, at any instant, the task with the shortest
relative deadline is executed. Since relative deadlines are constant, DM is a static
priority assignment. As RM, DM is normally used in a fully preemptive mode; that is,
the currently executing task is preempted by a newly arrived task with shorter relative
deadline.

The Deadline-Monotonic priority assignment is optimal 2, meaning that, if a task set is
schedulable by some fixed priority assignment, then it is also schedulable by DM.

4.5.1 SCHEDULABILITY ANALYSIS

The feasibility of a task set with constrained deadlines could be guaranteed using the
utilization based test, by reducing tasks’ periods to relative deadlines:

n
∑

i=1

Ci

Di
≤ n(21/n − 1).

However, such a test would be quite pessimistic, since the workload on the processor
would be overestimated. A less pessimistic schedulability test can be derived by noting
that

the worst-case processor demand occurs when all tasks are released simultane-
ously; that is, at their critical instants;

for each task τi, the sum of its processing time and the interference (preemption)
imposed by higher priority tasks must be less than or equal to D i.

Assuming that tasks are ordered by increasing relative deadlines, so that

i < j ⇐⇒ Di < Dj,

such a test can be expressed as follows:

∀i : 1 ≤ i ≤ n Ci + Ii ≤ Di, (4.16)

where Ii is a measure of the interference on τi, which can be computed as the sum of
the processing times of all higher-priority tasks released before D i:

Ii =

i−1
∑

j=1

⌈

Di

Tj

⌉

Cj .

2The proof of DM optimality is similar to the one done for RM and it can be found in [LW82].

Periodic Task Scheduling 105

kτ

τ i

d iif

Figure 4.15 More accurate calculation of the interference on τi by higher priority tasks.

Note that this test is sufficient but not necessary for guaranteeing the schedulability of
the task set. This is due to the fact that Ii is calculated by assuming that each higher-
priority task τj exactly interferes ⌈Di

Tj
⌉ times on τi. However, as shown in Figure 4.15,

the actual interference can be smaller than Ii, since τi may terminate earlier.

To find a sufficient and necessary schedulability test for DM, the exact interleaving of
higher-priority tasks must be evaluated for each process. In general, this procedure is
quite costly since, for each task τi, it requires the construction of the schedule until
Di. Audsley et al. [ABRW92, ABR+93] proposed an efficient method for evalu-
ating the exact interference on periodic tasks and derived a sufficient and necessary
schedulability test for DM, called Response Time Analysis.

4.5.2 RESPONSE TIME ANALYSIS

According to the method proposed by Audsley at al., the longest response time R i of a
periodic task τi is computed, at the critical instant, as the sum of its computation time
and the interference Ii of the higher priority tasks:

Ri = Ci + Ii,

where

Ii =

i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj .

Hence,

Ri = Ci +
i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj . (4.17)

No simple solution exists for this equation since Ri appears on both sides. Thus, the
worst-case response time of task τi is given by the smallest value of Ri that satisfies
Equation (4.17). Note, however, that only a subset of points in the interval [0, D i] need

106 Chapter 4

Ci Ti Di

τ1 1 4 3
τ2 1 5 4
τ3 2 6 5
τ4 1 11 10

Table 4.3 A set of periodic tasks with deadlines less than periods.

to be examined for feasibility. In fact, the interference on τ i only increases when there
is a release of a higher-priority task.

To simplify the notation, let R
(k)
i be the k-th estimate of Ri and let I

(k)
i be the inter-

ference on task τi in the interval [0, R
(k)
i]:

I
(k)
i =

i−1
∑

j=1

⌈

R
(k)
i

Tj

⌉

Cj . (4.18)

Then the calculation of Ri is performed as follows:

1. Iteration starts with R
(0)
i =

∑i
j=1 Cj , which is the first point in time that τi could

possibly complete.

2. The actual interference I k
i in the interval [0, R

(k)
i] is computed by equation (4.18).

3. If I
(k)
i + Ci = R

(k)
i , then R

(k)
i is the actual worst-case response time of task τi;

that is, Ri = R
(k)
i . Otherwise, the next estimate is given by

R
(k+1)
i = I

(k)
i + Ci,

and the iteration continues from step 2.

Once Ri is calculated, the feasibility of task τi is guaranteed if and only if Ri ≤ Di.

To clarify the schedulability test, consider the set of periodic tasks shown in Table 4.3,
simultaneously activated at time t = 0. In order to guarantee τ4, we have to calcu-
late R4 and verify that R4 ≤ D4. The schedule produced by DM is illustrated in
Figure 4.16, and the iteration steps are shown below.

Periodic Task Scheduling 107

0

1

2

3

4

5

6

7

8

9

11

10

0 2 3 4 5 6 7 8 9 10 11 121

R 4

τ 4

τ 2

τ 3

τ 1

t
2 3 4 5 6 7 8 9 10 11 1210

Figure 4.16 Example of schedule produced by DM and response time experienced by τ4
as a function of the considered interval.

108 Chapter 4

Step 0: R
(0)
4 =

∑4
i=1 Ci = 5, but I

(0)
4 = 5 and I

(0)
4 + C4 > R

(0)
4

hence τ4 does not finish at R
(0)
4 .

Step 1: R
(1)
4 = I

(0)
4 + C4 = 6, but I

(1)
4 = 6 and I

(1)
4 + C4 > R

(1)
4

hence τ4 does not finish at R
(1)
4 .

Step 2: R
(2)
4 = I

(1)
4 + C4 = 7, but I

(2)
4 = 8 and I

(2)
4 + C4 > R

(2)
4

hence τ4 does not finish at R
(2)
4 .

Step 3: R
(3)
4 = I

(2)
4 + C4 = 9, but I

(3)
4 = 9 and I

(3)
4 + C4 > R

(3)
4

hence τ4 does not finish at R
(3)
4 .

Step 4: R
(4)
4 = I

(3)
4 + C4 = 10, but I

(4)
4 = 9 and I

(4)
4 + C4 = R

(4)
4

hence τ4 finishes at R4 = R
(4)
4 = 10.

Since R4 ≤ D4, τ4 is schedulable within its deadline. If Ri ≤ Di for all tasks, we
conclude that the task set is schedulable by DM. Such a schedulability test can be
performed by the algorithm illustrated in Figure 4.17.

DM guarantee (Γ) {
for (each τi ∈ Γ) {

Ii =
∑i−1

k=1 Ck;

do {
Ri = Ii + Ci;

if (Ri > Di) return(UNSCHEDULABLE);

Ii =
∑i−1

k=1

⌈

Ri

Tk

⌉

Ck;

} while (Ii + Ci > Ri);

}
return(SCHEDULABLE);

}

Figure 4.17 Algorithm for testing the schedulability of a periodic task set Γ under Dead-
line Monotonic.

Periodic Task Scheduling 109

Note that the algorithm in Figure 4.17 has a pseudo-polynomial complexity. In fact,
the guarantee of the entire task set requires O(nN) steps, where n is the number of
tasks and N is the number of iterations in the inner loop, which does not depend
directly on n, but on the period relations.

4.5.3 WORKLOAD ANALYSIS

Another necessary and sufficient test for checking the schedulability of fixed priority
systems with constrained deadlines was proposed by Lehoczky, Sha, and Ding [LSD89].
The test is based on the concept of Level-i workload, defined as follows.

Definition 4.1 The Level-i workload Wi(t) is the cumulative computation time re-

quested in the interval (0, t] by task τi and all the tasks with priority higher than Pi.

For a set of synchronous periodic tasks, the Level-i workload can be computed as
follows:

Wi(t) = Ci +
∑

h:Ph>Pi

⌈

t

Th

⌉

Ch. (4.19)

Then, the test can be expressed by the following theorem:

Theorem 4.3 (Lehoczky, Sha, Ding, 1989) A set of fully preemptive periodic tasks

can be scheduled by a fixed priority algorithm if and only if

∀i = 1, . . . , n ∃t ∈ (0, Di] : Wi(t) ≤ t. (4.20)

Later, Bini and Buttazzo [BB04] restricted the number of points in which condition
(4.20) has to be checked to the following Testing Set:

T Si
def
= Pi−1(Di) (4.21)

where Pi(t) is defined by the following recurrent expression:
{

P0(t) = {t}
Pi(t) = Pi−1

(⌊

t
Ti

⌋

Ti

)

∪ Pi−1(t).
(4.22)

Thus, the schedulability test can be expressed by the following theorem:

110 Chapter 4

Theorem 4.4 (Bini and Buttazzo, 2004) A set of fully preemptive periodic tasks can

be scheduled by a fixed priority algorithm if and only if

∀i = 1, . . . , n ∃t ∈ T Si : Wi(t) ≤ t. (4.23)

An advantage of Equation (4.23) is that it can be formulated as the union of a set
of simpler conditions, leading to a more efficient guarantee test, named the Hyper-
planes test [BB04]. The test has still a pseudo-polynomial complexity, but runs much
quicker than the response time analysis in the average case. Moreover, a novel fea-
ture of this test is that it can be tuned using a parameter to balance acceptance ratio
versus complexity. Such a tunability property is important in those cases in which
the performance of a polynomial time test is not sufficient for achieving high proces-
sor utilization, and the overhead introduced by exact tests is too high for an online
admission control.

Another advantage of this formulation is that Equation (4.23) can be manipulated to
describe the feasibility region of the task set in a desired space of design parameters,
so enabling sensitivity analysis [BDNB08], which determines how to change task set
parameters when the schedule is infeasible.

4.6 EDF WITH CONSTRAINED DEADLINES

Under EDF, the analysis of periodic tasks with deadlines less than or equal to periods
can be performed using the processor demand criterion. This method has been de-
scribed by Baruah, Rosier, and Howell in [BRH90] and later used by Jeffay and Stone
[JS93] to account for interrupt handling costs under EDF.

4.6.1 THE PROCESSOR DEMAND APPROACH

In general, the processor demand of a task τ i in an interval [t1, t2] is the amount of
processing time gi(t1, t2) requested by those instances of τi activated in [t1, t2] that
must be completed in [t1, t2]. That is,

gi(t1, t2) =
∑

ri,k≥t1,di,k≤t2

Ci.

Periodic Task Scheduling 111

iτ

t21t

Figure 4.18 The instances in dark gray are those contributing to the processor demand in
[t1, t2].

For the whole task set, the processor demand in [t1, t2] is given by

g(t1, t2) =
n
∑

i=1

gi(t1, t2).

Then, the feasibility of a task set is guaranteed if and only if in any interval of time the
processor demand does not exceed the available time; that is, if and only if

∀t1, t2 g(t1, t2) ≤ (t2 − t1).

Referring to Figure 4.18, the number of instances of task τ i that contribute to the
demand in [t1, t2] can be expressed as

ηi(t1, t2) = max

{

0,

⌊

t2 + Ti − Di − Φi

Ti

⌋

−
⌈

t1 − Φi

Ti

⌉}

and the processor demand in [t1, t2] can be computed as

g(t1, t2) =

n
∑

i=1

ηi(t1, t2)Ci. (4.24)

If relatives deadlines are no larger than periods and periodic tasks are simultaneously
activated at time t = 0 (i.e., Φi = 0 for all the tasks), then the number of instances
contributing to the demand in an interval [0, L] can be expressed as:

ηi(0, L) =

⌊

L + Ti − Di

Ti

⌋

.

Thus, the processor demand in [0, L] can be computed as

g(0, L) =

n
∑

i=1

⌊

L + Ti − Di

Ti

⌋

Ci.

Function g(0, L) is also referred to as Demand Bound Function:

dbf(t)
def
=

n
∑

i=1

⌊

t + Ti − Di

Ti

⌋

Ci. (4.25)

112 Chapter 4

Therefore, a synchronous set of periodic tasks with relative deadlines less than or equal
to periods is schedulable by EDF if and only if

∀t > 0 dbf(t) ≤ t. (4.26)

It is worth observing that, for the special case of tasks with relative deadlines equal
to periods, the test based on the processor demand criterion is equivalent to the one
based on the processor utilization. This result is formally expressed by the following
theorem [JS93].

Theorem 4.5 (Jeffay and Stone, 1993) A set of periodic tasks with relative deadlines

equal to periods is schedulable by EDF if and only if

∀L > 0
n
∑

i=1

⌊

L

Ti

⌋

Ci ≤ L. (4.27)

Proof. The theorem is proved by showing that equation (4.27) is equivalent to the
classical Liu and Layland’s condition

U =

n
∑

i=1

Ci

Ti
≤ 1. (4.28)

(4.28) ⇒ (4.27). If U ≤ 1, then for all L, L ≥ 0,

L ≥ UL =

n
∑

i=1

(

L

Ti

)

Ci ≥
n
∑

i=1

⌊

L

Ti

⌋

Ci.

To demonstrate (4.28) ⇐ (4.27) we show that ¬(4.28) ⇒¬(4.27). That is, we assume
U > 1 and prove that there exist an L ≥ 0 for which (4.27) does not hold. If U > 1,
then for L = H = lcm(T1, . . . , Tn),

H < HU =
n
∑

i=1

(

H

Ti

)

Ci =
n
∑

i=1

⌊

H

Ti

⌋

Ci.

4.6.2 REDUCING TEST INTERVALS

In this section we show that the feasibility test expressed by condition (4.26) can be
simplified by reducing the number of intervals in which it has to be verified. We first
observe that

Periodic Task Scheduling 113

1. if tasks are periodic and are simultaneously activated at time t = 0, then the
schedule repeats itself every hyperperiod H; thus condition (4.26) needs to be
verified only for values of L less than or equal to H .

2. g(0, L) is a step function whose value increases when L crosses a deadline dk

and remains constant until the next deadline dk+1. This means that if condition
g(0, L) < L holds for L = dk, then it also holds for all L such that dk ≤ L <
dk+1. As a consequence, condition (4.26) needs to be verified only for values of
L equal to absolute deadlines.

The number of testing points can be reduced further by noting that
⌊

L + Ti − Di

Ti

⌋

≤
(

L + Ti − Di

Ti

)

.

and defining

G(0, L) =

n
∑

i=1

L + Ti − Di

Ti
Ci =

n
∑

i=1

Ti − Di

Ti
Ci +

L

Ti
Ci

we have that
∀L > 0, g(0, L) ≤ G(0, L),

where

G(0, L) =

n
∑

i=1

(Ti − Di)Ui + LU.

From Figure 4.19, we can note that G(0, L) is a function of L increasing as a straight
line with slope U . Hence, if U < 1, there exists an L = L∗ for which G(0, L) = L.
Clearly, for all L ≥ L∗, we have that g(0, L) ≤ G(0, L) ≤ L, meaning that the
schedulability of the task set is guaranteed. As a consequence, there is no need to
verify condition (4.26) for values of L ≥ L∗.

The value of L∗ is the time at which G(0, L∗) = L∗; that is,

n
∑

i=1

(Ti − Di)Ui + L∗U = L∗,

which gives

L∗ =

∑n
i=1(Ti − Di)Ui

1 − U
.

Considering that the task set must be tested at least until the largest relative dead-
line Dmax, the results of the previous observations can be combined in the following
theorem.

114 Chapter 4

Theorem 4.6 A set of synchronous periodic tasks with relative deadlines less than or

equal to periods can be scheduled by EDF if and only if U < 1 and

∀t ∈ D dbf(t) ≤ t. (4.29)

where

D = {dk | dk ≤ min[H, max(Dmax, L∗)]}
and

L∗ =

∑n
i=1(Ti − Di)Ui

1 − U
.

EXAMPLE

To illustrate the processor demand criterion, consider the task set shown in Table 4.4,
where three periodic tasks with deadlines less than periods need to be guaranteed under
EDF. From the specified parameters it is easy to compute that

U =
2

6
+

2

8
+

3

9
=

11

12

L∗ =

∑n
i=1(Ti − Di)Ui

1 − U
= 25

H = lcm(6, 8, 9) = 72.

L*

g(0,L)

G(0,L)

L

y = L

Figure 4.19 Maximum value of L for which the processor demand test has to be verified.

Periodic Task Scheduling 115

Ci Di Ti

τ1 2 4 6
τ2 2 5 8
τ3 3 7 9

Table 4.4 A task set with relative deadlines less than periods.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 4.20 Schedule produced by EDF for the task set shown in Table 4.4.

L g(0, L) result

4 2 OK
5 4 OK
7 7 OK

10 9 OK
13 11 OK
16 16 OK
21 18 OK
22 20 OK

Table 4.5 Testing intervals for the processor demand criterion.

Hence, condition (4.29) has to be tested for any deadline less than 25, and the set
of checking points is given by D = {4, 5, 7, 10, 13, 16, 21, 22}. Table 4.5 shows the
results of the test and Figure 4.20 illustrates the schedule produced by EDF for the
task set.

116 Chapter 4

4.7 COMPARISON BETWEEN RM AND EDF

In conclusion, the problem of scheduling a set of independent and preemptable peri-
odic tasks has been solved both under fixed and dynamic priority assignments.

The major advantage of the fixed priority approach is that it is simpler to implement.
In fact, if the ready queue is implemented as a multi-level queue with P priority levels
(where P is the number of different priorities in the system), both task insertion and
extraction can be achieved in O(1). On the other hand, in a deadline driven scheduler,
the best solution for the ready queue is to implement it as a heap (i.e., a balanced
binary tree), where task management requires an O(log n) complexity.

Except for such an implementation issue, which becomes relevant only for very large
task sets (consisting of hundreds of tasks), or for very slow processors, a dynamic
priority scheme has many advantages with respect to a fixed priority algorithm. A
detailed comparison between RM and EDF has been presented by Buttazzo [But03,
But05].

In terms of schedulability analysis, an exact guarantee test for RM requires a pseudo-
polynomial complexity, even in the simple case of independent tasks with relative
deadlines equal to periods, whereas it can be performed in O(n) for EDF. In the gen-
eral case in which deadlines can be less than or equal to periods, the schedulability
analysis becomes pseudo-polynomial for both algorithms. Under fixed-priority as-
signments, the feasibility of the task set can be tested using the response time analysis,
whereas under dynamic priority assignments it can be tested using the processor de-
mand criterion.

As for the processor utilization, EDF is able to exploit the full processor bandwidth,
whereas the RM algorithm can only guarantee feasibility for task sets with utilization
less than 69%, in the worst case. In the average case, a statistical study performed by
Lehoczky, Sha, and Ding [LSD89] showed that for task sets with randomly generated
parameters the RM algorithm is able to feasibly schedule task sets with a processor
utilization up to about 88%. However, this is only a statistical result and cannot be
taken as an absolute bound for performing a precise guarantee test.

In spite of the extra computation needed by EDF for updating the absolute deadline
at each job activation, EDF introduces less runtime overhead than RM, when context
switches are taken into account. In fact, to enforce the fixed priority order, the number
of preemptions that typically occur under RM is much higher than under EDF.

Periodic Task Scheduling 117

An interesting property of EDF during permanent overloads is that it automatically
performs a period rescaling, so tasks start behaving as they were executing at a lower
rate. This property has been proved by Cervin in his PhD dissertation [Cer03] and it
is formally stated in the following theorem.

Theorem 4.7 (Cervin) Assume a set of n periodic tasks, where each task is described

by a fixed period Ti, a fixed execution time Ci, a relative deadline Di, and a release

offset Φi. If U > 1 and tasks are scheduled by EDF, then, in stationarity, the average

period Ti of each task τi is given by Ti = TiU .

Note that under fixed priority scheduling, a permanent overload condition causes a
complete blocking of the lower priority tasks.

As discussed later in the book, another major advantage of dynamic scheduling with
respect to fixed priority scheduling is a better responsiveness in handling aperiodic
tasks. This property comes from the higher processor utilization bound of EDF. In fact,
the lower schedulability bound of RM limits the maximum utilization (U s = Cs/Ts)
that can be assigned to a server for guaranteeing the feasibility of the periodic task set.
As a consequence, the spare processor utilization that cannot be assigned to the server
is wasted as a background execution. This problem does not occur under EDF, where,
if Up is the processor utilization of the periodic tasks, the full remaining fraction 1−U p

can always be allocated to the server for aperiodic execution.

Exercises

4.1 Verify the schedulability and construct the schedule according to the RM algo-
rithm for the following set of periodic tasks:

Ci Ti

τ1 2 6
τ2 2 8
τ3 2 12

118 Chapter 4

4.2 Verify the schedulability and construct the schedule according to the RM algo-
rithm for the following set of periodic tasks:

Ci Ti

τ1 3 5
τ2 1 8
τ3 1 10

4.3 Verify the schedulability and construct the schedule according to the RM algo-
rithm for the following set of periodic tasks:

Ci Ti

τ1 1 4
τ2 2 6
τ3 3 10

4.4 Verify the schedulability under RM of the following task set:

Ci Ti

τ1 1 4
τ2 2 6
τ3 3 8

4.5 Verify the schedulability under EDF of the task set shown in Exercise 4.4, and
then construct the corresponding schedule.

4.6 Verify the schedulability under EDF and construct the schedule of the following
task set:

Ci Di Ti

τ1 2 5 6
τ2 2 4 8
τ3 4 8 12

4.7 Verify the schedulability of the task set described in Exercise 4.6 using the
Deadline-Monotonic algorithm. Then construct the schedule.

5
FIXED-PRIORITY SERVERS

5.1 INTRODUCTION

The scheduling algorithms treated in the previous chapters deal with homogeneous
sets of tasks, where all computational activities are either aperiodic or periodic. Many
real-time control applications, however, require both types of processes, which may
also differ for their criticality. Typically, periodic tasks are time-driven and execute
critical control activities with hard timing constraints aimed at guaranteeing regular
activation rates. Aperiodic tasks are usually event-driven and may have hard, soft, or
non-real-time requirements depending on the specific application.

When dealing with hybrid task sets, the main objective of the kernel is to guarantee the
schedulability of all critical tasks in worst-case conditions and provide good average
response times for soft and non-real-time activities. Off-line guarantee of event-driven
aperiodic tasks with critical timing constraints can be done only by making proper
assumptions on the environment; that is, by assuming a maximum arrival rate for
each critical event. This implies that aperiodic tasks associated with critical events are
characterized by a minimum interarrival time between consecutive instances, which
bounds the aperiodic load. Aperiodic tasks characterized by a minimum interarrival
time are called sporadic. They are guaranteed under peak-load situations by assuming
their maximum arrival rate.

If the maximum arrival rate of some event cannot be bounded a priori, the associated
aperiodic task cannot be guaranteed off-line, although an online guarantee of individ-
ual aperiodic requests can still be done. Aperiodic tasks requiring online guarantee
on individual instances are called firm. Whenever a firm aperiodic request enters the
system, an acceptance test can be executed by the kernel to verify whether the request

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1 5

119

 Springer Science+Business Media, LLC 2011©

120 Chapter 5

can be served within its deadline. If such a guarantee cannot be done, the request is
rejected.

In the next sections, we present a number of scheduling algorithms for handling hybrid
task sets consisting of a subset of hard periodic tasks and a subset of soft aperiodic
tasks. All algorithms presented in this chapter rely on the following assumptions:

Periodic tasks are scheduled based on a fixed-priority assignment; namely, the
Rate-Monotonic (RM) algorithm;

All periodic tasks start simultaneously at time t = 0 and their relative deadlines
are equal to their periods.

Arrival times of aperiodic requests are unknown.

When not explicitly specified, the minimum interarrival time of a sporadic task is
assumed to be equal to its deadline.

All tasks are fully preemptable.

Aperiodic scheduling under dynamic priority assignment is discussed in the next chap-
ter.

5.2 BACKGROUND SCHEDULING

The simplest method to handle a set of soft aperiodic activities in the presence of
periodic tasks is to schedule them in background; that is, when there are not periodic
instances ready to execute. The major problem with this technique is that, for high
periodic loads, the response time of aperiodic requests can be too long for certain
applications. For this reason, background scheduling can be adopted only when the
aperiodic activities do not have stringent timing constraints and the periodic load is
not high.

Figure 5.1 illustrates an example in which two periodic tasks are scheduled by RM,
while two aperiodic tasks are executed in background. Since the processor utiliza-
tion factor of the periodic task set (U = 0.73) is less than the least upper bound for
two tasks (Ulub(2) ≃ 0.83), the periodic tasks are schedulable by RM. Note that the
guarantee test does not change in the presence of aperiodic requests, since background
scheduling does not influence the execution of periodic tasks.

Fixed-Priority Servers 121

1

0 2412 14 16 18 20 2282 64

τ 2

2aperiodic
requests

1

τ

10

Figure 5.1 Example of background scheduling of aperiodic requests under Rate Mono-
tonic.

CPU

Periodic Tasks

Low-Priority Queue

High-Priority Queue

FCFS

RM

Aperiodic Tasks

Figure 5.2 Scheduling queues required for background scheduling.

The major advantage of background scheduling is its simplicity. As shown in Fig-
ure 5.2, two queues are needed to implement the scheduling mechanism: one (with
a higher priority) dedicated to periodic tasks and the other (with a lower priority) re-
served for aperiodic requests. The two queueing strategies are independent and can be
realized by different algorithms, such as RM for periodic tasks and First Come First
Served (FCFS) for aperiodic requests. Tasks are taken from the aperiodic queue only
when the periodic queue is empty. The activation of a new periodic instance causes
any aperiodic tasks to be immediately preempted.

5.3 POLLING SERVER

The average response time of aperiodic tasks can be improved with respect to back-
ground scheduling through the use of a server; that is, a periodic task whose purpose
is to service aperiodic requests as soon as possible. Like any periodic task, a server
is characterized by a period Ts and a computation time Cs, called server capacity, or
server budget. In general, the server is scheduled with the same algorithm used for

122 Chapter 5

6

1

4

T

1

2

Server

= 5

s

C

aperiodic
requests

C s

1

i

s

τ

2τ

T i

= 2C

2 1 2 1

2

20

τ 2

0 4 62 8 24221816141210

τ

240 4 62 8 20 2216 18141210

1

Figure 5.3 Example of a Polling Server scheduled by RM.

the periodic tasks, and, once active, it serves the aperiodic requests within the limit of
its budget. The ordering of aperiodic requests does not depend on the scheduling al-
gorithm used for periodic tasks, and it can be done by arrival time, computation time,
deadline, or any other parameter.

The Polling Server (PS) is an algorithm based on such an approach. At regular in-
tervals equal to the period Ts, PS becomes active and serves the pending aperiodic
requests within the limit of its capacity Cs. If no aperiodic requests are pending, PS
suspends itself until the beginning of its next period, and the budget originally allo-
cated for aperiodic service is discharged and given periodic tasks [LSS87, SSL89].
Note that if an aperiodic request arrives just after the server has suspended, it must
wait until the beginning of the next period, when the server capacity is replenished at
its full value.

Figure 5.3 illustrates an example of aperiodic service obtained through a Polling Server
scheduled by RM. The aperiodic requests are reported on the third row, whereas the
fourth row shows the server capacity as a function of time. Numbers beside the arrows
indicate the computation times associated with the requests.

In the example shown in Figure 5.3, the Polling Server has a period T s = 5 and a
capacity Cs = 2, so it runs with an intermediate priority with respect to the other

Fixed-Priority Servers 123

periodic tasks. At time t = 0, the processor is assigned to task τ1, which is the
highest-priority task according to RM. At time t = 1, τ1 completes its execution and
the processor is assigned to PS. However, since no aperiodic requests are pending, the
server suspends itself and its capacity is used by periodic tasks. As a consequence, the
request arriving at time t = 2 cannot receive immediate service but must wait until the
beginning of the second server period (t = 5). At this time, the capacity is replenished
at its full value (Cs = 2) and used to serve the aperiodic task until completion. Note
that, since the capacity has been totally consumed, no other aperiodic requests can be
served in this period; thus, the server becomes idle.

The second aperiodic request receives the same treatment. However, note that since
the second request only uses half of the server capacity, the remaining half is discarded
because no other aperiodic tasks are pending. Also note that, at time t = 16, the third
aperiodic request is preempted by task τ1, and the server capacity is preserved.

5.3.1 SCHEDULABILITY ANALYSIS

We first consider the problem of guaranteeing a set of hard periodic tasks in the pres-
ence of soft aperiodic tasks handled by a Polling Server. Then we show how to derive
a schedulability test for firm aperiodic requests.

The schedulability of periodic tasks can be guaranteed by evaluating the interference
introduced by the Polling Server on periodic execution. In the worst case, such an
interference is the same as the one introduced by an equivalent periodic task having
a period equal to Ts and a computation time equal to Cs. In fact, independently of
the number of aperiodic tasks handled by the server, a maximum time equal to C s is
dedicated to aperiodic requests at each server period. As a consequence, the processor
utilization factor of the Polling Server is Us = Cs/Ts, and hence the schedulability of
a periodic set with n tasks and utilization Up can be guaranteed if

Up + Us ≤ Ulub(n + 1).

If periodic tasks (including the server) are scheduled by RM, the schedulability test
becomes

n
∑

i=1

Ci

Ti
+

Cs

Ts
≤ (n + 1)[21/(n+1) − 1].

Note that more Polling Servers can be created and execute concurrently on different
aperiodic task sets. For example, a high-priority server could be reserved for a subset
of important aperiodic tasks, whereas a lower-priority server could be used to handle
less important requests. In general, in the presence of m servers, a set of n periodic

124 Chapter 5

τ 1

τ 2

C 1

C 2

C s

T s0

PS

T n

C 2

C 1

C s

T 2

C n

T 1

τ n

Figure 5.4 Worst-case scenario for n periodic tasks and a Polling Server (PS) with the
highest priority.

tasks is schedulable by RM if

Up +
m
∑

j=1

Usj
≤ Ulub(n + m).

A more precise schedulability test can be derived using the same technique adopted
for the Liu and Layland bound, by assuming that PS is the highest-priority task in the
system. To simplify the computation, the worst-case relations among the tasks are first
determined, and then the lower bound is computed against the worst-case model.

Consider a set of n periodic tasks, τ1, . . . , τn, ordered by increasing periods, and a
PS server with a highest priority. The worst-case scenario for a set of periodic tasks
that fully utilize the processor is the one illustrated in Figure 5.4, where tasks are
characterized by the following parameters:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Cs = T1 − Ts

C1 = T2 − T1

C2 = T3 − T2

. . .
Cn−1 = Tn − Tn−1

Cn = Ts − Cs −
∑n−1

i=1 Ci = 2Ts − Tn.

Fixed-Priority Servers 125

The resulting utilization is then

U =
Cs

Ts
+

C1

T1
+ . . . +

Cn

Tn
=

= Us +
T2 − T1

T1
+ . . . +

Tn − Tn−1

Tn−1
+

2Ts − Tn

Tn
=

= Us +
T2

T1
+ . . . +

Tn

Tn−1
+

(

2Ts

T1

)

T1

Tn
− n.

Defining
⎧

⎪

⎨

⎪

⎩

Rs = T1/Ts

Ri = Ti+1/Ti

K = 2Ts/T1 = 2/Rs

and noting that

R1R2 . . . Rn−1 =
Tn

T1
,

the utilization factor may be written as

U = Us +
n−1
∑

i=1

Ri +
K

R1R2 . . . Rn−1
− n.

Following the approach used for RM, we minimize U over R i, i = 1, . . . , n − 1.
Hence,

∂U

∂Ri
= 1 − K

R2
i (
∏n−1

j �=i Rj)
.

Thus, defining P = R1R2 . . . Rn−1, U is minimum when
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R1P = K
R2P = K

. . .
Rn−1P = K ;

that is, when all Ri have the same value:

R1 = R2 = . . . = Rn−1 = K1/n.

Substituting this value in U we obtain

Ulub − Us = (n − 1)K1/n +
K

K(1−1/n)
− n =

= nK1/n − K1/n + K1/n − n =

= n(K1/n − 1);

126 Chapter 5

that is,
Ulub = Us + n(K1/n − 1). (5.1)

Now, noting that

Us =
Cs

Ts
=

T1 − Ts

Ts
= Rs − 1

we have
Rs = (Us + 1).

Thus, K can be rewritten as

K =
2

Rs
=

2

Us + 1
,

and finally

Ulub = Us + n

[

(

2

Us + 1

)1/n

− 1

]

. (5.2)

Taking the limit of Equation (5.1) as n → ∞, we find the worst-case bound as a
function of Us to be given by

lim
n→∞

Ulub = Us + ln(K) = Us + ln

(

2

Us + 1

)

. (5.3)

Thus, given a set of n periodic tasks and a Polling Server with utilization factors U p

and Us, respectively, the schedulability of the periodic task set is guaranteed under
RM if

Up + Us ≤ Us + n
(

K1/n − 1
)

;

that is, if

Up ≤ n

[

(

2

Us + 1

)1/n

− 1

]

. (5.4)

A plot of Equation (5.3) as a function of Us is shown in Figure 5.5. For comparison,
the RM bound is also reported in the plot. Note that the schedulability test expressed
in Equation (5.4) is also valid for all servers that behave like a periodic task.

Using the Hyperbolic Bound, the guarantee test for a task set in the presence of a
Polling Server can be performed as follows:

n
∏

i=1

(Ui + 1) ≤ 2

Us + 1
. (5.5)

Fixed-Priority Servers 127

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

L
e
a
s
t
U

p
p
e
r

B
o
u
n
d

Server Utilization factor Us

PS bound
RM bound

Figure 5.5 Schedulability bound for periodic tasks and PS as a function of the server
utilization factor Us.

Finally, the response time of a periodic task τi in the presence of a Polling Server at the
highest priority can be found as the smallest integer satisfying the following recurrent
relation:

Ri = Ci +

⌈

Ri

Ts

⌉

Cs +

i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj . (5.6)

5.3.2 DIMENSIONING A POLLING SERVER

Given a set of periodic tasks, how can we compute the server parameters (C s and Ts)
that can guarantee a feasible schedule? First of all, we need to compute the maxi-
mum server utilization U max

s that guarantees the feasibility of the task set. Since the
response time is not easy to manipulate, due to the ceiling functions, we can derive
Umax

s from the hyperbolic test of Equation (5.5), which is tighter than the utilization
test of Equation (5.4). If we define

P
def
=

n
∏

i=1

(Ui + 1), (5.7)

for the schedulability of the task set, from Equation (5.5), it must be

P ≤ 2

Us + 1
;

128 Chapter 5

that is

Us ≤ 2 − P

P
.

Hence,

Umax
s =

2 − P

P
. (5.8)

Thus, Us must be set to be less than or equal to U max
s . For a given Us, however, there

is an infinite number of pairs (Cs, Ts) leading to the same utilization, so how can we
select the pair that enhances aperiodic responsiveness? A simple solution is to assign
the server the highest priority; that is, the smallest period, under Rate Monotonic.
However, it is not useful to set Ts < T1, since a smaller Ts implies a smaller Cs,
which would cause higher fragmentation (i.e., higher runtime overhead) in aperiodic
execution. Hence, assuming that priority ties between periodic tasks and the server are
broken in favor of the server, then the highest priority of the server can be achieved by
setting Ts = T1, and then Cs = UsTs.

5.3.3 APERIODIC GUARANTEE

This section shows how to estimate the response time of an aperiodic job handled
by a Polling Server, in order to possibly perform an online guarantee of firm aperiodic
requests characterized by a deadline. To do that, consider the case of a single aperiodic
job Ja, arrived at time ra, with computation time Ca and deadline Da. Since, in the
worst case, the job can wait for at most one period before receiving service, if C a ≤ Cs

the request is certainly completed within two server periods. Thus, it is guaranteed if

2Ts ≤ Da.

For arbitrary computation times, the aperiodic request is certainly completed in ⌈C a/Cs⌉
server periods; hence, it is guaranteed if

Ts +

⌈

Ca

Cs

⌉

Ts ≤ Da.

This schedulability test is only sufficient because it does not consider when the server
executes within its period.

Fixed-Priority Servers 129

Cs

∆a

ra fa da

δa

Ra

FaTs

next(ra)

Figure 5.6 Response time of an aperiodic job scheduled by a Polling Server with the
highest priority.

A sufficient and necessary schedulability test can be derived for the case in which the
PS has the highest priority among the periodic tasks; that is, the shortest period. In
this case, in fact, it always executes at the beginning of its periods; thus the finishing
time of the aperiodic request can be estimated precisely. As shown in Figure 5.6, by
defining

Fa
def
=

⌈

Ca

Cs

⌉

− 1

next(ra)
def
=

⌈

ra

Ts

⌉

Ts

the initial delay of request Ja is given by ∆a = nexta(ra) − ra. Then, since FaCs

is the total budget consumed by Ja in Fa server periods, the residual execution to be
done in the next server period is

δa = Ca − FaCs.

As a consequence, the response time Ra can be computed as

Ra = ∆a + FaTs + δa,

which can be also written as:

Ra = ∆a + Ca + Fa(Ts − Cs). (5.9)

Note that the term Fa(Ts − Cs) in Equation (5.9), represents the delay introduced by
the Fa inactive server intervals, each of size (Ts − Cs).

Then, the schedulability of the aperiodic job can be guaranteed if and only if R a ≤ Da.

130 Chapter 5

5.4 DEFERRABLE SERVER

The Deferrable Server (DS) algorithm is a service technique introduced by Lehoczky,
Sha, and Strosnider [LSS87, SLS95] to improve the average response time of aperiodic
requests with respect to polling service. As the Polling Server, the DS algorithm
creates a periodic task (usually having a high priority) for servicing aperiodic requests.
However, unlike polling, DS preserves its capacity if no requests are pending upon the
invocation of the server. The capacity is maintained until the end of the period, so
that aperiodic requests can be serviced at the same server’s priority at anytime, as long
as the capacity has not been exhausted. At the beginning of any server period, the
capacity is replenished at its full value.

The DS algorithm is illustrated in Figure 5.7 using the same task set and the same
server parameters (Cs = 2, Ts = 5) considered in Figure 5.3. At time t = 1, when
τ1 is completed, no aperiodic requests are pending; hence, the processor is assigned to
task τ2. However, the DS capacity is not used for periodic tasks, but it is preserved for
future aperiodic arrivals. Thus, when the first aperiodic request arrives at time t = 2,
it receives immediate service. Since the capacity of the server is exhausted at time
t = 4, no other requests can be serviced before the next period. At time t = 5, C s is
replenished at its full value and preserved until the next arrival. The second request
arrives at time t = 8, but it is not served immediately because τ1 is active and has a
higher priority.

Thus, DS provides much better aperiodic responsiveness than polling, since it pre-
serves the capacity until it is needed. Shorter response times can be achieved by cre-
ating a Deferrable Server having the highest priority among the periodic tasks. An
example of high-priority DS is illustrated in Figure 5.8. Note that the second aperi-
odic request preempts task τ1, being Cs > 0 and Ts < T1, and it entirely consumes
the capacity at time t = 10. When the third request arrives at time t = 11, the capacity
is zero; hence, its service is delayed until the beginning of the next server period. The
fourth request receives the same treatment because it arrives at time t = 16, when C s

is exhausted.

5.4.1 SCHEDULABILITY ANALYSIS

Any schedulability analysis related to the Rate-Monotonic algorithm has been done
on the implicit assumption that a periodic task cannot suspend itself, but must execute
whenever it is the highest-priority task ready to run (assumption A5 in Section 4.1).
It is easy to see that the Deferrable Server violates this basic assumption. In fact,
the schedule illustrated in Figure 5.8 shows that DS does not execute at time t = 0,

Fixed-Priority Servers 131

i

2 1 2 1

2

1210 14

0

16

sT = 5

τ 1

τ 2

64

C

2 8 20 22 241816

s = 2

Server
1τ

2τ

T i

12

6

41

2

1410

s

aperiodic
requests

C

40 62 8 20 22 2418

C

1

Figure 5.7 Example of a Deferrable Server scheduled by RM.

i

241816141210

2

1

2 1 2

20 228

τ

2

3

8

10 = 6

τ 1

0

2

T

4 62 8 20 22

2
s

18

1τ

2τ

T i

s

Server

= 2C

241614

aperiodic
requests

C s

0 4 6

C

1210

1

Figure 5.8 Example of high-priority Deferrable Server.

132 Chapter 5

1

0 4 62 8 20181612

201816141210
C s

14

2

(b)

DS

aperiodic requests

2

1

overflow

10

86

20

4

0 4 62 8 16 18141210

τ 2

τ

0

(a)

τ 2

time

Figure 5.9 DS is not equivalent to a periodic task. In fact, the periodic set {τ1, τ2} is
schedulable by RM (a); however, if we replace τ1 with DS, τ2 misses its deadline (b).

although it is the highest-priority task ready to run, but it defers its execution until time
t = 5, which is the arrival time of the first aperiodic request.

If a periodic task defers its execution when it could execute immediately, then a lower-
priority task could miss its deadline even if the task set was schedulable. Figure 5.9
illustrates this phenomenon by comparing the execution of a periodic task to the one
of a Deferrable Server with the same period and execution time.

The periodic task set considered in this example consists of two tasks, τ1 and τ2,
having the same computation time (C1 = C2 = 2) and different periods (T1 = 4,
T2 = 5). As shown in Figure 5.9a, the two tasks are schedulable by RM. However,
if τ1 is replaced with a Deferrable Server having the same period and execution time,
the low-priority task τ2 can miss its deadline depending on the sequence of aperiodic
arrivals. Figure 5.9b shows a particular sequence of aperiodic requests that cause
τ2 to miss its deadline at time t = 15. This happens because, at time t = 8, DS
does not execute (as a normal periodic task would do) but preserves its capacity for
future requests. This deferred execution, followed by the servicing of two consecutive

Fixed-Priority Servers 133

aperiodic requests in the interval [10, 14], prevents task τ2 from executing during this
interval, causing its deadline to be missed.

Such an invasive behavior of the Deferrable Server results in a lower schedulability
bound for the periodic task set. The calculation of the least upper bound of the proces-
sor utilization factor in the presence of Deferrable Server is shown in the next section.

CALCULATION OF ULUB FOR RM+DS

The schedulability bound for a set of periodic tasks with a Deferrable Server is derived
under the same basic assumptions used in Chapter 4 to compute U lub for RM. To
simplify the computation of the bound for n tasks, we first determine the worst-case
relations among the tasks, and then we derive the lower bound against the worst-case
model [LSS87].

Consider a set of n periodic tasks, τ1, . . . , τn, ordered by increasing periods, and a De-
ferrable Server with a higher priority. The worst-case condition for the periodic tasks,
as derived for the RM analysis, is such that T1 < Tn < 2T1. In the presence of a DS,
however, the derivation of the worst-case is more complex and requires the analysis of
three different cases, as discussed by Strosnider, Lehoczky, and Sha [SLS95]. For the
sake of clarity, here we analyze one case only, the most general, in which DS may ex-
ecute three times within the period of the highest-priority periodic task. This happens
when DS defers its service at the end of its period and also executes at the beginning of
the next period. In this situation, depicted in Figure 5.10, the full processor utilization
is achieved by the following tasks’ parameters:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Cs = T1 − (Ts + Cs) = T1−Ts

2
C1 = T2 − T1

C2 = T3 − T2

. . .
Cn−1 = Tn − Tn−1

Cn = Ts − Cs −
∑n−1

i=1 Ci = 3Ts+T1−2Tn

2 .

Hence, the resulting utilization is

U =
Cs

Ts
+

C1

T1
+ . . . +

Cn

Tn
=

= Us +
T2 − T1

T1
+ . . . +

Tn − Tn−1

Tn−1
+

3Ts + T1 − 2Tn

2Tn
=

= Us +
T2

T1
+ . . . +

Tn

Tn−1
+

(

3Ts

2T1
+

1

2

)

T1

Tn
− n.

134 Chapter 5

1

2

DS

1

C

τ

nT

sC

n

2

s

C

1C

2τ

C T

1

s

C

sCsC

T C

2T

nτ

+0

Figure 5.10 Worst-case task relations for a Deferrable Server.

Defining
⎧

⎪

⎨

⎪

⎩

Rs = T1/Ts

Ri = Ti+1/Ti

K = 1
2
(3Ts/T1 + 1)

and noting that

R1R2 . . . Rn−1 =
Tn

T1
,

the utilization factor may be written as

U = Us +
n−1
∑

i=1

Ri +
K

R1R2 . . . Rn−1
− n.

Following the approach used for RM, we minimize U over R i, i = 1, . . . , n − 1.
Hence,

∂U

∂Ri
= 1 − K

R2
i (
∏n−1

j �=i Rj)
.

Thus, defining P = R1R2 . . . Rn−1, U is minimum when
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R1P = K
R2P = K

. . .
Rn−1P = K ;

that is, when all Ri have the same value:

R1 = R2 = . . . = Rn−1 = K1/n.

Fixed-Priority Servers 135

Substituting this value in U we obtain

Ulub − Us = (n − 1)K1/n +
K

K(1−1/n)
− n =

= nK1/n − K1/n + K1/n − n =

= n(K1/n − 1);

that is,
Ulub = Us + n(K1/n − 1). (5.10)

Now, noting that

Us =
Cs

Ts
=

T1 − Ts

2Ts
=

Rs − 1

2

we have
Rs = (2Us + 1).

Thus, K can be rewritten as

K =

(

3

2Rs
+

1

2

)

=
Us + 2

2Us + 1
,

and finally

Ulub = Us + n

[

(

Us + 2

2Us + 1

)1/n

− 1

]

. (5.11)

Taking the limit as n → ∞, we find the worst-case bound as a function of U s to be
given by

lim
n→∞

Ulub = Us + ln

(

Us + 2

2Us + 1

)

. (5.12)

A plot of Equation (5.12) as a function of U s is shown in Figure 5.11. For comparison,
the RM bound is also reported in the plot. Notice that for U s < 0.4 the presence of
DS worsens the RM bound, whereas for Us > 0.4 the RM bound is improved.

Deriving Equation (5.12) with respect to Us, we can find the absolute minimum value
of Ulub:

∂Ulub

∂Us
= 1 +

(2Us + 1)

(Us + 2)

(2Us + 1) − 2(Us + 2)

(2Us + 1)2
=

2U 2
s + 5Us − 1

(Us + 2)(2Us + 1)
.

The value of Us that minimizes the above expression is

U∗
s =

√
33 − 5

4
≃ 0.186,

so the minimum value of Ulub is U∗
lub ≃ 0.652.

136 Chapter 5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

L
e
a
s
t
U

p
p
e
r

B
o
u
n
d

Server Utilization factor Us

DS bound
RM bound

Figure 5.11 Schedulability bound for periodic tasks and DS as a function of the server
utilization factor Us.

In summary, given a set of n periodic tasks with utilization Up and a Deferrable Server
with utilization Us, respectively, the schedulability of the periodic task set is guaran-
teed under RM if

Up ≤ n
(

K1/n − 1
)

. (5.13)

where

K =
Us + 2

2Us + 1
,

Using the Hyperbolic Bound, the guarantee test for a task set in the presence of a
Deferrable Server can be performed as follows:

n
∏

i=1

(Ui + 1) ≤ Us + 2

2Us + 1
. (5.14)

Fixed-Priority Servers 137

5.4.2 DIMENSIONING A DEFERRABLE SERVER

Following the same procedure described in Section 5.3.2, the maximum utilization
Umax

s for a Deferrable Server can easily be computed from Equation (5.14), which
can be written, defining P as in Equation (5.7), as:

P ≤ Us + 2

2Us + 1
;

that is,

Us ≤ 2 − P

2P − 1
.

Hence,

Umax
s =

2 − P

2P − 1
. (5.15)

Then, Ts can be set equal to the smallest period T1, so that DS is executed by RM with
the highest priority (assuming that priority ties are broken in favor of the server), and
finally Cs = UsTs.

5.4.3 APERIODIC GUARANTEE

The online guarantee of a firm aperiodic job can be performed by estimating its worst-
case response time in the case of a DS with the highest priority. Since DS preserves its
execution time, let cs(t) be the value of its capacity at time t, and let Ja an aperiodic
job with computation time Ca and relative deadline Da, arriving at time t = ra, when
no other aperiodic requests are pending. Then, if next(r a) = ⌈ra/Ts⌉Ts is the next
server activation after time ra, the two cases illustrated in Figure 5.12 can occur:

1. Case (a): cs(t) ≤ next(ra) − ra. In this case, the capacity is completely dis-
charged within the current period and a portion C 0 = cs(t) of Ja is executed in
the current server period.

2. Case (b): cs(t) > next(ra) − ra. In this case, the period ends before the server
capacity is completely discharged; thus a portion C0 = next(ra) − ra of Ja is
executed in the current server period.

In general, the portion C0 executed in the current server period is equal to

C0 = min{cs(t), next(ra) − ra}.

138 Chapter 5

(a) (b)

CsCs

C0 C0

cs(t)cs(t)

ra ranext(ra) next(ra)

Figure 5.12 Execution of Ja in the first server period.

Cs

∆a

cs(t)

ra fa

Ra

da

δaFaTs

next(ra)

Figure 5.13 Response time of an aperiodic job scheduled by a Deferrable Server with the
highest priority.

Using the same notation introduced for Polling Server, we define:
⎧

⎪

⎨

⎪

⎩

∆a = next(ra) − ra

Fa =
⌈

Ca−C0

Cs

⌉

− 1

δa = Ca − C0 − FaCs.

Hence, as depicted in Figure 5.13, the response time Ra of job Ja can be computed as

Ra = ∆a + FaTs + δa,

which can be also written as:

Ra = ∆a + Ca − C0 + Fa(Ts − Cs). (5.16)

Note that the term Fa(Ts −Cs) in Equation (5.16) represents the delay introduced by
the Fa inactive server intervals, each of size (Ts − Cs).

Then, the schedulability of the aperiodic job can be guaranteed if and only if R a ≤ Da.

Fixed-Priority Servers 139

5.5 PRIORITY EXCHANGE

The Priority Exchange (PE) algorithm is a scheduling scheme introduced by Lehoczky,
Sha, and Strosnider [LSS87] for servicing a set of soft aperiodic requests along with
a set of hard periodic tasks. With respect to DS, PE has a slightly worse performance
in terms of aperiodic responsiveness but provides a better schedulability bound for the
periodic task set.

Like DS, the PE algorithm uses a periodic server (usually at a high priority) for ser-
vicing aperiodic requests. However, it differs from DS in the manner in which the
capacity is preserved. Unlike DS, PE preserves its high-priority capacity by exchang-
ing it for the execution time of a lower-priority periodic task.

At the beginning of each server period, the capacity is replenished at its full value. If
aperiodic requests are pending and the server is the ready task with the highest priority,
then the requests are serviced using the available capacity; otherwise Cs is exchanged
for the execution time of the active periodic task with the highest priority.

When a priority exchange occurs between a periodic task and a PE server, the periodic
task executes at the priority level of the server while the server accumulates a capacity
at the priority level of the periodic task. Thus, the periodic task advances its execution,
and the server capacity is not lost but preserved at a lower priority. If no aperiodic re-
quests arrive to use the capacity, priority exchange continues with other lower-priority
tasks until either the capacity is used for aperiodic service or it is degraded to the pri-
ority level of background processing. Since the objective of the PE algorithm is to
provide high responsiveness to aperiodic requests, all priority ties are broken in favor
of aperiodic tasks.

Figure 5.14 illustrates an example of aperiodic scheduling using the PE algorithm. In
this example, the PE server is created with a period Ts = 5 and a capacity Cs = 1.
Since the aperiodic time managed by the PE algorithm can be exchanged with all
periodic tasks, the capacity accumulated at each priority level as a function of time is
represented in overlapping with the schedule of the corresponding periodic task. In
particular, the first timeline of Figure 5.14 shows the aperiodic requests arriving in the
system, the second timeline visualizes the capacity available at PE’s priority, whereas
the third and the fourth ones show the capacities accumulated at the corresponding
priority levels as a consequence of the priority exchange mechanism.

At time t = 0, the PE server is brought at its full capacity, but no aperiodic requests
are pending, so Cs is exchanged with the execution time of task τ1. As a result, τ1

advances its execution and the server accumulates one unit of time at the priority level

140 Chapter 5

s

Server

1

sC

sT = 5

= 1

2

1

11

requests
aperiodic

2τ

1τ

8 20

4 10

C i T i

τ 2

τ 1

200 4 62 8 18

C

16141210

1

Figure 5.14 Example of aperiodic service under a PE server.

of τ1. At time t = 4, τ1 completes and τ2 begins to execute. Again, since no aperiodic
tasks are pending, another exchange takes place between τ 1 and τ2. At time t = 5, the
capacity is replenished at the server priority, and it is used to execute the first aperiodic
request. At time t = 10, Cs is replenished at the highest priority, but it is degraded
to the priority level of τ1 for lack of aperiodic tasks. At time t = 12, the capacity
accumulated at the priority level of τ1 is used to execute the second aperiodic request.
At time t = 15, a new high-priority replenishment takes place, but the capacity is
exchanged with the execution time of τ2. Finally, at time t = 18, the remaining
capacity accumulated at the priority level of τ2 is gradually discarded because no tasks
are active.

Note that the capacity overlapped to the schedule of a periodic task indicates, at any
instant, the amount of time by which the execution of that task is advanced with respect
to the case where there is no exchange.

Another example of aperiodic scheduling under the PE algorithm is depicted in Fig-
ure 5.15. Here, at time t = 5, the capacity of the server immediately degrades down
to the lowest-priority level of τ2, since no aperiodic requests are pending and τ1 is
idle. At time t = 11, when request J1 arrives, it is interesting to observe that the
first unit of computation time is immediately executed by using the capacity accumu-
lated at the priority level of τ1. Then, since the remaining capacity is available at the

Fixed-Priority Servers 141

iTi

s

τ

C

1

2

1τ

2

Server

T

s

1

2

1

12 s = 5

= 1

20

102 C

40 62 8 201816141210

τ 2

τ 1

aperiodic
requests

C

1

Figure 5.15 Example of aperiodic service under a PE server.

lowest-priority level and τ1 is still active, J1 is preempted by τ1 and is resumed at time
t = 13, when τ1 completes.

5.5.1 SCHEDULABILITY ANALYSIS

Considering that, in the worst case, a PE server behaves as a periodic task, the schedu-
lability bound for a set of periodic tasks running along with a Priority Exchange server
is the same as the one derived for the Polling Server. Hence, assuming that PE is the
highest-priority task in the system, we have

Ulub = Us + n
(

K1/n − 1
)

. (5.17)

where

K =
2

Us + 1
.

Thus, given a set of n periodic tasks and a Priority Exchange server with utilization
factors Up and Us, respectively, the schedulability of the periodic task set is guaranteed
under RM if

Up ≤ n

[

(

2

Us + 1

)1/n

− 1

]

. (5.18)

142 Chapter 5

5.5.2 PE VERSUS DS

The DS and the PE algorithms represent two alternative techniques for enhancing ape-
riodic responsiveness over traditional background and polling approaches. Here, these
techniques are compared in terms of performance, schedulability bound, and imple-
mentation complexity, in order to help a system designer select the most appropriate
method for a particular real-time application.

The DS algorithm is much simpler to implement than the PE algorithm, because it
always maintains its capacity at the original priority level and never exchanges its
execution time with lower-priority tasks, as does the PE algorithm. The additional
work required by PE to manage and track priority exchanges increases the overhead
of PE with respect to DS, especially when the number of periodic tasks is large. On the
other hand, DS does pay a schedulability penalty for its simplicity in terms of a lower
utilization bound. This means that, for a given periodic load U p, the maximum size
of a DS server that can still guarantee the periodic tasks is smaller than the maximum
size of a PE server.

The maximum utilizations for DS and PE, as a function of task utilizations, have been
derived in Equations (5.15) and (5.8), respectively (since PE, like PS, behaves as a
periodic task in terms of utilization). Hence, the following:

Umax
DS =

2 − P

2P − 1
(5.19)

Umax
PE =

2 − P

P
(5.20)

where

P =

n
∏

i=1

(Ui + 1).

Note that if all the n periodic tasks have the same utilization U i = Up/n, the P factor
can be expressed as a function of Up as

P =

(

Up

n
+ 1

)n

.

Note that the case in which all periodic tasks have the same utilization represents the
worst-case scenario for the task set, as clear from Figure 4.11, since the hyperbole is
tangent to the linear Liu and Layland bound.

A plot of the maximum server utilizations as a function of U p (and for a large number
of tasks) is shown in Figure 5.16. Note that when Up = 0.6, the maximum utilization

Fixed-Priority Servers 143

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
a
x
im

u
m

 S
e
rv

e
r

U
ti
liz

a
ti
o
n

Periodic Utilization factor Up

PE
DS

Figure 5.16 Maximum server utilization as a function of the periodic load.

for PE is 10%, whereas DS utilization cannot be greater than 7%. If instead Up = 0.3,
PE can have 48% utilization, while DS cannot go over 38%. The performance of the
two algorithms in terms of average aperiodic response times is shown in Section 5.9.

As far as firm aperiodic tasks are concerned, the schedulability analysis under PE is
much more complex than under DS. This is due to the fact that, in general, when an
aperiodic request is handled by the PE algorithm, the server capacity can be distributed
among n+1 priority levels. Hence, calculating the finishing time of the request might
require the construction of the schedule for all the periodic tasks up to the aperiodic
deadline.

5.6 SPORADIC SERVER

The Sporadic Server (SS) algorithm is another technique, proposed by Sprunt, Sha,
and Lehoczky [SSL89], which allows the enhancement of the average response time
of aperiodic tasks without degrading the utilization bound of the periodic task set.

The SS algorithm creates a high-priority task for servicing aperiodic requests and, like
DS, preserves the server capacity at its high-priority level until an aperiodic request
occurs. However, SS differs from DS in the way it replenishes its capacity. Whereas
DS and PE periodically replenish their capacity to full value at the beginning of each

144 Chapter 5

server period, SS replenishes its capacity only after it has been consumed by aperiodic
task execution.

In order to simplify the description of the replenishment method used by SS, the fol-
lowing terms are defined:

Pexe It denotes the priority level of the task that is currently executing.

Ps It denotes the priority level associated with SS.

Active SS is said to be active when Pexe ≥ Ps.

Idle SS is said to be idle when Pexe < Ps.

RT It denotes the replenishment time at which the SS capacity will be re-
plenished.

RA It denotes the replenishment amount that will be added to the capacity
at time RT.

Using this terminology, the capacity Cs consumed by aperiodic requests is replenished
according to the following rule:

The replenishment time RT is set as soon as SS becomes active and Cs > 0.
Let tA be such a time. The value of RT is set equal to tA plus the server period
(RT = tA + Ts).

The replenishment amount RA to be done at time RT is computed when SS be-
comes idle or Cs has been exhausted. Let tI be such a time. The value of RA is
set equal to the capacity consumed within the interval [tA, tI].

An example of medium-priority SS is shown in Figure 5.17. To facilitate the under-
standing of the replenishment rule, the intervals in which SS is active are also shown.
At time t = 0, the highest-priority task τ1 is scheduled, and SS becomes active. Since
Cs > 0, a replenishment is set at time RT1 = t + Ts = 10. At time t = 1, τ1 com-
pletes, and since no aperiodic requests are pending, SS becomes idle. Note that no
replenishment takes place at time RT1 = 10 (RA1 = 0) because no capacity has been
consumed in the interval [0, 1]. At time t = 4, the first aperiodic request J1 arrives,
and since Cs > 0, SS becomes active and the request receives immediate service. As
a consequence, a replenishment is set at RT2 = t + Ts = 14. Then, J1 is preempted

Fixed-Priority Servers 145

1

144 62 8 20 2218161210

C s

aperiodic
requests

2τ

T i
Server

1
C s

sT

= 5

= 10

5

154

τ

iC

1

3

5
+2

+2

SS active

22

0

τ

τ 2

1

Figure 5.17 Example of a medium-priority Sporadic Server.

by τ1 at t = 5, is resumed at t = 6 and is completed at t = 7. At this time, the replen-
ishment amount to be done at RT2 is set equal to the capacity consumed in [4, 7]; that
is, RA2 = 2.

Note that during preemption intervals SS stays active. This allows performing a single
replenishment, even if SS provides a discontinuous service for aperiodic requests.

At time t = 8, SS becomes active again and a new replenishment is set at RT3 =
t + Ts = 18. At t = 11, SS becomes idle and the replenishment amount to be done at
RT3 is set to RA3 = 2.

Figure 5.18 illustrates another example of aperiodic service in which SS is the highest-
priority task. Here, the first aperiodic request arrives at time t = 2 and consumes the
whole server capacity. Hence, a replenishment amount RA1 = 2 is set at RT1 = 10.
The second request arrives when Cs = 0. In this case, the replenishment time RT2 is
set as soon as the capacity becomes greater than zero. Since this occurs at time t = 10,

146 Chapter 5

aperiodic
requests

1

C s

1240 1062 8 20 22181614

Server
i

C
τ

s

sT154

10
= 2

= 8

T

2

τ

2 2

2

1

+2 +2

C i

1

τ

τ 2

3

Figure 5.18 Example of a high-priority Sporadic Server.

the next replenishment is set at time RT2 = 18. The corresponding replenishment
amount is established when J2 completes and is equal to RA2 = 2.

5.6.1 SCHEDULABILITY ANALYSIS

The Sporadic Server violates one of the basic assumptions governing the execution
of a standard periodic task. This assumption requires that once a periodic task is the
highest-priority task that is ready to execute, it must execute. Like DS, in fact, SS
defers its execution and preserves its capacity when no aperiodic requests are pend-
ing. However, we show that the replenishment rule used in SS compensates for any
deferred execution and, from a scheduling point of view, SS can be treated as a normal
periodic task with a period Ts and an execution time Cs. In particular, the following
theorem holds [SSL89]:

Theorem 5.1 (Sprunt, Sha, Lehoczky) A periodic task set that is schedulable with a

task τi is also schedulable if τi is replaced by a Sporadic Server with the same period

and execution time.

Fixed-Priority Servers 147

Proof. The theorem is proved by showing that for any type of service, SS exhibits
an execution behavior equivalent to one or more periodic tasks. Let t A be the time at
which Cs is full and SS becomes active, and let tI be the time at which SS becomes
idle, such that [tA, tI] is a continuous interval during which SS remains active. The
execution behavior of the server in the interval [tA, tI] can be described by one of the
following three cases (see Figure 5.19):

1. No capacity is consumed.

2. The server capacity is totally consumed.

3. The server capacity is partially consumed.

Case 1. If no requests arrive in [tA, tI], SS preserves its capacity and no replen-
ishments can be performed before time tI +Ts. This means that at most
Cs units of aperiodic time can be executed in [tA, tI + Ts]. Hence, the
SS behavior is identical to a periodic task τs(Cs, Ts) whose release time
is delayed from tA to tI . As proved in Chapter 4 for RM, delaying the
release of a periodic task cannot increase the response time of the other
periodic tasks; therefore, this case does not jeopardize schedulability.

Case 2. If Cs is totally consumed in [tA, tI], a replenishment of Cs units of time
will occur at time tA + Ts. Hence, SS behaves like a periodic task with
period Ts and execution time Cs released at time tA.

Case 3. If Cs is partially consumed in [tA, tI], a replenishment will occur at time
tA +Ts, and the remaining capacity is preserved for future requests. Let
CR be the capacity consumed in [tA, tI]. In this case, the behavior of
the server is equivalent to two periodic tasks, τx and τy , with periods
Tx = Ty = Ts, and execution times Cx = CR and Cy = Cs − CR,
such that τx is released at tA and τy is delayed until tI . As in Case 1,
the delay of τy has no schedulability effects.

Since in any servicing situation SS can be represented by one or more periodic tasks
with period Ts and total execution time equal to Cs, the contribution of SS in terms of
processor utilization is equal to Us = Cs/Ts. Hence, from a schedulability point of
view, SS can be replaced by a periodic task having the same utilization factor.

Since SS behaves like a normal periodic task, the periodic task set can be guaranteed
by the same schedulability test derived for the Polling Server. Hence, a set Γ of n

148 Chapter 5

A

sT

sT

SS active

SS active

s

A

t

ItAt

Itt

s

+ sTItIt

C

s

T

(c)

(a)

(b)

+At sT

A +

C

t sT

- RCsC

sC

SS active

Figure 5.19 Possible SS behavior during active intervals: a. Cs is not consumed; b. Cs

is totally consumed; c. Cs is partially consumed.

Fixed-Priority Servers 149

periodic tasks with utilization factor Up scheduled along with a Sporadic Server with
utilization Us is schedulable under RM if

Up ≤ n

[

(

2

Us + 1

)1/n

− 1

]

. (5.21)

For large n, Γ is schedulable if

Up ≤ ln

(

2

Us + 1

)

(5.22)

Using the Hyperbolic Bound, a periodic task set with utilization Up is schedulable
under RM+SS if

P
def
=

n
∏

i=1

(Ui + 1) ≤
(

2

Us + 1

)

. (5.23)

And the maximum server size that preserves schedulability is

Umax
SS =

2 − P

P
. (5.24)

As far as firm aperiodic tasks are concerned, the schedulability analysis under SS is
not simple because, in general, the server capacity can be fragmented in a lot of small
pieces of different size, available at different times according to the replenishment
rule. As a consequence, calculating the finishing time of an aperiodic request requires
keeping track of all the replenishments that will occur until the task deadline.

5.7 SLACK STEALING

The Slack Stealing algorithm is another aperiodic service technique, proposed by
Lehoczky and Ramos-Thuel [LRT92], which offers substantial improvements in re-
sponse time over the previous service methods (PE, DS, and SS). Unlike these meth-
ods, the Slack Stealing algorithm does not create a periodic server for aperiodic task
service. Rather it creates a passive task, referred to as the Slack Stealer, which attempts
to make time for servicing aperiodic tasks by “stealing” all the processing time it can
from the periodic tasks without causing their deadlines to be missed. This is equiva-
lent to stealing slack from the periodic tasks. We recall that if c i(t) is the remaining
computation time at time t, the slack of a task τi is

slacki(t) = di − t − ci(t).

The main idea behind slack stealing is that, typically, there is no benefit in early com-
pletion of the periodic tasks. Hence, when an aperiodic request arrives, the Slack

150 Chapter 5

1

(a)

3

20

τ

0 4 62 8 1816141210

aperiodic
requests

20

τ 2

0 4 62 8 16 18141210

τ 1

τ 2

(b)

Figure 5.20 Example of Slack Stealer behavior: a. when no aperiodic requests are pend-
ing; b. when an aperiodic request of three units arrives at time t = 8.

Stealer steals all the available slack from periodic tasks and uses it to execute aperi-
odic requests as soon as possible. If no aperiodic requests are pending, periodic tasks
are normally scheduled by RM. Similar algorithms based on slack stealing have been
proposed by other authors [RTL93, DTB93, TLS95].

Figure 5.20 shows the behavior of the Slack Stealer on a set of two periodic tasks,
τ1 and τ2, with periods T1 = 4, T2 = 5 and execution times C1 = 1, C2 = 2. In
particular, Figure 5.20a shows the schedule produced by RM when no aperiodic tasks
are processed, whereas Figure 5.20b illustrates the case in which an aperiodic request
of three units arrives at time t = 8 and receives immediate service. In this case, a slack
of three units is obtained by delaying the third instance of τ 1 and τ2.

Note that in the example of Figure 5.20, no other server algorithms (PS, DS, PE, or
SS) can schedule the aperiodic requests at the highest priority and still guarantee the
periodic tasks. For example, since U1 = 1/4 and U2 = 2/5, the P factor for the task
set is P = 7/4; hence, the maximum server utilization, according to Equation (5.24)
is

Umax
SS =

2

P
− 1 =

1

7
≃ 0.14.

Fixed-Priority Servers 151

1

5

3

1

7
+2

+2

+2

τ

106

τ 2

earliest
slack

0 42 8 2018161412

1210 1614 18 200 4 62 8

A(0, t)

Figure 5.21 Slack function at time s = 0 for the periodic task set considered in the
previous example.

This means that, even with Cs = 1, the shortest server period that can be set with
this utilization factor is Ts = ⌈Cs/Us⌉ = 7, which is greater than both task periods.
Thus, the execution of the server would be equivalent to a background service, and the
aperiodic request would be completed at time 15.

5.7.1 SCHEDULABILITY ANALYSIS

In order to schedule an aperiodic request Ja(ra, Ca) according to the Slack Stealing
algorithm, we need to determine the earliest time t such that at least Ca units of slack
are available in [ra, t]. The computation of the slack is carried out through the use of
a slack function A(s, t), which returns the maximum amount of computation time that
can be assigned to aperiodic requests in the interval [s, t] without compromising the
schedulability of periodic tasks.

Figure 5.21 shows the slack function at time s = 0 for the periodic task set considered
in the previous example. For a given s, A(s, t) is a non-decreasing step function
defined over the hyperperiod, with jump points corresponding to the beginning of the
intervals where the slack is available. As s varies, the slack function needs to be
recomputed, and this requires a relatively large amount of calculation, especially for
long hyperperiods. Figure 5.22 shows how the slack function A(s, t) changes at time
s = 6 for the same periodic task set.

152 Chapter 5

1

earliest
slack

5

3

1

7

+2

+2

+2

τ

8

τ 2

0 4 62 201816141210

1210 14 160 4 62 8 2018

A(6, t)

Figure 5.22 Slack function at time s = 6 for the periodic task set considered in the
previous example.

According to the original algorithm proposed by Lehoczky and Ramos-Thuel [LRT92],
the slack function at time s = 0 is precomputed and stored in a table. During runtime,
the actual function A(s, t) is then computed by updating A(0, t) based on the peri-
odic execution time, the aperiodic service time, and the idle time. The complexity for
computing the current slack from the table is O(n), where n is the number of periodic
tasks; however, depending on the periods of the tasks, the size of the table can be too
large for practical implementations.

A dynamic method for computing slack has been proposed by Davis, Tindell, and
Burns [DTB93]. According to this algorithm, the available slack is computed when-
ever an aperiodic requests enters the system. This method is more complex than the
previous static approach, but it requires much less memory and allows handling of
periodic tasks with release jitter or synchronization requirements. Finally, a more ef-
ficient algorithm for computing the slack function has been proposed by Tia, Liu, and
Shankar [TLS95].

The Slack Stealing algorithm has also been extended by Ramos-Thuel and Lehoczky
[RTL93] to guarantee firm aperiodic tasks.

Fixed-Priority Servers 153

5.8 NON-EXISTENCE OF OPTIMAL SERVERS

The Slack Stealer always advances all available slack as much as possible and uses
it to execute the pending aperiodic tasks. For this reason, it originally was consid-
ered an optimal algorithm; that is, capable of minimizing the response time of every
aperiodic request. Unfortunately, the Slack Stealer is not optimal because to mini-
mize the response time of an aperiodic request, it is sometimes necessary to schedule
it at a later time even if slack is available at the current time. Indeed, Tia, Liu, and
Shankar [TLS95] proved that, if periodic tasks are scheduled using a fixed-priority
assignment, no algorithm can minimize the response time of every aperiodic request
and still guarantee the schedulability of the periodic tasks.

Theorem 5.2 (Tia, Liu, Shankar) For any set of periodic tasks ordered on a given

fixed-priority scheme and aperiodic requests ordered according to a given aperiodic

queueing discipline, no valid algorithm exists that minimizes the response time of every

soft aperiodic request.

Proof. Consider a set of three periodic tasks with C1 = C2 = C3 = 1 and T1 = 3,
T2 = 4 and T3 = 6, whose priorities are assigned based on the RM algorithm. Fig-
ure 5.23a shows the schedule of these tasks when no aperiodic requests are processed.

Now consider the case in which an aperiodic request J1, with Ca1
= 1, arrives at time

t = 2. At this point, any algorithm has two choices:

1. Do not schedule J1 at time t = 2. In this case, the response time of J1 will be
greater than 1 and, thus, it will not be the minimum.

2. Schedule J1 at time t = 2. In this case, assume that another request J2, with
Ca2

= 1, arrives at time t = 3. Since no slack time is available in the interval
[3, 6], J2 can start only at t = 6 and finish at t = 7. This situation is shown in
Figure 5.23b.

However, the response time of J2 achieved in case 2 is not the minimum. In fact, if J1

were scheduled at time t = 3, another unit of slack would have been available at time
t = 4; thus, J2 would have been completed at time t = 5. This situation is illustrated
in Figure 5.23c.

The above example shows that it is not possible for any algorithm to minimize the
response times of J1 and J2 simultaneously. If J1 is scheduled immediately, then J2

154 Chapter 5

3

(b)

11

3

5 12111098764

τ

3210

1τ

2τ

5 12111098763 4210

1τ

2τ

1211109875 643

τ

τ

210

1τ

2τ

3

(c)

11

(a)

Figure 5.23 No algorithm can minimize the response time of every aperiodic request. If
J1 is minimized, J2 is not (b). On the other hand, if J2 is minimized, J1 is not (c).

Fixed-Priority Servers 155

will not be minimized. On the other hand, if J1 is delayed to minimize J2, then J1

will suffer. Hence, there is no optimal algorithm that can minimize the response time
of any aperiodic request.

Note that Theorem 5.2 applies both to clairvoyant and online algorithms since the
example is applicable regardless of whether the algorithm has a priori knowledge of
the aperiodic requests. The same example can be used to prove another important
result on the minimization of the average response time.

Theorem 5.3 (Tia, Liu, Shankar) For any set of periodic tasks ordered on a given

fixed-priority scheme and aperiodic requests ordered according to a given aperiodic

queueing discipline, no online valid algorithm exists that minimizes the average re-

sponse time of the soft aperiodic requests.

Proof. From the example illustrated in Figure 5.23 it is easy to see that, if there is only
request J1 in each hyperperiod, then scheduling J1 as soon as possible will yield the
minimum average response time. On the other hand, if J 1 and J2 are present in each
hyperperiod, then scheduling each aperiodic request as soon as possible will not yield
the minimum average response time. This means that, without a priori knowledge of
the aperiodic requests’ arrival, an online algorithm will not know when to schedule
the requests.

5.9 PERFORMANCE EVALUATION

The performance of the various algorithms described in this chapter has been com-
pared in terms of average response times on soft aperiodic tasks. Simulation experi-
ments have been conducted using a set of ten periodic tasks with periods ranging from
54 to 1200 units of time and utilization factor Up = 0.69. The aperiodic load was
varied across the unused processor bandwidth. The interarrival times for the aperiodic
tasks were modeled using a Poisson arrival pattern with average interarrival time of
18 units of time, whereas the computation times of aperiodic requests were modeled
using an exponential distribution. Periods for PS, DS, PE, and SS were set to handle
aperiodic requests at the highest priority in the system (priority ties were broken in
favor of aperiodic tasks). Finally, the server capacities were set to the maximum value
for which the periodic tasks were schedulable.

156 Chapter 5

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 w

it
h

 r
e

s
p

e
c
t

to
 B

a
c
k
g

ro
u

n
d

Average aperiodic load

Up = 0.69, U(server) = 24.8%, U(DS) = 23.9%

Polling
SS
DS
PE

Figure 5.24 Performance results of PS, DS, PE, and SS.

In the plots shown in Figure 5.24, the average aperiodic response time of each algo-
rithm is presented relative to the response time of background aperiodic service. This
means that a value of 1.0 in the graph is equivalent to the average response time of
background service, while an improvement over background service corresponds to a
value less than 1.0. The lower the response time curve lies on the graph, the better the
algorithm is for improving aperiodic responsiveness.

As shown from the graphs, DS, PE, and SS provide a substantial reduction in the
average aperiodic response time compared to background and polling service. In par-
ticular, a better performance is achieved with short and frequent requests. This can be
explained by considering that, in most of the cases, short tasks do not use the whole
server capacity and can finish within the current server period. On the other hand, long
tasks protract their completion because they consume the whole server capacity and
have to wait for replenishments.

Note that average response times achieved by SS are slightly higher than those ob-
tained by DS and PE. This is mainly due to the different replenishment rule used by
the algorithms. In DS and PE, the capacity is always replenished at its full value at
the beginning of every server period, while in SS it is replenished T s units of time
after consumption. Thus, on the average, when the capacity is exhausted, waiting for
replenishment in SS is longer than waiting in DS or in PE.

Fixed-Priority Servers 157

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e

Average aperiodic load

Up = 0.69

Background
Polling

SS
Slack Stealer

Figure 5.25 Performance of the Slack Stealer with respect to background, PS, and SS.

Figure 5.25 shows the performance of the Slack Stealing algorithm with respect to
background service, Polling, and SS. The performance of DS and PE is not shown
because it is very similar to the one of SS. Unlike the previous figure, in this graph
the average response times are not reported relative to background, but are directly
expressed in time units. As we can see, the Slack Stealing algorithm outperforms
all the other scheduling algorithms over the entire range of aperiodic load. However,
the largest performance gain of the Slack Stealer over the other algorithms occurs at
high aperiodic loads, when the system reaches the upper limit as imposed by the total
resource utilization.

Other simulation results can be found in Lehoczky, Sha, and Strosnider [LSS87] for
Polling, PE, and DS, in Sprunt, Sha, and Lehoczky [SSL89] for SS, and in Lehoczky
and Ramos-Thuel [LRT92] for the Slack Stealing algorithm.

5.10 SUMMARY

The algorithms presented in this chapter can be compared not only in terms of per-
formance but also in terms of computational complexity, memory requirement, and
implementation complexity. In order to select the most appropriate service method

158 Chapter 5

Stealer
Slack

Background

Server

poorgood

Polling

Service

memory

Server

complexity
implementation

requirement
computational
complexityperformance

Server
Sporadic

Priority
Exchange

Deferrable

excellent

Figure 5.26 Evaluation summary of fixed-priority servers.

for handling soft aperiodic requests in a hard real-time environment, all these factors
should be considered. Figure 5.26 provides a qualitative evaluation of the algorithms
presented in this chapter.

Exercises

5.1 Compute the best parameters that can be assigned to a Sporadic Server to guar-
antee the following periodic tasks under RM, while enhancing aperiodic re-
sponsiveness as much as possible:

Ci Ti

τ1 1 6
τ2 2 7

5.2 Compute the best parameters that can be assigned to a Deferrable Server to
guarantee the task set described in Exercise 5.1.

Fixed-Priority Servers 159

5.3 Consider two periodic tasks with computation times C1 = 1, C2 = 2 and
periods T1 = 5, T2 = 8, handled by Rate Monotonic. Show the schedule
produced by a Polling Server, having maximum utilization and intermediate
priority, on the following aperiodic jobs:

ai Ci

J1 2 3
J2 7 1
J3 17 1

5.4 Solve the same scheduling problem described in Exercise 5.3, with a Sporadic
Server having maximum utilization and intermediate priority.

5.5 Solve the same scheduling problem described in Exercise 5.3, with a Deferrable
Server having maximum utilization and highest priority.

5.6 Using a Sporadic Server with capacity Cs = 2 and period Ts = 5, schedule the
following tasks:

periodic tasks
Ci Ti

τ1 1 4
τ2 2 6

aperiodic tasks
ai Ci

J1 2 2
J2 5 1
J3 10 2

6
DYNAMIC PRIORITY SERVERS

6.1 INTRODUCTION

In this chapter1 we discuss the problem of scheduling soft aperiodic tasks and hard
periodic tasks under dynamic priority assignments. In particular, different service
methods are introduced, the objective of which is to reduce the average response time
of aperiodic requests without compromising the schedulability of hard periodic tasks.
Periodic tasks are scheduled by the Earliest Deadline First (EDF) algorithm.

With respect to fixed-priority assignments, dynamic scheduling algorithms are char-
acterized by higher schedulability bounds, which allow the processor to be better
utilized, increase the size of aperiodic servers, and enhance aperiodic responsive-
ness. Consider, for example, a set of two periodic tasks with the same utilization
U1 = U2 = 0.3, so that Up = 0.6. If priorities are assigned to periodic tasks
based on RM and aperiodic requests are served by a Sporadic Server, the maximum
server size that guarantees periodic schedulability is given by Equation (5.24) and
is Umax

SS = 2/P − 1, where P = (U1 + 1)(U2 + 1) = 1.69. Hence, we have
Umax

SS ≃ 0.18. On the other hand, if periodic tasks are scheduled by EDF, the proces-
sor utilization bound goes up to 1.0, so the maximum server size can be increased up
to Us = 1 − Up = 0.4.

For the sake of clarity, all properties of the algorithms presented in this chapter are
proven under the following assumptions:

1Part of this chapter is taken from the paper “Scheduling Aperiodic Tasks in Dynamic Priority Systems”
by M. Spuri and G. Buttazzo, published in Real-Time Systems, 10(2), March 1996.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

161

6

 Springer Science+Business Media, LLC 2011©

162 Chapter 6

All periodic tasks τi : i = 1, . . . , n have hard deadlines and their schedulability
must be guaranteed off line.

All aperiodic tasks Ji : i = 1, . . . , m do not have deadlines and must be sched-
uled as soon as possible, but without jeopardizing the schedulability of the peri-
odic tasks.

Each periodic task τi has a period Ti, a computation time Ci, and a relative
deadline Di equal to its period.

All periodic tasks are simultaneously activated at time t = 0.

Each aperiodic task has a known computation time but an unknown arrival time.

Some of the assumptions listed above can easily be relaxed to handle periodic tasks
with arbitrary phasing and relative deadlines different from their periods. Shared re-
sources can also be included in the model assuming an access protocol like the Stack
Resource Policy [Bak91]. In this case, the schedulability analysis has to be conse-
quently modified to take into account the blocking factors due to the mutually ex-
clusive access to resources. For some algorithms, the possibility of handling firm
aperiodic tasks is also discussed.

The rest of the chapter is organized as follows. In the next two sections, we discuss
how two fixed-priority service algorithms – namely, the Priority Exchange and the
Sporadic Server algorithms – can be extended to work under the EDF priority assign-
ment. Then, we introduce three new aperiodic service algorithms, based on dynamic
deadline assignments, that greatly improve the performance of the previous fixed-
priority extensions. One of these algorithms, the EDL server, is shown to be optimal,
in the sense that it minimizes the average response time of aperiodic requests.

6.2 DYNAMIC PRIORITY EXCHANGE SERVER

The Dynamic Priority Exchange (DPE) server is an aperiodic service technique pro-
posed by Spuri and Buttazzo [SB94, SB96] that can be viewed as an extension of the
Priority Exchange server [LSS87], adapted to work with a deadline-based scheduling
algorithm. The main idea of the algorithm is to let the server trade its runtime with the
runtime of lower-priority periodic tasks (under EDF this means a longer deadline) in
case there are no aperiodic requests pending. In this way, the server runtime is only
exchanged with periodic tasks but never wasted (unless there are idle times). It is sim-
ply preserved, even if at a lower priority, and it can be later reclaimed when aperiodic
requests enter the system.

Dynamic priority servers 163

The algorithm is defined as follows:

The DPE server has a specified period Ts and a capacity Cs.

At the beginning of each period, the server’s aperiodic capacity is set to C d
S ,

where d is the deadline of the current server period.

Each deadline d associated to the instances (completed or not) of the ith periodic
task has an aperiodic capacity, Cd

Si
, initially set to 0.

Aperiodic capacities (those greater than 0) receive priorities according to their
deadlines and the EDF algorithm, like all the periodic task instances (ties are
broken in favor of capacities; that is, aperiodic requests).

Whenever the highest-priority entity in the system is an aperiodic capacity of C
units of time the following happens:

– if there are aperiodic requests in the system, these are served until they
complete or the capacity is exhausted (each request consumes a capacity
equal to its execution time);

– if there are no aperiodic requests pending, the periodic task having the short-
est deadline is executed; a capacity equal to the length of the execution is
added to the aperiodic capacity of the task deadline and is subtracted from
C (that is, the deadlines of the highest-priority capacity and the periodic
task are exchanged);

– if neither aperiodic requests nor periodic task instances are pending, there is
an idle time and the capacity C is consumed until, at most, it is exhausted.

An example of schedule produced by the DPE algorithm is illustrated in Figure 6.1.
Two periodic tasks, τ1 and τ2, with periods T1 = 8 and T2 = 12 and worst-case
execution times C1 = 2 and C2 = 3, and a DPE server with period Ts = 6 and
capacity Cs = 3, are present in the system.

At time t = 0, the aperiodic capacities C8
S1

(with deadline 8) and C12
S2

(with deadline
12) are set to 0, while the server capacity (with deadline 6) is set to Cs = C6

S = 3.
Since no aperiodic requests are pending, the two first periodic instances of τ 1 and τ2

are executed and Cs is consumed in the first three units of time. In the same interval,
two units of time are accumulated in C 8

S1
and one unit in C12

S2
.

At time t = 3, C8
S1

is the highest-priority entity in the system. Again, since no aperi-
odic requests are pending, τ2 keeps executing and the two units of C 8

S1
are consumed

and accumulated in C12
S2

. In the following three units of time the processor is idle and

164 Chapter 6

14

24

16 23 241

3

1680

3

21

1260 18 24

3 7

22208 19151312111097 17654320 18

τ 2

τ 1

DPE

Figure 6.1 Dynamic Priority Exchange server example.

C12
S2

is completely consumed. Note that at time t = 6 the server capacity Cs = C12
S is

set at value 3 and is preserved until time t = 8, when it becomes the highest-priority
entity in the system (ties among aperiodic capacities are assumed to be broken in a
FIFO order). At time t = 8, two units of C 12

S are exchanged with C16
S1

, while the third
unit of the server is consumed since the processor is idle.

At time t = 14, an aperiodic request, J1, of seven units of time enters the system.
Since C18

S = 2, the first two units of J1 are served with deadline 18, while the next
two units are served with deadline 24, using the capacity C 24

S2
. Finally, the last three

units are also served with deadline 24 because at time t = 18 the server capacity C 24
S

is set to 3.

6.2.1 SCHEDULABILITY ANALYSIS

The schedulability condition for a set of periodic tasks scheduled together with a DPE
server is now analyzed. Intuitively, the server behaves like any other periodic task.
The difference is that it can trade its runtime with the runtime of lower-priority tasks.
When a certain amount of time is traded, one or more lower-priority tasks are run at a
higher-priority level, and their lower-priority time is preserved for possible aperiodic
requests. This run-time exchange, however, does not affect schedulability; thus, the
periodic task set can be guaranteed using the classical Liu and Layland condition:

Up + Us ≤ 1,

where Up is the utilization factor of the periodic tasks and Us is the utilization factor
of the DPE server.

Dynamic priority servers 165

1

6

2

3

8765430 1 10 18 19 20 21 22 239 12

8

DPE

120 18 24

3

160

11

24

3

1716151413

τ 2

τ

24

Figure 6.2 DPE server schedulability.

In order to prove this result, given a schedule σ produced using the DPE algorithm,
consider a schedule σ ′ built in the following way:

Replace the DPE server with a periodic task τs with period Ts and worst-case
execution time Cs, so that in σ′ τs executes whenever the server capacity is con-
sumed in σ.

The execution of periodic instances during deadline exchanges is postponed until
the capacity decreases.

All other executions of periodic instances are left as in σ.

Note that from the definition of the DPE algorithm, at any time, at most one aperiodic
capacity decreases in σ, so σ ′ is well defined. Also observe that, in each feasible
schedule produced by the DPE algorithm, all the aperiodic capacities are exhausted
before their respective deadlines.

Figure 6.2 shows the schedule σ ′ obtained from the schedule σ of Figure 6.1. Note that
all the periodic executions corresponding to increasing aperiodic capacities have been
moved to the corresponding intervals in which the same capacities decrease. Also note
that the schedule σ′ does not depend on the aperiodic requests but depends only on the
characteristics of the server and on the periodic task set. Based on this observation,
the following theorem can be proved:

Theorem 6.1 (Spuri, Buttazzo) Given a set of periodic tasks with processor utiliza-

tion Up and a DPE server with processor utilization Us, the whole set is schedulable

by EDF if and only if
Up + Us ≤ 1.

166 Chapter 6

Proof. For any aperiodic load, all the schedules produced by the DPE algorithm have
a unique corresponding EDF schedule σ ′, built according to the definition given above.
Moreover, the task set in σ ′ is periodic with a processor utilization U = Up + Us.
Hence, σ′ is feasible if and only if Up + Us ≤ 1. Now we show that σ is feasible if
and only if σ ′ is feasible.

Observe that in each schedule σ the completion time of a periodic instance is always
less than or equal to the completion time of the corresponding instance in the schedule
σ′. Hence, if σ′ is feasible, then also σ is feasible; that is, the periodic task set is
schedulable with the DPE algorithm. Vice versa, observing that σ ′ is a particular
schedule produced by the DPE algorithm when there are enough aperiodic requests, if
σ is feasible, then σ′ will also be feasible; hence, the theorem holds.

6.2.2 RECLAIMING SPARE TIME

In hard real-time systems, the guarantee test of critical tasks is done by performing a
worst-case schedulability analysis; that is, assuming the maximum execution time for
all task instances. However, when such a peak load is not reached because the actual
execution times are less than the worst-case values, it is not always obvious how to
reclaim the spare time efficiently.

Using a DPE server, the spare time unused by periodic tasks can be easily reclaimed
for servicing aperiodic requests. Whenever a periodic task completes, it is sufficient to
add its spare time to the corresponding aperiodic capacity. An example of reclaiming
mechanism is shown in Figure 6.3.

As it can be seen from the capacity plot, at the completion time of the first two periodic
instances, the corresponding aperiodic capacities (C 8

S1
and C12

S2
) are incremented by

an amount equal to the spare time saved. Thanks to this reclaiming mechanism, the
first aperiodic request can receive immediate service for all the seven units of time
required, completing at time t = 11. Without reclaiming, the request would complete
at time t = 12.

Note that reclaiming the spare time of periodic tasks as aperiodic capacities does not
affect the schedulability of the system. In fact, any spare time is already “allocated”
to a priority level corresponding to its deadline when the task set has been guaranteed.
Hence, the spare time can be used safely if requested with the same deadline.

Dynamic priority servers 167

18

DPE

3

1260

7

24

7

3

1680 24

171615141312119

τ 1

τ 2

1087 186543210 2019 21 22 23 24

3

Figure 6.3 DPE server resource reclaiming.

6.3 DYNAMIC SPORADIC SERVER

The Dynamic Sporadic Server2 (DSS) is an aperiodic service strategy proposed by
Spuri and Buttazzo [SB94, SB96] that extends the Sporadic Server [SSL89] to work
under a dynamic EDF scheduler. Similarly to other servers, DSS is characterized by a
period Ts and a capacity Cs, which is preserved for possible aperiodic requests. Unlike
other server algorithms, however, the capacity is not replenished at its full value at the
beginning of each server period but only when it has been consumed. The times at
which the replenishments occur are chosen according to a replenishment rule, which
allows the system to achieve full processor utilization.

The main difference between the classical SS and its dynamic version consists in the
way the priority is assigned to the server. Whereas SS has a fixed priority chosen
according to the RM algorithm (that is, according to its period T s), DSS has a dy-
namic priority assigned through a suitable deadline. The deadline assignment and the
capacity replenishment are defined by the following rules:

When the server is created, its capacity Cs is initialized at its maximum value.

The next replenishment time RT and the current server deadline d s are set as
soon as Cs > 0 and there is an aperiodic request pending. If tA is such a time,
then RT = ds = tA + Ts.

The replenishment amount RA to be done at time RT is computed when the last
aperiodic request is completed or Cs has been exhausted. If tI is such a time,
then RA is set equal to the capacity consumed within the interval [tA, tI].

2A similar algorithm called Deadline Sporadic Server has been independently developed by Ghazalie
and Baker in [GB95].

168 Chapter 6

1

0

19

8

76543210 18 212010 22 23 249

3

DSS

+3+2 +1

8 11

2

12

24

630 249 12 14

12

16

2
120 24

1716151413

aperiodic
requests

τ 2

τ

+1

Figure 6.4 Dynamic Sporadic Server example.

Figure 6.4 illustrates an EDF schedule obtained on a task set consisting of two periodic
tasks with periods T1 = 8, T2 = 12 and execution times C1 = 2, C2 = 3, and a DSS
with period Ts = 6 and capacity Cs = 3.

At time t = 0, the server capacity is initialized at its full value Cs = 3. Since
there are no aperiodic requests pending, the processor is assigned to task τ 1, which
has the earliest deadline. At time t = 3, an aperiodic request with execution time 2
arrives and, since Cs > 0, the first replenishment time and the server deadline are
set to RT1 = ds = 3 + Ts = 9. Being ds the earliest deadline, DSS becomes the
highest-priority task in the system and the request is serviced until completion. At
time t = 5, the request is completed and no other aperiodic requests are pending;
hence, a replenishment of two units of time is scheduled to occur at time RT 1 = 9.

At time t = 6, a second aperiodic requests arrives. Being Cs > 0, the next replenish-
ment time and the new server deadline are set to RT2 = ds = 6 + Ts = 12. Again,
the server becomes the highest-priority task in the system (we assume that ties among
tasks are always resolved in favor of the server) and the request receives immediate
service. This time, however, the capacity has only one unit of time available, and it
gets exhausted at time t = 7. Consequently, a replenishment of one unit of time is
scheduled for RT2 = 12, and the aperiodic request is delayed until t = 9, when Cs

becomes again greater than zero. At time t = 9, the next replenishment time and the
new deadline of the server are set to RT3 = ds = 9 + Ts = 15. As before, DSS be-
comes the highest-priority task; thus, the aperiodic request receives immediate service
and finishes at time t = 10. A replenishment of one unit is then scheduled to occur at
time RT3 = 15.

Dynamic priority servers 169

t 2t1

Figure 6.5 Computational demand of a periodic task in [t1, t2].

Note that as long as the server capacity is greater than zero, all pending aperiodic
requests are executed with the same deadline. In Figure 6.4 this happens at time t =
14, when the last two aperiodic requests are serviced with the same deadline ds = 20.

6.3.1 SCHEDULABILITY ANALYSIS

To prove the schedulability bound for the Dynamic Sporadic Server, we first show that
the server behaves like a periodic task with period Ts and execution time Cs.

Given a periodic task τi, we first note that in any generic interval [t1, t2] such that τi

is released at t1, the computation time scheduled by EDF with deadline less than or
equal to t2 is such that (see Figure 6.5)

Ci(t1, t2) ≤
⌊

t2 − t1
Ti

⌋

Ci.

The following Lemma shows that the same property is true for DSS.

Lemma 6.1 In each interval of time [t1, t2], such that t1 is the time at which DSS

becomes ready (that is, an aperiodic request arrives and no other aperiodic requests

are being served), the maximum aperiodic time executed by DSS in [t 1, t2] satisfies the

following relation:

Cape ≤
⌊

t2 − t1
Ts

⌋

Cs.

Proof. Since replenishments are always equal to the time consumed, the server
capacity is at any time less than or equal to its initial value. Also, the replenishment
policy establishes that the consumed capacity cannot be reclaimed before T s units of
time after the instant at which the server has become ready. This means that, from the
time t1 at which the server becomes ready, at most Cs time can be consumed in each
subsequent interval of time of length Ts; hence, the thesis follows.

170 Chapter 6

Given that DSS behaves like a periodic task, the following theorem states that a full
processor utilization is still achieved.

Theorem 6.2 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-

lization Up and a Dynamic Sporadic Server with processor utilization Us, the whole

set is schedulable if and only if

Up + Us ≤ 1.

Proof. If. Assume Up + Us ≤ 1 and suppose there is an overflow at time t. The
overflow is preceded by a period of continuous utilization of the processor. Further-
more, from a certain point t ′ on (t′ < t), only instances of tasks ready at t′ or later
and having deadlines less than or equal to t are run (the server may be one of these
tasks). Let C be the total execution time demanded by these instances. Since there is
an overflow at time t, we must have t − t′ < C. We also know that

C ≤
n
∑

i=1

⌊

t − t′

Ti

⌋

Ci + Cape

≤
n
∑

i=1

⌊

t − t′

Ti

⌋

Ci +

⌊

t − t′

Ts

⌋

Cs

≤
n
∑

i=1

t − t′

Ti
Ci +

t − t′

Ts
Cs

≤ (t − t′)(Up + Us).

Thus, it follows that
Up + Us > 1,

a contradiction.

Only If. Since DSS behaves as a periodic task with period Ts and execution time
Cs, the server utilization factor is Us = Cs/Ts and the total utilization factor of the
processor is Up + Us. Hence, if the whole task set is schedulable, from the EDF
schedulability bound [LL73] we can conclude that U p + Us ≤ 1.

Dynamic priority servers 171

6.4 TOTAL BANDWIDTH SERVER

Looking at the characteristics of the Sporadic Server algorithm, it can be easily seen
that, when the server has a long period, the execution of the aperiodic requests can be
delayed significantly. This is due to the fact that when the period is long, the server is
always scheduled with a far deadline. And this is regardless of the aperiodic execution
times.

There are two possible approaches to reduce the aperiodic response times. The first
is, of course, to use a Sporadic Server with a shorter period. This solution, however,
increases the run-time overhead of the algorithm because, to keep the server utilization
constant, the capacity has to be reduced proportionally, but this causes more frequent
replenishments and increases the number of context switches with the periodic tasks.

A second approach, less obvious, is to assign a possible earlier deadline to each ape-
riodic request. The assignment must be done in such a way that the overall processor
utilization of the aperiodic load never exceeds a specified maximum value U s. This is
the main idea behind the Total Bandwidth Server (TBS), a simple and efficient aperi-
odic service mechanism proposed by Spuri and Buttazzo [SB94, SB96]. The name of
the server comes from the fact that, each time an aperiodic request enters the system,
the total bandwidth of the server is immediately assigned to it, whenever possible.

In particular, when the kth aperiodic request arrives at time t = rk, it receives a
deadline

dk = max(rk, dk−1) +
Ck

Us
,

where Ck is the execution time of the request and Us is the server utilization factor
(that is, its bandwidth). By definition d0 = 0. Note that in the deadline assignment
rule the bandwidth allocated to previous aperiodic requests is considered through the
deadline dk−1.

Once the deadline is assigned, the request is inserted into the ready queue of the sys-
tem and scheduled by EDF as any other periodic instance. As a consequence, the
implementation overhead of this algorithm is practically negligible.

Figure 6.6 shows an example of an EDF schedule produced by two periodic tasks with
periods T1 = 6, T2 = 8 and execution times C1 = 3, C2 = 2, and a TBS with
utilization Us = 1 − Up = 0.25. The first aperiodic request arrives at time t = 3 and
is serviced with deadline d1 = r1 + C1/Us = 3 + 1/0.25 = 7. Being d1 the earliest
deadline in the system, the aperiodic request is executed immediately. Similarly, the
second request, which arrives at time t = 9, receives a deadline d2 = r2 + C2/Us =
17, but it is not serviced immediately, since at time t = 9 there is an active periodic

172 Chapter 6

17

requests

16

3

15 23 249

dd 2

240

21

186 12

0 2416

22207 19141312111085 643210 18

aperiodic
2 1d 11

τ 1

τ 2

8

Figure 6.6 Total Bandwidth Server example.

task, τ2, with a shorter deadline, equal to 16. Finally, the third aperiodic request
arrives at time t = 14 and gets a deadline d3 = max(r3, d2) + C3/Us = 21. It does
not receive immediate service, since at time t = 14 task τ1 is active and has an earlier
deadline (18).

6.4.1 SCHEDULABILITY ANALYSIS

In order to derive a schedulability test for a set of periodic tasks scheduled by EDF in
the presence of a TBS, we first show that the aperiodic load executed by TBS cannot
exceed the utilization factor Us defined for the server.

Lemma 6.2 In each interval of time [t1, t2], if Cape is the total execution time de-

manded by aperiodic requests arrived at t1 or later and served with deadlines less

than or equal to t2, then

Cape ≤ (t2 − t1)Us.

Proof. By definition
Cape =

∑

t1≤rk,dk≤t2

Ck .

Given the deadline assignment rule of the TBS, there must exist two aperiodic requests
with indexes k1 and k2 such that

∑

t1≤rk,dk≤t2

Ck =

k2
∑

k=k1

Ck.

Dynamic priority servers 173

It follows that

Cape =

k2
∑

k=k1

Ck

=
k2
∑

k=k1

[dk − max(rk , dk−1)]Us

≤ [dk2
− max(rk1

, dk1−1)]Us

≤ (t2 − t1)Us.

The main result on TBS schedulability can now be proved.

Theorem 6.3 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-

lization Up and a TBS with processor utilization Us, the whole set is schedulable by

EDF if and only if
Up + Us ≤ 1.

Proof. If. Assume Up + Us ≤ 1 and suppose there is an overflow at time t. The
overflow is preceded by a period of continuous utilization of the processor. Further-
more, from a certain point t ′ on (t′ < t), only instances of tasks ready at t′ or later
and having deadlines less than or equal to t are run. Let C be the total execution time
demanded by these instances. Since there is an overflow at time t, we must have

t − t′ < C.

We also know that

C ≤
n
∑

i=1

⌊

t − t′

Ti

⌋

Ci + Cape

≤
n
∑

i=1

t − t′

Ti
Ci + (t − t′)Us

≤ (t − t′)(Up + Us).

Thus, it follows that
Up + Us > 1,

174 Chapter 6

a contradiction.

Only If. If an aperiodic request enters the system periodically, with period T s and
execution time Cs = TsUs, the server behaves exactly as a periodic task with period
Ts and execution time Cs, and the total utilization factor of the processor is Up + Us.
Hence, if the whole task set is schedulable, from the EDF schedulability bound [LL73]
we can conclude that Up + Us ≤ 1.

6.5 EARLIEST DEADLINE LATE SERVER

The Total Bandwidth Server is able to provide good aperiodic responsiveness with ex-
treme simplicity. However, a better performance can still be achieved through more
complex algorithms. For example, looking at the schedule in Figure 6.6, we could
argue that the second and the third aperiodic requests may be served as soon as they
arrive, without compromising the schedulability of the system. This is possible be-
cause, when the requests arrive, the active periodic instances have enough slack time
(laxity) to be safely preempted.

Using the available slack of periodic tasks for advancing the execution of aperiodic re-
quests is the basic principle adopted by the EDL server [SB94, SB96]. This aperiodic
service algorithm can be viewed as a dynamic version of the Slack Stealing algorithm
[LRT92].

The definition of the EDL server makes use of some results presented by Chetto and
Chetto [CC89]. In this paper, two complementary versions of EDF – namely, EDS and
EDL – are proposed. Under EDS the active tasks are processed as soon as possible,
whereas under EDL they are processed as late as possible. An important property of
EDL is that in any interval [0, t] it guarantees the maximum available idle time. In the
original paper, this result is used to build an acceptance test for aperiodic tasks with
hard deadlines, while here it is used to build an optimal server mechanism for soft
aperiodic activities.

To simplify the description of the EDL server, ωA
J (t) denotes the following availability

function, defined for a scheduling algorithm A and a task set J :

ωA
J (t) =

{

1 if the processor is idle at t
0 otherwise.

Dynamic priority servers 175

1

160 248

ω(t)

EDL

0 54321 19187 20 21 22 23 246 10 178 161514131211

τ

2

0 24186 12

τ

9

Figure 6.7 Availability function under EDL.

The integral of ωA
J (t) on an interval of time [t1, t2] is denoted by ΩA

J (t1, t2) and gives
the total idle time in the specified interval. The function ω EDL

J for the task set of
Figure 6.6 is depicted in Figure 6.7.

The result of optimality addressed above is stated by Chetto and Chetto [CC89] in
Theorem 2, which we recall here.

Theorem 6.4 (Chetto and Chetto) Let J be any aperiodic task set and A any pre-

emptive scheduling algorithm. For any instant t,

ΩEDL
J (0, t) ≥ ΩA

J (0, t).

This result allows to develop an optimal server using the idle times of an EDL sched-
uler. In particular, given a periodic task set J , the function ω A

J , which is periodic with
hyperperiod H = lcm(T1, . . . , Tn), can be represented by means of two arrays. The
first, E = (e0, e1, . . . , ep), represents the times at which idle times occur, while the
second, D = (∆0,∆1, . . . ,∆p), represents the lengths of these idle times. The two
arrays for the example in Figure 6.7 are shown in Table 6.1. Note that idle times occur
only after the release of a periodic task instance.

i 0 1 2 3
ei 0 8 12 18
∆i 3 1 1 1

Table 6.1 Idle times under EDL.

176 Chapter 6

(t)

0 16 248

0 24186

ω

16

EDL

1714

1

23 249

τ 2

τ

21 22206 1913121110875 1543210 18

12

(a)

requests

16

0

21 22 23 249

18 24

19

6 12

0 2416

200 8 171514131211107 18654321

aperiodic

τ 1

τ 2

8

(b)

Figure 6.8 a. Idle times available at time t = 8 under EDL. b. Schedule of the aperiodic
request with the EDL server.

The basic idea behind the EDL server is to use the idle times of an EDL schedule to
execute aperiodic requests as soon as possible. When there are no aperiodic activities
in the system, periodic tasks are scheduled according to the EDF algorithm. Whenever
a new aperiodic request enters the system (and no previous aperiodic is still active) the
idle times of an EDL scheduler applied to the current periodic task set are computed
and then used to schedule the aperiodic requests pending. Figure 6.8 shows an example
of the EDL service mechanism.

Here, an aperiodic request with an execution time of 4 units arrives at time t = 8.
The idle times of an EDL schedule are recomputed using the current periodic tasks, as
shown in Figure 6.8a. The request is then scheduled according to the computed idle
times (Figure 6.8b). Notice that the server automatically allocates a bandwidth 1−U p

Dynamic priority servers 177

to aperiodic requests. The response times achieved by this method are optimal, so they
cannot be reduced further.

The procedure to compute the idle times of the EDL schedule is described in Chetto
and Chetto [CC89] and is not reported here. However, it is interesting to observe that
not all the idle times have to be recomputed, but only those preceding the deadline of
the current active periodic task with the longest deadline.

The worst-case complexity of the algorithm is O(Nn), where n is the number of
periodic tasks and N is the number of distinct periodic requests that occur in the
hyperperiod. In the worst case, N can be very large and, hence, the algorithm may
be of little practical interest. As for the Slack Stealer, the EDL server will be used to
provide a lower bound to the aperiodic response times and to build a nearly optimal
implementable algorithm, as described in the next section.

6.5.1 EDL SERVER PROPERTIES

The schedulability analysis of the EDL server is quite straightforward. In fact, all
aperiodic activities are executed using the idle times of a particular EDF schedule;
thus, the feasibility of the periodic task set cannot be compromised. This is stated in
the following theorem:

Theorem 6.5 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-

lization Up and the corresponding EDL server (whose behavior strictly depends on

the characteristics of the periodic task set), the whole set is schedulable if and only if

Up ≤ 1.

Proof. If. Since the condition (Up ≤ 1) is sufficient for guaranteeing the schedulabil-
ity of a periodic task set under EDF, it is also sufficient under EDL, which is a partic-
ular implementation of EDF. The algorithm schedules the periodic tasks according to
one or the other implementation, depending on the particular sequence of aperiodic re-
quests. When aperiodic requests are pending, they are scheduled during precomputed
idle times of the periodic tasks. In both cases the timeliness of the periodic task set is
unaffected and no deadline is missed.

Only If. If a periodic task set is schedulable with an EDL server, it will be also schedu-
lable without the EDL server, and hence (Up ≤ 1).

178 Chapter 6

We finally show that the EDL server is optimal; that is, the response times of the
aperiodic requests under the EDL algorithm are the best achievable.

Lemma 6.3 Let A be any online preemptive algorithm, τ a periodic task set, and

Ji an aperiodic request. If f A
τ∪{Ji}(Ji) is the finishing time of Ji when τ ∪ {Ji} is

scheduled by A, then

fEDL server
τ∪{Ji} (Ji) ≤ fA

τ∪{Ji}(Ji).

Proof. Suppose Ji arrives at time t, and let τ(t) be the set of the current active
periodic instances (ready but not yet completed) and the future periodic instances.
The new task Ji is scheduled together with the tasks in τ(t). In particular, consider
the schedule σ of τ ∪ {Ji} under A. Let A′ be another algorithm that schedules the
tasks in τ(t) at the same time as in σ, and σ ′ be the corresponding schedule. Ji is
executed during some idle periods of σ ′. Applying Theorem 6.4 with the origin of the
time axis translated to t (this can be done since A is online), we know that for each
t′ ≥ t

ΩEDL
τ(t)(t, t

′) ≥ ΩA′

τ(t)(t, t
′).

Recall that when there are aperiodic requests, the EDL server allocates the executions
exactly during the idle times of EDL. Being

ΩEDL
τ(t)(t, f

EDL server
τ∪{Ji} (Ji)) ≥ ΩA′

τ(t)(t, f
EDL server
τ∪{Ji} (Ji))

it follows that
fEDL

τ∪{Ji}(Ji) ≤ fA
τ∪{Ji}(Ji).

That is, under the EDL server, Ji is never completed later than under the A algorithm.

6.6 IMPROVED PRIORITY EXCHANGE SERVER

Although optimal, the EDL server has too much overhead to be considered practical.
However, its main idea can be usefully adopted to develop a less complex algorithm
that still maintains a nearly optimal behavior.

The heavy computation of the idle times can be avoided by using the mechanism of
priority exchanges. With this mechanism, in fact, the system can easily keep track of
the time advanced to periodic tasks and possibly reclaim it at the right priority level.

Dynamic priority servers 179

The idle times of the EDL algorithm can be precomputed off-line and the server can
use them to schedule aperiodic requests, when there are any, or to advance the exe-
cution of periodic tasks. In the latter case, the idle time advanced can be saved as
aperiodic capacity at the priority levels of the periodic tasks executed.

The idea described above is used by the algorithm called Improved Priority Exchange

(IPE) [SB94, SB96]. In particular, the DPE server is modified using the idle times of
an EDL scheduler. There are two main advantages in this approach. First, a far more
efficient replenishment policy is achieved for the server. Second, the resulting server
is no longer periodic, and it can always run at the highest priority in the system. The
IPE server is thus defined in the following way:

The IPE server has an aperiodic capacity, initially set to 0.

At each instant t = ei + kH , with 0 ≤ i ≤ p and k ≥ 0, a replenishment of ∆i

units of time is scheduled for the server capacity; that is, at time t = e0 the server
will receive ∆0 units of time (the two arrays E and D have been defined in the
previous section).

The server priority is always the highest in the system, regardless of any other
deadline.

All other rules of IPE (aperiodic requests and periodic instances executions, ex-
change and consumption of capacities) are the same as for a DPE server.

The same task set of Figure 6.8 is scheduled with an IPE server in Figure 6.9.

Note that the server replenishments are set according to the function ω EDL
τ , illustrated

in Figure 6.7.

When the aperiodic request arrives at time t = 8, one unit of time is immediately
allocated to it by the server. However, other two units are available at the priority
level corresponding to the deadline 12, due to previous deadline exchanges, and are
allocated right after the first one. The last one is allocated later, at time t = 12,
when the server receives a further unit of time. In this situation, the optimality of the
response time is kept. As we will show later, there are only rare situations in which
the optimal EDL server performs slightly better than IPE. That is, IPE almost always
exhibits a nearly optimal behavior.

180 Chapter 6

2

6

τ

12 18

3

0 24

(t)

6 1716151413121110987543210 18 19 20 21 22 23

3

20

EDL

120 18 24842 6 16 221410

+3
+3

3

IPE
4

+1 +1 +1

1τ

ω

24

Figure 6.9 Improved Priority Exchange server example.

6.6.1 SCHEDULABILITY ANALYSIS

In order to analyze the schedulability of an IPE server, it is useful to define a trans-
formation among schedules similar to that defined for the DPE server. In particular,
given a schedule σ produced by the IPE algorithm, we build the schedule σ ′ in the
following way:

Each execution of periodic instances during deadline exchanges (that is, increase
in the corresponding aperiodic capacity) is postponed until the capacity decreases.

All other executions of periodic instances are left as in σ.

In this case, the server is not substituted with another task. Again σ ′ is well defined
and is invariant; that is, it does not depend on σ but only on the periodic task set.
Moreover, σ ′ is the schedule produced by EDL applied to the periodic task set (com-
pare Figure 6.7 with Figure 6.9). The optimal schedulability is stated by the following
theorem:

Theorem 6.6 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-

lization Up and the corresponding IPE server (the parameters of the server depend on

the periodic task set), the whole set is schedulable if and only if

Up ≤ 1

(the server automatically allocates the bandwidth 1 − Up to aperiodic requests).

Dynamic priority servers 181

Proof. If. The condition is sufficient for the schedulability of the periodic task set
under EDF, thus even under EDL, which is a particular implementation of EDF. Now,
observe that in each schedule produced by the IPE algorithm the completion times of
the periodic instances are never greater than the completion times of the corresponding
instances in σ′, which is the schedule of the periodic task set under EDL. That is, no
periodic instance can miss its deadline. The thesis follows.

Only If. Trivial, since the condition is necessary even for the periodic task set only.

6.6.2 REMARKS

The reclaiming of unused periodic execution time can be done in the same way as for
the DPE server. When a periodic task completes, its spare time is added to the corre-
sponding aperiodic capacity. Again, this behavior does not affect the schedulability of
the system. The reason is of course the same as for the DPE server.

To implement the IPE server, the two arrays E and D must be precomputed before
the system is run. The replenishments of the server capacity are no longer peri-
odic, but this does not change the complexity, which is comparable with that of DPE.
What can change dramatically is the memory requirement. In fact, if the periods
of periodic tasks are not harmonically related, we could have a huge hyperperiod

H = lcm(T1, . . . , Tn), which would require a great memory space to store the two
arrays E and D.

6.7 IMPROVING TBS

The deadline assignment rule used by the TBS algorithm is a simple and efficient
technique for servicing aperiodic requests in a hard real-time periodic environment.
At the cost of a slightly higher complexity, such a rule can be modified to enhance
aperiodic responsiveness. The key idea is to shorten the deadline assigned by the TBS
as much as possible, still maintaining the periodic tasks schedulable [BS99].

If dk is the deadline assigned to an aperiodic request by the TBS, a new deadline d ′
k

can be set at the estimated worst-case finishing time fk of that request, scheduled by
EDF with deadline dk. The following lemma shows that setting the new deadline d ′

k

at the current estimated worst-case finishing time does not jeopardize schedulability:

182 Chapter 6

Lemma 6.4 Let σ be a feasible schedule of task set T , in which an aperiodic job Jk is

assigned a deadline dk , and let fk be the finishing time of Jk in σ. If dk is substituted

with d′
k = fk, then the new schedule σ’ produced by EDF is still feasible.

Proof. Since σ remains feasible after dk is substituted with d′
k = fk and all other

deadlines are unchanged, the optimality of EDF [Der74] guarantees that σ’ is also
feasible.

The process of shortening the deadline can be applied recursively to each new dead-
line, until no further improvement is possible, given that the schedulability of the
periodic task set must be preserved. If ds

k is the deadline assigned to the aperiodic
request Jk at step s and f s

k is the corresponding finishing time in the current EDF
schedule (achieved with ds

k), the new deadline ds+1
k is set at time fs

k . At each step, the
schedulability of the task set is guaranteed by Lemma 6.4.

The algorithm stops either when ds
k = ds−1

k or after a maximum number of steps
defined by the system designer for bounding the complexity. Note that the exact eval-
uation of f s

k would require the development of the entire schedule up to the finishing
time of request Jk, scheduled with ds

k. However, there is no need to evaluate the exact
value of f s

k to shorten the deadline. Rather, the following upper bound can be used:

f̃s
k = t + Ca

k + Ip(t, d
s
k), (6.1)

where t is the current time (corresponding to the release time rk of request Jk or to
the completion time of the previous request), C a

k is the worst-case computation time
required by Jk, and Ip(t, d

s
k) is the interference on Jk due to the periodic instances in

the interval [t, ds
k). f̃s

k is an upper bound for f s
k because it identifies the time at which

Jk and all the periodic instances with deadline less than ds
k end to execute. Hence,

fs
k ≤ f̃s

k .

The periodic interference Ip(t, d
s
k) in Equation (6.1) can be expressed as the sum of

two terms, Ia(t, ds
k) and If (t, ds

k), where Ia(t, ds
k) is the interference due to the cur-

rently active periodic instances with deadlines less than ds
k , and If (t, ds

k) is the future
interference due to the periodic instances activated after time t with deadline before
ds

k. Hence,

Ia(t, ds
k) =

∑

τi active, di<ds
k

ci(t) (6.2)

and

If (t, ds
k) =

n
∑

i=1

max

(

0,

⌈

ds
k − next ri(t)

Ti

⌉

− 1

)

Ci, (6.3)

Dynamic priority servers 183

where next ri(t) identifies the time greater than t at which the next periodic instance
of task τi will be activated. If periodic tasks are synchronously activated at time zero,
then

next ri(t) =

⌈

t

Ti

⌉

Ti. (6.4)

Since Ia and If can be computed in O(n), the overall complexity of the deadline
assignment algorithm is O(Nn), where N is the maximum number of steps performed
by the algorithm to shorten the initial deadline assigned by the TB server. We now
show that f̃s

k is the real worst-case finishing time if it coincides with the deadline ds
k.

Lemma 6.5 In any feasible schedule, f̃s
k = fs

k only if f̃s
k = ds

k .

Proof. Assume that there exists a feasible schedule σ where f̃s
k = ds

k, but f̃s
k > fs

k .
Since f̃s

k is the time at which Jk and all the periodic instances with deadline less than
ds

k end to execute, f̃s
k > fs

k would imply that f̃s
k coincides with the end of a periodic

instance having deadline less than f̃s
k = ds

k, meaning that this instance would miss its
deadline. This is a contradiction; hence, the lemma follows.

6.7.1 AN EXAMPLE

The following example illustrates the deadline approximation algorithm. The task set
consists of two periodic tasks, τ1 and τ2, with periods 3 and 4, and computation times
1 and 2, respectively. A single aperiodic job Jk arrives at time t = 2, requiring 2 units
of computation time. The periodic utilization factor is Up = 5/6, leaving a bandwidth
of Us = 1/6 for the aperiodic tasks.

When the aperiodic request arrives at time t = 2, it receives a deadline d0
k = rk +

Ca
k /Us = 14, according to the TBS algorithm. The schedule produced by EDF using

this deadline assignment is shown in Figure 6.10.

By applying Equations (6.2) and (6.3) we have

Ia(2, 14) = c2(2) = 1

If (2, 14) = 3C1 + 2C2 = 7,

and, by Equation (6.1), we obtain

d1
k = f̃0

k = t + Ca
k + Ia + If = 12.

184 Chapter 6

τ

2012 14 16 1820 4 6 8 10

2τ

J k

1

2

Figure 6.10 Schedule produced by EDF with d0
k

= 14.

step ds
k fs

k

0 14 12
1 12 9
2 9 8
3 8 6
4 6 5
5 5 5

Table 6.2 Deadlines and finishing times computed by the algorithm.

In this case, it can easily be verified that the aperiodic task actually terminates at
t = 12. This happens because the periodic tasks do not leave any idle time to the
aperiodic task, which is thus compelled to execute at the end. Table 6.2 shows the
subsequent deadlines evaluated at each step of the algorithm. In this example, six
steps are necessary to find the shortest deadline for the aperiodic request.

The schedule produced by EDF using the shortest deadline d ∗
k = d5

k = 5 is shown in
Figure 6.11. Notice that at t = 19 the first idle time is reached, showing that the whole
task set is schedulable.

6.7.2 OPTIMALITY

As far as the average case execution time of tasks is equal to the worst-case one, our
deadline assignment method achieves optimality, yielding the minimum response time
for each aperiodic task. Under this assumption, the following theorem holds.

Dynamic priority servers 185

τ

1086420 2018161412

1

2τ

kJ
2

Figure 6.11 Schedule produced by EDF with d∗
k

= 5.

Theorem 6.7 (Buttazzo, Sensini) Let σ be a feasible schedule produced by EDF for

a task set T and let fk be the finishing time of an aperiodic request Jk, scheduled in

σ with deadline dk . If fk = dk , then fk = f∗
k , where f∗

k is the minimum finishing time

achievable by any other feasible schedule.

Proof. Assume fk = dk, and let r0 be the earliest request such that interval [r0, dk] is
fully utilized by Jk and by tasks with deadline less than dk. Hence, in σ, dk represents
the time at which Jk and all instances with deadline less than dk end to execute.

We show that any schedule σ ′ in which Jk finishes at f ′
k < dk is not feasible. In

fact, since [r0, dk] is fully utilized and f ′
k < dk , in σ′ dk must be the finishing time

of some periodic instance3 with deadline less than dk. As a consequence, σ′ is not
feasible. Thus, the theorem follows.

6.8 PERFORMANCE EVALUATION

The algorithms described in this chapter have been simulated on a synthetic workload
in order to compare the average response times achieved on soft aperiodic activities.
For completeness, a dynamic version of the Polling Server has also been compared
with the other algorithms.

The plots shown in Figure 6.12 have been obtained with a set of ten periodic tasks with
periods ranging from 100 and 1000 units of time and utilization factor U p = 0.65.

3Time dk cannot be the finishing time of an aperiodic task, since we assume that aperiodic requests are
served on a FCFS basis.

186 Chapter 6

The aperiodic load was varied across the range of processor utilization unused by
the periodic tasks, and in particular from 3% to 33%. The interarrival times for the
aperiodic tasks were modeled using a Poisson arrival pattern, with average T a, whereas
the aperiodic computation times were modeled using an exponential distribution.

The processor utilization of the servers was set to all the utilization left by the periodic
tasks; that is, Us = 1 − Up. The period of the periodic servers – namely Polling,
DPE, and DSS – was set equal to the average aperiodic interarrival time (Ta) and,
consequently, the capacity was set to Cs = TaUs.

In Figure 6.12, the performance of the algorithms is shown as a function of the aperi-
odic load. The load was varied by changing the average aperiodic service time, while
the average interarrival time was set at the value of Ta = 100. Note that the data
plotted for each algorithm represent the ratio of the average aperiodic response time
relative to the response time of background service. In this way, an average response
time equivalent to background service has a value of 1.0 on the graph. A value less
than 1.0 corresponds to an improvement in the average aperiodic response time over
background service. The lower the response time curve lies on these graphs, the better
the algorithm is for improving aperiodic responsiveness.

The EDL server is not reported in the graph since it has basically the same behavior
as IPE for almost any load conditions. In particular, simulations showed that for small
and medium periodic loads the two algorithms do not have significant differences in
their performance. However, even for a high periodic load, the difference is so small
that it can be reasonably considered negligible for any practical application.

Although IPE and EDL have very similar performance, they differ significantly in their
implementation complexity. As mentioned in previous sections, the EDL algorithm
needs to recompute the server parameters quite frequently (namely, when an aperiodic
request enters the system and all previous aperiodics have been completely serviced).
This overhead can be too expensive in terms of CPU time to use the algorithm in
practical applications. On the other hand, in the IPE algorithm the parameters of the
server can be computed off-line, and used at run-time to replenish the server capacity.

As shown in the graph, the TBS and IPE algorithms can provide a significant reduc-
tion in average aperiodic response time compared to background or polling aperiodic
service, whereas the performance of the DPE and DSS algorithms depends on the ape-
riodic load. For low aperiodic load, DPE and DSS perform as well as TBS and IPE,
but as the aperiodic load increases, their performance tends to be similar to that one
shown by the Polling Server.

Dynamic priority servers 187

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 65% Mean Aperiodic Interarrival Time = 100

Polling
DSS
DPE
TBS
IPE

Figure 6.12 Performance of dynamic server algorithms.

Note that in all graphs, TBS and IPE have about the same responsiveness when the
aperiodic load is low, and they exhibit a slightly different behavior for heavy aperiodic
loads.

All algorithms perform much better when the aperiodic load is generated by a large
number of small tasks rather than a small number of long activities. Moreover, note
that as the interarrival time Ta increases, and the tasks’ execution time becomes longer,
the IPE algorithm shows its superiority with respect to the others, which tend to have
about the same performance, instead.

The proposed algorithms have been compared with different periodic loads U p as well.
For very low periodic loads all aperiodic service algorithms show a behavior similar
to background service. As the periodic load increases, their performance improves
substantially with respect to background service. In particular, DPE and DSS have
a comparable performance, which tends to approach that of the Polling Server for
high periodic loads. On the other hand, TBS and IPE outperform all other algorithms
in all situations. The improvement is particularly significant with medium and high
workloads. With a very high workload, TBS is no more able to achieve the same good

188 Chapter 6

0

10

20

30

40

50

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e

Average aperiodic load

Periodic load = 0.9

Background
TB(0)
TB(3)
TB(7)

TB*
M/M/1

Figure 6.13 Performance results for Up = 0.9.

performance of IPE, even though it is much better than the other algorithms. More
extensive simulation results are reported by Spuri and Buttazzo [SB94, SB96].

Simulations have also been conducted to test the performance of the different dead-
line assignment rules for the Total Bandwidth approach. In Figure 6.13, TB* denotes
the optimal algorithm, whereas TB(i) denotes the version of the algorithm that stops
iteration after at most i steps from the TBS deadline. Thus, TB(0) coincides with the
standard TBS algorithm. In order to show the improvement achieved by the algo-
rithm for each deadline update, the performance of TB* is compared with the one of
TB(0), TB(3), and TB(7) that were tested for different periodic and aperiodic loads.
To provide a reference term, the response times for background service and for a
M/M/1 model are also shown. The plots show the results obtained with a periodic
load Up = 0.9. The average response time is plotted with respect to the average task
length. Thus, a value of 5 on the y-axis actually means an average response time five
times longer than the task computation time.

Dynamic priority servers 189

6.9 THE CONSTANT BANDWIDTH SERVER

In this section we present a novel service mechanism, called the Constant Bandwidth
Server (CBS), which efficiently implements a bandwidth reservation strategy. As the
DSS, the Constant Bandwidth Server guarantees that, if Us is the fraction of processor
time assigned to a server (i.e., its bandwidth), its contribution to the total utilization
factor is no greater than Us, even in the presence of overloads. Note that this prop-
erty is not valid for a TBS, whose actual contribution is limited to U s only under the
assumption that all the served jobs execute no more than the declared WCET. With
respect to the DSS, however, the CBS shows a much better performance, comparable
with the one achievable by a TBS.

The basic idea behind the CBS mechanism can be explained as follows: when a new
job enters the system, it is assigned a suitable scheduling deadline (to keep its de-
mand within the reserved bandwidth) and it is inserted in the EDF ready queue. If
the job tries to execute more than expected, its deadline is postponed (i.e., its priority
is decreased) to reduce the interference on the other tasks. Note that by postponing
the deadline, the task remains eligible for execution. In this way, the CBS behaves as
a work conserving algorithm, exploiting the available slack in an efficient (deadline-
based) way, thus providing better responsiveness with respect to non-work conserving
algorithms and to other reservation approaches that schedule the extra portions of jobs
in background, as proposed by Mercer, Savage, and Tokuda [MST93, MST94a].

If a subset of tasks is handled by a single server, all the tasks in that subset will share
the same bandwidth, so there is no isolation among them. Nevertheless, all the other
tasks in the system are protected against overruns occurring in the subset.

In order not to miss any hard deadline, the deadline assignment rules adopted by the
server must be carefully designed. The next section precisely defines the CBS al-
gorithm, and formally proves its correctness for any (known or unknown) execution
request and arrival pattern.

6.9.1 DEFINITION OF CBS

The CBS can be defined as follows:

A CBS is characterized by a budget cs and by an ordered pair (Qs, Ts), where Qs

is the maximum budget and Ts is the period of the server. The ratio Us = Qs/Ts

is denoted as the server bandwidth. At each instant, a fixed deadline d s,k is
associated with the server. At the beginning ds,0 = 0.

190 Chapter 6

Each served job Ji,j is assigned a dynamic deadline di,j equal to the current
server deadline ds,k .

Whenever a served job executes, the budget cs is decreased by the same amount.

When cs = 0, the server budget is recharged at the maximum value Q s and a new
server deadline is generated as ds,k+1 = ds,k + Ts. Note that there are no finite
intervals of time in which the budget is equal to zero.

A CBS is said to be active at time t if there are pending jobs (remember the
budget cs is always greater than 0); that is, if there exists a served job J i,j such
that ri,j ≤ t < fi,j . A CBS is said to be idle at time t if it is not active.

When a job Ji,j arrives and the server is active the request is enqueued in a queue
of pending jobs according to a given (arbitrary) discipline (e.g., FIFO).

When a job Ji,j arrives and the server is idle, if cs ≥ (ds,k − ri,j)Us the server
generates a new deadline ds,k+1 = ri,j + Ts and cs is recharged at the maximum
value Qs, otherwise the job is served with the last server deadline ds,k using the
current budget.

When a job finishes, the next pending job, if any, is served using the current
budget and deadline. If there are no pending jobs, the server becomes idle.

At any instant, a job is assigned the last deadline generated by the server.

6.9.2 SCHEDULING EXAMPLE

H2,1H1,1 H1,2 H2,2

τ1 (4,7)
HARD

τ2
SOFT

CBS
(3,8)

t

t

1 2 3 4 5 7 8 9 t10 11 13 14 15 16 17 19 20 21 22 23

d2

6 12 18

r1 r2

c2=3c1=4
d1

Figure 6.14 An example of CBS scheduling.

Dynamic priority servers 191

Figure 6.14 illustrates an example in which a hard periodic task, τ 1, with computation
time C1 = 4 and period T1 = 7, is scheduled together with a soft task, τ2, served
by a CBS having a budget Qs = 3 and a period Ts = 8. The first job of τ2 (J2,1),
requiring 4 units of execution time, arrives at time r1 = 3, when the server is idle.
Being cs ≥ (d0 − r1)Us, the job is assigned a deadline d1 = r1 + Ts = 11 and cs is
recharged at Qs = 3. At time t = 7, the budget is exhausted, so a new deadline d2 =
d1+Ts = 19 is generated and cs is replenished. Since the server deadline is postponed,
τ1 becomes the task with the earliest deadline and executes until completion. Then,
τ2 resumes and job J2,1 (having deadline d2 = 19) is finished at time t = 12, leaving
a budget cs = 2. The second job of task τ2 arrives at time r2 = 13 and requires
3 units of time. Since cs < (d2 − r2)Us, the last server deadline d2 can be used
to serve job J2,2. At time t = 15, the server budget is exhausted, so a new server
deadline d3 = d2 + Ts = 27 is generated and cs is replenished at Qs. For this reason,
τ1 becomes the highest priority task and executes until time t = 19, when job J 1,3

finishes and τ2 can execute, finishing job J2,2 at time t = 20 leaving a budget cs = 2.

It is worth noting that under a CBS a job Jj is assigned an absolute time-varying dead-
line dj that can be postponed if the task requires more than the reserved bandwidth.
Thus, each job Jj can be thought as consisting of a number of chunks H j,k, each
characterized by a release time aj,k and a fixed deadline dj,k. An example of chunks
produced by a CBS is shown in Figure 6.14. To simplify the notation, we will indicate
all the chunks generated by the server with an increasing index k (in the example of
Figure 6.14, H1,1 = H1, H1,2 = H2, H2,1 = H3, and so on).

6.9.3 FORMAL DEFINITION

In order to provide a formal definition of the CBS, let ak and dk be the release time
and the deadline of the k th chunk generated by the server, and let c and n be the actual
server budget and the number of pending requests in the server queue (including the
request currently being served). These variables are initialized as follows:

d0 = 0, c = 0, n = 0, k = 0.

Using this notation, the server behavior can be described by the algorithm shown in
Figure 6.15.

192 Chapter 6

When job Jj arrives at time rj

enqueue the request in the server queue;

n = n + 1;

if (n == 1) /* (the server is idle) */

if (rj + (c / Qs) * Ts >= dk)

/*---------------Rule 1---------------*/

k = k + 1;

ak = rj;

dk = ak + Ts;

c = Qs;

else

/*---------------Rule 2---------------*/

k = k + 1;

ak = rj;

dk = dk−1;

/* c remains unchanged */

When job Jj terminates

dequeue Jj from the server queue;

n = n - 1;

if (n != 0) serve the next job in the queue with deadline dk;

When job Jj executes for a time unit

c = c - 1;

When (c == 0)

/*---------------Rule 3---------------*/

k = k + 1;

ak = actual time();

dk = dk−1 + Ts;
c = Qs;

Figure 6.15 The CBS algorithm.

6.9.4 CBS PROPERTIES

The proposed CBS service mechanism presents some interesting properties that make
it suitable for supporting applications with highly variable computation times (e.g.,
continuous media applications). The most important one, the isolation property, is
formally expressed by the following theorem and lemma. See the original work by
Abeni and Buttazzo [AB98] for the proof.

Theorem 6.8 The CPU utilization of a CBS S with parameters (Qs, Ts) is Us = Qs

Ts
,

independently from the computation times and the arrival pattern of the served jobs.

Dynamic priority servers 193

The following lemma provides a simple guarantee test for verifying the feasibility of
a task set consisting of hard and soft tasks.

Lemma 6.6 Given a set of n periodic hard tasks with processor utilization Up and a

set of m CBSs with processor utilization Us =
∑m

i=1 Usi
, the whole set is schedulable

by EDF if and only if
Up + Us ≤ 1.

The isolation property allows us to use a bandwidth reservation strategy to allocate
a fraction of the CPU time to soft tasks whose computation time cannot be easily
bounded. The most important consequence of this result is that soft tasks can be
scheduled together with hard tasks without affecting the a priori guarantee, even in the
case in which the execution times of the soft tasks are not known or the soft requests
exceed the expected load.

In addition to the isolation property, the CBS has the following characteristics.

The CBS behaves as a plain EDF algorithm if the served task τi has parameters
(Ci, Ti) such that Ci ≤ Qs and Ti = Ts. This is formally stated by the following
lemma.

Lemma 6.7 A hard task τi with parameters (Ci, Ti) is schedulable by a CBS

with parameters Qs ≥ Ci and Ts = Ti if and only if τi is schedulable with EDF.

Proof. For any job of a hard task we have that r i,j+1 − ri,j ≥ Ti and ci,j ≤ Qs.
Hence, by definition of the CBS, each hard job is assigned a deadline d i,j = ri,j+
Ti and it is scheduled with a budget Qs ≥ Ci. Moreover, since ci,j ≤ Qs, each
job finishes no later than the budget is exhausted; hence the deadline assigned to
a job is never postponed and is exactly the same as the one used by EDF.

The CBS automatically reclaims any spare time caused by early completions.
This is due to the fact that whenever the budget is exhausted, it is always imme-
diately replenished at its full value and the server deadline is postponed. In this
way, the server remains eligible and the budget can be exploited by the pending
requests with the current deadline. This is the main difference with respect to the

processor capacity reserves proposed by Mercer et al. [MST93, MST94a].

Knowing the statistical distribution of the computation time of a task served by a
CBS, it is possible to perform a QoS guarantee based on probabilistic deadlines
(expressed in terms of probability for each served job to meet a deadline). Such
a statistical analysis is presented by Abeni and Buttazzo [AB98, AB04].

194 Chapter 6

6.9.5 SIMULATION RESULTS

This section shows how the CBS can be efficiently used as a service mechanism for
improving responsiveness of soft aperiodic requests. Its performance has been tested
against that of TBS and DSS, by measuring the mean tardiness experienced by soft
tasks:

Ei,j = max{0, fi,j − di,j} (6.5)

where fi,j is the finishing time of job Ji,j .

Such a metric was selected because in many soft real-time applications (e.g., multi-
media) meeting all soft deadlines is either impossible or very inefficient; hence, the
system should be designed to guarantee all the hard tasks and minimize the mean time
that soft tasks execute after their deadlines.

All the simulations presented in this section have been conducted on a hybrid task
set consisting of 5 periodic hard tasks with fixed parameters and 5 soft tasks with
variable execution times and interarrival times. The execution times of the periodic
hard tasks were randomly generated in order to achieve a desired processor utilization
factor Uhard. The execution and interarrival times of the soft tasks were uniformly
distributed in order to obtain a mean soft load Usoft =

∑

i
ci,j

ri,j+1−ri,j
with Usoft

going from 0 to 1 − Uhard.

The first experiment compares the mean tardiness experienced by soft tasks when
they are served by a CBS, a TBS, and a DSS. In this test, the utilization factor of
periodic hard tasks was Uhard = 0.5. The simulation results are illustrated in Figure
6.16, which shows that the performance of the DSS is dramatically worse than the one
achieved by the CBS and TBS. The main reason for such different behavior between
DSS and CBS is that while the DSS becomes idle until the next replenishing time (that
occurs at the server’s deadline), the CBS remains eligible by increasing its deadline
and replenishing the budget immediately. The TBS does not suffer from this problem;
however, its correct behavior relies on the exact knowledge of WCETs, so it cannot be
used for supporting applications with highly variable computation times.

Figures 6.17 illustrates the results of a similar experiment repeated with Uhard = 0.7.
As we can see, TBS slightly outperforms CBS, but does not protect hard tasks from
transient overruns that may occur in the soft activities. Note that since the CBS auto-
matically reclaims any available idle time coming from early completions, for a fair
comparison an explicit reclaiming mechanism has also been added in the simulation
of the TBS, as described by Spuri, Buttazzo, and Sensini [SBS95].

Dynamic priority servers 195

0

100

200

300

400

500

600

700

800

900

0.46 0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5

A
v
e

ra
g

e
 s

o
ft

 t
a

rd
in

e
s
s

Average soft load

Hard task load = 0.5

DSS
CBS
TBS

Figure 6.16 First experiment: performance of TBS, CBS and DSS.

0

10

20

30

40

50

60

70

80

0.28 0.282 0.284 0.286 0.288 0.29 0.292 0.294 0.296 0.298 0.3

A
v
e

ra
g

e
 s

o
ft

 t
a

rd
in

e
s
s

Average soft load

Hard task load = 0.7

CBS
TBS

Figure 6.17 Second experiment: CBS against TBS.

196 Chapter 6

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140 160 180 200

A
v
e

ra
g

e
 s

o
ft

 t
a

rd
in

e
s
s

Computation times variance

Hard task load = 0.6

TBS
CBS

Figure 6.18 Third experiment: CBS against TBS with variable execution times.

The advantage of the CBS over the TBS can be appreciated when WCET i >> ci,j .
In this case, in fact, the TBS can cause an underutilization of the processor, due to
its worst-case assumptions. This fact can be observed in Figure 6.18, which shows
the results of a fourth experiment in which Uhard = 0.6, Usoft = 0.4, the interarrival
times are fixed, and the execution times of the soft tasks are uniformly distributed with
an increasing variance. As shown in the graph, the CBS performs better than the TBS
when tasks’ execution times have a high variance. Additional experiments on the CBS
are presented in the original work by Abeni and Buttazzo [AB98].

6.9.6 DIMENSIONING CBS PARAMETERS

This section presents a statistical study to evaluate the effects of the CBS parameters
(Qs, Ts) on task response times, and proposes a technique to compute the parameters
that minimize the average response time of the served tasks [BB06].

The worst-case response time Ri of a job with computation time Ci served by a CBS
with bandwidth Us is a function of the server budget Qs. For the sake of clarity, Ri is
first derived by neglecting the overhead, and then modified to take the overhead into
account.

Dynamic priority servers 197

From the CBS analysis, we know that, if the task set is feasible, that is, if the total
processor utilization is less than 1, then the served job can never miss the current
server deadline. Hence, the maximum response time R i occurs when the other tasks
in the system create the maximum interference on the server. If the computation time
Ci of the served job is exactly a multiple of the server budget Q s, then the job finishes
at the server deadline; that is,

Ri =
Ci

Qs
Ts =

Ci

Us
. (6.6)

More generally, if the computation time C i of the job is not multiple of the budget Qs,
the last portion of the job will not finish at the server deadline, but it will finish at most
∆i units before the deadline, as shown in Figure 6.19, where

∆i =

⌈

Ci

Qs

⌉

Qs − Ci. (6.7)

t

t

Ji

di di

∆i

Qs

Figure 6.19 Worst-case finishing time of a job served by a CBS.

Hence, the response time of the job becomes

Ri =

⌈

Ci

Qs

⌉

Ts − ∆i

=

⌈

Ci

Qs

⌉

Ts −
(⌈

Ci

Qs

⌉

Qs − Ci

)

= Ci +

⌈

Ci

Qs

⌉

(Ts − Qs). (6.8)

Figure 6.20 illustrates the worst-case response time of a CBS as a function of the
budget.

198 Chapter 6

Ri

QsCi
Ci

2
Ci

3
Ci

4

Ci

Us

2 Ci

Us

Figure 6.20 Worst-case response time of a CBS as a function of the budget.

From the graph shown in Figure 6.20 it is clear that for a given job with constant exe-
cution time Ci, the minimum worst-case response time is Ci/Us and can be achieved
when Ci is a perfect multiple of Qs. In practice, however, task execution time varies,
inducing response time fluctuations due to the bandwidth enforcement mechanism
achieved through deadline postponements. From Figure 6.20 it is also clear that such
fluctuations would be reduced by making the budget very small compared to the av-
erage execution time, so that the server would approximate the ideal fluid server. Un-
fortunately, however, a small budget (which means a short server period) causes the
job to be split in many small chunks, increasing the runtime overhead. As a conse-
quence, to properly set the server granularity T s, the runtime overhead must be taken
into account in the analysis.

TAKING OVERHEADS INTO ACCOUNT

Whenever the budget is exhausted, the server deadline is postponed, so the served job
can be preempted by other tasks with earliest deadline. If ǫ denotes the time needed for
a context switch, then the overhead introduced by the CBS can be taken into account
by subtracting such a time from the server budget. Hence, Equation (6.8) can be
modified as follows:

Ri = Ci +

⌈

Ci

Qs − ǫ

⌉

(Ts − Qs + ǫ)

= Ci +

⌈

Ci

TsUs − ǫ

⌉

(Ts − TsUs + ǫ). (6.9)

Dynamic priority servers 199

40

50

60

70

80

90

100

110

0 20 40 60 80 100 120

W
o

rs
t-

c
a

s
e

 r
e

s
p

o
n

s
e

 t
im

e

Server period

without overhead
with overhead

Figure 6.21 Worst-case response time of a CBS as a function of the period.

Figure 6.21 illustrates the worst-case response time of a CBS as a function of the
period, with and without overhead. Equation (6.9) has been plotted for C i = 10,
Us = 0.25, and ǫ = 0.2. As is clear from the plot, the overhead prevents using
small values of the period; hence, it is interesting to find the value of the server period
that minimizes the response time. Note that for computing the probability distribution
function of the response time, we actually need to express the response time as a
function of the job execution time C i.

Figure 6.22 illustrates the worst-case response time of a CBS as a function of the job
execution time. As shown in Figure 6.22, the response time R i can be upper bounded
by the following linear function

Rub
i = Ts − Qs + ǫ +

Ts

Qs − ǫ
Ci (6.10)

and lower bounded by

Rlb
i =

Ts

Qs − ǫ
Ci. (6.11)

200 Chapter 6

Qs − ǫ

Ts − Qs + ǫ

Ts

2Ts − Qs + ǫ

2Ts

3Ts − Qs + ǫ

3Ts

4Ts − Qs + ǫ

Ci

Ri

Figure 6.22 Worst-case response time of a CBS as a function of the job execution time.

We now consider the problem of selecting the best CBS parameters, such that the
average task response time Ri is minimized. For this purpose we suppose to have
the probability density function (p.d.f.) fC(c) of the task execution time, and the
respective cumulative distribution function (c.d.f.) FC(c), representing the probability
that the execution time is smaller than or equal to c. That is,

FC(c) =

∫ c

0

fC(x)dx. (6.12)

Since the minimization of the average Ri can in general be too complex, we con-
sider the problem of minimizing its linear upper bound R ub

i . In this case, the average
response time Ravg

i is computed as follows:

Ravg
i =

∫ +∞

0

(

Ts − Qs + ǫ +
Ts

Qs − ǫ
x

)

fC(x)dx

= Ts − Qs + ǫ +
Ts

Qs − ǫ
Cavg

= Ts(1 − Us) + ǫ +
Ts

TsUs − ǫ
Cavg (6.13)

Dynamic priority servers 201

Hence, the period Ts that minimizes the average response time Ravg
i can be computed

by simple functional analysis. Thus, we have

dRavg
i

dTs
= 1 − Us −

ǫ

(TsUs − ǫ)2
Cavg, (6.14)

which is equal to zero when

Ts =
1

Us

(

ǫ +

√

ǫCavg

1 − Us

)

. (6.15)

6.10 SUMMARY

The experimental simulations have established that from a performance point of view,
IPE, EDL, and TB* show the best results for reducing aperiodic responsiveness. Al-
though optimal, however, EDL is far from being practical, due to the overall complex-
ity. On the other hand, IPE and TB* achieve a comparable performance with much
less computational overhead. Moreover, both EDL and IPE may require significant
memory space when task periods are not harmonically related.

The Total Bandwidth algorithm also shows a good performance, sometimes compara-
ble to that of the nearly optimal IPE. Observing that its implementation complexity is
among the simplest, the TBS algorithm could be a good candidate for practical sys-
tems. In addition, the TBS deadline assignment rule can be tuned to enhance aperiodic
responsiveness up to the optimal TB* behavior. Compared to IPE and EDL, TB* does
not require large memory space, and the optimal deadline can be computed in O(Nn)
complexity, N being the maximum number of steps that have to be done for each task
to shorten its initial deadline (assigned by the TBS rule). As for the EDL server, this
is a pseudo-polynomial complexity since in the worst case N can be large.

One major problem of the TBS and TB* algorithms is that they do not use a server
budget for controlling aperiodic execution, but rely on the knowledge of the worst-
case computation time specified by each job at its arrival. When such a knowledge is
not available, not reliable, or too pessimistic (due to highly variable execution times),
then hard tasks are not protected from transient overruns occurring in the soft tasks
and could miss their deadlines. The CBS algorithm can be efficiently used in these
situations, since it has a performance comparable to the one of the TBS and also
provides temporal isolation, by limiting the bandwidth requirements of the served
tasks to the value Us specified at design time.

202 Chapter 6

complexity
implementationmemory

requirement
computational

complexityperformance

BKG

DPE

EDL

IPE

poorgoodexcellent

TBS

DSS

CBS

TB*

Figure 6.23 Evaluation summary of dynamic-priority servers.

Figure 6.23 provides a qualitative evaluation of the algorithms presented in this chapter
in terms of performance, computational complexity, memory requirement, and imple-
mentation complexity.

Exercises

6.1 Compute the maximum processor utilization that can be assigned to a Dynamic
Sporadic Server to guarantee the following periodic tasks, under EDF:

Ci Ti

τ1 2 6
τ2 3 9

Dynamic priority servers 203

6.2 Together with the periodic tasks illustrated in Exercise 6.1, schedule the follow-
ing aperiodic tasks with a Dynamic Sporadic Server with Cs = 2 and Ts = 6.

ai Ci

J1 1 3
J2 5 1
J3 15 1

6.3 Solve the same scheduling problem described in Exercise 6.2 with a Total
Bandwidth Server having utilization Us = 1/3.

6.4 Solve the same scheduling problem described in Exercise 6.2 with a Constant
Bandwidth Server with Cs = 2 and Ts = 6.

6.5 Solve the same scheduling problem described in Exercise 6.2 with an Improved
Total Bandwidth Server with Us = 1/3, which performs only one shortening
step.

6.6 Solve the same scheduling problem described in Exercise 6.2 with the optimal
Total Bandwidth Server (TB*).

6.7 Consider the following set of periodic tasks:

Ci Ti

τ1 4 10
τ2 4 12

After defining two Total Bandwidth Servers, TB 1 and TB2, with utilization
factors Us1 = 1/10 and Us2 = 1/6, construct the EDF schedule in the case in
which two aperiodic requests J1(a1 = 1, C1 = 1) and J2(a2 = 9, C2 = 1) are
served by TB1, and two aperiodic requests J3(a3 = 2, C3 = 1) and J4(a4 = 6,
C4 = 2) are served by TB2.

6.8 A control application consists of two periodic tasks with computation times
C1 = 8, C2 = 6 ms, and periods T1 = 20, T2 = 30 ms. Moreover, the system
includes two interrupt handling routines, with computation times of 1.0 and
1.4 ms each. Considering a context switch cost of 20 µs, compute the CBS
parameters that minimize the average response time of the interrupts.

7
RESOURCE ACCESS PROTOCOLS

7.1 INTRODUCTION

A resource is any software structure that can be used by a process to advance its
execution. Typically, a resource can be a data structure, a set of variables, a main
memory area, a file, or a set of registers of a peripheral device. A resource dedicated
to a particular process is said to be private, whereas a resource that can be used by
more tasks is called a shared resource. A shared resource protected against concurrent
accesses is called an exclusive resource.

To ensure consistency of the data structures in exclusive resources, any concurrent op-
erating system should use appropriate resource access protocols to guarantee a mutual
exclusion among competing tasks. A piece of code executed under mutual exclusion
constraints is called a critical section.

Any task that needs to enter a critical section must wait until no other task is holding
the resource. A task waiting for an exclusive resource is said to be blocked on that
resource, otherwise it proceeds by entering the critical section and holds the resource.
When a task leaves a critical section, the resource associated with the critical section
becomes free, and it can be allocated to another waiting task, if any.

Operating systems typically provide a general synchronization tool, called a semaphore

[Dij68, BH73, PS85], that can be used by tasks to build critical sections. A semaphore
is a kernel data structure that, apart from initialization, can be accessed only through
two kernel primitives, usually called wait and signal. When using this tool, each ex-
clusive resource Rk must be protected by a different semaphore Sk and each critical
section operating on a resource Rk must begin with a wait(Sk) primitive and end with
a signal(Sk) primitive.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

205

7

 Springer Science+Business Media, LLC 2011©

206 Chapter 7

RUN

dispatching

signal

terminationactivation

wait
WAIT

READY

preemption

Figure 7.1 Waiting state caused by resource constraints.

All tasks blocked on a resource are kept in a queue associated with the semaphore
that protects the resource. When a running task executes a wait primitive on a locked
semaphore, it enters a waiting state, until another task executes a signal primitive that
unlocks the semaphore. When a task leaves the waiting state, it does not go in the
running state, but in the ready state, so that the CPU can be assigned to the highest-
priority task by the scheduling algorithm. The state transition diagram relative to the
situation described above is shown in Figure 7.1.

In this chapter, we describe the main problems that may arise in a uniprocessor system
when concurrent tasks use shared resources in exclusive mode, and we present some
resource access protocols designed to avoid such problems and bound the maximum
blocking time of each task. We then show how such blocking times can be used in the
schedulability analysis to extend the guarantee tests derived for periodic task sets.

7.2 THE PRIORITY INVERSION PHENOMENON

Consider two tasks τ1 and τ2 that share an exclusive resource Rk (such as a list) on
which two operations (such as insert and remove) are defined. To guarantee the mutual
exclusion, both operations must be defined as critical sections. If a binary semaphore
Sk is used for this purpose, then each critical section must begin with a wait(S k)

primitive and must end with a signal(Sk) primitive (see Figure 7.2).

If preemption is allowed and τ1 has a higher priority than τ2, then τ1 can be blocked
in the situation depicted in Figure 7.3. Here, task τ2 is activated first, and after a
while, it enters the critical section and locks the semaphore. While τ2 is executing the
critical section, task τ1 arrives, and since it has a higher priority, it preempts τ2 and
starts executing. However, at time t1, when attempting to enter its critical section, τ1

is blocked on the semaphore, so τ2 resumes. τ1 has to wait until time t2, when τ2

Resource Access Protocols 207

signal(S)

k k

signal(S)

k

k

k

k k

resource

useuse

resource resource

wait(S)

R R

R

wait(S)

τ1 τ2

Figure 7.2 Structure of two tasks that share an exclusive resource.

critical section

normal execution

blockedτ1

τ1

τ2

t1 t2

Figure 7.3 Example of blocking on an exclusive resource.

releases the critical section by executing the signal(Sk) primitive, which unlocks the
semaphore.

In this simple example, the maximum blocking time that τ1 may experience is equal
to the time needed by τ2 to execute its critical section. Such a blocking cannot be
avoided because it is a direct consequence of the mutual exclusion necessary to protect
the shared resource against concurrent accesses of competing tasks.

208 Chapter 7

normal execution

critical section

τ1

τ2

τ3

τ1 blocked

t0 t1 t2 t3 t4 t5 t6 t7

Figure 7.4 An example of priority inversion.

Unfortunately, in the general case, the blocking time of a task on a busy resource
cannot be bounded by the duration of the critical section executed by the lower-priority
task. In fact, consider the example illustrated in Figure 7.4. Here, three tasks τ 1, τ2,
and τ3 have decreasing priorities, and τ1 and τ3 share an exclusive resource protected
by a binary semaphore S.

If τ3 starts at time t0, it may happen that τ1 arrives at time t2 and preempts τ3 inside
its critical section. At time t3, τ1 attempts to use the resource, but it is blocked on the
semaphore S; thus, τ3 continues the execution inside its critical section. Now, if τ2

arrives at time t4, it preempts τ3 (because it has a higher priority) and increases the
blocking time of τ1 by its entire duration. As a consequence, the maximum blocking
time that τ1 may experience does depend not only on the length of the critical section
executed by τ3 but also on the worst-case execution time of τ2! This is a situation
that, if it recurs with other medium-priority tasks, can lead to uncontrolled blocking
and can cause critical deadlines to be missed. A priority inversion is said to occur in
the interval [t3, t6], since the highest-priority task τ1 waits for the execution of lower-
priority tasks (τ2 and τ3). In general, the duration of priority inversion is unbounded,
since any intermediate-priority task that can preempt τ3 will indirectly block τ1.

Several approaches have been defined to avoid priority inversion, both under fixed
and dynamic priority scheduling.1 All the methods developed in the context of fixed
priority scheduling consist in raising the priority of a task when accessing a shared
resource, according to a given protocol for entering and exiting critical sections.

1Under EDF, such a phenomenon is sometimes referred to as deadline inversion.

Resource Access Protocols 209

Similarly, the methods developed under EDF consist in modifying a parameter based
on the tasks’ relative deadlines.

The rest of this chapter presents the following resource access protocols:

1. Non-Preemptive Protocol (NPP);

2. Highest Locker Priority (HLP), also called Immediate Priority Ceiling (IPC);

3. Priority Inheritance Protocol (PIP);

4. Priority Ceiling Protocol (PCP);

5. Stack Resource Policy (SRP);

Although the first four protocols have been developed under fixed priority assign-
ments, some of them have been extended under EDF. 2 The Stack Resource Policy,
instead, was natively designed to be applicable under both fixed and dynamic priority
assignments.

7.3 TERMINOLOGY AND ASSUMPTIONS

Throughout this chapter, we consider a set of n periodic tasks, τ 1, τ2, . . . , τn, which
cooperate through m shared resources, R1, R2, . . . , Rm. Each task is characterized
by a period Ti and a worst-case computation time Ci. Each resource Rk is guarded
by a distinct semaphore Sk. Hence, all critical sections on resource Rk begin with a
wait(Sk) operation and end with a signal(Sk) operation. Since a protocol modifies
the task priority, each task is characterized by a fixed nominal priority P i (assigned,
for example, by the Rate Monotonic algorithm) and an active priority p i (pi ≥ Pi),
which is dynamic and initially set to Pi. The following notation is adopted throughout
the discussion:

Bi denotes the maximum blocking time task τ i can experience.

zi,k denotes a generic critical section of task τi guarded by semaphore Sk.

Zi,k denotes the longest critical section of task τi guarded by semaphore Sk.

2The Priority Inheritance Protocol has been extended for EDF by Spuri [Spu95], and the Priority Ceiling
Protocol has been extended for EDF by Chen and Lin [CL90].

210 Chapter 7

δi,k denotes the duration of Zi,k.

zi,h ⊂ zi,k indicates that zi,h is entirely contained in zi,k.

σi denotes the set of semaphores used by τi.

σi,j denotes the set of semaphores that can block τ i, used by the lower-priority
task τj .

γi,j denotes the set of the longest critical sections that can block τ i, accessed by
the lower priority task τj . That is,

γi,j = {Zj,k | (Pj < Pi) and (Sk ∈ σi,j)} (7.1)

γi denotes the set of all the longest critical sections that can block τ i. That is,

γi =
⋃

j:Pj<Pi

γi,j (7.2)

Moreover, the properties of the protocols are valid under the following assumptions:

Tasks τ1, τ2, . . . , τn are assumed to have different priorities and are listed in de-
scending order of nominal priority, with τ1 having the highest nominal priority.

Tasks do not suspend themselves on I/O operations or on explicit synchronization
primitives (except on locked semaphores).

The critical sections used by any task are properly nested; that is, given any pair
zi,h and zi,k, then either zi,h ⊂ zi,k, zi,k ⊂ zi,h, or zi,h ∩ zi,k = ∅.

Critical sections are guarded by binary semaphores, meaning that only one task
at a time can be within a critical section.

7.4 NON-PREEMPTIVE PROTOCOL

A simple solution that avoids the unbounded priority inversion problem is to disallow
preemption during the execution of any critical section. This method, also referred to
as Non-Preemptive Protocol (NPP), can be implemented by raising the priority of a
task to the highest priority level whenever it enters a shared resource. In particular, as
soon as a task τi enters a resource Rk, its dynamic priority is raised to the level:

pi(Rk) = max
h

{Ph}. (7.3)

Resource Access Protocols 211

normal execution

critical section

blocked

τ1

τ2

τ3

t0 t1 t2 t3 t4 t5 t6

Figure 7.5 Example of NPP preventing priority inversion.

blocked

critical section

normal execution

τ1

τ2

τ3

Figure 7.6 Example in which NPP causes unnecessary blocking on τ1.

The dynamic priority is then reset to the nominal value P i when the task exits the criti-
cal section. Figure 7.5 shows how NPP solves the priority inversion phenomenon. This
method, however, is only appropriate when tasks use short critical sections because it
creates unnecessary blocking. Consider, for example, the case depicted in Figure 7.6,
where τ1 is the highest-priority task that does not use any resource, whereas τ 2 and
τ3 are low-priority tasks that share an exclusive resource. If the low-priority task τ 3

enters a long critical section, τ1 may unnecessarily be blocked for a long period of
time.

212 Chapter 7

7.4.1 BLOCKING TIME COMPUTATION

Since a task τi cannot preempt a lower priority task τj if τj is inside a critical section,
then τi can potentially be blocked by any critical section belonging to a lower priority
task. Hence,

γi = {Zj,k | Pj < Pi, k = 1, . . . , m}

Moreover, since a task inside a resource R cannot be preempted, only one resource
can be locked at any time t. Hence, a task τi can be blocked at most for the length
of a single critical section belonging to lower priority tasks. As a consequence, the
maximum blocking time τi can suffer is given by the duration of the longest critical
section among those belonging to lower priority tasks. That is,

Bi = max
j,k

{δj,k − 1 | Zj,k ∈ γi}. (7.4)

Note that one unit of time is subtracted from δj,k since Zj,k must start before the
arrival of τi to block it. The unnecessary blocking illustrated in Figure 7.6 can easily
be avoided by raising the priority inside a critical section at an opportune level that
does not prevent a high priority task to preempt when it is not sharing that resource.

7.5 HIGHEST LOCKER PRIORITY PROTOCOL

The Highest Locker Priority (HLP) protocol improves NPP by raising the priority of
a task that enters a resource Rk to the highest priority among the tasks sharing that
resource. In particular, as soon as a task τi enters a resource Rk, its dynamic priority
is raised to the level

pi(Rk) = max
h

{Ph | τh uses Rk}. (7.5)

The dynamic priority is then reset to the nominal value P i when the task exits the
critical section. The online computation of the priority level in Equation (7.5) can be
simplified by assigning each resource Rk a priority ceiling C(Rk) (computed off-line)
equal to the maximum priority of the tasks sharing Rk; that is:

C(Rk)
def
= max

h
{Ph | τh uses Rk}. (7.6)

Then, as soon as a task τi enters a resource Rk, its dynamic priority is raised to the
ceiling of the resource. For this reason, this protocol is also referred to as Immediate

Priority Ceiling.

Resource Access Protocols 213

normal execution

critical section

blocked

τ1

τ2

τ3

P1

P2

P3

p3

Figure 7.7 Example of schedule under HLP, where p3 is raised at the level C(R) = P2

as soon as τ3 starts using resource R.

Note that the schedule produced under HLP for the example generating priority inver-
sion is the same as the one shown in Figure 7.5, since the ceiling of the shared resource
is P1 (the highest priority). Figure 7.7 shows another example in which the ceiling of
the shared resource is P2; hence τ1 can preempt τ3 inside the critical section, whereas
τ2 is blocked until τ3 exits its critical section. The figure also shows how the active
priority of τ3 is varied by the protocol during execution.

7.5.1 BLOCKING TIME COMPUTATION

Under HLP, a task τi can only be blocked by critical sections belonging to lower
priority tasks with a resource ceiling higher than or equal to P i. Hence,

γi = {Zj,k | (Pj < Pi) and C(Rk) ≥ Pi}.

Moreover, a task can be blocked at most once, as formally stated in the following
theorem.

Theorem 7.1 Under HLP, a task τi can be blocked, at most, for the duration of a

single critical section belonging to the set γi.

214 Chapter 7

Proof. The theorem is proved by contradiction, assuming that τ i is blocked by two
critical sections, z1,a and z2,b. For this to happen, both critical sections must belong
to different tasks (τ1 and τ2) with priority lower than Pi, and both must have a ceiling
higher than or equal to Pi. That is, by assumption, we must have

P1 < Pi ≤ C(Ra);

P2 < Pi ≤ C(Rb).

Now, τi can be blocked twice only if τ1 and τ2 are both inside the resources when τi

arrives, and this can occur only if one of them (say τ 1) preempted the other inside the
critical section. But, if τ1 preempted τ2 inside z2,b it means that P2 > C(Rb), which
is a contradiction. Hence, the theorem follows.

Since a task τi can be blocked at most once, the maximum blocking time τ i can suffer
is given by the duration of the longest critical section among those that can block τ i.
That is,

Bi = max
j,k

{δj,k − 1 | Zj,k ∈ γi}. (7.7)

Note that one unit of time is subtracted from δj,k to allow τj entering Zj,k before τi.
This method, although improving NPP, still contains a source of pessimism and could
produce some unnecessary blocking. In fact, a task is blocked at the time it attempts
to preempt, before it actually requires a resource. If a critical section is contained only
in one branch of a conditional statement, then the task could be unnecessarily blocked,
since during execution it could take the branch without the resource.

Such a source of pessimism is removed in the Priority Inheritance Protocol by post-
poning the blocking condition at the entrance of a critical section rather than at the
activation time.

7.6 PRIORITY INHERITANCE PROTOCOL

The Priority Inheritance Protocol (PIP), proposed by Sha, Rajkumar and Lehoczky
[SRL90], avoids unbounded priority inversion by modifying the priority of those tasks
that cause blocking. In particular, when a task τ i blocks one or more higher-priority
tasks, it temporarily assumes (inherits) the highest priority of the blocked tasks. This
prevents medium-priority tasks from preempting τ i and prolonging the blocking dura-
tion experienced by the higher-priority tasks.

Resource Access Protocols 215

7.6.1 PROTOCOL DEFINITION

The Priority Inheritance Protocol can be defined as follows:

Tasks are scheduled based on their active priorities. Tasks with the same priority
are executed in a First Come First Served discipline.

When task τi tries to enter a critical section zi,k and resource Rk is already held
by a lower-priority task τj , then τi is blocked. τi is said to be blocked by the task
τj that holds the resource. Otherwise, τi enters the critical section zi,k.

When a task τi is blocked on a semaphore, it transmits its active priority to the
task, say τj , that holds that semaphore. Hence, τj resumes and executes the rest
of its critical section with a priority pj = pi. Task τj is said to inherit the priority
of τi. In general, a task inherits the highest priority of the tasks it blocks. That is,
at every instant,

pj(Rk) = max{Pj , max
h

{Ph|τh is blocked on Rk}}. (7.8)

When τj exits a critical section, it unlocks the semaphore, and the highest-priority
task blocked on that semaphore, if any, is awakened. Moreover, the active priority
of τj is updated as follows: if no other tasks are blocked by τj , pj is set to its
nominal priority Pj ; otherwise it is set to the highest priority of the tasks blocked
by τj , according to Equation (7.8).

Priority inheritance is transitive; that is, if a task τ3 blocks a task τ2, and τ2 blocks
a task τ1, then τ3 inherits the priority of τ1 via τ2.

EXAMPLES

We first consider the same situation presented in Figure 7.4 and show how the prior-
ity inversion phenomenon can be bounded by the Priority Inheritance Protocol. The
modified schedule is illustrated in Figure 7.8. Until time t3 there is no variation in the
schedule, since no priority inheritance takes place. At time t3, τ1 is blocked by τ3,
thus τ3 inherits the priority of τ1 and executes the remaining part of its critical section
(from t3 to t5) at the highest priority. In this condition, at time t4, τ2 cannot preempt
τ3 and cannot create additional interference on τ1. As τ3 exits its critical section, τ1

is awakened and τ3 resumes its original priority. At time t5, the processor is assigned
to τ1, which is the highest-priority task ready to execute, and task τ 2 can only start at
time t6, when τ1 has completed. The active priority of τ3 as a function of time is also
shown in Figure 7.8 on the lowest timeline.

216 Chapter 7

normal execution

critical section

τ1

τ2

τ3

P1

P2

P3

t0 t1 t2 t3 t4 t5 t6 t7
p3

direct blocking

push-through blocking

Figure 7.8 Example of Priority Inheritance Protocol.

From this example, we notice that a high-priority task can experience two kinds of
blocking:

Direct blocking. It occurs when a higher-priority task tries to acquire a resource
already held by a lower-priority task. Direct blocking is necessary to ensure the
consistency of the shared resources.

Push-through blocking. It occurs when a medium-priority task is blocked by a
low-priority task that has inherited a higher priority from a task it directly blocks.
Push-through blocking is necessary to avoid unbounded priority inversion.

Note that in most situations when a task exits a critical section, it resumes the priority
it had when it entered. This, however, is not always true. Consider the example
illustrated in Figure 7.9. Here, task τ1 uses a resource Ra guarded by a semaphore
Sa, task τ2 uses a resource Rb guarded by a semaphore Sb, and task τ3 uses both
resources in a nested fashion (Sa is locked first). At time t1, τ2 preempts τ3 within its
nested critical section; hence, at time t2, when τ2 attempts to lock Sb, τ3 inherits its
priority, P2. Similarly, at time t3, τ1 preempts τ3 within the same critical section, and
at time t4, when τ1 attempts to lock Sa, τ3 inherits the priority P1. At time t5, when τ3

unlocks semaphore Sb, task τ2 is awakened but τ1 is still blocked; hence, τ3 continues
its execution at the priority of τ1. At time t6, τ3 unlocks Sa and, since no other tasks
are blocked, τ3 resumes its original priority P3.

Resource Access Protocols 217

b b aa b

b

a

normal execution

critical section

τ1

τ2

τ3

P1

P2

P3

t1 t2 t3 t4 t5 t6

p3

Figure 7.9 Priority inheritance with nested critical sections.

An example of transitive priority inheritance is shown in Figure 7.10. Here, task τ 1

uses a resource Ra guarded by a semaphore Sa, task τ3 uses a resource Rb guarded
by a semaphore Sb, and task τ2 uses both resources in a nested fashion (Sa protects
the external critical section and Sb the internal one). At time t1, τ3 is preempted
within its critical section by τ2, which in turn enters its first critical section (the one
guarded by Sa), and at time t2 it is blocked on semaphore Sb. As a consequence,
τ3 resumes and inherits the priority P2. At time t3, τ3 is preempted by τ1, which at
time t4 tries to acquire Ra. Since Sa is locked by τ2, τ2 inherits P1. However, τ2 is
blocked by τ3; hence, for transitivity, τ3 inherits the priority P1 via τ2. When τ3 exits
its critical section, no other tasks are blocked by it; thus it resumes its nominal priority
P3. Priority P1 is now inherited by τ2, which still blocks τ1 until time t6.

7.6.2 PROPERTIES OF THE PROTOCOL

In this section, the main properties of the Priority Inheritance Protocol are presented.
These properties are then used to analyze the schedulability of a periodic task set and
compute the maximum blocking time that each task may experience.

218 Chapter 7

bb

a

b

b a

a

critical section

normal execution

τ1

τ2

τ3

P1

P2

P3

t1 t2 t3 t4 t5 t6

p3

Figure 7.10 Example of transitive priority inheritance.

Lemma 7.1 A semaphore Sk can cause push-through blocking to task τ i, only if Sk is

accessed both by a task with priority lower than Pi and by a task with priority higher

than Pi.

Proof. Suppose that semaphore Sk is accessed by a task τl with priority lower than
Pi, but not by a task with priority higher than P i. Then, τl cannot inherit a priority
higher than Pi. Hence, τl will be preempted by τi and the lemma follows.

Lemma 7.2 Transitive priority inheritance can occur only in the presence of nested

critical sections.

Proof. A transitive inheritance occurs when a high-priority task τH is blocked by
a medium-priority task τM , which in turn is blocked by a low-priority task τL (see
Figure 7.10). Since τH is blocked by τM , τM must hold a semaphore, say Sa. But τM

is also blocked by τL on a different semaphore, say Sb. This means that τM attempted
to lock Sb inside the critical section guarded by Sa. The lemma follows.

Resource Access Protocols 219

Lemma 7.3 If there are li lower-priority tasks that can block a task τi, then τi can be

blocked for at most the duration of li critical sections (one for each of the li lower-

priority tasks), regardless of the number of semaphores used by τ i.

Proof. A task τi can be blocked by a lower-priority task τj only if τj has been
preempted within a critical section, say zj,k, that can block τi. Once τj exits zj,k, it
can be preempted by τi; thus, τi cannot be blocked by τj again. The same situation
may happen for each of the li lower-priority tasks; therefore, τi can be blocked at most
li times.

Lemma 7.4 If there are si distinct semaphores that can block a task τi, then τi can

be blocked for at most the duration of si critical sections, one for each of the si

semaphores, regardless of the number of critical sections used by τ i.

Proof. Since semaphores are binary, only one of the lower-priority tasks, say τ j , can
be within a blocking critical section corresponding to a particular semaphore S k. Once
Sk is unlocked, τj can be preempted and no longer block τ i. If all si semaphores that
can block τi are locked by the si lower-priority tasks, then τi can be blocked at most
si times.

Theorem 7.2 (Sha, Rajkumar, Lehoczky) Under the Priority Inheritance Protocol,

a task τi can be blocked for at most the duration of α i = min(li, si) critical sections,

where li is the number of lower-priority tasks that can block τi and si is the number

of distinct semaphores that can block τi.

Proof. It immediately follows from Lemma 7.3 and Lemma 7.4.

7.6.3 BLOCKING TIME COMPUTATION

The evaluation of the maximum blocking time for each task can be computed based
on the result of Theorem 7.2. However, a precise evaluation of the blocking factor B i

is quite complex because each critical section of the lower-priority tasks may interfere
with τi via direct blocking, push-through blocking, or transitive inheritance. In this
section, we present a simplified algorithm that can be used to compute the blocking

220 Chapter 7

factors of tasks that do not use nested critical sections. In this case, in fact, Lemma 7.2
guarantees that no transitive inheritance can occur; thus, the analysis of all possible
blocking conditions is simplified.

Using the terminology introduced in Section 7.3, in the absence of transitive blocking,
the set γi of critical sections that can block a task τi can be computed as follows:

1. The set of semaphores that can cause direct blocking to τ i, shared by the lower-
priority task τj , is

σdir
i,j = σi ∩ σj .

2. The set of semaphores that can cause push-through blocking to τ i, shared by the
lower-priority task τj , is

σpt
i,j =

⋃

h:Ph>Pi

σh ∩ σj .

3. The set of semaphores that can block τ i (either directly or by push-through),
shared by the lower-priority task τj , is

σi,j = σdir
i,j ∪ σpt

i,j =
⋃

h:Ph≥Pi

σh ∩ σj .

4. The set of the longest critical sections used by τj that can block τi (either directly
or by push-through) is then

γi,j = {Zj,k | (Pj < Pi) and (Rk ∈ σi,j}.

5. The set of all critical sections that can block τi (either directly or by push-
through) is

γi =
⋃

j:Pj<Pi

γi,j .

6. Bi is then given by the largest sum of the lengths of the α i critical sections in
γi. Note that since τi cannot be blocked twice by the same task or by the same
semaphore, the sum should contain only terms δ j,k referring to different tasks
and different semaphores.

Unfortunately, even without considering nested resources, the exact computation of
each blocking factor requires a combinatorial search for finding the largest sum among
all possible αi durations. A simpler upper bound, however, can be computed according
to the following algorithm:

Resource Access Protocols 221

1. According to Lemma 7.3, a task τ i can be blocked at most once for each of the l i

lower priority tasks. Hence, for each lower priority task τ j that can block τi, sum
the duration of the longest critical section among those that can block τ i; let Bl

i

be this sum. That is,

Bl
i =

∑

j:Pj<Pi

max
k

{δj,k − 1 | Zj,k ∈ γi} (7.9)

2. According to Lemma 7.4, a task τ i can be blocked at most once for each of the s i

semaphores that can block τi. Hence, for each semaphore Sk that can block τi,
sum the duration of the longest critical section among those that can block τ i; let
Bs

i be this sum. That is,

Bs
i =

m
∑

k=1

max
j

{δj,k − 1 | Zj,k ∈ γi} (7.10)

3. According to Theorem 7.2, τ i can be blocked at most for αi = min(li, si) critical
sections. Hence, compute Bi as the minimum between B l

i and Bs
i . That is,

Bi = min(Bl
i, B

s
i) (7.11)

The identification of the critical sections that can block a task can be greatly simplified
if for each semaphore Sk we define a ceiling C(Sk) equal to the highest-priority of
the tasks that use Sk:

C(Sk)
def
= max

i
{Pi | Sk ∈ σi}. (7.12)

Then, the following lemma holds.

Lemma 7.5 In the absence of nested critical sections, a critical section zj,k of τj

guarded by Sk can block τi only if Pj < Pi ≤ C(Sk).

Proof. If Pi ≤ Pj , then task τi cannot preempt τj ; hence, it cannot be blocked by
τj directly. On the other hand, if C(Sk) < Pi, by definition of C(Sk), any task that
uses Sk cannot have a priority higher than P i. Hence, from Lemma 7.1, zj,k cannot
cause push-through blocking on τ i. Finally, since there are no nested critical sections,
Lemma 7.2 guarantees that zj,k cannot cause transitive blocking. The lemma follows.

Using the result of Lemma 7.5, the blocking terms B l
i and Bs

i can be determined as
follows:

222 Chapter 7

Bl
i =

n
∑

j=i+1

max
k

{δj,k − 1 | C(Sk) ≥ Pi}

Bs
i =

m
∑

k=1

max
j>i

{δj,k − 1 | C(Sk) ≥ Pi}.

This computation is performed by the algorithm shown in Figure 7.11. The algo-
rithm assumes that the task set consists of n periodic tasks that use m distinct binary
semaphores. Tasks are ordered by decreasing priority, such that P i > Pj for all i < j.
Critical sections are not nested. Note that the blocking factor Bn is always zero, since
there are no tasks with priority lower than Pn that can block τn. The complexity of
the algorithm is O(mn2).

Note that the blocking factors derived by this algorithm are not tight. In fact, B l
i

may be computed by considering two or more critical sections guarded by the same
semaphore, which for Lemma 7.4 cannot both block τ i. Similarly, Bs

i may be com-
puted by considering two or more critical sections belonging to the same task, which
for Lemma 7.3 cannot both block τ i. To exclude these cases, however, the complexity
grows exponentially because the maximum blocking time has to be computed among
all possible combinations of critical sections. An algorithm based on exhaustive search
is presented by Rajkumar [Raj91]. It can find better bounds than those found by the
algorithm presented in this section, but it has an exponential complexity.

EXAMPLE

To illustrate the algorithm presented above, consider the example shown in Table 7.1,
where four tasks share three semaphores. For each task τ i, the duration of the longest
critical section among those that use the same semaphore Sk is denoted by δi,k and re-
ported in the table. δi,k = 0 means that task τi does not use semaphore Sk. Semaphore
ceilings are indicated in parentheses.

Sa(P1) Sb(P1) Sc(P2)

τ1 1 2 0
τ2 0 9 3
τ3 8 7 0
τ4 6 5 4

Table 7.1 Three semaphores shared by four tasks.

Resource Access Protocols 223

Algorithm: Blocking Time Computation

Input: durations δi,k for each task τi and each semaphore Sk

Output: Bi for each task τi

// Assumes tasks are ordered by decreasing priorities

(1) begin

(2) for i := 1 to n − 1 do // for each task

(3) Bl
i := 0;

(4) for j := i + 1 to n do // for each lower priority task

(5) D max := 0;
(6) for k := 1 to m do // for each semaphore

(7) if (C(Sk) ≥ Pi) and (δj,k > D max) do

(8) D max := δj,k;
(9) end

(10) end

(11) Bl
i := Bl

i + D max − 1;
(12) end

(13) Bs
i := 0;

(14) for k := 1 to m do // for each semaphore

(15) D max := 0;
(16) for j := i + 1 to n do // for each lower priority task

(17) if (C(Sk) ≥ Pi) and (δj,k > D max) do

(18) D max := δj,k;
(19) end

(20) end

(21) Bs
i := Bs

i + D max − 1;
(22) end

(23) Bi := min(Bl
i, B

s
i);

(24) end

(25) Bn := 0;
(26) end

Figure 7.11 Algorithm for computing the blocking factors.

According to the algorithm shown in Figure 7.11, the blocking factors of the tasks are
computed as follows (note that one time unit is subtracted from each duration):

Bl
1 = 8 + 7 + 5 = 20

Bs
1 = 7 + 8 = 15 ==> B1 = 15

Bl
2 = 7 + 5 = 12

Bs
2 = 7 + 6 + 3 = 16 ==> B2 = 12

224 Chapter 7

Bl
3 = 5

Bs
3 = 5 + 4 + 3 = 12 ==> B3 = 5

Bl
4 = Bs

4 = 0 ==> B4 = 0

To understand why the algorithm is pessimistic, note that B l
2 is computed by adding

the duration of two critical sections both guarded by semaphore S 1, which can never
occur in practice.

7.6.4 IMPLEMENTATION CONSIDERATIONS

The implementation of the Priority Inheritance Protocol requires a slight modification
of the kernel data structures associated with tasks and semaphores. First of all, each
task must have a nominal priority and an active priority, which need to be stored in
the Task Control Block (TCB). Moreover, in order to speed up the inheritance mech-
anism, it is convenient that each semaphore keeps track of the task holding the lock
on it. This can be done by adding in the semaphore data structure a specific field, say
holder, for storing the identifier of the holder. In this way, a task that is blocked on
a semaphore can immediately identify the task that holds its lock for transmitting its
priority. Similarly, transitive inheritance can be simplified if each task keeps track of
the semaphore on which it is blocked. In this case, this information has to be stored in
a field, say lock, of the Task Control Block. Assuming that the kernel data structures
are extended as described above, the primitives pi wait and pi signal for realizing the
Priority Inheritance Protocol can be defined as follows.

pi wait(s)

If semaphore s is free, it becomes locked and the name of the executing task is
stored in the holder field of the semaphore data structure.

If semaphore s is locked, the executing task is blocked on the s semaphore queue,
the semaphore identifier is stored in the lock field of the TCB, and its priority is
inherited by the task that holds s. If such a task is blocked on another semaphore,
the transitivity rule is applied. Then, the ready task with the highest priority is
assigned to the processor.

pi signal(s)

If the queue of semaphore s is empty (that is, no tasks are blocked on s), s is
unlocked.

Resource Access Protocols 225

a

b

a

b

a

b

critical section

normal execution

τ1

τ2

τ3

Figure 7.12 Example of chained blocking.

If the queue of semaphore s is not empty, the highest-priority task in the queue is
awakened, its identifier is stored in s.holder, the active priority of the executing
task is updated and the ready task with the highest priority is assigned to the
processor.

7.6.5 UNSOLVED PROBLEMS

Although the Priority Inheritance Protocol bounds the priority inversion phenomenon,
the blocking duration for a task can still be substantial because a chain of blocking can
be formed. Another problem is that the protocol does not prevent deadlocks.

CHAINED BLOCKING

Consider three tasks τ1, τ2 and τ3 with decreasing priorities that share two semaphores
Sa and Sb. Suppose that τ1 needs to sequentially access Sa and Sb, τ2 accesses Sb,
and τ3 Sa. Also suppose that τ3 locks Sa and it is preempted by τ2 within its critical
section. Similarly, τ2 locks Sb and it is preempted by τ1 within its critical section.
The example is shown in Figure 7.12. In this situation, when attempting to use its
resources, τ1 is blocked for the duration of two critical sections, once to wait for τ 3

to release Sa and then to wait for τ2 to release Sb. This is called a chained blocking.
In the worst case, if τ1 accesses n distinct semaphores that have been locked by n
lower-priority tasks, τ1 will be blocked for the duration of n critical sections.

226 Chapter 7

wait(S)

wait(S)

wait(S)

wait(S)

a

a

b

b

a

b

b

a

signal(S)

signal(S) signal(S)

signal(S)

blocked on S

blocked on S

b

a

b

critical section

normal execution

b

a

τ1

τ1

τ2

τ2

t1 t2 t3 t4 t5

Figure 7.13 Example of deadlock.

DEADLOCK

Consider two tasks that use two semaphores in a nested fashion but in reverse order,
as illustrated in Figure 7.13. Now suppose that, at time t1, τ2 locks semaphore Sb and
enters its critical section. At time t2, τ1 preempts τ2 before it can lock Sa. At time
t3, τ1 locks Sa, which is free, but then is blocked on Sb at time t4. At this time, τ2

resumes and continues the execution at the priority of τ1. Priority inheritance does
not prevent a deadlock, which occurs at time t5, when τ2 attempts to lock Sa. Note,
however, that the deadlock does not depend on the Priority Inheritance Protocol but is
caused by an erroneous use of semaphores. In this case, the deadlock problem can be
solved by imposing a total ordering on the semaphore accesses.

7.7 PRIORITY CEILING PROTOCOL

The Priority Ceiling Protocol (PCP) was introduced by Sha, Rajkumar, and Lehoczky
[SRL90] to bound the priority inversion phenomenon and prevent the formation of
deadlocks and chained blocking.

The basic idea of this method is to extend the Priority Inheritance Protocol with a rule
for granting a lock request on a free semaphore. To avoid multiple blocking, this rule
does not allow a task to enter a critical section if there are locked semaphores that
could block it. This means that once a task enters its first critical section, it can never
be blocked by lower-priority tasks until its completion.

Resource Access Protocols 227

In order to realize this idea, each semaphore is assigned a priority ceiling equal to
the highest priority of the tasks that can lock it. Then, a task τ i is allowed to enter a
critical section only if its priority is higher than all priority ceilings of the semaphores
currently locked by tasks other than τ i.

7.7.1 PROTOCOL DEFINITION

The Priority Ceiling Protocol can be defined as follows:

Each semaphore Sk is assigned a priority ceiling C(Sk) equal to the highest
priority of the tasks that can lock it. Note that C(Sk) is a static value that can be
computed off-line:

C(Sk)
def
= max

i
{Pi | Sk ∈ σi}. (7.13)

Let τi be the task with the highest priority among all tasks ready to run; thus, τ i

is assigned the processor.

Let S∗ be the semaphore with the highest ceiling among all the semaphores cur-
rently locked by tasks other than τi and let C(S∗) be its ceiling.

To enter a critical section guarded by a semaphore Sk, τi must have a priority
higher than C(S∗). If Pi ≤ C(S∗), the lock on Sk is denied and τi is said to be
blocked on semaphore S∗ by the task that holds the lock on S ∗.

When a task τi is blocked on a semaphore, it transmits its priority to the task,
say τj , that holds that semaphore. Hence, τj resumes and executes the rest of its
critical section with the priority of τi. Task τj is said to inherit the priority of τi.

In general, a task inherits the highest priority of the tasks blocked by it. That is,
at every instant,

pj(Rk) = max{Pj , max
h

{Ph|τh is blocked on Rk}}. (7.14)

When τj exits a critical section, it unlocks the semaphore and the highest-priority
task, if any, blocked on that semaphore is awakened. Moreover, the active priority
of τj is updated as follows: if no other tasks are blocked by τ j , pj is set to the
nominal priority Pj ; otherwise, it is set to the highest priority of the tasks blocked
by τj , according to Equation (7.14).

Priority inheritance is transitive; that is, if a task τ3 blocks a task τ2, and τ2 blocks
a task τ1, then τ3 inherits the priority of τ1 via τ2.

228 Chapter 7

EXAMPLE

In order to illustrate the Priority Ceiling Protocol, consider three tasks τ1, τ2, and τ3

having decreasing priorities. The highest-priority task τ1 sequentially accesses two
critical sections guarded by semaphores SA and SB ; task τ2 accesses only a criti-
cal section guarded by semaphore SC ; whereas task τ3 uses semaphore SC and then
makes a nested access to SB . From tasks’ resource requirements, all semaphores are
assigned the following priority ceilings:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C(SA) = P1

C(SB) = P1

C(SC) = P2.

Now suppose that events evolve as illustrated in Figure 7.14.

At time t0, τ3 is activated, and since it is the only task ready to run, it starts
executing and later locks semaphore SC .

At time t1, τ2 becomes ready and preempts τ3.

At time t2, τ2 attempts to lock SC , but it is blocked by the protocol because P2

is not greater than C(SC). Then, τ3 inherits the priority of τ2 and resumes its
execution.

At time t3, τ3 successfully enters its nested critical section by locking SB . Note
that τ3 is allowed to lock SB because no semaphores are locked by other tasks.

At time t4, while τ3 is executing at a priority p3 = P2, τ1 becomes ready and
preempts τ3 because P1 > p3.

At time t5, τ1 attempts to lock SA, which is not locked by any task. However, τ1

is blocked by the protocol because its priority is not higher than C(S B), which
is the highest ceiling among all semaphores currently locked by the other tasks.
Since SB is locked by τ3, τ3 inherits the priority of τ1 and resumes its execution.

At time t6, τ3 exits its nested critical section, unlocks SB , and, since τ1 is awak-
ened, τ3 returns to priority p3 = P2. At this point, P1 > C(SC); hence, τ1

preempts τ3 and executes until completion.

At time t7, τ1 is completed, and τ3 resumes its execution at a priority p3 = P2.

Resource Access Protocols 229

critical section

normal execution

ceiling blocking

direct blocking

τ1

τ2

τ3

P1

P2

P3

p3

A

B

B

B

C

CCC

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 7.14 Example of Priority Ceiling Protocol.

At time t8, τ3 exits its outer critical section, unlocks SC , and, since τ2 is awak-
ened, τ3 returns to its nominal priority P3. At this point, τ2 preempts τ3 and
executes until completion.

At time t9, τ2 is completed; thus, τ3 resumes its execution.

Note that the Priority Ceiling Protocol introduces a third form of blocking, called
ceiling blocking, in addition to direct blocking and push-through blocking caused by
the Priority Inheritance Protocol. This is necessary for avoiding deadlock and chained
blocking. In the previous example, a ceiling blocking is experienced by task τ 1 at time
t5.

7.7.2 PROPERTIES OF THE PROTOCOL

The main properties of the Priority Ceiling Protocol are presented in this section. They
are used to analyze the schedulability and compute the maximum blocking time of
each task.

230 Chapter 7

b

a

blocked

τ0

τi

τk

Figure 7.15 An absurd situation that cannot occur under the Priority Ceiling Protocol.

Lemma 7.6 If a task τk is preempted within a critical section Za by a task τi that

enters a critical section Zb, then, under the Priority Ceiling Protocol, τk cannot inherit

a priority higher than or equal to that of task τi until τi completes.

Proof. If τk inherits a priority higher than or equal to that of task τ i before τi

completes, there must exist a task τ0 blocked by τk , such that P0 ≥ Pi. This situation
is shown in Figure 7.15. However, this leads to the contradiction that τ 0 cannot be
blocked by τk. In fact, since τi enters its critical section, its priority must be higher
than the maximum ceiling C ∗ of the semaphores currently locked by all lower-priority
tasks. Hence, P0 ≥ Pi > C∗. But since P0 > C∗, τ0 cannot be blocked by τk, and
the lemma follows.

Lemma 7.7 The Priority Ceiling Protocol prevents transitive blocking.

Proof. Suppose that a transitive block occurs; that is, there exist three tasks τ 1, τ2,
and τ3, with decreasing priorities, such that τ3 blocks τ2 and τ2 blocks τ1. By the
transitivity of the protocol, τ3 will inherit the priority of τ1. However, this contradicts
Lemma 7.6, which shows that τ3 cannot inherit a priority higher than or equal to P 2.
Thus, the lemma follows.

Theorem 7.3 The Priority Ceiling Protocol prevents deadlocks.

Proof. Assuming that a task cannot deadlock by itself, a deadlock can only be formed
by a cycle of tasks waiting for each other, as shown in Figure 7.16. In this situation,

Resource Access Protocols 231

τ1 τ2 τn

Figure 7.16 Deadlock among n tasks.

however, by the transitivity of the protocol, task τn would inherit the priority of τ1,
which is assumed to be higher than Pn. This contradicts Lemma 7.6, and hence the
theorem follows.

Theorem 7.4 (Sha, Rajkumar, Lehoczky) Under the Priority Ceiling Protocol, a task

τi can be blocked for at most the duration of one critical section.

Proof. Suppose that τi is blocked by two lower-priority tasks τ1 and τ2, where
P2 < P1 < Pi. Let τ2 enter its blocking critical section first, and let C ∗

2 be the
highest-priority ceiling among all the semaphores locked by τ 2. In this situation, if
task τ1 enters its critical section we must have that P1 > C∗

2 . Moreover, since we
assumed that τi can be blocked by τ2, we must have that Pi ≤ C∗

2 . This means that
Pi ≤ C∗

2 < P1. This contradicts the assumption that Pi > P1. Thus, the theorem
follows.

7.7.3 BLOCKING TIME COMPUTATION

The evaluation of the maximum blocking time for each task can be computed based
on the result of Theorem 7.4. According to this theorem, a task τ i can be blocked for
at most the duration of the longest critical section among those that can block τ i. The
set of critical sections that can block a task τi is identified by the following lemma.

Lemma 7.8 Under the Priority Ceiling Protocol, a critical section zj,k (belonging

to task τj and guarded by semaphore Sk) can block a task τi only if Pj < Pi and

C(Sk) ≥ Pi.

Proof. Clearly, if Pj ≥ Pi, τi cannot preempt τj and hence cannot be blocked on z j,k.
Now assume Pj < Pi and C(Sk) < Pi, and suppose that τi is blocked on zj,k. We

232 Chapter 7

Sa(P1) Sb(P1) Sc(P2)

τ1 1 2 0
τ2 0 9 3
τ3 8 7 0
τ4 6 5 4

Table 7.2 Three semaphores shared by four tasks.

show that this assumption leads to a contradiction. In fact, if τ i is blocked by τj , its
priority must be less than or equal to the maximum ceiling C ∗ among all semaphores
locked by tasks other than τi. Thus, we have that C(Sk) < Pi ≤ C∗. On the other
hand, since C∗ is the maximum ceiling among all semaphores currently locked by
tasks other than τi, we have that C∗ ≥ C(Sk), which leads to a contradiction and
proves the lemma.

Using the result of Lemma 7.8, we can say that a task τ i can only be blocked by critical
sections belonging to lower priority tasks with a resource ceiling higher than or equal
to Pi. That is,

γi = {Zj,k | (Pj < Pi) and C(Rk) ≥ Pi}. (7.15)

And since τi can be blocked at most once, the maximum blocking time τ i can suffer
is given by the duration of the longest critical section among those that can block τ i.
That is,

Bi = max
j,k

{δj,k − 1 | Zj,k ∈ γi}. (7.16)

Consider the same example illustrated for the Priority Inheritance Protocol, reported
in Table 7.2 for simplicity. According to Equation (7.15), we have:

γ1 = {Z2b, Z3a, Z3b, Z4a, Z4b}
γ2 = {Z3a, Z3b, Z4a, Z4b, Z4c}
γ3 = {Z4a, Z4b, Z4c}
γ4 = {}

Hence, based on Equation (7.16), tasks blocking factors are computed as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

B1 = max(8, 7, 6, 5, 4) = 8
B2 = max(7, 6, 5, 4, 3) = 7
B3 = max(5, 4, 3) = 5
B4 = 0.

Resource Access Protocols 233

7.7.4 IMPLEMENTATION CONSIDERATIONS

The major implication of the Priority Ceiling Protocol in kernel data structures is that
semaphores queues are no longer needed, since the tasks blocked by the protocol can
be kept in the ready queue. In particular, whenever a task τ i is blocked by the protocol
on a semaphore Sk, the task τh that holds Sk inherits the priority of τi and it is assigned
to the processor, whereas τi returns to the ready queue. As soon as τh unlocks Sk, ph

is updated and, if ph becomes less than the priority of the first ready task, a context
switch is performed.

To implement the Priority Ceiling Protocol, each semaphore Sk has to store the identi-
fier of the task that holds the lock on Sk and the ceiling of Sk. Moreover, an additional
field for storing the task active priority has to be reserved in the task control block. It is
also convenient to have a field in the task control block for storing the identifier of the
semaphore on which the task is blocked. Finally, the implementation of the protocol
can be simplified if the system also maintains a list of currently locked semaphores,
ordered by decreasing priority ceilings. This list is useful for computing the maximum
priority ceiling that a task has to overcome to enter a critical section and for updating
the active priority of tasks at the end of a critical section.

If the kernel data structures are extended as described above, the primitives pc wait

and pc signal for realizing the Priority Ceiling Protocol can be defined as follows.

pc wait(s)

Find the semaphore S∗ having the maximum ceiling C ∗ among all the semaphores
currently locked by tasks other than the one in execution (τ exe).

If pexe ≤ C∗, transfer Pexe to the task that holds S∗, insert τexe in the ready
queue, and execute the ready task (other than τexe) with the highest priority.

If pexe > C∗, or whenever s is unlocked, lock semaphore s, add s in the list of
currently locked semaphores and store τexe in s.holder.

pc signal(s)

Extract s from the list of currently locked semaphores.

If no other tasks are blocked by τexe, set pexe = Pexe, else set pexe to the highest
priority of the tasks blocked by τexe.

234 Chapter 7

Let p∗ be the highest priority among the ready tasks. If pexe < p∗, insert τexe

in the ready queue and execute the ready task (other than τ exe) with the highest
priority.

7.8 STACK RESOURCE POLICY

The Stack Resource Policy (SRP) is a technique proposed by Baker [Bak91] for ac-
cessing shared resources. It extends the Priority Ceiling Protocol (PCP) in three es-
sential points:

1. It allows the use of multi-unit resources.

2. It supports dynamic priority scheduling.

3. It allows the sharing of runtime stack-based resources.

From a scheduling point of view, the essential difference between the PCP and the
SRP is on the time at which a task is blocked. Whereas under the PCP a task is
blocked at the time it makes its first resource request, under the SRP a task is blocked
at the time it attempts to preempt. This early blocking slightly reduces concurrency
but saves unnecessary context switches, simplifies the implementation of the protocol,
and allows the sharing of runtime stack resources.

7.8.1 DEFINITIONS

Before presenting the formal description of the SRP we introduce the following defi-
nitions.

PRIORITY

Each task τi is assigned a priority pi that indicates the importance (that is, the urgency)
of τi with respect to the other tasks in the system. Priorities can be assigned to tasks
either statically or dynamically. At any time t, pa > pb means that the execution of τa

is more important than that of τb; hence, τb can be delayed in favor of τa. For example,
priorities can be assigned to tasks based on Rate Monotonic (RM) or Earliest Deadline
First (EDF).

Resource Access Protocols 235

PREEMPTION LEVEL

Besides a priority pi, a task τi is also characterized by a preemption level πi. The
preemption level is a static parameter, assigned to a task at its creation time and as-
sociated with all instances of that task. The essential property of preemption levels is
that a task τa can preempt another task τb only if πa > πb. This is also true for pri-
orities. Hence, the reason for distinguishing preemption levels from priorities is that
preemption levels are fixed values that can be used to predict potential blocking also in
the presence of dynamic priority schemes. The general definition of preemption level
used to prove all properties of the SRP requires that

if τa arrives after τb and τa has higher priority than τb, then τa must have a
higher preemption level than τb.

Under EDF scheduling, the previous condition is satisfied if preemption levels are
ordered inversely with respect to the order of relative deadlines; that is,

πi > πj ⇐⇒ Di < Dj .

To better illustrate the difference between priorities and preemption levels, consider
the example shown in Figure 7.17. Here we have two tasks τ1 and τ2, with relative
deadlines D1 = 10 and D2 = 5, respectively. Being D2 < D1, we define π1 = 1
and π2 = 2. Since π1 < π2, τ1 can never preempt τ2; however, τ1 may have a priority
higher than that of τ2. In fact, under EDF, the priority of a task is dynamically assigned
based on its absolute deadline. For example, in the case illustrated in Figure 7.17a,
the absolute deadlines are such that d2 < d1; hence, τ2 will have higher priority than
τ1. On the other hand, as shown in Figure 7.17b, if τ 2 arrives a time r1 + 6, absolute
deadlines are such that d2 > d1; hence, τ1 will have higher priority than τ2. Note
that although τ1 has a priority higher than τ2, τ2 cannot be preempted. This happens
because, when d1 < d2 and D1 > D2, τ1 always starts before τ2; thus, it does not
need to preempt τ2.

In the following, it is assumed that tasks are ordered by decreasing preemption levels,
so that i < j ⇐⇒ πi > πj . This also means that D1 < D2 < . . . < Dn.

RESOURCE UNITS

Each resource Rk is allowed to have Nk units that can be concurrently accessed by
multiple tasks. This notion generalizes the classical single-unit resource, which can
be accessed by one task at the time under mutual exclusion. A resource with N k units
can be concurrently accessed by Nk different tasks, if each task requires one unit.

236 Chapter 7

(a)

(b)

τ1

τ1

τ2

τ2

D1

D1

D2

D2

r1

r1

r2

r2

d1

d1

d2

d2

Figure 7.17 Although π2 > π1, under EDF p2 can be higher than p1 (a) or lower than
p1 (b).

In general, nk denotes the number of currently available units for Rk, meaning that
Nk −nk units are locked. If nk = 0, a task requiring 3 units of Rk is blocked until nk

becomes greater than or equal to 3.

RESOURCE REQUIREMENTS

When entering a critical section zi,k guarded by a multi-unit semaphore Sk, a task τi

must specify the number of units it needs by calling a wait(Sk, r), where r is the num-
ber of requested units. When exiting the critical section, τ i must call a signal(Sk),
which releases all the r units.

The maximum number of units that can be simultaneously requested by τ i to Rk is
denoted by µi(Rk), which can be derived off-line by analyzing the task code. It is
clear that if τi requires more units than are available, that is, if µ i(Rk) > nk, then τi

blocks until nk becomes greater than or equal to µi(Rk).

RESOURCE CEILING

Each resource Rk (or semaphore Sk) is assigned a ceiling CRk(nk) equal to the high-
est preemption level of the tasks that could be blocked on Rk if issuing their maximum
request. Hence, the ceiling of a resource is a dynamic value, which is a function of the

Resource Access Protocols 237

Di πi µi(R1) µi(R2) µi(R3)

τ1 5 3 1 0 1
τ2 10 2 2 1 3
τ3 20 1 3 1 1

Table 7.3 Task parameters and resource requirements.

CR(3) CR(2) CR(1) CR(0)

R1 0 1 2 3
R2 - - 0 2
R3 0 2 2 3

Table 7.4 Resource ceilings as a function of the number of available units. Dashes identify
impossible cases.

units of Rk that are currently available. That is,

CRk
(nk) = max{πi | µi(Rk) > nk}.

If all units of Rk are available, that is, if nk = Nk, then CRk
(Nk) = 0.

To better clarify this concept, consider the following example, where three tasks (τ 1,
τ2, τ3) share three resources (R1, R2, R3), consisting of three, one, and three units,
respectively. All tasks parameters – relative deadlines, preemption levels, and resource
requirements – are shown in Table 7.3.

Based on these requirements, the current ceilings of the resources as a function of
the number nk of available units are reported in Table 7.4 (dashes identify impossible
cases).

Let us compute, for example, the ceiling of resource R1 when only two units (out of
three) are available. From Table 7.3, we see that the only task that could be blocked in
this condition is τ3 because it requires three units of R1; hence, CR1(2) = π3 = 1. If
only one unit of R1 is available, the tasks that could be blocked are τ2 and τ3; hence,
CR1(1) = max(π2, π3) = 2. Finally, if none of the units of R1 is available, all three
tasks could be blocked on R1; hence, CR1(0) = max(π1, π2, π3) = 3.

238 Chapter 7

SYSTEM CEILING

The resource access protocol adopted in the SRP also requires a system ceiling, Π s,
defined as the maximum of the current ceilings of all the resources; that is,

Πs = max
k

{CRk
}.

Notice that Πs is a dynamic parameter that can change every time a resource is ac-
cessed or released by a task.

7.8.2 PROTOCOL DEFINITION

The key idea of the SRP is that when a task needs a resource that is not available, it
is blocked at the time it attempts to preempt rather than later. Moreover, to prevent
multiple priority inversions, a task is not allowed to start until the resources currently
available are sufficient to meet the maximum requirement of every task that could
preempt it. Using the definitions introduced in the previous paragraph, this is achieved
by the following preemption test:

SRP Preemption Test: A task is not permitted to preempt until its priority
is the highest among those of all the tasks ready to run, and its preemption
level is higher than the system ceiling.

If the ready queue is ordered by decreasing priorities, the preemption test can be sim-
ply performed by comparing the preemption level π(τ) of the ready task with the high-
est priority (the one at the head of the queue) with the system ceiling. If π(τ) > Π s,
task τ is executed, otherwise it is kept in the ready queue until Πs becomes less than
π(τ). The condition π(τ) > Πs has to be tested every time Πs may decrease; that is,
every time a resource is released.

OBSERVATIONS

The implications that the use of the SRP has on tasks’ execution can be better under-
stood through the following observations:

Passing the preemption test for task τ ensures that the resources that are currently
available are sufficient to satisfy the maximum requirement of task τ and the
maximum requirement of every task that could preempt τ . This means that once
τ starts executing, it will never be blocked for resource contention.

Resource Access Protocols 239

Although the preemption test for a task τ is performed before τ starts executing,
resources are not allocated at this time but only when requested.

A task can be blocked by the preemption test even though it does not require any
resource. This is needed to avoid unbounded priority inversion.

Blocking at preemption time, rather than at access time, introduces more pes-
simism and could create unnecessary blocking (as under HLP), but it decreases
the number of context switches, reduces the run-time overhead, and simplifies
the implementation of the protocol.

The preemption test has the effect of imposing priority inheritance; that is, an ex-
ecuting task that holds a resource modifies the system ceiling and resists preemp-
tion as though it inherits the priority of any tasks that might need that resource.
Note that this effect is accomplished without modifying the priority of the task.

EXAMPLE

In order to illustrate how the SRP works, consider the task set already described in
Table 7.3. The structure of the tasks is shown in Figure 7.18, where wait(R k , r)
denotes the request of r units of resource Rk, and signal(Rk) denotes their release.
The current ceilings of the resources have already been shown in Table 7.4, and a
possible EDF schedule for this task set is depicted in Figure 7.19. In this figure, the
fourth timeline reports the variation of the system ceiling, whereas the numbers along
the schedule denote resource indexes.

At time t0, τ3 starts executing and the system ceiling is zero because all resources are
completely available. When τ3 enters its first critical section, it takes the only unit of
R2; thus, the system ceiling is set to the highest preemption level among the tasks that
could be blocked on R2 (see Table 7.4); that is, Πs = π2 = 2. As a consequence,
τ2 is blocked by the preemption test and τ3 continues to execute. Note that when τ3

enters its nested critical section (taking all units of R1), the system ceiling is raised to
Πs = π1 = 3. This causes τ1 to be blocked by the preemption test.

As τ3 releases R1 (at time t2), the system ceiling becomes Πs = 2; thus, τ1 preempts
τ3 and starts executing. Note that once τ1 is started, it is never blocked during its
execution, because the condition π1 > Πs guarantees that all the resources needed by
τ1 are available. As τ1 terminates, τ3 resumes the execution and releases resource R2.
As R2 is released, the system ceiling returns to zero and τ2 can preempt τ3. Again,
once τ2 is started, all the resources it needs are available; thus, τ2 is never blocked.

240 Chapter 7

signal(R)

signal(R)

signal(R)

signal(R)

signal(R)

signal(R)3

1

wait(R , 1)1

wait(R , 1)3

wait(R , 2)1

signal(R)3

1

2

wait(R , 1)2

wait(R , 3)3

3

3wait(R , 1)

signal(R)2

1

wait(R , 3)1

wait(R , 1)2

τ1 τ2 τ3

Figure 7.18 Structure of the tasks in the SRP example.

2

1

3

1

3

2

1 3

3 2 3 1

32

sΠ

τ1

τ2

τ3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 7.19 Example of a schedule under EDF and SRP. Numbers on tasks’ execution
denote the resource indexes.

Resource Access Protocols 241

7.8.3 PROPERTIES OF THE PROTOCOL

The main properties of the Stack Resource Policy are presented in this section. They
will be used to analyze the schedulability and compute the maximum blocking time of
each task.

Lemma 7.9 If the preemption level of a task τ is greater than the current ceiling of a

resource R, then there are sufficient units of R available to

1. meet the maximum requirement of τ and

2. meet the maximum requirement of every task that can preempt τ .

Proof. Assume π(τ) > CR, but suppose that the maximum request of τ for R cannot
be satisfied. Then, by definition of current ceiling of a resource, we have C R ≥ π(τ),
which is a contradiction.

Assume π(τ) > CR, but suppose that there exists a task τH that can preempt τ such
that the maximum request of τH for R cannot be satisfied. Since τH can preempt τ , it
must be π(τH) > π(τ). Moreover, since the maximum request of τH for R cannot be
satisfied, by definition of current ceiling of a resource, we have CR ≥ π(τH) > π(τ),
which contradicts the assumption.

Theorem 7.5 (Baker) If no task τ is permitted to start until π(τ) > Πs, then no task

can be blocked after it starts.

Proof. Let N be the number of tasks that can preempt a task τ and assume that no
task is permitted to start until its preemption level is greater than Πs. The thesis will
be proved by induction on N .

If N = 0, there are no tasks that can preempt τ . If τ is started when π(τ) > Πs,
Lemma 7.9 guarantees that all the resources required by τ are available when τ pre-
empts; hence, τ will execute to completion without blocking.

If N > 0, suppose that τ is preempted by τH . If τH is started when π(τH) > Πs,
Lemma 7.9 guarantees that all the resources required by τH are available when τH

preempts. Since any task that preempts τH also preempts τ , the induction hypothesis
guarantees that τH executes to completion without blocking, as will any task that pre-
empts τH , transitively. When all the tasks that preempted τ complete, τ can resume its

242 Chapter 7

τi

τ1

τ2

R2

R2 R2

R1

R1

Figure 7.20 An absurd situation that cannot occur under SRP.

execution without blocking, since the higher-priority tasks released all resources and
when τ started the resources available were sufficient to meet the maximum request
of τ .

Theorem 7.6 (Baker) Under the Stack Resource Policy, a task τ i can be blocked for

at most the duration of one critical section.

Proof. Suppose that τi is blocked for the duration of two critical sections shared with
two lower-priority tasks, τ1 and τ2. Without loss of generality, assume π2 < π1 < πi.
This can happen only if τ1 and τ2 hold two different resources (such as R1 and R2)
and τ2 is preempted by τ1 inside its critical section. This situation is depicted in
Figure 7.20. This immediately yields to a contradiction. In fact, since τ 1 is not blocked
by the preemption test, we have π1 > Πs. On the other hand, since τi is blocked, we
have πi ≤ Πs. Hence, we obtain that πi < π1, which contradicts the assumption.

Theorem 7.7 (Baker) The Stack Resource Policy prevents deadlocks.

Proof. By Theorem 7.5, a task cannot be blocked after it starts. Since a task cannot
be blocked while holding a resource, there can be no deadlock.

Resource Access Protocols 243

7.8.4 BLOCKING TIME COMPUTATION

The maximum blocking time that a task can experience with the SRP is the same as
the one that can be experienced with the Priority Ceiling Protocol. Theorem 7.6, in
fact, guarantees that under the SRP a task τi can be blocked for at most the duration
of one critical section among those that can block τ i. Lemma 7.8, proved for the PCP,
can be easily extended to the SRP; thus a critical section Zj,k belonging to task τj and
guarded by semaphore Sk can block a task τi only if πj < πi and max(CSk

) ≥ πi.
Note that under the SRP, the ceiling of a semaphore is a dynamic variable, so we have
to consider its maximum value; that is, the one corresponding to a number of units
currently available equal to zero.

Hence, a task τi can only be blocked by critical sections belonging to tasks with pre-
emption level lower than πi and guarded by semaphores with maximum ceiling higher
than or equal to πi. That is,

γi = {Zj,k | (πj < πi) and CSk
(0) ≥ πi}. (7.17)

And since τi can be blocked at most once, the maximum blocking time τ i can suffer
is given by the duration of the longest critical section among those that can block τ i.
That is,

Bi = max
j,k

{δj,k − 1 | Zj,k ∈ γi}. (7.18)

7.8.5 SHARING RUNTIME STACK

Another interesting implication deriving from the use of the SRP is that it supports
stack sharing among tasks. This is particularly convenient for those applications con-
sisting of a large number of tasks, dedicated to acquisition, monitoring, and control
activities. In conventional operating systems, each process must have a private stack
space, sufficient to store its context (that is, the content of the CPU registers) and its
local variables. A problem with these systems is that, if the number of tasks is large, a
great amount of memory may be required for the stacks of all the tasks.

For example, consider four tasks τ1, τ2, τ3, and τ4, with preemption levels 1, 2, 2,
and 3, respectively (3 being the highest preemption level). Figure 7.21 illustrates a
possible evolution of the stacks, assuming that each task is allocated its own stack
space, equal to its maximum requirement. At time t1, τ1 starts executing; τ2 preempts
at time t2 and completes at time t3, allowing τ1 to resume. At time t4, τ1 is preempted
by τ3, which in turn is preempted by τ4 at time t5. At time t6, τ4 completes and τ3

resumes. At time t7, τ3 completes and τ1 resumes.

244 Chapter 7

t 1 t 2

stack 4

stack 3

stack 2

stack 1

t 3 t 4 t 7t 6t 5

τ1

τ2

τ3

τ4

Figure 7.21 Possible evolution with one stack per task.

Note that the top of each process stack varies during the process execution, while
the storage region reserved for each stack remains constant and corresponds to the
distance between two horizontal lines. In this case, the total storage area that must be
reserved for the application is equal to the sum of the stack regions dedicated to each
process.

However, if all tasks are independent or use the SRP to access shared resources, then
they can share a single stack space. In this case, when a task τ is preempted by a task
τ ′, τ maintains its stack and the stack of τ ′ is allocated immediately above that of τ .
Figure 7.22 shows a possible evolution of the previous task set when a single stack is
allocated to all tasks.

Under the SRP, stack overlapping without interpenetration is a direct consequence
of Theorem 7.5. In fact, since a task τ can never be blocked once started, its stack
can never be penetrated by the ones belonging to tasks with lower preemption levels,
which can resume only after τ is completed.

Note that the stack space between the two upper horizontal lines (which is equivalent
to the minimum stack between τ2 and τ3) is no longer needed, since τ2 and τ3 have
the same preemption level, so they can never occupy stack space at the same time.
In general, the higher the number of tasks with the same preemption level, the larger
stack saving.

For example, consider an application consisting of 100 tasks distributed on 10 pre-
emption levels, with 10 tasks for each level, and suppose that each task needs up to
10 Kbytes of stack space. Using a stack per task, 1000 Kbytes would be required. On

Resource Access Protocols 245

t 1 t 2

stack 2

stack 1

stack 4

stack 3

t 3 t 4 t 7t 5

τ1

τ2
τ3

τ4

Figure 7.22 Possible evolution with a single stack for all tasks.

the contrary, using a single stack, only 100 Kbytes would be sufficient, since no more
than one task per preemption level could be active at one time. Hence, in this example
we would save 900 Kbytes; that is, 90%. In general, when tasks are distributed on
k preemption levels, the space required for a single stack is equal to the sum of the
largest request on each level.

7.8.6 IMPLEMENTATION CONSIDERATIONS

The implementation of the SRP is similar to that of the PCP, but the locking opera-
tions (srp wait and srp signal) are simpler, since a task can never be blocked when
attempting to lock a semaphore. When there are no sufficient resources available to
satisfy the maximum requirement of a task, the task is not permitted to preempt and is
kept in the ready queue.

To simplify the preemption test, all the ceilings of the resources (for any number of
available units) can be precomputed and stored in a table. Moreover, a stack can be
used to keep track of the system ceiling. When a resource R is allocated, its current
state, nR, is updated and if CR(nR) > Πs, then Πs is set to CR(nR). The old values
of nR and Πs are pushed onto the stack. When resource R is released, the values of
Πs and nR are restored from the stack. If the restored system ceiling is lower than
the previous value, the preemption test is executed on the ready task with the highest
priority to check whether it can preempt. If the preemption test is passed, a context
switch is performed; otherwise, the current task continues its execution.

246 Chapter 7

7.9 SCHEDULABILITY ANALYSIS

This section explains how to verify the feasibility of a periodic task set in the presence
of shared resources. All schedulability tests presented in Chapter 4 for independent
tasks can be extended to include blocking terms, whose values depend on the specific
concurrency control protocol adopted in the schedule.

In general, all the extended tests guarantee one task τ i at the time, by inflating its
computation time Ci by the blocking factor Bi. In addition, all the guarantee tests that
were necessary and sufficient under preemptive scheduling become only sufficient in
the presence of blocking factors, since blocking conditions are derived in worst-case
scenarios that differ for each task and could never occur simultaneously.

Liu and Layland test for Rate Monotonic. A set of periodic tasks with blocking
factors and relative deadlines equal to periods is schedulable by RM if

∀i = 1, . . . , n
∑

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
≤ i(21/i − 1). (7.19)

Liu and Layland test for EDF. A set of periodic tasks with blocking factors and
relative deadlines equal to periods is schedulable by EDF if

∀i = 1, . . . , n
∑

h:Ph>Pi

Ch

Th
+

Ci + Bi

Ti
≤ 1. (7.20)

Hyperbolic Test. Using the Hyperbolic Bound, a task set with blocking factors and
relative deadlines equal to periods is schedulable by RM if

∀i = 1, . . . , n
∏

h:Ph>Pi

(

Ch

Th
+ 1

)(

Ci + Bi

Ti
+ 1

)

≤ 2. (7.21)

Response Time Analysis. Under blocking conditions, the response time of a generic
task τi with a fixed priority can be computed by the following recurrent relation:

⎧

⎪

⎨

⎪

⎩

R
(0)
i = Ci + Bi

R
(s)
i = Ci + Bi +

∑

h:Ph>Pi

⌈

R
(s−1)
i

Th

⌉

Ch.
(7.22)

Resource Access Protocols 247

Workload Analysis. Similarly, using the workload analysis, a task set with blocking
factors is schedulable by a fixed priority assignment if

∀i = 1, . . . , n ∃ t ∈ T Si : Bi + Wi(t) ≤ t. (7.23)

where set T S i has been defined by equation (4.21).

Processor Demand Criterion. The Processor Demand Criterion in the presence of
blocking terms has been extended by Baruah [Bar06], using the concept of Blocking

Function B(L), defined as the largest amount of time for which a task with relative
deadline ≤ L may be blocked by a task with relative deadline > L.

If δjh denotes the maximum length of time for which τ j holds a resource that is also
needed by τh, the blocking function can be computed as follows:

B(L) = max {δj,h | (Dj > L) and (Dh ≤ L)} . (7.24)

Then, a task set can be scheduled by EDF if U < 1 and

∀L ∈ D B(L) + g(0, L) ≤ L. (7.25)

where D is the set of all absolute deadlines no greater than a certain point in time,
given by the minimum between the hyperperiod H and the following expression:

max

(

Dmax,

∑n
i=1(Ti − Di)Ui

1 − U

)

.

where Dmax = max{D1, . . . , Dn}.

7.10 SUMMARY

The concurrency control protocols presented in this chapter can be compared with
respect to several characteristics. Table 7.5 provides a qualitative evaluation of the
algorithms in terms of priority assignment, number of blocking, level of pessimism,
instant of blocking, programming transparency, deadlock prevention, and implemen-
tation complexity. Here, transparency refers to the impact of the protocol on the
programming interface. A transparent protocol (like NPP and PIP) can be imple-
mented without modifying the task code, that is, exploiting the same primitives used
by classical semaphores. This means that legacy applications developed using classi-
cal semaphores (prone to priority inversion) can also be executed under a transparent
protocol. This feature makes such protocols attractive for commercial operating sys-
tems (like VxWorks), where predictability can be improved without introducing new
kernel primitives. On the contrary, protocols that use resource ceilings (as HLP, PCP
and SRP) need an additional system call to specify such values in the application.

248 Chapter 7

priority Num. of
blocking

pessimism blocking
instant

transpa-
rency

deadlock
preven-
tion

implem-
entation

NPP any 1 high on
arrival

YES YES easy

HLP fixed 1 medium on
arrival

NO YES easy

PIP fixed αi low on
access

YES NO hard

PCP fixed 1 medium on
access

NO YES medium

SRP any 1 medium on
arrival

NO YES easy

Table 7.5 Evaluation summary of resource access protocols.

Exercises

7.1 Verify whether the following task set is schedulable by the Rate-Monotonic al-
gorithm. Apply the processor utilization approach first, and then the Response
Time Analysis:

Ci Ti Bi

τ1 4 10 5
τ2 3 15 3
τ3 4 20 0

7.2 Consider three periodic tasks τ1, τ2, and τ3 (having decreasing priority) that
share three resources, A, B, and C, accessed using the Priority Inheritance
Protocol. Compute the maximum blocking time B i for each task, knowing that
the longest duration δi,R for a task τi on resource R is given in the following
table (there are no nested critical sections):

A B C

τ1 3 0 3
τ2 3 4 0
τ3 4 3 6

Resource Access Protocols 249

7.3 Solve the same problem described in Exercise 7.2 when the resources are ac-
cessed by the Priority Ceiling Protocol.

7.4 For the task set described in Exercise 7.2, illustrate the situation produced by
RM + PIP in which task τ2 experiences its maximum blocking time.

7.5 Consider four periodic tasks τ1, τ2, τ3, and τ4 (having decreasing priority) that
share five resources, A, B, C, D, and E, accessed using the Priority Inheritance
Protocol. Compute the maximum blocking time B i for each task, knowing that
the longest duration δi,R for a task τi on resource R is given in the following
table (there are no nested critical sections):

A B C D E

τ1 3 6 10 0 7
τ2 0 0 8 0 0
τ3 0 4 0 8 14
τ4 7 0 9 0 11

7.6 Solve the same problem described in Exercise 7.5 when the resources are ac-
cessed by the Priority Ceiling Protocol.

7.7 For the task set described in Exercise 7.5, illustrate the situation produced by
RM + PIP in which task τ2 experiences its maximum blocking time.

7.8 Consider three tasks τ1, τ2, and τ3 that share three multi-unit resources, A, B,
and C, accessed using the Stack Resource Policy. Resources A and B have
three units, whereas C has two units. Compute the ceiling table for all the
resources based on the following task characteristics:

Di µA µB µC

τ1 5 1 0 1
τ2 10 2 1 2
τ3 20 3 1 1

8
LIMITED PREEMPTIVE

SCHEDULING

8.1 INTRODUCTION

The question whether preemptive systems are better than non-preemptive systems has
been debated for a long time, but only partial answers have been provided in the real-
time literature and some issues still remain open to discussion. In fact, each approach
has advantages and disadvantages, and no one dominates the other when both pre-
dictability and efficiency have to be taken into account in the system design. This
chapter presents and compares some existing approaches for reducing preemptions
and describes an efficient method for minimizing preemption costs by removing un-
necessary preemptions while preserving system schedulability.

Preemption is a key factor in real-time scheduling algorithms, since it allows the op-
erating system to immediately allocate the processor to incoming tasks with higher
priority. In fully preemptive systems, the running task can be interrupted at any time
by another task with higher priority, and be resumed to continue when all higher pri-
ority tasks have completed. In other systems, preemption may be disabled for certain
intervals of time during the execution of critical operations (e.g., interrupt service rou-
tines, critical sections, and so on.). In other situations, preemption can be completely
forbidden to avoid unpredictable interference among tasks and achieve a higher degree
of predictability (although higher blocking times).

The question to enable or disable preemption during task execution has been inves-
tigated by many authors with several points of view and it has not a trivial answer.
A general disadvantage of the non-preemptive discipline is that it introduces an ad-
ditional blocking factor in higher priority tasks, thus reducing schedulability. On the
other hand, however, there are several advantages to be considered when adopting a
non-preemptive scheduler.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1 8

251

 Springer Science+Business Media, LLC 2011©

252 Chapter 8

In particular, the following issues have to be taken into account when comparing the
two approaches:

In many practical situations, such as I/O scheduling or communication in a shared
medium, either preemption is impossible or prohibitively expensive.

Preemption destroys program locality, increasing the runtime overhead due to
cache misses and pre-fetch mechanisms. As a consequence, worst-case execution
times (WCETs) are more difficult to characterize and predict [LHS+98, RM06,
RM08, RM09].

The mutual exclusion problem is trivial in non-preemptive scheduling, which
naturally guarantees the exclusive access to shared resources. On the contrary,
to avoid unbounded priority inversion, preemptive scheduling requires the im-
plementation of specific concurrency control protocols for accessing shared re-
sources, as those presented in Chapter 7, which introduce additional overhead
and complexity.

In control applications, the input-output delay and jitter are minimized for all
tasks when using a non-preemptive scheduling discipline, since the interval be-
tween start time and finishing time is always equal to the task computation time
[BC07]. This simplifies control techniques for delay compensation at design
time.

Non-preemptive execution allows using stack sharing techniques [Bak91] to save
memory space in small embedded systems with stringent memory constraints
[GAGB01].

In summary, arbitrary preemptions can introduce a significant runtime overhead and
may cause high fluctuations in task execution times, so degrading system predictabil-
ity. In particular, at least four different types of costs need to be taken into account at
each preemption:

1. Scheduling cost. It is the time taken by the scheduling algorithm to suspend the
running task, insert it into the ready queue, switch the context, and dispatch the
new incoming task.

2. Pipeline cost. It accounts for the time taken to flush the processor pipeline when
the task is interrupted and the time taken to refill the pipeline when the task is
resumed.

3. Cache-related cost. It is the time taken to reload the cache lines evicted by the
preempting task. This time depends on the specific point in which preemption
occurs and on the number of preemptions experienced by the task [AG08, GA07].

Limited Preemptive Scheduling 253

Bui et al. [BCSM08] showed that on a PowerPC MPC7410 with 2 MByte two-
way associative L2 cache the WCET increment due to cache interference can be
as large as 33% of the WCET measured in non-preemptive mode.

4. Bus-related cost. It is the extra bus interference for accessing the RAM due to
the additional cache misses caused by preemption.

The cumulative execution overhead due to the combination of these effects is referred
to as Architecture related cost. Unfortunately, this cost is characterized by a high
variance and depends on the specific point in the task code when preemption takes
place [AG08, GA07, LDS07].

The total increase of the worst-case execution time of a task τ i is also a function of
the total number of preemptions experienced by τ i, which in turn depends on the task
set parameters, on the activation pattern of higher priority tasks, and on the specific
scheduling algorithm. Such a circular dependency of WCET and number of preemp-
tions makes the problem not easy to be solved. Figure 8.1(a) shows a simple example
in which neglecting preemption cost task τ2 experiences a single preemption. How-
ever, when taking preemption cost into account, τ2’s WCET becomes higher, and
hence τ2 experiences additional preemptions, which in turn increase its WCET. In
Figure 8.1(b) the architecture related cost due to preemption is represented by dark
gray areas.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

(a) Schedule without preemption cost.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

(b) Schedule with preemption cost.

Figure 8.1 Task τ2 experiences a single preemption when preemption cost is neglected,
and two preemptions when preemption cost is taken into account.

254 Chapter 8

Some methods for estimating the number of preemptions have been proposed [ERC95,
YS07], but they are restricted to the fully preemptive case and do not consider such a
circular dependency.

Often, preemption is considered a prerequisite to meet timing requirement in real-time
system design; however, in most cases, a fully preemptive scheduler produces many
unnecessary preemptions. Figure 8.2(a) illustrates an example in which, under fully
preemptive scheduling, task τ5 is preempted four times. As a consequence, the WCET
of τ5 is substantially inflated by the architecture related cost (represented by dark gray
areas), causing a response time equal to R5 = 18. However, as shown in Figure 8.2(b),
only one preemption is really necessary to guarantee the schedulability of the task set,
reducing the WCET of τ5 from 14 to 11 units of time, and its response time from 18
to 13 units.

To reduce the runtime overhead due to preemptions and still preserve the schedulabil-
ity of the task set, the following approaches have been proposed in the literature.

Preemption Thresholds. According to this approach, proposed by Wang and Sak-
sena [WS99], a task is allowed to disable preemption up to a specified priority
level, which is called preemption threshold. Thus, each task is assigned a reg-
ular priority and a preemption threshold, and the preemption is allowed to take
place only when the priority of the arriving task is higher than the threshold of
the running task.

Deferred Preemptions. According to this method, each task τ i specifies the
longest interval qi that can be executed non-preemptively. Depending on how
non-preemptive regions are implemented, this model can come in two slightly
different flavors:

1. Floating model. In this model, non-preemptive regions are defined by the
programmer by inserting specific primitives in the task code that disable
and enable preemption. Since the start time of each region is not specified
in the model, non-preemptive regions cannot be identified off-line and, for
the sake of the analysis, are considered to be “floating” in the code, with a
duration δi,k ≤ qi.

2. Activation-triggered model. In this model, non-preemptive regions are trig-
gered by the arrival of a higher priority task and enforced by a timer to last
for qi units of time (unless the task finishes earlier), after which preemption
is enabled. Once a timer is set at time t, additional activations arriving be-
fore the timeout (t + qi) do not postpone the preemption any further. After
the timeout, a new high-priority arrival can trigger another non-preemptive
region.

Limited Preemptive Scheduling 255

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

τ5

(a) τ5 is preempted 4 times.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

τ5

(b) Only one preemption is really necessary for τ5.

Figure 8.2 Fully preemptive scheduling can generate several preemptions (a) although
only a few of them are really necessary to guarantee the schedulability of the task set (b).

Task splitting. According to this approach, investigated by Burns [Bur94], a task
implicitly executes in non-preemptive mode and preemption is allowed only at
predefined locations inside the task code, called preemption points. In this way, a
task is divided into a number of non-preemptive chunks (also called subjobs). If
a higher priority task arrives between two preemption points of the running task,
preemption is postponed until the next preemption point. This approach is also
referred to as Cooperative scheduling, because tasks cooperate to offer suitable
preemption points to improve schedulability.

256 Chapter 8

To better understand the different limited preemptive approaches, the task set reported
in Table 8.1 will be used as a common example throughout this chapter.

Ci Ti Di

τ1 1 6 4
τ2 3 10 8
τ3 6 18 12

Table 8.1 Parameters of a sample task set with relative deadlines less than periods.

Figure 8.3 illustrates the schedule produced by Deadline Monotonic (in fully preemp-
tive mode) on the task set of Table 8.1. Notice that the task set is not schedulable,
since task τ3 misses its deadline.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

deadline miss

τ1

τ2

τ3

Figure 8.3 Schedule produced by Deadline Monotonic (in fully preemptive mode) on the
task set of Table 8.1.

8.1.1 TERMINOLOGY AND NOTATION

Throughout this chapter, a set of n periodic or sporadic real-time tasks will be consid-
ered to be scheduled on a single processor. Each task τ i is characterized by a worst-
case execution time (WCET) Ci, a relative deadline Di, and a period (or minimum
inter-arrival time) Ti. A constrained deadline model is adopted, so D i is assumed to
be less than or equal to Ti. For scheduling purposes, each task is assigned a fixed
priority Pi, used to select the running task among those tasks ready to execute. A
higher value of Pi corresponds to a higher priority. Note that task activation times
are not known a priori and the actual execution time of a task can be less than or
equal to its worst-case value Ci. Tasks are indexed by decreasing priority, that is,
∀i | 1 ≤ i < n : Pi > Pi+1. Additional terminology will be introduced below for
each specific method.

Limited Preemptive Scheduling 257

8.2 NON-PREEMPTIVE SCHEDULING

The most effective way to reduce preemption cost is to disable preemptions com-
pletely. In this condition, however, each task τ i can experience a blocking time Bi

equal to the longest computation time among the tasks with lower priority. That is,

Bi = max
j:Pj<Pi

{Cj − 1} (8.1)

where the maximum of an empty set is assumed to be zero. Note that one unit of
time must be subtracted from Cj to consider that to block τi, the blocking task must
start at least one unit before the critical instant. Such a blocking term introduces an
additional delay before task execution, which could jeopardize schedulability. High
priority tasks are those that are most affected by such a blocking delay, since the
maximum in Equation (8.1) is computed over a larger set of tasks. Figure 8.4 illustrates
the schedule generated by Deadline Monotonic on the task set of Table 8.1 when
preemptions are disabled. With respect to the schedule shown in Figure 8.3, note that
τ3 is now able to complete before its deadline, but the task set is still not schedulable,
since now τ1 misses its deadline.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

deadline miss

τ1

τ2

τ3

Figure 8.4 Schedule produced by non-preemptive Deadline Monotonic on the task set of
Table 8.1.

Unfortunately, under non-preemptive scheduling, the least upper bounds of both RM
and EDF drop to zero! This means that there are task sets with arbitrary low utilization
that cannot be scheduled by RM and EDF when preemptions are disabled. For exam-
ple, the task set illustrated in Figure 8.5(a) is not feasible under non-preemptive Rate
Monotonic scheduling (as well as under non-preemptive EDF), since C 2 > T1, but its
utilization can be set arbitrarily low by reducing C1 and increasing T2. The same task
set is clearly feasible when preemption is enabled, as shown in Figure 8.5(b).

258 Chapter 8

deadline miss

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

C1C1

C2

T1

T2

(a) Non-preemptive case.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

C1

C2

T1

T2

(b) Preemptive case.

Figure 8.5 A task set with low utilization that is unfeasible under non-preemptive Rate
Monotonic scheduling, and feasible when preemption is enabled.

8.2.1 FEASIBILITY ANALYSIS

The feasibility analysis of non-preemptive task sets is more complex than under fully
preemptive scheduling. Bril et al. [BLV09] showed that in non-preemptive scheduling
the largest response time of a task does not necessarily occur in the first job, after
the critical instant. An example of such a situation is illustrated in Figure 8.6, where
the worst-case response time of τ3 occurs in its second instance. Such a scheduling
anomaly, identified as self-pushing phenomenon, occurs because the high priority jobs
activated during the non-preemptive execution of τ i’s first instance are pushed ahead
to successive jobs, which then may experience a higher interference.

The presence of the self-pushing phenomenon in non-preemptive scheduling implies
that the response time analysis for a task τi cannot be limited to its first job, activated
at the critical instant, as done in preemptive scheduling, but it must be performed for
multiple jobs, until the processor finishes executing tasks with priority higher than or
equal to Pi. Hence, the response time of a task τi needs to be computed within the
longest Level-i Active Period, defined as follows [BLV09]:

Limited Preemptive Scheduling 259

deadline miss

(Ci, Ti)

τ1 (3,8)

τ2 (3,9)

τ3 (3,12)

τ4 (2,100)

Figure 8.6 An example of self-pushing phenomenon occurring on task τ3.

Definition 8.1 The Level-i pending workload W p
i (t) at time t is the amount of pro-

cessing that still needs to be performed at time t due to jobs with priority higher than

or equal to Pi released strictly before t.

Definition 8.2 A Level-i Active Period Li is an interval [a, b) such that the Level-i
pending workload W p

i (t) is positive for all t ∈ (a, b) and null in a and b.

The longest Level-i Active Period can be computed by the following recurrent relation:

⎧

⎪

⎨

⎪

⎩

L
(0)
i = Bi + Ci

L
(s)
i = Bi +

∑

h:Ph≥Pi

⌈

L
(s−1)
i

Th

⌉

Ch.
(8.2)

In particular, Li is the smallest value for which L
(s)
i = L

(s−1)
i .

This means that the response time of task τi must be computed for all jobs τi,k, with
k ∈ [1, Ki], where

Ki =

⌈

Li

Ti

⌉

. (8.3)

For a generic job τi,k, the start time si,k can then be computed considering the blocking
time Bi, the computation time of the preceding (k−1) jobs and the interference of the
tasks with priority higher than Pi.

260 Chapter 8

Hence, si,k can be computed with the following recurrent relation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s
(0)
i,k = Bi +

∑

h:Ph>Pi

Ch

s
(ℓ)
i,k = Bi + (k − 1)Ci +

∑

h:Ph>Pi

(⌊

s
(ℓ−1)
i,k

Th

⌋

+ 1

)

Ch.
(8.4)

Since, once started, the task cannot be preempted, the finishing time f i,k can be com-
puted as

fi,k = si,k + Ci. (8.5)

Hence, the response time of task τi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (8.6)

Once the response time of each task is computed, the task set is feasible if and only if

∀i = 1, . . . , n Ri ≤ Di. (8.7)

Yao, Buttazzo, and Bertogna [YBB10a] showed that the analysis of non-preemptive
tasks can be reduced to a single job, under specific (but not too restrictive) conditions.

Theorem 8.1 (Yao, Buttazzo, and Bertogna, 2010) The worst-case response time of

a non-preemptive task occurs in the first job if the task is activated at its critical instant

and the following two conditions are both satisfied:

1. the task set is feasible under preemptive scheduling;

2. relative deadlines are less than or equal to periods.

Under these conditions, the longest relative start time S i of task τi is equal to si,1 and
can be computed from Equation (8.4) for k = 1:

Si = Bi +
∑

h:Ph>Pi

(⌊

Si

Th

⌋

+ 1

)

Ch. (8.8)

Hence, the response time Ri is simply:

Ri = Si + Ci. (8.9)

Limited Preemptive Scheduling 261

8.3 PREEMPTION THRESHOLDS

According to this model, proposed by Wang and Saksena [WS99], each task τ i is
assigned a nominal priority Pi (used to enqueue the task into the ready queue and to
preempt) and a preemption threshold θi ≥ Pi (used for task execution). Then, τi can
be preempted by τh only if Ph > θi. Figure 8.7 illustrates how the threshold is used to
raise the priority of a task τi during the execution of its k-th job. At the activation time
ri,k , the priority of τi is set to its nominal value Pi, so it can preempt all the tasks τj

with threshold θj < Pi. The nominal priority is maintained as long as the task is kept
in the ready queue. During this interval, τ i can be delayed by all tasks τh with priority
Ph > Pi. When all such tasks complete (at time si,k), τi is dispatched for execution
and its priority is raised at its threshold level θi until the task terminates (at time fi,k).
During this interval, τi can be preempted by all tasks τh with priority Ph > θi. Note
that when τi is preempted its priority is kept to its threshold level.

τi

θi

Pi

ri,k si,k fi,k di,k ri,k+1

delayed by Ph > Pi preempted by Ph > θi

Figure 8.7 Example of task executing under preemption threshold.

Preemption threshold can be considered as a trade-off between fully preemptive and
fully non-preemptive scheduling. Indeed, if each threshold priority is set equal to
the task nominal priority, the scheduler behaves like the fully preemptive scheduler;
whereas, if all thresholds are set to the maximum priority, the scheduler runs in non-
preemptive fashion. Wang and Saksena also showed that by appropriately setting the
thresholds, the system can achieve a higher utilization efficiency compared with fully
preemptive and fully non-preemptive scheduling. For example, assigning the preemp-
tion thresholds shown in Table 8.2, the task set of Table 8.1 results to be schedulable
by Deadline Monotonic, as illustrated in Figure 8.8.1

1Note that the task set is not schedulable under sporadic activations; in fact, τ2 misses its deadline if τ1
and τ2 are activated one unit of time after τ3.

262 Chapter 8

Pi θi

τ1 3 3
τ2 2 3
τ3 1 2

Table 8.2 Preemption thresholds assigned to the tasks of Table 8.1.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

τ1

τ2

τ3

Figure 8.8 Schedule produced by preemption thresholds for the task set in Table 8.1.

Note that at t = 6, τ1 can preempt τ3 since P1 > θ3. However, at t = 10, τ2 cannot
preempt τ3, being P2 = θ3. Similarly, at t = 12, τ1 cannot preempt τ2, being P1 = θ2.

8.3.1 FEASIBILITY ANALYSIS

Under fixed priorities, the feasibility analysis of a task set with preemption thresholds
can be performed by the feasibility test derived by Wang and Saksena [WS99], and
later refined by Regehr [Reg02]. First of all, a task τ i can be blocked only by lower
priority tasks that cannot be preempted by it; that is, by tasks having a priority P j < Pi

and a threshold θj ≥ Pi. Hence, a task τi can experience a blocking time equal to the
longest computation time among the tasks with priority lower than P i and threshold
higher than or equal to Pi. That is,

Bi = max
j

{Cj − 1 | Pj < Pi ≤ θj} (8.10)

where the maximum of an empty set is assumed to be zero. Then, the response time
Ri of task τi is computed by considering the blocking time B i, the interference before
its start time (due to the tasks with priority higher than P i), and the interference after
its start time (due to tasks with priority higher than θi), as depicted in Figure 8.7. The
analysis must be carried out within the longest Level-i active period L i, defined by the
following recurrent relation:

Limited Preemptive Scheduling 263

Li = Bi +
∑

h:Ph≥Pi

⌈

Li

Th

⌉

Ch. (8.11)

This means that the response time of task τi must be computed for all the jobs τi,k

(k = 1, 2, . . .) within the longest Level-i active period. That is, for all k ∈ [1, K i],
where

Ki =

⌈

Li

Ti

⌉

. (8.12)

For a generic job τi,k, the start time si,k can be computed considering the blocking
time Bi, the computation time of the preceding (k − 1) jobs, and the interference of
the tasks with priority higher than Pi. Hence, si,k can be computed with the following
recurrent relation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s
(0)
i,k = Bi +

∑

h:Ph>Pi

Ch

s
(ℓ)
i,k = Bi + (k − 1)Ci +

∑

h:Ph>Pi

(⌊

s
(ℓ−1)
i,k

Th

⌋

+ 1

)

Ch.
(8.13)

For the same job τi,k , the finishing time fi,k can be computed by summing to the start
time si,k the computation time of job τi,k , and the interference of the tasks that can
preempt τi,k (those with priority higher than θi). That is,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f
(0)
i,k = si,k + Ci

f
(ℓ)
i,k = si,k + Ci +

∑

h:Ph>θi

(⌈

f
(ℓ−1)
i,k

Th

⌉

−
(⌊

si,k

Th

⌋

+ 1

)

)

Ch.
(8.14)

Hence, the response time of task τi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (8.15)

Once the response time of each task is computed, the task set is feasible if

∀i = 1, . . . , n Ri ≤ Di. (8.16)

The feasibility analysis under preemption thresholds can also be simplified under the
conditions of Theorem 8.1. In this case, we have that the worst-case start time is

Si = Bi +
∑

h:Ph>Pi

(⌊

Si

Th

⌋

+ 1

)

Ch (8.17)

and the worst-case response time of task τi can be computed as

Ri = Si + Ci +
∑

h:Ph>θi

(⌈

Ri

Th

⌉

−
(⌊

Si

Th

⌋

+ 1

))

Ch. (8.18)

264 Chapter 8

8.3.2 SELECTING PREEMPTION THRESHOLDS

The example illustrated in Figure 8.8 shows that a task set unfeasible under both pre-
emptive and non-preemptive scheduling can be feasible under preemption thresholds,
for a suitable setting of threshold levels. The algorithm presented in Figure 8.9 was
proposed by Wang and Saksena [WS99] and allows assigning a set of thresholds to
achieve a feasible schedule, if one exists. Threshold assignment is started from the
lowest priority task to the highest priority one, since the schedulability analysis only
depends on the thresholds of tasks with lower priority than the current task. While
searching the optimal preemption threshold for a specific task, the algorithm stops at
the minimum preemption threshold that makes it schedulable. The algorithm assumes
that tasks are ordered by decreasing priorities, τ1 being the highest priority task.

Algorithm: Assign Minimum Preemption Thresholds

Input: A task set T with {Ci, Ti, Di, Pi}, ∀τi ∈ T
Output: Task set feasibility and θi, ∀τi ∈ T
// Assumes tasks are ordered by decreasing priorities

(1) begin

(2) for (i := n to 1) do // from the lowest priority task

(3) θi := Pi;

(4) Compute Ri by Equation (8.15);

(5) while (Ri > Di) do // while not schedulable

(6) θi := θi + 1; // increase threshold

(7) if (θi > P1) then // system infeasible

(8) return (INFEASIBLE);

(9) end

(10) Compute Ri by Equation (8.15);

(11) end

(12) end

(13) return (FEASIBLE);

(14) end

Figure 8.9 Algorithm for assigning the minimum preemption thresholds.

Limited Preemptive Scheduling 265

Note that the algorithm is optimal in the sense that if a preemption threshold assign-
ment exists that can make the system schedulable, the algorithm will always find an
assignment that ensures schedulability.

Given a task set that is feasible under preemptive scheduling, another interesting prob-
lem is to determine the thresholds that limit preemption as much as possible, without
jeopardizing the schedulability of the task set. The algorithm shown in Figure 8.10,
proposed by Saksena and Wang [SW00], tries to increase the threshold of each task
up to the level after which the schedule would become infeasible. The algorithm con-
siders one task at the time, starting from the highest priority task.

Algorithm: Assign Maximum Preemption Thresholds

Input: A task set T with {Ci, Ti, Di, Pi}, ∀τi ∈ T
Output: Thresholds θi,∀τi ∈ T
// Assumes that the task set is preemptively feasible

(1) begin

(2) for (i := 1 to n) do

(3) θi = Pi;

(4) k = i; // priority level k

(5) schedulable := TRUE;

(6) while ((schedulable := TRUE) and (k > 1)) do

(7) k = k − 1; // go to the higher priority level

(8) θi = Pk; // set threshold at that level

(9) Compute Rk by Equation (8.15);

(10) if (Rk > Dk) then // system not schedulable

(11) schedulable := FALSE;

(12) θi = Pk+1; // assign the previous priority level

(13) end

(14) end

(15) end

(16) end

Figure 8.10 Algorithm for assigning the maximum preemption thresholds.

266 Chapter 8

8.4 DEFERRED PREEMPTIONS

According to this method, each task τi defines a maximum interval of time qi in which
it can execute non-preemptively. Depending on the specific implementation, the non-
preemptive interval can start after the invocation of a system call inserted at the begin-
ning of a non-preemptive region (floating model), or can be triggered by the arrival of
a higher priority task (activation-triggered model).

Under the floating model, preemption is resumed by another system call, inserted at
the end of the region (long at most q i units); whereas, under the activation-triggered
model, preemption is enabled by a timer interrupt after exactly q i units (unless the task
completes earlier).

Since, in both cases, the start times of non-preemptive intervals are assumed to be
unknown a priori, non-preemptive regions cannot be identified off-line, and for the
sake of the analysis, they are considered to occur at the worst possible time (in the
sense of schedulability).

For example, considering the same task set of Table 8.1, assigning q 2 = 2 and q3 = 1,
the schedule produced by Deadline Monotonic with deferred preemptions is feasi-
ble, as illustrated in Figure 8.11. Dark regions represent intervals executed in non-
preemptive mode, triggered by the arrival of higher priority tasks.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

τ1

τ2

τ3

Figure 8.11 Schedule produced by Deadline Monotonic with deferred preemptions for
the task set reported in Table 8.1, with q2 = 2 and q3 = 1.

Limited Preemptive Scheduling 267

8.4.1 FEASIBILITY ANALYSIS

In the presence of non-preemptive intervals, a task can be blocked when, at its arrival, a
lower priority task is running in non-preemptive mode. Since each task can be blocked
at most once by a single lower priority task, Bi is equal to the longest non-preemptive
interval belonging to tasks with lower priority. In particular, the blocking factor can
be computed as

Bi = max
j:Pj<Pi

{qj − 1}. (8.19)

Note that under the floating model one unit of time must be subtracted from q j to
allow the non-preemptive region to start before τ i. Under the activation-triggered
model, however, there is no need to subtract one unit of time from q j , since the non-
preemptive interval is programmed to be exactly q j from the task arrival time. Then
schedulability can be checked through the response time analysis, by Equation (7.22),
or through the workload analysis, by Equation (7.23). Note that under the floating
model the analysis does not need to be carried out within the longest Level-i active
period. In fact, the worst-case interference on τ i occurs in the first instance assuming
that τi can be preempted an epsilon before its completion.

On the other hand, the analysis is more pessimistic under the activation-triggered
model, where non-preemptive intervals are exactly equal to q i units and can last until
the end of the task. In this case, the analysis does not take advantage of the fact that
τi cannot be preempted when higher periodic tasks arrive q i units (or less) before its
completion. The advantage of such a pessimism, however, is that the analysis can be
limited to the first job of each task.

8.4.2 LONGEST NON-PREEMPTIVE INTERVAL

When using the deferred preemption method, an interesting problem is to find the
longest non-preemptive interval Qi for each task τi that can still preserve the task set
schedulability. More precisely, the problem can be stated as follows:

Given a set of n periodic tasks that is feasible under preemptive scheduling,
find the longest non-preemptive interval of length Q i for each task τi, so
that τi can continue to execute for Qi units of time in non-preemptive mode,
without violating the schedulability of the original task set.

This problem has been first solved under EDF by Baruah [Bar05], and then under fixed
priorities by Yao et al. [YBB09]. The solution is based on the concept of blocking

tolerance βi, for a task τi, defined as follows:

268 Chapter 8

Definition 8.3 The blocking tolerance βi of a task τi is the maximum amount of block-

ing τi can tolerate without missing any of its deadlines.

A simple way to compute the blocking tolerance is from the Liu and Layland test,
which according to Equation (7.19) becomes:

∀i = 1, . . . , n
∑

h:Ph≥Pi

Ch

Th
+

Bi

Ti
≤ Ulub(i)

where Ulub(i) = i(21/i − 1) under RM, and Ulub(i) = 1 under EDF. Isolating the
blocking factor, the test can also be rewritten as follows:

Bi ≤ Ti

⎛

⎝Ulub(i) −
∑

h:Ph≥Pi

Ch

Th

⎞

⎠ .

Hence, considering integer computations, we have:

βi =

⎢

⎢

⎢

⎣Ti

⎛

⎝Ulub(i) −
∑

h:Ph≥Pi

Ch

Th

⎞

⎠

⎥

⎥

⎥

⎦ . (8.20)

A more precise bound for βi can be achieved by using the schedulability test expressed
by Equation (7.23), which leads to the following result:

∃t ∈ T Si : Bi ≤ {t − Wi(t)}.

Bi ≤ max
t∈T Si

{t − Wi(t)}.

βi = max
t∈T Si

{t − Wi(t)}. (8.21)

where set T S i has been defined by equation (4.21).

Given the blocking tolerance, the feasible test can also be expressed as follows:

∀i = 1, . . . , n Bi ≤ βi

and by Equation (8.19), we can write:

Limited Preemptive Scheduling 269

∀i = 1, . . . , n max
j:Pj<Pi

{qj − 1} ≤ βi.

This implies that to achieve feasibility we must have

∀i = 1, . . . , n qi ≤ min
k:Pk>Pi

{βk + 1}

Hence, the longest non-preemptive interval Q i that preserves feasibility for each task
τi is

Qi = min
k:Pk>Pi

{βk + 1}. (8.22)

The Qi terms can also be computed more efficiently, starting from the highest priority
task (τ1) and proceeding with decreasing priority order, according to the following
theorem:

Theorem 8.2 The longest non-preemptive interval Qi of task τi that preserves feasi-

bility can be computed as

Qi = min{Qi−1, βi−1 + 1} (8.23)

where Q1 = ∞ and β1 = D1 − C1.

Proof. The theorem can be proved by noting that

min
k:Pk>Pi

{βk + 1} = min{ min
k:Pk>Pi−1

{βk + 1}, βi−1 + 1},

and since from Equation (8.22)

Qi−1 = min
k:Pk>Pi−1

{βk + 1}

we have that
Qi = min{Qi−1, βi−1 + 1},

which proves the theorem.

Note that in order to apply Theorem 8.2, Q i is not constrained to be less than or equal
to Ci, but a value of Qi greater than Ci means that τi can be fully executed in non-
preemptive mode. The algorithm for computing the longest non-preemptive intervals
is illustrated in Figure 8.12.

270 Chapter 8

Algorithm: Compute the Longest Non-Preemptive Intervals

Input: A task set T with {Ci, Ti, Di, Pi},∀τi ∈ T
Output: Qi,∀τi ∈ T
// Assumes T is preemptively feasible and Di ≤ Ti

(1) begin

(2) β1 = D1 − C1;

(3) Q1 = ∞;

(4) for (i := 2 to n) do

(5) Qi = min{Qi−1, βi−1 + 1};

(6) Compute βi using Equation (8.20) or (8.21);

(7) end

(8) end

Figure 8.12 Algorithm for computing the longest non-preemptive intervals.

8.5 TASK SPLITTING

According to this model, each task τi is split into mi non-preemptive chunks (subjobs),
obtained by inserting mi − 1 preemption points in the code. Thus, preemptions can
only occur at the subjobs boundaries. All the jobs generated by one task have the
same subjob division. The k th subjob has a worst-case execution time qi,k; hence
Ci =

∑mi

k=1 qi,k.

Among all the parameters describing the subjobs of a task, two values are of particular
importance for achieving a tight schedulability result:

{

qmax
i = max

k∈[1,mi]
{qi,k}

qlast
i = qi,mi

(8.24)

In fact, the feasibility of a high priority task τk is affected by the size qmax
j of the

longest subjob of each task τj with priority Pj < Pk . Moreover, the length q last
i

of the final subjob of τi directly affects its response time. In fact, all higher priority
jobs arriving during the execution of τ i’s final subjob do not cause a preemption, since
their execution is postponed at the end of τ i. Therefore, in this model, each task will
be characterized by the following 5-tuple:

{Ci, Di, Ti, q
max
i , qlast

i }.

Limited Preemptive Scheduling 271

For example, consider the same task set of Table 8.1, and suppose that τ 2 is split in two
subjobs of 2 and 1 unit, and τ3 is split in two subjobs of 4 and 2 units. The schedule
produced by Deadline Monotonic with such a splitting is feasible and it is illustrated
in Figure 8.13.

0 2 4 6 8 10 12 14 16 18 20

2+1

4+2

1

τ1

τ2

τ3

Figure 8.13 Schedule produced by Deadline Monotonic for the task set reported in Table
8.1, when τ2 is split in two subjobs of 2 and 1 unit, and τ3 is split in two subjobs of 4 and
2 units, respectively.

8.5.1 FEASIBILITY ANALYSIS

Feasibility analysis for task splitting can be carried out in a very similar way as the
non-preemptive case, with the following differences:

The blocking factor Bi to be considered for each task τi is equal to the length of
longest subjob (instead of the longest task) among those with lower priority:

Bi = max
j:Pj<Pi

{qmax
j − 1}. (8.25)

The last non-preemptive chunk of τ i is equal to qlast
i (instead of Ci).

The response time analysis for a task τi has to consider all the jobs within the longest
Level-i Active Period, which can be computed using the following recurrent relation:

⎧

⎪

⎨

⎪

⎩

L
(0)
i = Bi + Ci

L
(s)
i = Bi +

∑

h:Ph≥Pi

⌈

L
(s−1)
i

Th

⌉

Ch.
(8.26)

272 Chapter 8

In particular, Li is the smallest value for which L
(s)
i = L

(s−1)
i . This means that the

response time of τi must be computed for all jobs τi,k with k ∈ [1, Ki], where

Ki =

⌈

Li

Ti

⌉

. (8.27)

For a generic job τi,k, the start time si,k of the last subjob can be computed considering
the blocking time Bi, the computation time of the preceding (k−1) jobs, those subjobs
preceding the last one (Ci−qlast

i), and the interference of the tasks with priority higher
than Pi. Hence, si,k can be computed with the following recurrent relation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s
(0)
i,k = Bi + Ci − qlast

i +
∑

h:Ph>Pi

Ch

s
(ℓ)
i,k = Bi + kCi − qlast

i +
∑

h:Ph>Pi

(⌊

s
(ℓ−1)
i,k

Th

⌋

+ 1

)

Ch.
(8.28)

Since, once started, the last subjob cannot be preempted, the finishing time f i,k can be
computed as

fi,k = si,k + qlast
i . (8.29)

Hence, the response time of task τi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (8.30)

Once the response time of each task is computed, the task set is feasible if

∀i = 1, . . . , n Ri ≤ Di. (8.31)

Assuming that the task set is preemptively feasible, the analysis can be simplified to
the first job of each task, after the critical instant, as shown by Yao et al. [YBB10a].
Hence, the longest relative start time of τi can be computed as the smallest value
satisfying the following recurrent relation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S
(0)
i = Bi + Ci − qlast

i +
∑

h:Ph>Pi

Ch

S
(ℓ)
i = Bi + Ci − qlast

i +
∑

h:Ph>Pi

(⌊

S
(ℓ−1)
i

Th

⌋

+ 1

)

Ch.
(8.32)

Then, the response time Ri is simply:

Ri = Si + qlast
i . (8.33)

Limited Preemptive Scheduling 273

8.5.2 LONGEST NON-PREEMPTIVE INTERVAL

As done in Section 8.4.2 under deferred preemptions, it is interesting to compute,
also under task splitting, the longest non-preemptive interval Q i for each task τi that
can still preserve the schedulability. It is worth observing that splitting tasks into
subjobs allows achieving a larger Qi, because a task τi cannot be preempted during
the execution of the last q last

i units of time.

If tasks are assumed to be preemptively feasible, for Theorem 8.1 the analysis can be
limited to the first job of each task. In this case, a bound on the blocking tolerance β i

can be achieved using the following schedulability condition [YBB10a]:

∃t ∈ T S∗
i : Bi ≤ {t − W ∗

i (t)}, (8.34)

where W ∗
i (t) and the testing set T S∗

i are defined as

W ∗
i (t) = Ci − qlast

i +
∑

h:Ph>Pi

(⌊

t

Th

⌋

+ 1

)

Ch, (8.35)

T S∗
i

def
= Pi−1(Di − qlast

i) (8.36)

where Pi(t) is given by Equation (4.22).

Rephrasing Equation (8.34), we obtain

Bi ≤ max
t∈T S∗(τi)

{t − W ∗
i (t)}.

βi = max
t∈T S∗(τi)

{t − W ∗
i (t)}. (8.37)

The longest non-preemptive interval Q i that preserves feasibility for each task τi can
then be computed by Theorem 8.2, using the blocking tolerances given by Equa-
tion (8.37). Applying the same substitutions, the algorithm in Figure 8.12 can also
be used under task splitting.

As previously mentioned, the maximum length of the non-preemptive chunk under
task splitting is larger than in the case of deferred preemptions. It is worth pointing
out that the value of Qi for task τi only depends on the βk of the higher priority tasks,
as expressed in Equation (8.22), and the blocking tolerance β i is a function of q last

i ,
as clear form equations (8.35) and (8.37).

274 Chapter 8

8.6 SELECTING PREEMPTION POINTS

When a task set is not schedulable in non-preemptive mode, there are several ways to
split tasks into subtasks to generate a feasible schedule, if one exists. Moreover, as
already observed in Section 8.1, the runtime overhead introduced by the preemption
mechanism depends on the specific point where the preemption takes place. Hence,
it would be useful to identify the best locations for placing preemption points inside
each task to achieve a feasible schedule, while minimizing the overall preemption cost.
This section illustrates an algorithm [BXM+11] that achieves this goal.

Considering that sections of code exist where preemption is not desirable (e.g., short
loops, critical sections, I/O operations, etc.), each job of τ i is assumed to consist of
a sequence of Ni non-preemptive Basic Blocks (BBs), identified by the programmer
based on the task structure. Preemption is allowed only at basic block boundaries; thus
each task has Ni − 1 Potential Preemption Points (PPPs), one between any two con-
secutive BBs. Critical sections and conditional branches are assumed to be executed
entirely within a basic block. In this way, there is no need for using shared resource
protocols to access critical sections.

The goal of the algorithm is to identify a subset of PPPs that minimizes the overall
preemption cost, while achieving the schedulability of the task set. A PPP selected
by the algorithm is referred to as an Effective Preemption Point (EPP), whereas the
other PPPs are disabled. Therefore, the sequence of basic blocks between any two
consecutive EPPs forms a Non-Preemptive Region (NPR). The following notation is
used to describe the algorithm:

Ni denotes the number of BBs of task τi, determined by the Ni − 1 PPPs defined
by the programmer;

pi denotes the number of NPRs of task τi, determined by the pi −1 EPPs selected
by the algorithm;

δi,k denotes the k-th basic block of task τi;

bi,k denotes the WCET of δi,k without preemption cost; that is, when τi is executed
non-preemptively;

ξi,k denotes the worst-case preemption overhead introduced when τ i is preempted
at the k-th PPP (i.e., between δk and δk+1);

qi,j denotes the WCET of the j-th NPR of τi, including the preemption cost;

qmax
i denotes the maximum NPR length for τi:

qmax
i = max{qi,j}pi

j=1.

Limited Preemptive Scheduling 275

To simplify the notation, the task index is omitted from task parameters whenever the
association with the related task is evident from the context. In the following, we
implicitly refer to a generic task τi, with maximum allowed NPR length Qi = Q. As
shown in the previous sections, Q can be computed by the algorithm in Figure 8.12.
We say that an EPP selection is feasible if the length of each resulting NPR, including
the initial preemption overhead, does not exceed Q.

Figure 8.14 illustrates some of the defined parameters for a task with 6 basic blocks
and 3 NPRs. PPPs are represented by dots between consecutive basic blocks: black
dots are EPPs selected by the algorithm, while white dots are PPPs that are disabled.
Above the task code, the figure also reports the preemption costs ξk for each PPP,
although only the cost for the EPPs is accounted in the q j of the corresponding NPR.

τi

ξ1 ξ2 ξ3 ξ4 ξ5

δ1 δ2 δ3 δ4 δ5 δ6

b1 b2 b3 b4 b5 b6

q1 q2 q3

Figure 8.14 Example of task with 6 BBs split into 3 NPRs. Preemption cost is reported
for each PPPs, but accounted only for the EPPs.

Using the notation introduced above, the non-preemptive WCET of τ i can be ex-
pressed as follows:

CNP
i =

Ni
∑

k=1

bi,k.

The goal of the algorithm is to minimize the overall worst-case execution time C i

of each task τi, including the preemption overhead, by properly selecting the EPPs
among all the PPPs specified in the code by the programmer, without compromising
the schedulability of the task set. To compute the preemption overhead, we assume
that each EPP leads to a preemption, and that the cache is invalidated after each context
switch (note that EPP selection is optimal only under these assumptions). Therefore,

Ci = CNP
i +

Ni−1
∑

k=1

selected(i,k) · ξi,k

where selected(i,k) = 1 if the k-th PPP of τi is selected by the algorithm to be an
EPP, whereas selected(i,k) = 0, otherwise.

276 Chapter 8

8.6.1 SELECTION ALGORITHM

First of all, it is worth noting that minimizing the number of EPPs does not necessarily
minimize the overall preemption overhead. In fact, there are cases in which inserting
more preemption points, than the minimum number, could be more convenient to take
advantage of points with smaller cost.

Consider, for instance, the task illustrated in Figure 8.15, consisting of 6 basic blocks,
whose total execution time in non preemptive mode is equal to C NP

i = 20. The num-
bers above each PPP in Figure 8.15(a) denote the preemption cost; that is, the over-
head that would be added to C NP

i if a preemption occurred in that location. Assuming
a maximum non-preemptive interval Q = 12, a feasible schedule could be achieved
by inserting a single preemption point at the end of δ4, as shown in Figure 8.15(b). In
fact,

∑4
k=1 bk = 3+3+3+2 = 11 ≤ Q, and ξ4 +

∑6
k=5 bk = 3+3+6 = 12 ≤ Q,

leading to a feasible schedule. This solution is characterized by a total preemption
overhead of 3 units of time (shown by the gray execution area). However, selecting
two EPPs, one after δ1 and another after δ5, a feasible solution is achieved with a
smaller total overhead ξ1 + ξ5 = 1 + 1 = 2, as shown in Figure 8.15(c). In general,
for tasks with a large number of basic blocks with different preemption cost, finding
the optimal solution is not trivial.

2 3 3 11

τi

CNP
i

= 20

Q = 12

δ1 δ2 δ3 δ4 δ5 δ6

(a) Task with 6 basic blocks.

τi

q1 = 11 q2 = 12

Overhead = 3ξ4

δ1 δ2 δ3 δ4 δ5 δ6

(b) Task with a single preemption point.

τi

q1 = 3 q2 = 12 q3 = 7

Overhead = 2ξ1 ξ5

δ1 δ2 δ3 δ4 δ5 δ6

(c) Task with two preemption points.

Figure 8.15 Two solutions for selecting EPPs in a task with Q = 12: the first minimizes
the number of EPPs, while the second minimizes the overall preemption cost.

Limited Preemptive Scheduling 277

For a generic task, the worst-case execution time q of a NPR composed of the consec-
utive basic blocks δj , δj+1, . . . , δk can be expressed as

q = ξj−1 +
k
∑

ℓ=j

bℓ, (8.38)

conventionally setting ξ0 = 0. Note that the preemption overhead is included in q.
Since any NPR of a feasible EPP selection has to meet the condition q ≤ Q, we must
have

ξj−1 +

k
∑

ℓ=j

bℓ ≤ Q. (8.39)

Now, let Ĉk be the WCET of the chunk of code composed of the first k basic blocks
– that is, from the beginning of δ1 until the end of δk – including the preemption
overhead of the EPPs that are contained in the considered chunk. Then, we can express
the following recursive expression:

Ĉk = Ĉj−1 + q = Ĉj−1 + ξj−1 +

k
∑

ℓ=j

bℓ. (8.40)

Note that since δN is the last BB, the worst-case execution time Ci of the whole task
τi is equal to ĈN .

The algorithm for the optimal selection of preemption points is based on the equations
presented above and its pseudo-code is reported in Figure 8.16. The algorithm eval-
uates all the BBs in increasing order, starting from the first one. For each BB δk, the
feasible EPP selection that leads to the smallest possible Ĉk is computed as follows.

For the first BBs, the minimum Ĉk is given by the sum of the BB lengths
∑k

ℓ=1 bℓ

as long as this sum does not exceed Q. Note that if b1 > Q, there is no feasible PPP
selection, and the algorithm fails. For the following BBs, Ĉk needs to consider the cost
of one or more preemptions as well. Let Prevk be the set of the preceding BBs δj≤k

that satisfy Condition (8.39), i.e., that might belong to the same NPR of δ k. Again, if
ξk−1 +bk > Q, there is no feasible PPP activation, and the algorithm fails. Otherwise,
the minimum Ĉk is given by

Ĉk = min
δj∈Prevk

⎧

⎨

⎩

Ĉj−1 + ξj−1 +
k
∑

ℓ=j

bℓ

⎫

⎬

⎭

. (8.41)

278 Chapter 8

Let δ∗(δk) be the basic block for which the rightmost term of Expression (8.41) is
minimum

δ∗(δk) = min
δj∈Prevk

⎧

⎨

⎩

Ĉj−1 + ξj−1 +

k
∑

ℓ=j

bℓ

⎫

⎬

⎭

. (8.42)

If there are many possible BBs minimizing (8.41), the one with the smallest index is
selected. Let δPrev(δk) be the basic block preceding δ∗(δk), if one exists. The PPP at
the end of δPrev(δk) – or, equivalently, at the beginning of δ ∗(δk) – is meaningful for
the analysis, since it represents the last PPP to activate for minimizing the preemption
overhead of the first k basic blocks.

A feasible placement of EPPs for the whole task can then be derived with a recur-
sive activation of PPPs, starting with the PPP at the end of δPrev(δN), which will
be the last EPP of the considered task. The penultimate EPP will be the one at the
beginning of δPrev(δPrev(δN)), and so on. If the result of this recursive lookup of
function δPrev(k) is δ1, the start of the program has been reached. A feasible place-
ment of EPPs has therefore been detected, with a worst-case execution time, including
preemption overhead, equal to ĈN . This is guaranteed to be the placement that mini-
mizes the preemption overhead of the considered task, as proved in the next theorem.

Theorem 8.3 (Bertogna et al., 2011) The PPP activation pattern detected by proce-

dure SelectEPP(τi, Qi) minimizes the preemption overhead experienced by a task τ i,

without compromising the schedulability.

The feasibility of a given task set is maximized by applying the SelectEPP(τ i, Qi)
procedure to each task τi, starting from τ1 and proceeding in task order. Once the
optimal allocation of EPPs has been computed for a task τ i, the value of the overall
WCET Ci = ĈN can be used for the computation of the maximum allowed NPR
Qi+1 of the next task τi+1, using the technique presented in Section 8.5.

The procedure is repeated until a feasible PPP activation pattern has been produced
for all tasks in the considered set. If the computed Q i+1 is too small to find a feasible
EPP allocation, the only possibility to reach schedulability is by removing tasks from
the system, as no other EPP allocation strategy would produce a feasible schedule.

Limited Preemptive Scheduling 279

Algorithm: SelectEPP(τi, Qi)
Input: {Ci, Ti, Di, Qi} for task τi

Output: The set of EPPs for task τi

(1) begin

(2) Prevk := {δ0}; Ĉ0 := 0; // Initialize variables

(3) for (k := 1 to N) do // For all PPPs

(4) Remove from Prevk all δj violating (8.39);
(5) if (Prevk = ∅) then

(6) return (INFEASIBLE);
(7) end

(8) Compute Ĉk using Equation (8.41);
(9) Store δPrev(δk);
(10) Prevk := Prevk ∪ {δk};
(11) end

(12) δj := δPrev(δN);
(13) while (δj
= ∅) do

(14) Select the PPP at the end of δPrev(δj);
(15) δj ← δPrev(δj);
(16) end

(17) return (FEASIBLE);
(18) end

Figure 8.16 Algorithm for selecting the optimal preemption points.

8.7 ASSESSMENT OF THE APPROACHES

The limited preemption methods presented in this chapter can be compared under
several aspects, such as the following

Implementation complexity.

Predictability in estimating the preemption cost.

Effectiveness in reducing the number of preemptions.

280 Chapter 8

8.7.1 IMPLEMENTATION ISSUES

The preemption threshold mechanism can be implemented by raising the execution
priority of the task, as soon as it starts running. The mechanism can be easily imple-
mented at the application level by calling, at the beginning of the task, a system call
that increases the priority of the task at its threshold level. The mechanism can also
be fully implemented at the operating system level, without modifying the application
tasks. To do that, the kernel has to increase the priority of a task at the level of its
threshold when the task is scheduled for the first time. In this way, at its first acti-
vation, a task is inserted in the ready queue using its nominal priority. Then, when
the task is scheduled for execution, its priority becomes equal to its threshold, until
completion. Note that if a task is preempted, its priority remains at its threshold level.

In deferred preemption (floating model), non-preemptive regions can be implemented
by proper kernel primitives that disable and enable preemption at the beginning and
at the end of the region, respectively. As an alternative, preemption can be disabled
by increasing the priority of the task at its maximum value, and can be enabled by
restoring the nominal task priority. In the activation-triggered mode, non-preemptive
regions can be realized by setting a timer to enforce the maximum interval in which
preemption is disabled. Initially, all tasks can start executing in non-preemptive mode.
When τi is running and a task with priority higher than P i is activated, a timer is set by
the kernel (inside the activation primitive) to interrupt τ i after qi units of time. Until
then, τi continues executing in non-preemptive mode. The interrupt handler associated
to the timer must then call the scheduler to allow the higher priority task to preempt
τi. Note that once a timer has been set other additional activations before the timeout
will not prolong the timeout any further.

Finally, cooperative scheduling does not need special kernel support, but it requires
the programmer to insert in each preemption point a primitive that calls the scheduler,
so enabling pending high-priority tasks to preempt the running task.

8.7.2 PREDICTABILITY

As observed in Section 8.1, the runtime overhead introduced by the preemption mech-
anism depends on the specific point where the preemption takes place. Therefore, a
method that allows predicting where a task is going to be preempted simplifies the
estimation of preemption costs, permitting a tighter estimation of task WCETs.

Unfortunately, under preemption thresholds, the specific preemption points depend on
the actual execution of the running task and on the arrival time of high priority tasks;

Limited Preemptive Scheduling 281

hence, it is practically impossible to predict the exact location where a task is going to
be preempted.

Under deferred preemptions (floating model), the position of non-preemptive regions
is not specified in the model, thus they are considered to be unknown. In the activation-
triggered model, instead, the time at which the running task will be preempted is set
qi units of time after the arrival time of a higher priority task. Hence, the preemption
position depends on the actual execution of the running task and on the arrival time of
the higher priority task. Therefore, it can hardly be predicted off-line.

On the contrary, under cooperative scheduling, the locations where preemptions may
occur are explicitly defined by the programmer at design time; hence, the correspond-
ing overhead can be estimated more precisely by timing analysis tools. Moreover,
through the algorithm presented in Section 8.6.1, it is also possible to select the best
locations for placing the preemption points to minimize the overall preemption cost.

8.7.3 EFFECTIVENESS

Each of the presented methods can be used to limit preemption as much as desired, but
the number of preemptions each task can experience depends of different parameters.

Under preemption thresholds, a task τi can only be preempted by tasks with priority
greater than its threshold θi. Hence, if preemption cost is neglected, an upper bound
νi on the number of preemptions that τ i can experience can be computed by counting
the number of activations of tasks with priority higher than θ i occurring in [0, Ri]; that
is

νi =
∑

h:Ph>θi

⌈

Ri

Th

⌉

.

This is an upper bound because simultaneous activations are counted as if they were
different, although they cause a single preemption.

Under deferred preemption, the number of preemptions occurring on τ i is easier to
determine, because it directly depends on the non-preemptive interval q i specified for
the task. If preemption cost is neglected, we simply have

νi =

⌈

CNP
i

qi

⌉

− 1.

However, if preemption cost is not negligible, the estimation requires an iterative ap-
proach, since the task computation time also depends on the number of preemptions.

282 Chapter 8

Considering a fixed cost ξi for each preemption, then the number of preemptions can
be upper bounded using the following recurrent relation:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ν0
i =

⌈

CNP
i

qi

⌉

− 1

νs
i =

⌈

CNP
i +ξiν

s−1

i

qi

⌉

− 1

where the iteration process converges when ν s
i = νs−1

i .

Finally, under cooperative scheduling, the number of preemptions can be simply upper
bounded by the number of effective preemption points inserted in the task code.

Simulations experiments with randomly generated task sets have been carried out by
Yao, Buttazzo, and Bertogna [YBB10b] to better evaluate the effectiveness of the con-
sidered algorithms in reducing the number of preemptions. Figures 8.17(a) and 8.17(a)
show the simulation results obtained for a task set of 6 and 12 tasks, respectively, and
report the number of preemptions produced by each method as a function of the load.

Each simulation run was performed on a set of n tasks with total utilization U varying
from 0.5 to 0.95 with step 0.05. Individual utilizations U i were uniformly distributed
in [0,1], using the UUniFast algorithm [BB05]. Each computation time C i was gener-
ated as a random integer uniformly distributed in [10, 50], and then T i was computed
as Ti = Ci/Ui. The relative deadline Di was generated as a random integer in the
range [Ci +0.8 · (Ti−Ci), Ti]. The total simulation time was set to 1 million units of
time. For each point in the graph, the result was computed by taking the average over
1000 runs.

All the task sets have been generated to be preemptive feasible. Under preemption
thresholds (PT), the algorithm proposed by Saksena and Wang [SW00] was used to
find the maximum priority threshold that minimizes the number of preemptions. Un-
der deferred preemptions (DP) and task splitting (TS), the longest non-preemptive re-
gions were computed according to the methods presented in Sections 8.4.2 and 8.5.2,
respectively. Finally, under task splitting, preemption points were inserted from the
end of task code to the beginning.

As expected, fully preemptive scheduling (PR) generates the largest number of pre-
emptions, while DP and TS are both able to achieve a higher reduction. PT has an
intermediate behavior. Note that DP can reduce slightly more preemptions than TS,
since, on the average, each preemption is deferred for a longer interval (always equal
to Qi, except when the preemption occurs near the end of the task).

Limited Preemptive Scheduling 283

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total Utilization

A
ve

ra
g

e
 N

u
m

b
e

r
o

f
P

re
e

m
p

tio
n

s

PR
PT
TS
DP

(a) Number of tasks: n=6

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total Utilization

A
ve

ra
g

e
 N

u
m

b
e

r
o

f
P

re
e

m
p

tio
n

s

PR
PT
TS
DP

(b) Number of tasks: n=12

Figure 8.17 Average number of preemptions with different number of tasks.

284 Chapter 8

However, it is important to consider that TS can achieve a lower and more predictable
preemption cost, since preemption points can be suitably decided off-line with this
purpose. As shown in the figures, PR produces a similar number of preemptions when
the number of tasks increases, whereas all the other methods reduce the number of
preemptions to an even higher degree. This is because, when n is larger, tasks have
smaller individual utilization, and thus can tolerate more blocking from lower priority
tasks.

8.7.4 CONCLUSIONS

The results reported in this chapter can be summarized in Table 8.3, which compares
the three presented methods in terms of the metrics presented above. As discussed
in the previous section, the preemption threshold mechanism can reduce the overall
number of preemptions with a low runtime overhead; however, preemption cost can-
not be easily estimated, since the position of each preemption, as well as the overall
number of preemptions for each task, cannot be determined off-line. Using deferred
preemptions, the number of preemptions for each task can be better estimated, but the
position of each preemption still cannot be determined off-line. Cooperative schedul-
ing is the most predictable mechanism for estimating preemption costs, since both the
number of preemptions and their positions are fixed and known from the task code. Its
implementation, however, requires inserting explicit system calls in the source code
that introduce additional overhead.

Implementation cost Predictability Effectiveness

Preemption Thresholds Low Low Medium

Deferred Preemptions Medium Medium High

Cooperative Scheduling Medium High High

Table 8.3 Evaluation of limited preemption methods.

Limited Preemptive Scheduling 285

Exercises

8.1 Given the task set reported in the table, verify whether it is schedulable by the
Rate-Monotonic algorithm in non-preemptive mode.

Ci Ti Di

τ1 2 6 5
τ2 2 8 6
τ3 4 15 12

8.2 Given the task set reported in the table, verify whether it is schedulable by the
Rate-Monotonic algorithm in non-preemptive mode.

Ci Ti Di

τ1 3 8 6
τ2 3 9 8
τ3 3 14 12
τ4 2 80 80

8.3 Given the task set reported in the table, compute for each task τ i the longest
(floating) non-preemptive region Q i that guarantees the schedulability under
EDF. Perform the computation using the Liu and Layland test.

Ci Ti

τ1 2 8
τ2 2 10
τ3 5 30
τ4 5 60
τ5 3 90

8.4 For the same task set reported in Exercise 8.3, compute for each task τ i the
longest (floating) non-preemptive region Q i that guarantees the schedulability
under Rate Monotonic. Perform the computation using the Liu and Layland
test.

286 Chapter 8

8.5 Compute the worst case response times produced by Rate Monotonic for the
sporadic tasks illustrated below, where areas in light grey represent non-preemptive
regions of code, whereas regions in dark grey are fully preemptable. The num-
ber inside a region denotes the worst-case execution time (WCET) of that por-
tion of code, whereas the number on the right represents the WCET of the
entire task.

Task periods are T1 = 24, T2 = 40, T3 = 120, and T4 = 150. Relative
deadlines are equal to periods.

10
2 4

15
63

3

18
58

6
τ1

τ2

τ3

τ4

9
HANDLING OVERLOAD

CONDITIONS

9.1 INTRODUCTION

This chapter deals with the problem of scheduling real-time tasks in overload condi-
tions; that is, in those critical situations in which the computational demand requested
by the task set exceeds the processor capacity, and hence not all tasks can complete
within their deadlines.

Overload conditions can occur for different causes, including the following:

Bad system design. If a system is not designed or analyzed under pessimistic
assumptions and worst-case load scenarios, it may work for most typical situ-
ations, but it can collapse in particular peak-load conditions, where too much
computation is requested for the available computational resources.

Simultaneous arrival of events. Even if the system is properly designed, the si-
multaneous arrival of several “unexpected” events could increase the load over
the tolerated threshold.

Malfunctioning of input devices. Sometimes hardware defects in the acquisition
boards or in some sensors could generate anomalous sequences of interrupts,
saturating the processor bandwidth or delaying the application tasks after their
deadlines.

Unpredicted variations of the environmental conditions could generate a compu-
tational demand higher than that manageable by the processor under the specified
timing requirements.

Operating system exceptions. In some cases, anomalous combination of data
could raise exceptions in the kernel, triggering the execution of high-priority han-
dling routines that would delay the execution of application tasks.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

287

9

 Springer Science+Business Media, LLC 2011©

288 Chapter 9

9.1.1 LOAD DEFINITIONS

In a real-time system, the definition of computational workload depends on the tempo-
ral characteristics of the computational activities. For non-real-time or soft real-time
tasks, a commonly accepted definition of workload refers to the standard queueing the-
ory, according to which a load ρ, also called traffic intensity, represents the expected
number of job arrivals per mean service time. If C is the mean service time and λ is
the average interarrival rate of the jobs, the average load can be computed as

ρ = λC.

Note that this definition does not take deadlines into account; hence, it is not particu-
larly useful to describe real-time workloads. In a hard real-time environment, a system
is overloaded when, based on worst-case assumptions, there is no feasible schedule for
the current task set, so one or more tasks will miss their deadline.

If the task set consists of n independent preemptable periodic tasks, whose relative
deadlines are equal to their period, then the system load ρ is equivalent to the processor
utilization factor:

ρ = U =
n
∑

i=1

Ci

Ti
,

where Ci and Ti are the computation time and the period of task τ i, respectively. In
this case, a load ρ > 1 means that the total computation time requested by the periodic
activities in their hyperperiod exceeds the available time on the processor; therefore,
the task set cannot be scheduled by any algorithm.

For a generic set of real-time jobs that can be dynamically activated, the system load
varies at each job activation and it is a function of the jobs’ deadlines. In general, the
load in a given interval [ta, tb] can be defined as

ρ(ta, tb) = max
t1,t2∈[ta,tb]

g(t1, t2)

t2 − t1
(9.1)

where g(t1, t2) is the processor demand in the generic interval [t1, t2]. Such a def-
inition, however, is of little practical use for load calculation, since the number of
intervals in which the maximum has to be computed can be very high. Moreover, it is
not clear how large the interval [ta, tb] should be to estimate the overall system load.

A more practical definition that can be used to estimate the current load in dynamic
real-time systems is the instantaneous load ρ(t), proposed by Buttazzo and Stankovic
[BS95].

Handling Overload Conditions 289

According to this method, the load is computed in all intervals from the current time
t and each deadline (di) of the active jobs. Hence, the intervals that need to be con-
sidered for the computation are [t, d1], [t, d2], . . . , [t, dn]. In each interval [t, di], the
partial load ρi(t) due to the first i jobs is

ρi(t) =

∑

dk≤di
ck(t)

(di − t)
, (9.2)

where ck(t) refers to the remaining execution time of job Jk with deadline less than
or equal to di. Hence, the total load at time t is

ρ(t) = max
i

ρi(t). (9.3)

Figure 9.1 shows an example of load calculation, at time t = 3, for a set of three
real-time jobs. Then, Figure 9.2 shows how the load varies as a function of time for
the same set of jobs.

0 2 4 6 81 3 5 7 109

J1

J2

J3

ρ1(t) = 2/3

ρ2(t) = 3/4

ρ3(t) = 4/6

ρ(t) = 3/4
t

Figure 9.1 Instantaneous load at time t = 3 for a set of three real-time jobs.

9.1.2 TERMINOLOGY

When dealing with computational load, it is important to distinguish between overload

and overrun.

Definition 9.1 A computing system is said to experience an overload when the compu-

tation time demanded by the task set in a certain interval of time exceeds the available

processing time in the same interval.

Definition 9.2 A task (or a job) is said to experience an overrun when exceeding its

expected utilization. An overrun may occur either because the next job is activated

before its expected arrival time (activation overrun), or because the job computation

time exceeds its expected value (execution overrun).

290 Chapter 9

t

0 2 4 6 81 3 5 7 109

ρ (t)

0.2

0.4

0.6

0.8

1.0

0.0
0 2 4 6 81 3 5 7 109

J1

J2

J3

Figure 9.2 Instantaneous load as a function of time for a set of three real-time jobs.

Note that while the overload is a condition related to the processor, the overrun is a
condition related to a task (or a single job). A task overrun does not necessarily cause
an overload. However, a large unexpected overrun or a sequence of overruns can cause
very unpredictable effects on the system, if not properly handled. In the following, we
distinguish between two types of overload conditions:

Transient overload: it is an overload condition occurring for a limited duration,
in a system in which the average load is less than or equal to one (ρ ≤ 1), but the
maximum load is greater than one (ρmax > 1).

Permanent overload: it is an overload condition occurring for an unpredictable
duration, in a system in which the average load is higher than one (ρ > 1).

In a real-time computing system, a transient overload can be caused by a sequence of
overruns, or by a bursty arrival of aperiodic requests, whereas a permanent overload
condition typically occurs in periodic task systems when the total processor utilization
exceeds one.

Handling Overload Conditions 291

In the rest of this chapter, the following types of overload conditions will be analyzed:

Transient overloads due to aperiodic jobs. This type of overload is typical of
event-triggered systems consisting of many aperiodic jobs activated by external
events. If the operating system is not designed to cope with excessive event ar-
rivals, the effects of an overload can be unpredictable and cause serious problems
on the controlled system. Experiments carried out by Locke [Loc86] have shown
that EDF can rapidly degrade its performance during overload intervals, and there
are cases in which the arrival of a new task can cause all the previous tasks to miss
their deadlines. Such an undesirable phenomenon, called the Domino Effect, is
depicted in Figure 9.3. Figure 9.3a shows a feasible schedule of a task set exe-
cuted under EDF. However, if at time t0 task J0 is executed, all the previous tasks
miss their deadlines (see Figure 9.3b).

1

(a)

J

J

4

3J

2J

1

J 0

t

J 4

3J

2J

J

0 (b)

Figure 9.3 Feasible schedule with Earliest Deadline First, in normal load condition (a).
Overload with Domino Effect due to the arrival of task J0 (b).

292 Chapter 9

Transient overloads due to task overruns. This type of overload can occur
both in event-triggered and time-triggered systems, and it is due to periodic or
aperiodic tasks that sporadically execute (or are activated) more than expected.
Under Rate Monotonic, an overrun in a task τ i does not affect tasks with higher
priority, but any of the lower priority tasks could miss their deadline. Under EDF,
a task overrun can potentially affect all the other tasks in the system. Figure 9.4
shows an example of execution overrun in an EDF schedule.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18

Figure 9.4 Effect of an execution overrun in an EDF schedule.

Permanent overloads in periodic task systems. This type of overload occurs
when the total utilization factor of the periodic task set is greater than one. This
can happen either because the execution requirement of the task set was not cor-
rectly estimated, or some unexpected activation of new periodic tasks, or some
of the current tasks increased their activation rate to react to some change in the
environment. In such a situation, computational activities start accumulating in
the system’s queues (which tend to become longer and longer, if the overload per-
sists), and tasks response times tend to increase indefinitely. Figure 9.5 shows the
effect of a permanent overload condition in a Rate Monotonic schedule, where τ 2

misses its deadline and τ3 can never execute.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18

Figure 9.5 Example of a permanent overload under Rate Monotonic: τ2 misses its dead-
line and τ3 can never execute.

Handling Overload Conditions 293

9.2 HANDLING APERIODIC OVERLOADS

In this section we consider event-driven systems where tasks arrive dynamically at
unknown time instants. Each task consists of a single job, which is characterized by
a fixed (known) computation time C i and a relative deadline Di. As a consequence,
the overload in these systems can only be caused by the excessive number of tasks and
can be detected at task activation times.

9.2.1 PERFORMANCE METRICS

When tasks are activated dynamically and an overload occurs, there are no algorithms
that can guarantee a feasible schedule of the task set. Since one or more tasks will miss
their deadlines, it is preferable that late tasks be the less important ones in order to
achieve graceful degradation. Hence, in overload conditions, distinguishing between
time constraints and importance is crucial for the system. In general, the importance
of a task is not related to its deadline or its period; thus, a task with a long deadline
could be much more important than another one with an earlier deadline. For example,
in a chemical process, monitoring the temperature every ten seconds is certainly more
important than updating the clock picture on the user console every second. This
means that, during a transient overload, is better to skip one or more clock updates
rather than miss the deadline of a temperature reading, since this could have a major
impact on the controlled environment.

In order to specify importance, an additional parameter is usually associated with each
task, its value, that can be used by the system to make scheduling decisions.

The value associated with a task reflects its importance with respect to the other tasks
in the set. The specific assignment depends on the particular application. For instance,
there are situations in which the value is set equal to the task computation time; in
other cases, it is an arbitrary integer number in a given range; in other applications, it
is set equal to the ratio of an arbitrary number (which reflects the importance of the
task) and the task computation time; this ratio is referred to as the value density.

In a real-time system, however, the actual value of a task also depends on the time at
which the task is completed; hence, the task importance can be better described by
an utility function. For example, a non-real-time task, which has no time constraints,
has a low constant value since it always contributes to the system value whenever it
completes its execution. On the contrary, a hard task contributes to a value only if it
completes within its deadline, and since a deadline miss would jeopardize the behav-
ior of the whole system, the value after its deadline can be considered minus infinity

294 Chapter 9

soft

firm

Non real−time

hard

id

v(f)i

v(f)i

f i

v(f)i

v(f)i

f i

f i
id

id
f i

−∞

Figure 9.6 Utility functions that can be associated to a task to describe its importance.

in many situations. A soft task can still give a value to the system if competed af-
ter its deadline, although this value may decrease with time. There are also real-time
activities, so-called firm, that do not jeopardize the system, but give a negligible con-
tribution if completed after their deadline. Figure 9.6 illustrates the utility functions of
four different types of tasks.

Once the importance of each task has been defined, the performance of a scheduling
algorithm can be measured by accumulating the values of the task utility functions
computed at their completion time. Specifically, we define as cumulative value of a
scheduling algorithm A the following quantity:

ΓA =
n
∑

i=1

v(fi).

Given this metric, a scheduling algorithm is optimal if it maximizes the cumulative
value achievable on a task set.

Note that if a hard task misses its deadline, the cumulative value achieved by the algo-
rithm is minus infinity, even though all other tasks completed before their deadlines.
For this reason, all activities with hard timing constraints should be guaranteed a pri-
ori by assigning them dedicated resources (including processors). If all hard tasks
are guaranteed a priori, the objective of a real-time scheduling algorithm should be to
guarantee a feasible schedule in normal load conditions and maximize the cumulative
value of soft and firm tasks during transient overloads.

Handling Overload Conditions 295

Given a set of n jobs Ji(Ci, Di, Vi), where Ci is the worst-case computation time,
Di its relative deadline, and Vi the importance value gained by the system when the
task completes within its deadline, the maximum cumulative value achievable on the
task set is clearly equal to the sum of all values Vi; that is, Γmax =

∑n
i=1 Vi. In

overload conditions, this value cannot be achieved, since one or more tasks will miss
their deadlines. Hence, if Γ∗ is the maximum cumulative value that can be achieved
by any algorithm on a task set in overload conditions, the performance of a scheduling
algorithm A can be measured by comparing the cumulative value Γ A obtained by A
with the maximum achievable value Γ∗.

9.2.2 ON-LINE VERSUS CLAIRVOYANT

SCHEDULING

Since dynamic environments require online scheduling, it is important to analyze the
properties and the performance of online scheduling algorithms in overload condi-
tions. Although there exist optimal online algorithms in normal load conditions, it is
easy to show that no optimal on-line algorithms exist in overloads situations. Consider
for example the task set shown in Figure 9.7, consisting of three tasks J 1(10, 11, 10),
J2(6, 7, 6), J3(6, 7, 6).

Without loss of generality, we assume that the importance values associated to the
tasks are proportional to their execution times (V i = Ci) and that tasks are firm, so no
value is accumulated if a task completes after its deadline. If J1 and J2 simultaneously
arrive at time t0 = 0, there is no way to maximize the cumulative value without
knowing the arrival time of J3. In fact, if J3 arrives at time t = 4 or before, the
maximum cumulative value is Γ∗ = 10 and can be achieved by scheduling task J1

(see Figure 9.7a). However, if J3 arrives between time t = 5 and time t = 8, the
maximum cumulative value is Γ∗ = 12, achieved by scheduling task J2 and J3, and
discarding J1 (see Figure 9.7b). Note that if J3 arrives at time t = 9 or later (see
Figure 9.7c), then the maximum cumulative value is Γ∗ = 16 and can be accumulated
by scheduling tasks J1 and J3. Hence, at time t = 0, without knowing the arrival
time of J3, no online algorithm can decide which task to schedule for maximizing the
cumulative value.

What this example shows is that without an a priori knowledge of the task arrival
times, no online algorithm can guarantee the maximum cumulative value Γ ∗. This
value can only be achieved by an ideal clairvoyant scheduling algorithm that knows
the future arrival time of any task. Although the optimal clairvoyant scheduler is a pure
theoretical abstraction, it can be used as a reference model to evaluate the performance
of online scheduling algorithms in overload conditions.

296 Chapter 9

1
J 1

J 2

J 3

0 42 6

0

8

(a)

J 1

J 2

J 3

2

14

4 6 8 10 12 14 16

1612

J

10

10 12 14 16

(c)

J 1

2

J 3

0 2 4 6 8

C = 6

2C = 6

C = 101

2C = 6

3

C = 101

2C = 6

3C = 6

3C = 6

C = 10

(b)

Figure 9.7 No optimal online algorithms exist in overload conditions, since the schedule
that maximizes Γ depends on the knowledge of future arrivals: Γmax = 10 in case (a),
Γmax = 12 in case (b), and Γmax = 16 in case (c).

Handling Overload Conditions 297

9.2.3 COMPETITIVE FACTOR

The cumulative value obtained by a scheduling algorithm on a task set represents a
measure of its performance for that particular task set. To characterize an algorithm
with respect to worst-case conditions, however, the minimum cumulative value that
can be achieved by the algorithm on any task set should be computed. A parameter
that measures the worst-case performance of a scheduling algorithm is the competitive

factor, introduced by Baruah et al. [BKM+92].

Definition 9.3 A scheduling algorithm A has a competitive factor ϕA if and only if it

can guarantee a cumulative value ΓA ≥ ϕAΓ∗, where Γ∗ is the cumulative value

achieved by the optimal clairvoyant scheduler.

From this definition, we note that the competitive factor is a real number ϕA ∈ [0, 1]. If
an algorithm A has a competitive factor ϕA, it means that A can achieve a cumulative
value ΓA at least ϕA times the cumulative value achievable by the optimal clairvoyant
scheduler on any task set.

If the overload has an infinite duration, then no online algorithm can guarantee a com-
petitive factor greater than zero. In real situations, however, overloads are intermittent
and usually have a short duration; hence, it is desirable to use scheduling algorithms
with a high competitive factor.

Unfortunately, without any form of guarantee, the plain EDF algorithm has a zero
competitive factor. To show this result it is sufficient to find an overload situation
in which the cumulative value obtained by EDF can be arbitrarily small with respect
to that one achieved by the clairvoyant scheduler. Consider the example shown in
Figure 9.8, where tasks have a value proportional to their computation time. This is
an overload condition because both tasks cannot be completed within their deadlines.

v = K22J

1J v = K1

ε

Figure 9.8 Situation in which EDF has an arbitrarily small competitive factor.

When task J2 arrives, EDF preempts J1 in favor of J2, which has an earlier deadline,
so it gains a cumulative value of C2. On the other hand, the clairvoyant scheduler
always gains C1 > C2. Since the ratio C2/C1 can be made arbitrarily small, it follows
that the competitive factor of EDF is zero.

298 Chapter 9

An important theoretical result found by Baruah et al. [BKM+92] is that there is an
upper bound on the competitive factor of any on-line algorithm. This is stated by the
following theorem.

Theorem 9.1 (Baruah et al.) In systems where the loading factor is greater than 2

(ρ > 2) and tasks’ values are proportional to their computation times, no online

algorithm can guarantee a competitive factor greater than 0.25.

The proof of this theorem is done by using an adversary argument, in which the on-
line scheduling algorithm is identified as a player and the clairvoyant scheduler as the
adversary. In order to propose worst-case conditions, the adversary dynamically gen-
erates the sequence of tasks depending on the player decisions, to minimize the ratio
ΓA/Γ∗. At the end of the game, the adversary shows its schedule and the two cumula-
tive values are computed. Since the player tries to do his best in worst-case conditions,
the ratio of the cumulative values gives the upper bound of the competitive factor for
any online algorithm.

TASK GENERATION STRATEGY

To create an overload condition and force the hand of the player, the adversary creates
two types of tasks: major tasks, of length Ci, and associated tasks, of length ǫ
arbitrarily small. These tasks are generated according to the following strategy (see
Figure 9.9):

All tasks have zero laxity; that is, the relative deadline of each task is exactly
equal to its computation time.

After releasing a major task Ji, the adversary releases the next major task Ji+1

at time ǫ before the deadline of Ji; that is, ri+1 = di − ǫ.

For each major task Ji, the adversary may also create a sequence of associated
tasks, in the interval [ri, di], such that each subsequent associated task is released
at the deadline of the previous one in the sequence (see Figure 9.9). Note that the
resulting load is ρ = 2. Moreover, any algorithm that schedules any one of the
associated tasks cannot schedule Ji within its deadline.

If the player chooses to abandon Ji in favor of an associated task, the adversary
stops the sequence of associated tasks.

If the player chooses to schedule a major task J i, the sequence of tasks terminates
with the release of Ji+1.

Since the overload must have a finite duration, the sequence continues until the
release of Jm, where m is a positive finite integer.

Handling Overload Conditions 299

ε ε ε

ε ε ε

C i+1

iC

Major
Tasks

Tasks
Associated

ε

Figure 9.9 Task sequence generated by the adversary.

Note that the sequence of tasks generated by the adversary is constructed in such a
way that the player can schedule at most one task within its deadline (either a major
task or an associated task). Clearly, since task values are equal to their computation
times, the player never abandons a major task for an associated task because it would
accumulate a negligible value; that is, ǫ. On the other hand, the values of the major
tasks (that is, their computation times) are chosen by the adversary to minimize the
resulting competitive factor. To find the worst-case sequence of values for the major
tasks, let

J0, J1, J2, . . . , Ji, . . . , Jm

be the longest sequence of major tasks that can be generated by the adversary and,
without loss of generality, assume that the first task has a computation time equal to
C0 = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule J0, the sequence terminates with J1. In this
case, the cumulative value gained by the player is C0, whereas the one obtained by the
adversary is (C0 + C1 − ǫ). Note that this value can be accumulated by the adversary
either by executing all the associated tasks, or by executing J0 and all associated tasks
started after the release of J1. Being ǫ arbitrarily small, it can be neglected in the
cumulative value. Hence, the ratio among the two cumulative values is

ϕ0 =
C0

C0 + C1
=

1

1 + C1
=

1

k
.

If 1/k is the value of this ratio (k > 0), then C1 = k − 1.

Case 1. If the player decides to schedule J1, the sequence terminates with J2. In this
case, the cumulative value gained by the player is C1, whereas the one obtained by the
adversary is (C0 + C1 + C2). Hence, the ratio among the two cumulative values is

ϕ1 =
C1

C0 + C1 + C2
=

k − 1

k + C2
.

300 Chapter 9

In order not to lose with respect to the previous case, the adversary has to choose the
value of C2 so that ϕ1 ≤ ϕ0; that is,

k − 1

k + C2
≤ 1

k
,

which means
C2 ≥ k2 − 2k.

However, observe that, if ϕ1 < ϕ0, the execution of J0 would be more convenient for
the player; thus the adversary decides to make ϕ1 = ϕ0; that is,

C2 = k2 − 2k.

Case i. If the player decides to schedule Ji, the sequence terminates with Ji+1. In this
case, the cumulative value gained by the player is C i, whereas the one obtained by
the adversary is (C0 + C1 + . . . + Ci+1). Hence, the ratio among the two cumulative
values is

ϕi =
Ci

∑i
j=0 Cj + Ci+1

.

As in the previous case, to prevent any advantage to the player, the adversary will
choose tasks’ values so that

ϕi = ϕi−1 = . . . = ϕ0 =
1

k
.

Thus,

ϕi =
Ci

∑i
j=0 Cj + Ci+1

=
1

k
,

and hence

Ci+1 = kCi −
i

∑

j=0

Cj .

Thus, the worst-case sequence for the player occurs when major tasks are generated
with the following computation times:

{

C0 = 1

Ci+1 = kCi −
∑i

j=0 Cj .

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci

∑i
j=0 Cj + Ci+1

=
1

k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm

∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm
∑m

j=0 Cj
≤ 1

k
, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm
∑m

j=0 Cj
=

Cm
∑m−1

j=0 Cj + Cm

=
Cm

∑m−1
j=0 Cj + kCm−1 −

∑m−1
j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1
∑

j=0

Cj

Ci+1 = kCi −
i

∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci) − Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

302 Chapter 9

Hence, Equation (9.4) is equivalent to
⎧

⎨

⎩

C0 = 1
C1 = k − 1
Ci+2 = k(Ci+1 − Ci).

(9.6)

From this result, we can say that the tightest bound on the competitive factor of an
online algorithm is given by the smallest ratio 1/k (equivalently, the largest k) such
that (9.6) satisfies (9.5). Equation (9.6) is a recurrence relation that can be solved by
standard techniques [Sha85]. The characteristic equation of (9.6) is

x2 − kx + k = 0,

which has roots

x1 =
k +

√
k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

When k = 4, we have
Ci = d1i2

i + d22
i, (9.7)

and when k
= 4 we have

Ci = d1(x1)
i + d2(x2)

i, (9.8)

where values for d1 and d2 can be found from the boundary conditions expressed in
(9.6). We now show that for (k = 4) and (k > 4) C i will diverge, so Equation (9.5)
will not be satisfied, whereas for (k < 4) Ci will satisfy (9.5).

Case (k = 4). In this case, Ci = d1i2
i + d22

i, and from the boundary conditions, we
find d1 = 0.5 and d2 = 1. Thus,

Ci = (
i

2
+ 1)2i,

which clearly diverges. Hence, for k = 4, Equation (9.5) cannot be satisfied.

Case (k > 4). In this case, Ci = d1(x1)
i + d2(x2)

i, where

x1 =
k +

√
k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

From the boundary conditions we find
{

C0 = d1 + d2 = 1
C1 = d1x1 + d2x2 = k − 1;

Handling Overload Conditions 303

that is,
{

d1 = 1
2 + k−2

2
√

k2−4k

d2 = 1
2
− k−2

2
√

k2−4k
.

Since (x1 > x2), (x1 > 2), and (d1 > 0), Ci will diverge, and hence, also for k > 4,
Equation (9.5) cannot be satisfied.

Case (k < 4). In this case, since (k2 − 4k < 0), both the roots x1, x2 and the
coefficients d1, d2 are complex conjugates, so they can be represented as follows:

{

d1 = sejθ

d2 = se−jθ

{

x1 = rejω

x2 = re−jω ,

where s and r are real numbers, j =
√
−1, and θ and ω are angles such that, −π/2 <

θ < 0, 0 < ω < π/2. Equation (9.8) may therefore be rewritten as

Ci = sejθriejiω + se−jθrie−jiω =

= sri[ej(θ+iω) + e−j(θ+iω)] =
= sri[cos(θ + iω) + j sin(θ + iω) + cos(θ + iω) − j sin(θ + iω)] =
= 2sri cos(θ + iω).

Being ω
= 0, cos(θ + iω) is negative for some i ∈ N, which implies that there exists
a finite m that satisfies (9.5).

Since (9.5) is satisfied for k < 4, the largest k that determines the competitive factor of
an online algorithm is certainly less than 4. Therefore, we can conclude that 1/4 is an
upper bound on the competitive factor that can be achieved by any online scheduling
algorithm in an overloaded environment. Hence, Theorem 9.1 follows.

EXTENSIONS

Theorem 9.1 establishes an upper bound on the competitive factor of online scheduling
algorithms operating in heavy load conditions (ρ > 2). In lighter overload conditions
(1 < ρ ≤ 2), the bound is a little higher, and it is given by the following theorem
[BR91].

Theorem 9.2 (Baruah et al.) In systems with a loading factor ρ, 1 < ρ ≤ 2, and task

values equal to computation times, no online algorithm can guarantee a competitive

factor greater than p, where p satisfies

4[1 − (ρ − 1)p]3 = 27p2. (9.9)

304 Chapter 9

load
30 1 2

1

0.25

0.75

0.5

ϕ on

Figure 9.10 Bound of the competitive factor of an on-line scheduling algorithm as a func-
tion of the load.

Note that for ρ = 1 + ǫ, Equation (9.9) is satisfied for p =
√

4/27 ≃ 0.385, whereas,
for ρ = 2, the same equation is satisfied for p = 0.25.

In summary, whenever the system load does not exceed one, the upper bound of the
competitive factor is obviously one. As the load exceeds one, the bound immediately
falls to 0.385, and as the load increases from one to two, it falls from 0.385 to 0.25. For
loads higher than two, the competitive factor limitation remains at 0.25. The bound on
the competitive factor as a function of the load is shown in Figure 9.10.

Baruah et al. [BR91] also showed that when using value density metrics (where the
value density of a task is its value divided by its computation time), the best that an
online algorithm can guarantee in environments with load ρ > 2 is

1

(1 +
√

k)2
,

where k is the important ratio between the highest and the lowest value density task in
the system.

In environments with a loading factor ρ, 1 < ρ ≤ 2, and an importance ratio k, two
cases must be considered. Let q = k(ρ − 1). If q ≥ 1, then no online algorithm can
achieve a competitive factor greater than

1

(1 +
√

q)2
,

whereas, if q < 1, no online algorithm can achieve a competitive factor greater than p,
where p satisfies

4(1 − qp)3 = 27p2.

Handling Overload Conditions 305

Before concluding the discussion on the competitive analysis, it is worth pointing
out that all the above bounds are derived under very restrictive assumptions, such
as all tasks have zero laxity, the overload can have an arbitrary (but finite) duration,
and task’s execution time can be arbitrarily small. In most real-world applications,
however, tasks characteristics are much less restrictive; therefore, the 0.25 bound has
only a theoretical validity, and more work is needed to derive other bounds based
on more realistic assumptions on the actual load conditions. An analysis of online
scheduling algorithms under different types of adversaries has been presented by Karp
[Kar92].

9.2.4 TYPICAL SCHEDULING SCHEMES

With respect to the strategy used to predict and handle overloads, most of the schedul-
ing algorithms proposed in the literature can be divided into three main classes, illus-
trated in Figure 9.11:

Best effort. This class includes those algorithms with no prediction for overload
conditions. At its arrival, a new task is always accepted into the ready queue, so
the system performance can only be controlled through a proper priority assign-
ment that takes task values into account.

With acceptance test. This class includes those algorithms with admission con-
trol, performing a guarantee test at every job activation. Whenever a new task
enters the system, a guarantee routine verifies the schedulability of the task set
based on worst-case assumptions. If the task set is found schedulable, the new
task is accepted in the system; otherwise, it is rejected.

Robust. This class includes those algorithms that separate timing constraints
and importance by considering two different policies: one for task acceptance
and one for task rejection. Typically, whenever a new task enters the system, an
acceptance test verifies the schedulability of the new task set based on worst-case
assumptions. If the task set is found schedulable, the new task is accepted in
the ready queue; otherwise, one or more tasks are rejected based on a different
policy, aimed at maximizing the cumulative value of the feasible tasks.

In addition, an algorithm is said to be competitive if it has a competitive factor greater
than zero.

306 Chapter 9

Note that the simple guarantee scheme is able to avoid domino effects by sacrificing
the execution of the newly arrived task. Basically, the acceptance test acts as a filter
that controls the load on the system and always keeps it less than one. Once a task is
accepted, the algorithm guarantees that it will complete by its deadline (assuming that
no task will exceed its estimated worst-case computation time). The acceptance test,
however, does not take task importance into account and, during transient overloads,
always rejects the newly arrived task, regardless of its value. In certain conditions
(such as when tasks have very different importance levels), this scheduling strategy
may exhibit poor performance in terms of cumulative value, whereas a robust algo-
rithm can be much more effective.

RUN

reclaiming

policy

rejection

policy

scheduling

policy
Ready queue

reject queue

Planning
task

RUN

task

Ready queue
Routine

Guarantee accepted

rejected

(a)

task

(b)

RUNReady queue
always accepted

(c)

Figure 9.11 Scheduling schemes for handling overload situations: best effort (a), with
acceptance test (b), and robust (c).

Handling Overload Conditions 307

When the load is controlled by job rejection, a reclaiming mechanism can be used to
take advantage of those tasks that complete before their worst-case finishing time. To
reclaim the spare time, rejected tasks will not be removed, but temporarily parked in a
queue, from which they can be possibly recovered whenever a task completes before
its worst-case finishing time.

In the real-time literature, several scheduling algorithms have been proposed to deal
with transient overloads in event triggered systems. Ramamritham and Stankovic
[RS84] used EDF to dynamically guarantee incoming work via on-line planning.
Locke [Loc86] proposed a best effort algorithm using EDF with a rejection policy
based on tasks value density. Biyabani et. al. [BSR88] extended the work of Ra-
mamritham and Stankovic to tasks with different values, and various policies were
studied to decide which tasks should be dropped when a newly arriving task could not
be guaranteed. Haritsa, Livny, and Carey [HLC91] presented the use of a feedback-
based EDF algorithm for real-time database systems.

In real-time Mach [TWW87] tasks were ordered by EDF and overload was predicted
using a statistical guess. If overload was predicted, tasks with least value were dropped.

Other general results on overload in real-time systems were also derived. For ex-
ample, Sha [SLR88] showed that the Rate-Monotonic algorithm has poor properties
in overload. Thambidurai and Trivedi [TT89] studied transient overloads in fault-
tolerant real-time systems, building and analyzing a stochastic model for such sys-
tems. Schwan and Zhou [SZ92] did online guarantees based on keeping a slot list and
searching for free-time intervals between slots. Once schedulability is determined in
this fashion, tasks are actually dispatched using EDF. If a new task cannot be guaran-
teed, it is discarded.

Zlokapa, Stankovic, and Ramamritham [Zlo93] proposed an approach called well-

time scheduling, which focuses on reducing the guarantee overhead in heavily loaded
systems by delaying the guarantee. Various properties of the approach were developed
via queueing theoretic arguments, and the results were a multilevel queue (based on
an analytical derivation), similar to that found by Haritsa et al. [HLC91] (based on
simulation).

In the following sections we present two specific examples of scheduling algorithms
for handling overload situations and then compare their performance for different peak
load conditions.

308 Chapter 9

9.2.5 THE RED ALGORITHM

RED (Robust Earliest Deadline) is a robust scheduling algorithm proposed by But-
tazzo and Stankovic [BS93, BS95] for dealing with firm aperiodic tasks in overloaded
environments. The algorithm synergistically combines many features including grace-
ful degradation in overloads, deadline tolerance, and resource reclaiming. It operates
in normal and overload conditions with excellent performance, and it is able to predict
not only deadline misses but also the size of the overload, its duration, and its overall
impact on the system.

In RED, each task Ji(Ci, Di, Mi, Vi) is characterized by four parameters: a worst-
case execution time (Ci), a relative deadline (Di), a deadline tolerance (Mi), and
an importance value (Vi). The deadline tolerance is the amount of time by which a
task is permitted to be late; that is, the amount of time that a task may execute after
its deadline and still produce a valid result. This parameter can be useful in many
real applications, such as robotics and multimedia systems, where the deadline timing
semantics is more flexible than scheduling theory generally permits.

Deadline tolerances also provide a sort of compensation for the pessimistic evaluation
of the worst-case execution time. For example, without tolerance, a task could be
rejected, although the system could be scheduled within the tolerance levels.

In RED, the primary deadline plus the deadline tolerance provides a sort of secondary
deadline, used to run the acceptance test in overload conditions. Note that having a
tolerance greater than zero is different than having a longer deadline. In fact, tasks are
scheduled based on their primary deadline but accepted based on their secondary dead-
line. In this framework, a schedule is said to be strictly feasible if all tasks complete
before their primary deadline, whereas is said to be tolerant if there exists some task
that executes after its primary deadline but completes within its secondary deadline.

The guarantee test performed in RED is formulated in terms of residual laxity. The
residual laxity Li of a task is defined as the interval between its estimated finishing
time fi and its primary (absolute) deadline di. Each residual laxity can be efficiently
computed using the result of the following lemma.

Lemma 9.1 Given a set J = {J1, J2, . . . , Jn} of active aperiodic tasks ordered by

increasing primary (absolute) deadline, the residual laxity L i of each task Ji at time t
can be computed as

Li = Li−1 + (di − di−1) − ci(t), (9.10)

where L0 = 0, d0 = t (the current time), and ci(t) is the remaining worst-case

computation time of task Ji at time t.

Handling Overload Conditions 309

Proof. By definition, a residual laxity is Li = di − fi. Since tasks are ordered by
increasing deadlines, J1 is executing at time t, and its estimated finishing time is given
by the current time plus its remaining execution time (f1 = t+c1). As a consequence,
L1 is given by

L1 = d1 − f1 = d1 − t − c1.

Any other task Ji, with i > 1, will start as soon as Ji−1 completes and will finish ci

units of time after its start (fi = fi−1 + ci). Hence, we have

Li = di − fi = di − fi−1 − ci = di − (di−1 − Li−1) − ci =

= Li−1 + (di − di−1) − ci,

and the lemma follows.

Note that if the current task set J is schedulable and a new task Ja arrives at time t,
the feasibility test for the new task set J ′ = J ∪ {Ja} requires to compute only the
residual laxity of task Ja and that one of those tasks Ji such that di > da. This is
because the execution of Ja does not influence those tasks having deadline less than
or equal to da, which are scheduled before Ja. It follows that, the acceptance test has
O(n) complexity in the worst case.

To simplify the description of the RED guarantee test, we define the Exceeding time

Ei as the time that task Ji executes after its secondary deadline:1

Ei = max(0,−(Li + Mi)). (9.11)

We also define the Maximum Exceeding Time Emax as the maximum among all Ei’s
in the tasks set; that is, Emax = maxi(Ei). Clearly, a schedule will be strictly feasible
if and only if Li ≥ 0 for all tasks in the set, whereas it will be tolerant if and only if
there exists some Li < 0, but Emax = 0.

By this approach we can identify which tasks will miss their deadlines and compute
the amount of processing time required above the capacity of the system – the max-
imum exceeding time. This global view allows planning an action to recover from
the overload condition. Many recovering strategies can be used to solve this problem.
The simplest one is to reject the least-value task that can remove the overload situ-
ation. In general, we assume that, whenever an overload is detected, some rejection
policy will search for a subset J ∗ of least-value tasks that will be rejected to maximize
the cumulative value of the remaining subset. The RED acceptance test is shown in
Figure 9.12.

1If Mi = 0, the Exceeding Time is also called the Tardiness.

310 Chapter 9

Algorithm: RED Acceptance Test

Input: A task set J with {Ci, Di, Vi, Mi}, ∀Ji ∈ J
Output: A schedulable task set
// Assumes deadlines are ordered by decreasing values

(1) begin

(2) E = 0; // Maximum Exceeding Time

(3) L0 = 0;
(4) d0 = current time();

(5) J ′ = J ∪ {Jnew};
(6) k = <position of Jnew in the task set J ′>;

(7) for (each task J ′
i such that i ≥ k) do

(8) Li = Li−1 + (di − di−1) − ci;

(9) if (Li + Mi < −E) then // compute Emax

(10) E = −(Li + Mi);

(11) end

(12) end

(13) if (E > 0) then

(14) <select a set J∗ of least-value tasks to be rejected>;
(15) <reject all task in J∗>;
(16) end

(17) end

Figure 9.12 The RED acceptance test.

A simple rejection strategy consists in removing the task with the smallest value that
resolves the overload. To quickly identify the task to be rejected, we can keep track of
the First Exceeding Task, denoted as JFET , which is the task with the earliest primary
deadline that misses its secondary deadline. The FET index can be easily determined
within the for loop in which residual each laxity is computed. Note that in order to
resolve the overload, the task to be rejected must have a residual computation time
greater than or equal to the maximum exceeding time and a primary deadline less than
dFET . Hence, the rejection strategy can be expressed as follows:

Reject the task Jr with the least value, such that

(r ≤ FET) and (cr(t) ≥ Emax)

Handling Overload Conditions 311

To better understand the rejection strategy, consider the example illustrated in Figure
9.13, where secondary deadlines are drawn with dashed arrows. As can be easily
verified, before the arrival of J1 the task set {J2, J3, J4, J5} is strictly feasible.

 0 2 6 8 10 12 14 4 1816 20

Vi L Ei i

8

2 4 3

1 0

3 2 1

6 1 0

10 −1 0

J

J 3

J 2

J 1

J 4

6

Figure 9.13 Example of overload in a task set with deadline tolerances.

At time t = 4, when J1 arrives, an overload occurs because both J3 and J5 would ter-
minate after their secondary deadline. The least value task able to resolve the overload
is J2. In fact, J5, that has the smallest value, cannot be rejected because, having a long
primary deadline, it would not advance the execution of J 3. Also, rejecting J3 would
not solve the overload, since its residual computation time is not sufficient to advance
the completion of J5 before the deadline.

A more efficient rejection strategy could consider rejecting more than one task to
minimize the cumulative value of the rejected tasks. For example, rejecting J 3 and
J5 is better than rejecting J2. However, minimizing the value of the rejected tasks
requires a combinatorial search that would be too expensive to be performed online
for large task sets.

To take advantage of early completions and reduce the pessimism of the acceptance
test, some algorithms use an online reclaiming mechanism that exploits the saved time
to possibly recover previously rejected tasks. For example, in RED, a rejected task
is not removed from the system, but it is temporarily parked in a Reject Queue, with
the hope that it can be recovered due to some early completion. If δ is the time saved
by the running task, then all the residual laxities will increase by δ, and some of the
rejected tasks may be recovered based on their value.

312 Chapter 9

9.2.6 DOV ER: A COMPETITIVE ALGORITHM

Koren and Shasha [KS92] found an online scheduling algorithm, called D over , which
has been proved to be optimal, in the sense that it gives the best competitive factor
achievable by any online algorithm (that is, 0.25).

As long as no overload is detected, Dover behaves like EDF. An overload is detected
when a ready task reaches its Latest Start Time (LST); that is, the time at which the
task’s remaining computation time is equal to the time remaining until its deadline. At
this time, some task must be abandoned: either the task that reached its LST or some
other task.

In Dover , the set of ready tasks is partitioned in two disjoint sets: privileged tasks and
waiting tasks. Whenever a task is preempted it becomes a privileged task. However,
whenever some task is scheduled as the result of a LST , all the ready tasks (whether
preempted or never executed) become waiting tasks.

When an overload is detected because a task Jz reaches its LST , then the value of
Jz is compared against the total value Vpriv of all the privileged tasks (including the
value vcurr of the currently running task). If

vz > (1 +
√

k)(vcurr + Vpriv)

(where k is ratio of the highest value density and the lowest value density task in the
system), then Jz is executed; otherwise, it is abandoned. If Jz is executed, all the
privileged tasks become waiting tasks. Task Jz can in turn be abandoned in favor of
another task Jx that reaches its LST , but only if

vx > (1 +
√

k)vz .

It is worth observing that having the best competitive factor among all online algo-
rithms does not mean having the best performance in any load condition. In fact,
in order to guarantee the best competitive factor, D over may reject tasks with values
higher than the current task but not higher than the threshold that guarantees optimal-
ity. In other words, to cope with worst-case sequences, D over does not take advantage
of lucky sequences and may reject more value than it is necessary. In Section 9.2.7,
the performance of Dover is tested for random task sets and compared with the one of
other scheduling algorithms.

Handling Overload Conditions 313

9.2.7 PERFORMANCE EVALUATION

In this section, the performance of the scheduling algorithms described above is tested
through simulation using a synthetic workload. Each plot on the graphs represents the
average of a set of 100 independent simulations, the duration of each is chosen to be
300,000 time units long. The algorithms are executed on task sets consisting of 100
aperiodic tasks, whose parameters are generated as follows. The worst-case execution
time Ci is chosen as a random variable with uniform distribution between 50 and 350
time units. The interarrival time Ti is modeled as a random variable with a Poisson
distribution with average value equal to T i = NCi/ρ, where N is the total number of
tasks and ρ is the average load. The laxity of a task is computed as a random value
with uniform distribution from 150 and 1850 time units, and the relative deadline is
computed as the sum of its worst-case execution time and its laxity. The task value
is generated as a random variable with uniform distribution ranging from 150 to 1850
time units, as for the laxity.

The first experiment illustrates the effectiveness of the guaranteed (GED) and robust
scheduling paradigm (RED) with respect to the best-effort scheme, under the EDF
priority assignment. In particular, it shows how the pessimistic assumptions made in
the guarantee test affect the performance of the algorithms and how much a reclaiming
mechanism can compensate for this degradation. In order to test these effects, tasks
were generated with actual execution times less than their worst-case values. The
specific parameter varied in the simulations was the average Unused Computation

Time Ratio, defined as

β = 1 − Actual Computation Time
Worst-Case Computation Time

.

Note that if ρn is the nominal load estimated based on the worst-case computation
times, the actual load ρ is given by

ρ = ρn(1 − β).

In the graphs shown in Figure 9.14, the task set was generated with a nominal load
ρn = 3, while β was varied from 0.125 to 0.875. As a consequence, the actual mean
load changed from a value of 2.635 to a value of 0.375, thus ranging over very different
actual load conditions. The performance was measured by computing the Hit Value

Ratio (HVR); that is, the ratio of the cumulative value achieved by an algorithm and
the total value of the task set. Hence, HV R = 1 means that all the tasks completed
within their deadlines and no tasks were rejected.

314 Chapter 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
it
 v

a
lu

e
 r

a
ti
o

Average unused computation time ratio (beta)

Nominal load = 3

RED
GED
EDF

Figure 9.14 Performance of various EDF scheduling schemes: best-effort (EDF), guar-
anteed (GED) and robust (RED).

For small values of β, that is, when tasks execute for almost their maximum com-
putation time, the guaranteed (GED) and robust (RED) versions are able to obtain a
significant improvement compared to the plain EDF scheme. Increasing the unused
computation time, however, the actual load falls down and the plain EDF performs
better and better, reaching the optimality in underload conditions. Note that as the
system becomes underloaded (β ≃ 0.7) GED becomes less effective than EDF. This
is due to the fact that GED performs a worst-case analysis, thus rejecting tasks that
still have some chance to execute within their deadline. This phenomenon does not
appear on RED, because the reclaiming mechanism implemented in the robust scheme
is able to recover the rejected tasks whenever possible.

In the second experiment, Dover is compared against two robust algorithms: RED
(Robust Earliest Deadline) and RHD (Robust High Density). In RHD, the task with the
highest value density (vi/Ci) is scheduled first, regardless of its deadline. Performance
results are shown in Figure 9.15.

Handling Overload Conditions 315

0.7

0.75

0.8

0.85

0.9

0.95

1

0.4 0.6 0.8 1 1.2 1.4 1.6

H
it
 v

a
lu

e
 r

a
ti
o

Average load

RED
RHD

D_OVER

Figure 9.15 Performance of Dover against RED and RHD.

Note that in underload conditions Dover and RED exhibit optimal behavior (HV R =
1), whereas RHD is not able to achieve the total cumulative value, since it does not take
deadlines into account. However, for high load conditions (ρ > 1.5), RHD performs
even better than RED and Dover .

In particular, for random task sets, Dover is less effective than RED and RHD for two
reasons: first, it does not have a reclaiming mechanism for recovering rejected tasks in
the case of early completions; second, the threshold value used in the rejection policy
is set to reach the best competitive factor in a worst-case scenario. But this means
that for random sequences Dover may reject tasks that could increase the cumulative
value, if executed.

In conclusion, we can say that in overload conditions no online algorithm can achieve
optimal performance in terms of cumulative value. Competitive algorithms are de-
signed to guarantee a minimum performance in any load condition, but they cannot
guarantee the best performance for all possible scenarios. For random task sets, robust
scheduling schemes appear to be more appropriate.

316 Chapter 9

9.3 HANDLING OVERRUNS

This section presents some methodology for handling transient overload conditions
caused by tasks that execute more than expected or are activated more frequently than
expected. This could happen either because some task parameter was incorrectly es-
timated, or because the system was intentionally designed under less pessimistic as-
sumptions for achieving a higher average utilization.

If not properly handled, task overruns can cause serious problems in the real-time sys-
tem, jeopardizing the guarantee performed for the critical tasks and causing an abrupt
performance degradation. An example of negative effects of an execution overrun in
EDF was already illustrated in Figure 9.4.

To prevent an overrun to introducing unbounded delays on tasks’ execution, the system
could either decide to abort the current job experiencing the overrun or let it continue
with a lower priority. The first solution is not safe, because the job could be in a
critical section when aborted, thus leaving a shared resource with inconsistent data
(very dangerous). The second solution is much more flexible, since the degree of
interference caused by the overrun on the other tasks can be tuned acting on the priority
assigned to the “faulty” task for executing the remaining computation. A general
technique for implementing such a solution is the resource reservation approach.

9.3.1 RESOURCE RESERVATION

Resource reservation is a general technique used in real-time systems for limiting the
effects of overruns in tasks with variable computation times [MST93, MST94b, AB98,
AB04]. According to this method, each task is assigned a fraction of the processor
bandwidth, just enough to satisfy its timing constraints. The kernel, however, must
prevent each task from consuming more than the requested amount to protect the other
tasks in the systems (temporal protection). In this way, a task receiving a fraction U i of
the total processor bandwidth behaves as it were executing alone on a slower processor
with a speed equal to Ui times the full speed. The advantage of this method is that
each task can be guaranteed in isolation, independently of the behavior of the other
tasks.

A simple and effective mechanism for implementing resource reservation in a real-
time system is to reserve each task τi a specified amount of CPU time Qi in every
interval Pi. Such a general approach can also be applied to other resources different
than the CPU, but in this context we will mainly focus on the CPU, because CPU
scheduling is the topic of this book.

Handling Overload Conditions 317

Some authors [RJMO98] tend to distinguish between hard and soft reservations. Ac-
cording to such a taxonomy, a hard reservation allows the reserved task to execute at

most for Qi units of time every Pi, whereas a soft reservation guarantees that the task
executes at least for Qi time units every Pi, allowing it to execute more if there is
some idle time available.

A resource reservation technique for fixed priority scheduling was first presented by
Mercer, Savage, and Tokuda [MST94a]. According to this method, a task τ i is first
assigned a pair (Qi, Pi) (denoted as a CPU capacity reserve) and then it is enabled
to execute as a real-time task for Qi units of time every Pi. When the task consumes
its reserved quantum Qi, it is blocked until the next period, if the reservation is hard,
or it is scheduled in background as a non-real-time task, if the reservation is soft. If
the task is not finished, it is assigned another time quantum Q i at the beginning of the
next period and it is scheduled as a real-time task until the budget expires, and so on.

In this way, a task is reshaped so that it behaves like a periodic real-time task with
known parameters (Qi, Pi) and can be properly scheduled by a classical real-time
scheduler.

Although such a method is essential for achieving predictability in the presence of
tasks with variable execution times, the overall system’s performance becomes quite
dependent from a correct resource allocation. For example, if the CPU bandwidth
allocated to a task is much less than its average requested value, the task may slow
down too much, degrading the system’s performance. On the other hand, if the allo-
cated bandwidth is much greater than the actual needs, the system will run with low
efficiency, wasting the available resources.

A simple kernel mechanism to enforce temporal protection under EDF scheduling is
the Constant Bandwidth Server (CBS) [AB98, AB04], described in Chapter 6. To
properly implement temporal protection, however, each task τ i with variable com-
putation time should be handled by a dedicated CBS with bandwidth U si

, so that it
cannot interfere with the rest of the tasks for more than U si

. Figure 9.16 illustrates
an example in which two tasks (τ1 and τ2) are served by two dedicated CBSs with
bandwidth Us1

= 0.15 and Us2
= 0.1, a group of two tasks (τ3, τ4) is handled by a

single CBS with bandwidth Us3
= 0.25, and three hard periodic tasks (τ5, τ6, τ7) are

directly scheduled by EDF, without server intercession, since their execution times are
not subject to large variations. In this example the total processor bandwidth is shared
among the tasks as shown in Figure 9.17.

318 Chapter 9

CBS 1
τ 1

τ 3

τ 4
CBS 3

τ 2 CBS 2

τ 5

τ 6

τ 7

CPU

Us1 = 0.15

Us2 = 0.1

Us3 = 0.25

EDF

Figure 9.16 Achieving temporal protection using the CBS mechanism.

Us2 = 0.1

Us3 = 0.25

Us1

HARD

tasks

= 0.15

Figure 9.17 Bandwidth allocation for a set of task.

The properties of the CBS guarantee that the set of hard periodic tasks (with utilization
Up) is schedulable by EDF if and only if

Up + Us1
+ Us2

+ Us3
≤ 1. (9.12)

Note that if condition (9.12) holds, the set of hard periodic tasks is always guaranteed
to use 50% of the processor, independently of the execution times of the other tasks.
Also observe that τ3 and τ4 are not isolated with respect to each other (i.e., one can
steals processor time from the other), but they cannot interfere with the other tasks for
more than one-fourth of the total processor bandwidth.

The CBS version presented in this book is meant for handling soft reservations. In
fact, when the budget is exhausted, it is always replenished at its full value and the
server deadline is postponed (i.e., the server is always active). As a consequence, a
served task can execute more than Qs in each period Ps, if there are no other tasks
in the system. However, the CBS can be easily modified to enforce hard reservations,
just by postponing the budget replenishment to the server deadline.

Handling Overload Conditions 319

9.3.2 SCHEDULABILITY ANALYSIS

Although a reservation is typically implemented using a server characterized by a
budget Qk and a period Tk, there are cases in which temporal isolation can be achieved
by executing tasks in a static partition of disjoint time slots.

To characterize a bandwidth reservation independently on the specific implementation,
Mok et al. [MFC01] introduced the concept of bounded delay partition that describes
a reservation by two parameters: a bandwidth αk and a delay ∆k. The bandwidth
αk measures the fraction of resource that is assigned to the served tasks, whereas the
delay ∆k represents the longest interval of time in which the resource is not available.
In general, the minimum service provided by a resource can be precisely described
by its supply function [LB03, SL03], representing the minimum amount of time the
resource can provide in a given interval of time.

Definition 9.4 Given a reservation, the supply function Zk(t) is the minimum amount

of time provided by the reservation in every time interval of length t ≥ 0.

The supply function can be defined for many kinds of reservations, as static time
partitions [MFC01, FM02], periodic servers [LB03, SL03], or periodic servers with
arbitrary deadline [EAL07]. Consider, for example, that processing time is provided
only in the intervals illustrated in Figure 9.18, with a period of 12 units. In this case,
the minimum service occurs when the resource is requested at the beginning of the
longest idle interval; hence, the supply function is the one depicted in Figure 9.19.

0 3 12 18 21 24156 9

Figure 9.18 A reservation implemented by a static partition of intervals.

For this example we have αk = 0.5 and ∆k = 3. Once the bandwidth and the delay
are computed, the supply function of a resource reservation can be lower bounded by
the following supply bound function:

sbfk(t)
def
= max{0, αk(t − ∆k)}. (9.13)

represented by the dashed line in Figure 9.19. The advantage of using such a lower
bound instead of the exact Zk(t) is that a reservation can be expressed with just two
parameters.

320 Chapter 9

0

Zk(t)

t

∆k

αk

Figure 9.19 A reservation implemented by a static partition of intervals.

In general, for a given supply function Zk(t), the bandwidth αk and the delay ∆k can
be formally defined as follows:

αk = lim
t→∞

Zk(t)

t
(9.14)

∆k = sup
t≥0

{

t − Zk(t)

αk

}

. (9.15)

If a reservation is implemented using a periodic server with unspecified priority that
allocates a budget Qk every period Tk, then the supply function is the one illustrated
in Figure 9.20, where

αk = Qk/Tk (9.16)

∆k = 2(Tk − Qk). (9.17)

It is worth observing that reservations with smaller delays are able to serve tasks with
shorter deadlines, providing better responsiveness. However, small delays can only
be achieved with servers with a small period, condition for which the context switch
overhead cannot be neglected. If σ is the runtime overhead due to a context switch
(subtracted from the budget every period), then the effective bandwidth of reservation
is

αeff
k =

Q − σ

Tk
= αk

(

1 − σ

Qk

)

.

Handling Overload Conditions 321

0

Q

2Q

3Q

Q

Z(t)

t∆

α

2(P − Q)

Figure 9.20 A reservation implemented by a static partition of intervals.

Expressing Qk and Tk as a function of αk and ∆k we have

Qk =
αk∆k

2(1 − αk)

Pk =
∆k

2(1 − αk)
.

Hence,

αeff
k = αk +

2σ(1 − αk)

∆k
. (9.18)

Within a reservation, the schedulability analysis of a task set under fixed priorities can
be performed by extending Theorem 4.4 as follows [BBL09]:

Theorem 9.3 A set of preemptive periodic tasks with relative deadlines less than or

equal to periods can be scheduled by a fixed priority algorithm, under a reservation

characterized by a supply function Zk(t), if and only if

∀i = 1, . . . , n ∃t ∈ T S i : Wi(t) ≤ Zk(t). (9.19)

where Wi(t) is defined by Equation (4.19) and T S i by Equation (4.21).

Similarly, the schedulability analysis of a task set under EDF can be performed by
extending Theorem 4.6 as follows [BBL09]:

322 Chapter 9

Theorem 9.4 A set of preemptive periodic tasks with relative deadlines less than or

equal to periods can be scheduled by EDF, under a reservation characterized by a

supply function Zk(t), if and only if U < αk and

∀t > 0 dbf(t) ≤ Zk(t). (9.20)

In the specific case in which Zk(t) is lower bounded by the supply bound function,
the test become only sufficient and the set of testing points can be better restricted as
stated in the following theorem [BFB09]:

Theorem 9.5 A set of preemptive periodic tasks with relative deadlines less than or

equal to periods can be scheduled by EDF, under a reservation characterized by a

supply function Zk(t) = max[0, αk(t − ∆k)], if U < αk and

∀t ∈ D dbf(t) ≤ max[0, αk(t − ∆k)]. (9.21)

where

D = {dk | dk ≤ min[H, max(Dmax, L∗)]}
and

L∗ =
αk∆k +

∑n
i=1(Ti − Di)Ui

αk − U
.

9.3.3 HANDLING WRONG RESERVATIONS

As already mentioned, under resource reservations, the system performance heavily
depends on a correct bandwidth allocation to the various activities. In fact, if the
bandwidth is under allocated, the activities within that reservation will progress more
slowly than expected, whereas an over-allocated bandwidth may waste the available
resources. This problem can be solved by using capacity sharing mechanisms that can
transfer unused budgets to the reservations that need more bandwidth.

Capacity sharing algorithms have been developed both under fixed priority servers
[BB02, BBB04] and dynamic priority servers [CBS00]. For example, the CASH algo-
rithm [CBT05] extends CBS to include a slack reclamation. When a server becomes
idle with residual budget, the slack is inserted in a queue of spare budgets (CASH
queue) ordered by server deadlines. Whenever a new server is scheduled for execu-
tion, it first uses any CASH budget whose deadline is less than or equal to its own.

The bandwidth inheritance (BWI) algorithm [LLA01] applies the idea of priority in-
heritance to CPU resources in CBS, allowing a blocking low-priority process to steal

Handling Overload Conditions 323

resources from a blocked higher priority process. IRIS [MLBC04] enhances CBS
with fairer slack reclaiming, so slack is not reclaimed until all current jobs have been
serviced and the processor is idle. BACKSLASH [LB05] is another algorithm that
enhances the efficiency of the reclaiming mechanism under EDF.

Wrong reservations can also be handled through feedback scheduling. If the operating
system is able to monitor the actual execution time e i,k of each task instance, the actual
maximum computation time of a task τ i can be estimated (in a moving window) as

Ĉi = max
k

{ei,k}

and the actual requested bandwidth as Ûi = Ĉi/Ti. Hence, Ûi can be used as a refer-
ence value in a feedback loop to adapt the reservation bandwidth allocated to the task
according to the actual needs. If more reservations are adapted online, we must ensure
that the overall allocated bandwidth does not exceed the processor utilization; hence,
a form of global feedback adaptation is required to prevent an overload condition.
Similar approaches to achieve adaptive reservations have been proposed by Abeni and
Buttazzo [AB01] and by Palopoli et al. [PALW02].

9.3.4 RESOURCE SHARING

When critical sections are used by tasks handled within a reservation server, an ad-
ditional problem occurs when the server budget is exhausted inside a region. In this
case, the served task cannot continue the execution to prevent other tasks from miss-
ing their deadlines; thus an extra delay is added to the blocked tasks to wait until the
next budget replenishment. Figure 9.21 illustrates a situation in which a high priority
task τ1 shares a resource with another task τ2 handled by a reservation server (e.g., a
Sporadic Server) with budget Qk = 4 and period Tk = 10. At time t = 3, τ1 pre-
empts τ2 within its critical section, and at time t = 4 it blocks on the locked resource.
When τ2 resumes, however, the residual budget is not sufficient to finish the critical
section, and τ2 must be suspended until the budget will be replenished at time t = 10,
so introducing an extra delay [5,10] in the execution of τ 1. Two solutions have been
proposed in the literature to prevent such an extra delay.

SOLUTION 1: BUDGET CHECK

When a task wants to enter a critical section, the current server budget is checked
before granting the access to the resource; if the budget is sufficient, the task enters
the critical section, otherwise the access to the resource is postponed until the next
budget replenishment.

324 Chapter 9

server
budget

8 10 12 146 16 180 2 4 20 22

normal execution

critical section

τ1

served
task τ2

Figure 9.21 Example of extra blocking introduced when the budget is exhausted inside a
critical section.

served
task

server
budget

8 10 12 146 16 180 2 4 20 22

normal execution

critical section

τ1

Figure 9.22 Example of budget check to allow resource sharing within reservations.

This mechanism is used in the SIRAP protocol, proposed by Behnam et al. [BSNN07,
NSBS09] to share resources among reservations. An example of such a strategy is
illustrated in Figure 9.22. In the example, since at time t = 2 the budget is Q k = 2
and the critical section is 4 units long, the resource is not granted and τ 2 is suspended
until time t = 10, when the budget is recharged. In this case, τ1 is able to execute im-
mediately, while τ2 experiences a longer delay with respect to the absence of protocol.

Handling Overload Conditions 325

SOLUTION 2: BUDGET OVERRUN

The second approach consists in entering a critical section without performing any
budget check. When the budget is exhausted inside a resource, the server is allowed to
consume some extra budget until the end of the critical section. In this case, the max-
imum extra budget must be estimated off-line and taken into account in the schedu-
lability analysis. An example of such a strategy is illustrated in Figure 9.23. In this
example, at time t = 5, when the budget is exhausted inside the resource, τ 2 is allowed
to continue the execution until the end of the critical section, consuming 2 extra units
of budget. In the worst case, the extra budget to be taken into account is equal to the
longest critical section of the served task.

served
task

server
budget

8 10 12 14 16 180 2 4 20 22

normal execution

critical section

τ1

Figure 9.23 Example of budget overrun to allow resource sharing within reservations.

This approach was first proposed by Abeni and Buttazzo under EDF, using a Constant
Bandwidth Server (CBS) [AB04]. Then, it was analyzed under fixed priority systems
by Davis and Burns [DB06] and later extended under EDF by Behnam et al. [BSNN08,
BNSS10]. Davis and Burns proposed two versions of this mechanism:

1. overrun with payback, where the server pays back in the next execution instant,
in that the next budget replenishment is decreased by the overrun value;

2. overrun without payback, where no further action is taken after the overrun.

Note that the first solution (budget check) does not affect the execution of tasks in
other reservations, but penalizes the response time of the served task. On the contrary,
the second solution (budget overrun) does not increase the response time of the served
task at the cost of a greater bandwidth requirement for the reservation.

326 Chapter 9

9.4 HANDLING PERMANENT OVERLOADS

This section presents some methodologies for handling permanent overload conditions
occurring in periodic task systems when the total processor utilization exceeds one.
Basically, there are three methods to reduce the load:

Job skipping. This method reduces the total load by properly skipping (i.e.,
aborting) some job execution in the periodic tasks, in such a way that a minimum
number of jobs per task is guaranteed to execute within their timing constraints.

Period adaptation. According to this approach, the load is reduced by enlarging
task periods to suitable values, so that the total workload can be kept below a
desired threshold.

Service adaptation. According to this method, the load is reduced by decreasing
the computational requirements of the tasks, trading predictability with quality of
service.

9.4.1 JOB SKIPPING

The computational load of a set of periodic tasks can be reduced by properly skipping

a few jobs in the task set, in such a way that the remaining jobs can be scheduled within
their deadlines. This approach is suitable for real-time applications characterized by
soft or firm deadlines, such as those typically found in multimedia systems, where
skipping a video frame once in a while is better than processing it with a long delay.
Even in certain control applications, the sporadic skip of some job can be tolerated
when the controlled systems is characterized by a high inertia.

To understand how job skipping can make an overloaded system schedulable, consider
the following example, consisting of two tasks, with computation times C 1 = 2 and
C2 = 8 and periods T1 = 4 and T2 = 12. Since the processor utilization factor is
Up = 14/12 > 1, the system is under a permanent overload, and the tasks cannot be
scheduled within their deadlines. Nevertheless, Figure 9.24 shows that skipping a job
every three in task τ1 the overload can be resolved and all the remaining jobs can be
scheduled within their deadlines.

In order to control the overall system load, it is important to derive the relation between
the number of skips (i.e., the number of aborted jobs per task) and the total computa-
tional demand. In 1995, Koren and Shasha [KS95] proposed a new task model (known
as the firm periodic model) suited to be handled by this technique.

Handling Overload Conditions 327

 0 2 6 8 10 12 14 4 1816 20 22 24 26

 0 2 6 8 10 12 14 4 1816 20 22 24 26

τ 1

τ 2

skipskip

Figure 9.24 The overload condition resolved by skipping one job every three in task τ1.

According to this model, each periodic task τ i is characterized by the following pa-
rameters:

τi(Ci, Ti, Di, Si)

where Ci is the worst-case computation time, Ti its period, Di its relative deadline
(assumed to be equal to the period), and S i a skip parameter, 2 ≤ Si ≤ ∞, expressing
the minimum distance between two consecutive skips. For example, if S i = 5 the
task can skip one instance every five. When Si = ∞ no skips are allowed and τi is
equivalent to a hard periodic task. The skip parameter can be viewed as a Quality of

Service (QoS) metric (the higher S, the better the quality of service).

Using the terminology introduced by Koren and Shasha [KS95], every job of a peri-
odic task can be red or blue: a red job must be completed within its deadline, whereas
a blue job can be aborted at any time. To meet the constraint imposed by the skip
parameter Si, each scheduling algorithm must have the following characteristics:

if a blue job is skipped, then the next Si − 1 jobs must be red.

if a blue job completes successfully, the next job is also blue.

The authors showed that making optimal use of skips is NP-hard and presented two
algorithms (one working under Rate Monotonic and one under EDF) that exploit skips
to schedule slightly overloaded systems. In general, these algorithms are not optimal,
but they become optimal under a particular condition, called the deeply-red condition.

Definition 9.5 A system is deeply-red if all tasks are synchronously activated and the

first Si − 1 instances of every task τi are red.

Koren and Shasha showed that the worst case for a periodic skippable task set occurs
when tasks are deeply-red. For this reason, all the results shown in this section are
proved under this condition. This means that if a task set is schedulable under the
deeply-red condition, it is also schedulable in any other situation.

328 Chapter 9

SCHEDULABILITY ANALYSIS

The feasibility analysis of a set of firm tasks can be performed through the Processor
Demand Criterion [BRH90] illustrated in Chapter 4, under the deeply-red condition,
and assuming that in the worst case all blue jobs are aborted. In this worst-case sce-
nario, the processor demand of τi due to the red jobs in an interval [0, L] can be
obtained as the difference between the demand of all the jobs and the demand of the
blue jobs:

gskip
i (0, L) =

(⌊

L

Ti

⌋

−
⌊

L

TiSi

⌋)

Ci. (9.22)

Hence, the feasibility of the task set can be verified through the following test:

Sufficient condition

A set of firm periodic tasks is schedulable by EDF if

∀L ≥ 0

n
∑

i=1

(⌊

L

Ti

⌋

−
⌊

L

TiSi

⌋)

Ci ≤ L (9.23)

A necessary condition can be easily derived by observing that a schedule is certainly
infeasible when the utilization factor due to the red jobs is greater than one. That is,

Necessary condition

Necessary condition for the schedulability of a set of firm periodic tasks is that

n
∑

i=1

Ci(Si − 1)

TiSi
≤ 1 (9.24)

EXAMPLE

To better clarify the concepts mentioned above, consider the task set shown in Fig-
ure 9.25 and the corresponding feasible schedule, obtained by EDF. Note that the
processor utilization factor is greater than 1 (Up = 1.25), but both conditions (9.23)
and (9.24) are satisfied.

Handling Overload Conditions 329

Task Task1 Task2 Task3

Computation 1 2 5
Period 3 4 12

Skip Parameter 4 3 ∞
Up 1.25

240

1

12

skip

skip skip

skip

15

4 8 16 2012 240

12 2118 27240 963

3τ

2τ

τ

Figure 9.25 A schedulable set of firm periodic tasks.

SKIPS AND BANDWIDTH SAVING

If skips are permitted in the periodic task set, the spare time saved by rejecting the blue
instances can be reallocated for other purposes. For example, for scheduling slightly
overloaded systems or for advancing the execution of soft aperiodic requests.

Unfortunately, the spare time has a “granular” distribution and cannot be reclaimed at
any time. Nevertheless, it can be shown that skipping blue instances still produces a
bandwidth saving in the periodic schedule. Caccamo and Buttazzo [CB97] identified
the amount of bandwidth saved by skips using a simple parameter, the equivalent

utilization factor U skip
p , which can be defined as

Uskip
p = max

L≥0

{

∑

i gskip
i (0, L)

L

}

(9.25)

where gskip
i (0, L) is given in Equation (9.22).

Using this definition, the schedulability of a deeply-red skippable task set can be also
verified using the following theorem ([CB97]):

Theorem 9.6 A set Γ of deeply-red skippable periodic tasks is schedulable by EDF if

U skip
p ≤ 1.

330 Chapter 9

Note that the U skip
p factor represents the net bandwidth really used by periodic tasks,

under the deeply-red condition. It is easy to show that U skip
p ≤ Up. In fact, according

to Equation (9.25) (setting Si = ∞), Up can also be defined as

Up = max
L≥0

⎧

⎨

⎩

∑

i

⌊

L
Ti

⌋

Ci

L

⎫

⎬

⎭

.

Thus, U skip
p ≤ Up because

(⌊

L

Ti

⌋

−
⌊

L

TiSi

⌋)

≤
⌊

L

Ti

⌋

.

The bandwidth saved by skips can easily be exploited by an aperiodic server to ad-
vance the execution of aperiodic tasks. The following theorem ([CB97]) provides a
sufficient condition for guaranteeing a hybrid (periodic and aperiodic) task set.

Theorem 9.7 Given a set of periodic tasks that allow skip with equivalent utilization

Uskip
p and a set of soft aperiodic tasks handled by a server with utilization factor Us,

the hybrid set is schedulable by EDF if

Uskip
p + Us ≤ 1. (9.26)

The fact that the condition of Theorem 9.7 is not necessary is a direct consequence
of the “granular” distribution of the spare time produced by skips. In fact, a fraction
of this spare time is uniformly distributed along the schedule and can be used as an
additional free bandwidth (Up−Uskip

p) available for aperiodic service. The remaining
portion is discontinuous, and creates a kind of “holes” in the schedule, which can only
be used in specific situations. Whenever an aperiodic request falls into some hole, it
can exploit a bandwidth greater than 1 − U skip

p . Indeed, it is easy to find examples of
feasible task sets with a server bandwidth Us > 1 − Uskip

p . The following theorem
([CB97]) gives a maximum bandwidth U max

s above which the schedule is certainly
not feasible.

Theorem 9.8 Given a set Γ of n periodic tasks that allow skips and an aperiodic

server with bandwidth Us, a necessary condition for the feasibility of Γ is

Us ≤ Umax
s

where

Umax
s = 1 − Up +

n
∑

i=1

Ci

TiSi
. (9.27)

Handling Overload Conditions 331

EXAMPLE

Consider the periodic task set shown in Table 9.1. The equivalent utilization factor
of the periodic task set is U skip

p = 4/5, while Umax
s = 0.27, leaving a bandwidth of

Us = 1 − Uskip
p = 1/5 for the aperiodic tasks. Three aperiodic jobs J1, J2, and J3

are released at times t1 = 0, t2 = 6, and t3 = 18; moreover, they have computation
times Cape

1 = 1, Cape
2 = 2, and Cape

3 = 1, respectively.

Task Task1 Task2

Computation 2 2
Period 3 5

Skip Parameter 2 ∞
Up 1.07

Uskip
p 0.8

1 − Uskip
p 0.2

Umax
s 0.27

Table 9.1 A schedulable task set.

0 3 6 9 12 15 18 21 24 27

0 5 15 20 2510

skip skip skip skip

0 5 6 16 18 2311

τ1

τ2

CBS
Us =1/5

Figure 9.26 Schedule produced by EDF+CBS for the task set shown in Table 9.1.

Supposing aperiodic activities are scheduled by a CBS server with budget Q s = 1
and period T s = 5, Figure 9.26 shows the resulting schedule under EDF+CBS. Note
that J2 has a deadline postponement (according to CBS rules) at time t = 10 with
new server deadline ds

new = ds
old + T s = 11 + 5 = 16. According to the sufficient

schedulability test provided by Theorem 9.7, the task set is schedulable when the CBS
is assigned a bandwidth Us = 1 − Uskip

p . However, this task set is also schedulable
with a bandwidth Us = 0.25, greater than 1−U skip

p but less than Umax
s , although this

is not generally true.

332 Chapter 9

9.4.2 PERIOD ADAPTATION

There are several real-time applications in which timing constraints are not rigid, but
depend on the system state. For example, in a flight control system, the sampling
rate of the altimeters is a function of the current altitude of the aircraft: the lower the
altitude, the higher the sampling frequency. A similar need arises in mobile robots
operating in unknown environments, where trajectories are planned based on the cur-
rent sensory information. If a robot is equipped with proximity sensors, to maintain
a desired performance, the acquisition rate of the sensors must increase whenever the
robot is approaching an obstacle.

The possibility of varying tasks’ rates also increases the flexibility of the system in
handling overload conditions, providing a more general admission control mechanism.
For example, whenever a new task cannot be guaranteed, instead of rejecting the task,
the system can reduce the utilizations of the other tasks (by increasing their periods in
a controlled fashion) to decrease the total load and accommodate the new request.

In the real-time literature, several approaches exist for dealing with an overload through
a period adaptation. For example, Kuo and Mok [KM91] propose a load scaling tech-
nique to gracefully degrade the workload of a system by adjusting the periods of pro-
cesses. In this work, tasks are assumed to be equally important and the objective
is to minimize the number of fundamental frequencies to improve schedulability un-
der static priority assignments. Nakajima and Tezuka [NT94] show how a real-time
system can be used to support an adaptive application: whenever a deadline miss is
detected, the period of the failed task is increased. Seto et al. [SLSS96] change tasks’
periods within a specified range to minimize a performance index defined over the
task set. This approach is effective at a design stage to optimize the performance of a
discrete control system, but cannot be used for online load adjustment. Lee, Rajkumar
and Mercer [LRM96] propose a number of policies to dynamically adjust the tasks’
rates in overload conditions. Abdelzaher, Atkins, and Shin [AAS97] present a model
for QoS negotiation to meet both predictability and graceful degradation requirements
during overloads. In this model, the QoS is specified as a set of negotiation options in
terms of rewards and rejection penalties. Nakajima [Nak98] shows how a multimedia
activity can adapt its requirements during transient overloads by scaling down its rate
or its computational demand. However, it is not clear how the QoS can be increased
when the system is underloaded. Beccari et al. [BCRZ99] propose several policies for
handling overload through period adjustment. The authors, however, do not address
the problem of increasing the task rates when the processor is not fully utilized.

Handling Overload Conditions 333

Although these approaches may lead to interesting results in specific applications, a
more general framework can be used to avoid a proliferation of policies and treat
different applications in a uniform fashion.

The elastic model presented in this section (originally proposed by Buttazzo, Abeni,
and Lipari [BAL98] and later extended by Buttazzo, Lipari, Caccamo, and Abeni
[BLCA02]), provides a novel theoretical framework for flexible workload manage-
ment in real-time applications.

EXAMPLES

To better understand the idea behind the elastic model, consider a set of three periodic
tasks, with computation times C1 = 10, C2 = 10, and C3 = 15 and periods T1 = 20,
T2 = 40, and T3 = 70. Clearly, the task set is schedulable by EDF because

Up =
10

20
+

10

40
+

15

70
= 0.964 < 1.

To allow a certain degree of flexibility, suppose that tasks are allowed to run with
periods ranging within two values, reported in Table 9.2.

Timin
Timax

τ1 20 25
τ2 40 50
τ3 35 80

Table 9.2 Period ranges for the task set considered in the example.

Now, suppose that a new task τ4, with computation time C4 = 5 and period T4 = 30,
enters the system at time t. The total processor utilization of the new task set is

Up =
10

20
+

10

40
+

15

70
+

5

30
= 1.131 > 1.

In a rigid scheduling framework, τ4 should be rejected to preserve the timing behavior
of the previously guaranteed tasks. However, τ4 can be accepted if the periods of the
other tasks can be increased in such a way that the total utilization is less than one. For
example, if T1 can be increased up to 23, the total utilization becomes Up = 0.989,
and hence τ4 can be accepted.

334 Chapter 9

As another example, if tasks are allowed to change their frequency and τ 3 reduces its
period to 50, no feasible schedule exists, since the utilization would be greater than 1:

Up =
10

20
+

10

40
+

15

50
= 1.05 > 1.

Note that a feasible schedule exists for T1 = 22, T2 = 45, and T3 = 50. Hence, the
system can accept the higher request rate of τ3 by slightly decreasing the rates of τ1

and τ2. Task τ3 can even run with a period T3 = 40, since a feasible schedule exists
with periods T1 and T2 within their range. In fact, when T1 = 24, T2 = 50, and
T3 = 40, Up = 0.992. Finally, note that if τ3 requires to run at its minimum period
(T3 = 35), there is no feasible schedule with periods T1 and T2 within their range,
hence the request of τ3 to execute with a period T3 = 35 must be rejected.

Clearly, for a given value of T3, there can be many different period configurations
that lead to a feasible schedule; thus one of the possible feasible configurations must
be selected. The elastic approach provides an efficient way for quickly selecting a
feasible period configuration among all the possible solutions.

THE ELASTIC MODEL

The basic idea behind the elastic model is to consider each task as flexible as a spring
with a given rigidity coefficient and length constraints. In particular, the utilization of
a task is treated as an elastic parameter, whose value can be modified by changing the
period within a specified range.

Each task is characterized by four parameters: a computation time C i, a nominal pe-
riod Ti0 (considered as the minimum period), a maximum period T imax

, and an elastic
coefficient Ei ≥ 0, which specifies the flexibility of the task to vary its utilization for
adapting the system to a new feasible rate configuration. The greater E i, the more
elastic the task. Thus, an elastic task is denoted as

τi(Ci, Ti0 , Timax
, Ei).

In the following, Ti will denote the actual period of task τi, which is constrained to be
in the range [Ti0 , Timax

]. Any task can vary its period according to its needs within
the specified range. Any variation, however, is subject to an elastic guarantee and is
accepted only if there is a feasible schedule in which all the other periods are within
their range.

Under the elastic model, given a set of n periodic tasks with utilization Up > Umax,
the objective of the guarantee is to compress tasks’ utilization factors to achieve a new
desired utilization Ud ≤ Umax such that all the periods are within their ranges.

Handling Overload Conditions 335

The following definitions are also used in this section:

Uimin
= Ci/Timax

Umin =

n
∑

i=1

Uimin

Ui0 = Ci/Ti0

U0 =

n
∑

i=1

Ui0

Clearly, a solution can always be found if Umin ≤ Ud; hence, this condition has to be
verified a priori.

It is worth noting that the elastic model is more general than the classical Liu and
Layland’s task model, so it does not prevent a user from defining hard real-time tasks.
In fact, a task having Timax

= Ti0 is equivalent to a hard real-time task with fixed
period, independently of its elastic coefficient. A task with E i = 0 can arbitrarily vary
its period within its specified range, but it cannot be varied by the system during load
reconfigurations.

To understand how an elastic guarantee is performed in this model, it is convenient to
compare an elastic task τi with a linear spring Si characterized by a rigidity coefficient
ki, a nominal length xi0 , and a minimum length ximin

. In the following, xi will denote
the actual length of spring Si, which is constrained to be greater than or equal to x imin

.

In this comparison, the length xi of the spring is equivalent to the task’s utilization
factor Ui = Ci/Ti, and the rigidity coefficient ki is equivalent to the inverse of the
task’s elasticity (ki = 1/Ei). Hence, a set of n periodic tasks with total utilization
factor Up =

∑n
i=1 Ui can be viewed as a sequence of n springs with total length

L =
∑n

i=1 xi.

In the linear spring system, this is equivalent to compressing the springs so that the
new total length Ld is less than or equal to a given maximum length Lmax. More
formally, in the spring system the problem can be stated as follows.

Given a set of n springs with known rigidity and length constraints, if the
total length L0 =

∑n
i=1 xi0 > Lmax, find a set of new lengths xi such that

xi ≥ ximin
and

∑n
i=1 xi = Ld, where Ld is any arbitrary desired length

such that Ld < Lmax.

336 Chapter 9

(a)

(b)

dL Lmax L0

Lmax L0

10x 20x 30x 40x

2x 3x 4x1x

1k 2k 3k 4k

3k 4kk 21k

F

L

L

Figure 9.27 A linear spring system: (a) the total length is L0 when springs are uncom-
pressed; (b) the total length is Ld < L0 when springs are compressed by a force F .

For the sake of clarity, we first solve the problem for a spring system without length
constraints (i.e., ximin

= 0), then we show how the solution can be modified by
introducing length constraints, and finally we show how the solution can be adapted
to the case of a task set.

SPRINGS WITH NO LENGTH CONSTRAINTS

Consider a set Γ of n springs with nominal length xi0 and rigidity coefficient ki po-
sitioned one after the other, as depicted in Figure 9.27. Let L 0 be the total length of
the array; that is, the sum of the nominal lengths: L0 =

∑n
i=1 xi0 . If the array is

compressed so that its total length is equal to a desired length Ld (0 < Ld < L0), the
first problem we want to solve is to find the new length x i of each spring, assuming
that for all i, 0 < xi < xi0 (i.e., ximin

= 0).

Being Ld the total length of the compressed array of springs, we have

Ld =

n
∑

i=1

xi. (9.28)

If F is the force that keeps a spring in its compressed state, then for the equilibrium of
the system, it must be

∀i F = ki(xi0 − xi),

from which we derive

∀i xi = xi0 −
F

ki
. (9.29)

Handling Overload Conditions 337

By summing equations (9.29) we have

Ld = L0 − F
n
∑

i=1

1

ki
.

Thus, force F can be expressed as

F = Kp(L0 − Ld), (9.30)

where

Kp =
1

∑n
i=1

1
ki

. (9.31)

Substituting expression (9.30) into Equation (9.29) we finally achieve

∀i xi = xi0 − (L0 − Ld)
Kp

ki
. (9.32)

Equation (9.32) allows us to compute how each spring has to be compressed in order
to have a desired total length Ld.

For a set of elastic tasks, Equation (9.32) can be translated as follows:

∀i Ui = Ui0 − (U0 − Ud)
Ei

E0
. (9.33)

where Ei = 1/ki and E0 =
∑n

i=1 Ei.

INTRODUCING LENGTH CONSTRAINTS

If each spring has a length constraint, in the sense that its length cannot be less than a
minimum value ximin

, then the problem of finding the values x i requires an iterative
solution. In fact, if during compression one or more springs reach their minimum
length, the additional compression force will only deform the remaining springs. Such
a situation is depicted in Figure 9.28.

Thus, at each instant, the set Γ can be divided into two subsets: a set Γf of fixed springs
having minimum length, and a set Γv of variable springs that can still be compressed.
Applying Equations (9.32) to the set Γv of variable springs, we have

∀Si ∈ Γv xi = xi0 − (Lv0
− Ld + Lf)

Kv

ki
(9.34)

where
Lv0

=
∑

Si∈Γv

xi0 (9.35)

338 Chapter 9

(a)

(b)

L0

x 40x 30x 20x 10

x 1−min x 3−min x 4−minx 2−min

L0Ld Lmax

x 1 x 2 x 4x 3

L

L

F

Figure 9.28 Springs with minimum length constraints (a); during compression, spring S2
reaches its minimum length and cannot be compressed any further (b).

Lf =
∑

Si∈Γf

ximin
(9.36)

Kv =
1

∑

Si∈Γv

1
ki

. (9.37)

Whenever there exists some spring for which Equation (9.34) gives x i < ximin
, the

length of that spring has to be fixed at its minimum value, sets Γf and Γv must be
updated, and Equations (9.34), (9.35), (9.36) and (9.37) recomputed for the new set
Γv. If there is a feasible solution, that is, if Ld ≥ Lmin =

∑n
i=1 ximin

, the iterative
process ends when each value computed by Equations (9.34) is greater than or equal
to its corresponding minimum ximin

.

COMPRESSING TASKS’ UTILIZATIONS

When dealing with a set of elastic tasks, Equations (9.34), (9.35), (9.36) and (9.37)
can be rewritten by substituting all length parameters with the corresponding utiliza-
tion factors, and the rigidity coefficients ki and Kv with the corresponding elastic
coefficients Ei and Ev . Similarly, at each instant, the set Γ can be divided into two
subsets: a set Γf of fixed tasks having minimum utilization, and a set Γv of variable
tasks that can still be compressed. Let Ui0 = Ci/Ti0 be the nominal utilization of task
τi, U0 =

∑n
i=1 Ui0 be the nominal utilization of the task set, Uv0

be the sum of the
nominal utilizations of tasks in Γv, and Uf be the total utilization factor of tasks in Γf .
Then, to achieve a desired utilization Ud < U0 each task has to be compressed up to

Handling Overload Conditions 339

the following utilization:

∀τi ∈ Γv Ui = Ui0 − (Uv0
− Ud + Uf)

Ei

Ev
(9.38)

where
Uv0

=
∑

τi∈Γv

Ui0 (9.39)

Uf =
∑

τi∈Γf

Uimin
(9.40)

Ev =
∑

τi∈Γv

Ei. (9.41)

If there are tasks for which Ui < Uimin
, then the period of those tasks has to be fixed

at its maximum value Timax
(so that Ui = Uimin

), sets Γf and Γv must be updated
(hence, Uf and Ev recomputed), and Equation (9.38) applied again to the tasks in Γ v .
If there is a feasible solution, that is, if the desired utilization Ud is greater than or
equal to the minimum possible utilization Umin =

∑n
i=1

Ci

Timax
, the iterative process

ends when each value computed by Equation (9.38) is greater than or equal to its
corresponding minimum Uimin

. The algorithm2 for compressing a set Γ of n elastic
tasks up to a desired utilization Ud is shown in Figure 9.29.

DECOMPRESSION

All tasks’ utilizations that have been compressed to cope with an overload situation
can return toward their nominal values when the overload is over. Let Γ c be the subset
of compressed tasks (that is, the set of tasks with Ti > Ti0), let Γa be the set of
remaining tasks in Γ (that is, the set of tasks with Ti = Ti0), and let Ud be the current
processor utilization of Γ. Whenever a task in Γa voluntarily increases its period, all
tasks in Γc can expand their utilizations according to their elastic coefficients, so that
the processor utilization is kept at the value of Ud.

Now, let Uc be the total utilization of Γc, let Ua be the total utilization of Γa after
some task has increased its period, and let Uc0

be the total utilization of tasks in Γc at
their nominal periods. It can easily be seen that if Uc0

+ Ua ≤ Ulub, all tasks in Γc

can return to their nominal periods. On the other hand, if U c0
+ Ua > Ulub, then the

release operation of the tasks in Γc can be viewed as a compression, where Γf = Γa

and Γv = Γc. Hence, it can still be performed by using Equations (9.38), (9.40) and
(9.41) and the algorithm presented in Figure 9.29.

2The actual implementation of the algorithm contains more checks on tasks’ variables, which are not
shown here in order to simplify its description.

340 Chapter 9

Algorithm: Elastic compression(Γ, Ud)
Input: A task set Γ and a desired utilization Ud < 1
Output: A task set with modified periods such that Up = Ud

begin

(1) Umin :=
∑n

i=1 Ci/Timax
;

(2) if (Ud < Umin) return(INFEASIBLE);
(3) for (i := 1 to n) Ui0 := Ci/Ti0 ;

(4) do

(5) Uf := 0; Uv0
:= 0; Ev := 0;

(6) for (i := 1 to n) do

(7) if ((Ei == 0) or (Ti == Timax
)) then

(8) Uf := Uf + Uimin
;

(9) else

(10) Ev := Ev + Ei;
(11) Uv0

:= Uv0
+ Ui0 ;

(12) end

(13) end

(14) ok := 1;
(15) for (each τi ∈ Γv) do

(16) if ((Ei > 0) and (Ti < Timax
)) then

(17) Ui := Ui0 − (Uv0
− Ud + Uf)Ei/Ev;

(18) Ti := Ci/Ui;
(19) if (Ti > Timax

) then

(20) Ti := Timax
;

(21) ok := 0;
(22) end

(23) end

(24) end

(25) while (ok == 0);
(26) return(FEASIBLE);

end

Figure 9.29 Algorithm for compressing a set of elastic tasks.

Handling Overload Conditions 341

9.4.3 IMPLEMENTATION ISSUES

The elastic compression algorithm can be efficiently implemented on top of a real-
time kernel as a routine (elastic manager) that is activated every time a new task is
created, terminated, or there is a request for a period change. When activated, the
elastic manager computes the new periods according to the compression algorithm
and modifies them atomically.

To avoid any deadline miss during the transition phase, it is crucial to ensure that all
the periods are modified at opportune time instants, according to the following rule
[BLCA02]:

The period of a task τi can be increased at any time, but can only be reduced at
the next job activation.

Figure 9.30 shows an example in which τ1 misses its deadline when its period is
reduced at time t = 15 (i.e., before its next activation time (t = 20). Note that
the task set utilization is Up = 29/30 before compression, and U ′

p = 28/30 after
compression. This means that although the system is schedulable by EDF in both
steady state conditions, some deadline can be missed if a period is reduced too early.

τ 1

τ 2

 0 10 20

 0 6 12 18

15

 3 9 15

t = 14

Figure 9.30 A task can miss its deadline if a period is reduced at an arbitrary time instant.

An earlier instant at which a period can be safely reduced without causing any deadline
miss in the transition phase has been computed by Buttazzo et al. [BLCA02] and later
improved by Guangming [Gua09].

342 Chapter 9

PERIOD RESCALING

If the elastic coefficients are set equal to task nominal utilizations, elastic compression
has the effect of a simple rescaling, where all the periods are increased by the same
percentage. In order to work correctly, however, period rescaling must be uniformly
applied to all the tasks, without restrictions on the maximum period. This means
having Uf = 0 and Uv0

= U0. Under this assumption, by setting Ei = Ui0 , Equation
(9.38) becomes:

∀i Ui = Ui0 − (U0 − Ud)
Ui0

U0
=

Ui0

U0
[U0 − (U0 − Ud)] =

Ui0

U0
Ud

from which we have

Ti = Ti0

U0

Ud
. (9.42)

This means that in overload situations (U0 > 1) the compression algorithm causes all
task periods to be increased by a common scale factor

η =
U0

Ud
.

Note that after compression is performed, the total processor utilization becomes

U =
n
∑

i=1

Ci

ηTi0

=
1

η
U0 =

Ud

U0
U0 = Ud

as desired.

If a maximum period needs to be defined for some task, an online guarantee test can
easily be performed before compression to check whether all the new periods are less
than or equal to the maximum value. This can be done in O(n) by testing whether

∀i = 1, . . . , n ηTi0 ≤ T max
i .

By deciding to apply period rescaling, we lose the freedom of choosing the elastic
coefficients, since they must be set equal to task nominal utilizations. However, this
technique has the advantage of leaving the task periods ordered as in the nominal
configuration, which simplifies the compression algorithm in the presence of resource
constraints and enables its usage in fixed priority systems, where priorities are typi-
cally assigned based on periods.

Handling Overload Conditions 343

CONCLUDING REMARKS

The elastic model offers a flexible way to handle overload conditions. In fact, when-
ever a new task cannot be guaranteed by the system, instead of rejecting the task, the
system can try to reduce the utilizations of the other tasks (by increasing their periods
in a controlled fashion) to decrease the total load and accommodate the new request.
As soon as a transient overload condition is over (because a task terminates or vol-
untarily increases its period) all the compressed tasks may expand up to their original
utilization, eventually recovering their nominal periods.

The major advantage of the elastic method is that the policy for selecting a solution is
implicitly encoded in the elastic coefficients provided by the user (e.g., based on task
importance). Each task is varied based on its elastic status and a feasible configuration
is found, if one exists. This is very useful for supporting both multimedia systems and
control applications, in which the execution rates of some computational activities
have to be dynamically tuned as a function of the current system state. Furthermore,
the elastic mechanism can easily be implemented on top of classical real-time kernels,
and can be used under fixed or dynamic priority scheduling algorithms.

It is worth observing that the elastic approach is not limited to task scheduling. Rather,
it represents a general resource allocation methodology that can be applied whenever
a resource has to be allocated to objects whose constraints allow a certain degree of
flexibility. For example, in a distributed system, dynamic changes in node transmis-
sion rates over the network could be efficiently handled by assigning each channel
an elastic bandwidth, which could be tuned based on the actual network traffic. An
application of the elastic model to the network has been proposed by Pedreiras et al.
[PGBA02].

Another interesting application of the elastic approach is to automatically adapt task
rates to the current load, without specifying worst-case execution times. If the system
is able to monitor the actual execution time of each job, such data can be used to
compute the actual processor utilization. If this is less than one, task rates can be
increased according to elastic coefficients to fully utilize the processor. On the other
hand, if the actual processor utilization is a little greater than one and some deadline
misses are detected, task rates can be reduced to bring the processor utilization to a
desired safe value.

The elastic model has also been extended to deal with resource constraints [BLCA02],
thus allowing tasks to interact through shared memory buffers. In order to estimate
maximum blocking times due to mutual exclusion and analyze task schedulability,
critical sections are assumed to be accessed through the Stack Resource Policy [Bak91].

344 Chapter 9

9.4.4 SERVICE ADAPTATION

A third method for coping with a permanent overload condition is to reduce the load
by decreasing the task computation times. This can be done only if the tasks have been
originally designed to trade performance with computational requirements. When
tasks use some incremental algorithm to produce approximated results, the precision
of results is related to the number of iterations, and thus with the computation time.
In this case, an overload condition can be handled by reducing the quality of results,
aborting the remaining computation if the quality of the current results is acceptable.

The concept of imprecise and approximate computation has emerged as a new ap-
proach to increasing flexibility in dynamic scheduling by trading computation accu-
racy with timing requirements. If processing time is not enough to produce high-
quality results within the deadlines, there could be enough time for producing ap-
proximate results with a lower quality. This concept has been formalized by many
authors [LNL87, LLN87, LLS+91, SLC91, LSL+94, Nat95] and specific techniques
have been developed for designing programs that can produce partial results.

In a real-time system that supports imprecise computation, every task τ i is decom-
posed into a mandatory subtask Mi and an optional subtask Oi. The mandatory sub-
task is the portion of the computation that must be done in order to produce a result
of acceptable quality, whereas the optional subtask refines this result [SLCG89]. Both
subtasks have the same arrival time ai and the same deadline di as the original task τi;
however, Oi becomes ready for execution when M i is completed. If Ci is the worst-
case computation time associated with the task, subtasks Mi and Oi have computation
times mi and oi, such that mi + oi = Ci. In order to guarantee a minimum level
of performance, Mi must be completed within its deadline, whereas Oi can be left
incomplete, if necessary, at the expense of the quality of the result produced by the
task.

It is worth noting that the task model used in traditional real-time systems is a special
case of the one adopted for imprecise computation. In fact, a hard task corresponds to
a task with no optional part (oi = 0), whereas a soft task is equivalent to a task with
no mandatory part (mi = 0).

In systems that support imprecise computation, the error ǫ i in the result produced by
τi (or simply the error of τi) is defined as the length of the portion of O i discarded in
the schedule. If σi is the total processor time assigned to Oi by the scheduler, the error
of task τi is equal to

ǫi = oi − σi.

Handling Overload Conditions 345

The average error ǫ on the task set is defined as

ǫ =

n
∑

i=1

wiǫi,

where wi is the relative importance of τi in the task set. An error ǫi > 0 means that a
portion of subtask Oi has been discarded in the schedule at the expense of the quality
of the result produced by task τi, but for the benefit of other mandatory subtasks that
can complete within their deadlines.

In this model, a schedule is said to be feasible if every mandatory subtask M i is com-
pleted within its deadline. A schedule is said to be precise if the average error ǫ on
the task set is zero. In a precise schedule, all mandatory and optional subtasks are
completed within their deadlines.

As an illustrative example, let us consider a set of jobs {J1, . . . , Jn} shown in Fig-
ure 9.31a. Note that this task set cannot be precisely scheduled; however, a feasible
schedule with an average error of ǫ = 4 can be found, and it is shown in Figure 9.31b.
In fact, all mandatory subtasks finish within their deadlines, whereas not all optional
subtasks are able to complete. In particular, a time unit of execution is subtracted from
O1, two units from O3, and one unit from O5. Hence, assuming that all tasks have an
importance value equal to one (wi = 1), the average error on the task set is ǫ = 4.

For a set of periodic tasks, the problem of deciding the best level of quality com-
patible with a given load condition can be solved by associating each optional part
of a task a reward function Ri(σi), which indicates the reward accrued by the task
when it receives σi units of service beyond its mandatory portion. This problem has
been addressed by Aydin et al. [AMMA01], who presented an optimal algorithm that
maximizes the weighted average of the rewards over the task set.

Note that in the absence of a reward function, the problem can easily be solved by
using a compression algorithm like the elastic approach. In fact, once, the new task
utilizations U ′

i are computed, the new computation times C ′
i that lead to a given desired

load can easily be computed from the periods as

C′
i = TiU

′
i .

Finally, if an algorithm cannot be executed in an incremental fashion or it cannot be
aborted at any time, a task can be provided with multiple versions, each characterized
by a different quality of performance and execution time. Then, the value C ′

i can be
used to select the task version having the computation time closer to, but smaller than
C′

i .

346 Chapter 9

t

2

15

10

7

6

12

4

0

6

3

(b)

20

2

20

1

10 12 14 16 18

1J

6

J 2

J 4

J

82

1

J

t

t

t

J 5

J

J

4

2

J 3

J 4

0

5

a

1

t

4 2 2

4 3

5 2

3

8 5 3

id C m oi i i

3

i

(a)

Figure 9.31 An example of an imprecise schedule.

Handling Overload Conditions 347

Exercises

9.1 For the set of two aperiodic jobs reported in the table, compute the instanta-
neous load for all instants in [0,8].

ri Ci Di

J1 3 3 5
J2 0 5 10

9.2 Verify the schedulability under EDF of the set of skippable tasks illustrated in
the table:

Ci Ti Si

τ1 2 5 ∞
τ2 2 6 4
τ3 4 8 5

9.3 A resource reservation mechanism achieves temporal isolation by providing
service using the following periodic time partition, in every window of 10 units:
{[0,2], [5,6], [8,9]}. This means that the service is only provided in the three
intervals indicated in the set and repeats every 10 units. Illustrate the resulting
supply function Z(t) and compute the (α, ∆) parameters of the corresponding
bounded delay function.

9.4 Consider the set of elastic tasks illustrated in the table, to be scheduled by EDF:

Ci T min
i T max

i Ei

τ1 9 15 30 1
τ2 16 20 40 3

Since the task set is not feasible with the minimum periods, compute the new
periods T ′

i that make the task set feasible with a total utilization Ud = 1.

9.5 Considering the same periodic task set of the previous exercise, compute the
new periods T ′

i resulting by applying a period rescaling (hence, not using the
elastic coefficients).

10
KERNEL DESIGN ISSUES

In this chapter, we present some basic issues that should be considered during the
design and the development of a hard real-time kernel for critical control applica-
tions. For educational purposes, we illustrate the structure and the main components
of a small real-time kernel, called DICK (DIdactic C Kernel), mostly written in C
language, which is able to handle periodic and aperiodic tasks with explicit time con-
straints. The problem of time predictable intertask communication is also discussed,
and a particular communication mechanism for exchanging state messages among pe-
riodic tasks is illustrated. Finally, we show how the runtime overhead of the kernel
can be evaluated and taken into account in the schedulability analysis.

10.1 STRUCTURE OF A REAL-TIME KERNEL

A kernel represents the innermost part of any operating system that is in direct con-
nection with the hardware of the physical machine. A kernel usually provides the
following basic activities:

Process management,

Interrupt handling, and

Process synchronization.

Process management is the primary service that an operating system has to provide.
It includes various supporting functions, such as process creation and termination, job
scheduling, dispatching, context switching, and other related activities.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

349

10

 Springer Science+Business Media, LLC 2011©

350 Chapter 10

The objective of the interrupt handling mechanism is to provide service to the inter-
rupt requests that may be generated by any peripheral device, such as the keyboard,
serial ports, analog-to-digital converters, or any specific sensor interface. The service
provided by the kernel to an interrupt request consists in the execution of a dedicated
routine (driver) that will transfer data from the device to the main memory (or vice
versa). In classical operating systems, application tasks can always be preempted by
drivers, at any time. In real-time systems, however, this approach may introduce un-
predictable delays in the execution of critical tasks, causing some hard deadline to be
missed. For this reason, in a real-time system, the interrupt handling mechanism has
to be integrated with the scheduling mechanism, so that a driver can be scheduled as
any other task in the system and a guarantee of feasibility can be achieved even in the
presence of interrupt requests.

Another important role of the kernel is to provide a basic mechanism for supporting
process synchronization and communication. In classical operating systems this is
done by semaphores, which represent an efficient solution to the problem of synchro-
nization, as well as to the one of mutual exclusion. As discussed in Chapter 7, however,
semaphores are prone to priority inversion, which introduces unbounded blocking on
tasks’ execution and prevents a guarantee for hard real-time tasks. As a consequence,
in order to achieve predictability, a real-time kernel has to provide special types of
semaphores that support a resource access protocol (such as Priority Inheritance, Pri-
ority Ceiling, or Stack Resource Policy) for avoiding unbounded priority inversion.
Other kernel activities involve the initialization of internal data structures (such as
queues, tables, task control blocks, global variables, semaphores, and so on) and spe-
cific services to higher levels of the operating system.

In the rest of this chapter, we describe the structure of a small real-time kernel, called
DICK (DIdactic C Kernel). Rather than showing all implementation details, we
focus on the main features and mechanisms that are necessary to handle tasks with
explicit time constraints.

DICK is designed under the assumption that all tasks are resident in main memory
when it receives control of the processor. This is not a restrictive assumption, as this
is the typical solution adopted in kernels for real-time embedded applications.

The various functions developed in DICK are organized according to the hierarchical
structure illustrated in Figure 10.1. Those low-level activities that directly interact
with the physical machine are realized in assembly language. Nevertheless, for the
sake of clarity, all kernel activities are described in pseudo C.

The structure of DICK can be logically divided into four layers:

Kernel Design Issues 351

termination

list management

Processor

Service layer

(assembly code)

Machine layer

List management

system calls

dispatchingscheduling

mechanisms

creation

kernel

services
utility

switch
context

synchronization
communication

handling
interrupt

handling
timer

management

Figure 10.1 Hierarchical structure of DICK.

Machine layer. This layer directly interacts with the hardware of the physical
machine; hence, it is written in assembly language. The primitives realized at
this level mainly deal with activities such as context switch, interrupt handling,
and timer handling. These primitives are not visible at the user level.

List management layer. To keep track of the status of the various tasks, the
kernel has to manage a number of lists, where tasks having the same state are
enqueued. This layer provides the basic primitives for inserting and removing a
task to and from a list.

Processor management layer. The mechanisms developed in this layer only
concerns scheduling and dispatching operations.

Service layer. This layer provides all services visible at the user level as a set of
system calls. Typical services concern task creation, task abortion, suspension of
periodic instances, activation and suspension of aperiodic instances, and system
inquiry operations.

10.2 PROCESS STATES

In this section, we describe the possible states in which a task can be during its execu-
tion and how a transition from a state to another can be performed.

In any kernel that supports the execution of concurrent activities on a single processor,
where semaphores are used for synchronization and mutual exclusion, there are at
least three states in which a task can enter:

352 Chapter 10

RUN

TIMER

terminateactivate
dispatch

preemption

resume

signal wait

IDLE

WAIT

READY

end_cycle

Figure 10.2 Minimum state transition diagram of a real-time kernel.

Running. A task enters this state as it starts executing on the processor.

Ready. This is the state of those tasks that are ready to execute but cannot be
executed because the processor is assigned to another task. All tasks that are in
this condition are maintained in a queue, called the ready queue.

Waiting. A task enters this state when it executes a synchronization primitive to
wait for an event. When using semaphores, this operation is a wait primitive on a
locked semaphore. In this case, the task is inserted in a queue associated with the
semaphore. The task at the head of this queue is resumed when the semaphore is
unlocked by another task that executed a signal on that semaphore. When a task
is resumed, it is inserted in the ready queue.

In a real-time kernel that supports the execution of periodic tasks, another state must
be considered, the IDLE state. A periodic job enters this state when it completes its
execution and has to wait for the beginning of the next period. In order to be awakened
by the timer, a periodic job must notify the end of its cycle by executing a specific
system call, end cycle, which puts the job in the IDLE state and assigns the processor
to another ready job. At the right time, each periodic job in the IDLE state will be
awakened by the kernel and inserted in the ready queue. This operation is carried out
by a routine activated by a timer, which verifies, at each tick, whether some job has to
be awakened. The state transition diagram relative to the four states described above
is shown in Figure 10.2.

Additional states can be introduced by other kernel services. For example, a delay

primitive, which suspends a job for a given interval of time, puts the job in a sleeping
state (DELAY), until it is awakened by the timer after the elapsed interval.

Kernel Design Issues 353

Another state, found in many operating systems, is the RECEIVE state, introduced by
the classical message passing mechanism. A job enters this state when it executes a
receive primitive on an empty channel. The job exits this state when a send primitive
is executed by another job on the same channel.

In real-time systems that support dynamic creation and termination of hard periodic
tasks, a new state needs to be introduced for preserving the bandwidth assigned to the
guaranteed tasks. This problem arises when a periodic task τk is aborted (for example,
with a kill operation), and its utilization factor Uk cannot be immediately subtracted
from the total processor load, since the task could already have delayed the execution
of other tasks. In order to keep the guarantee test consistent, the utilization factor U k

can be subtracted only at the end of the current period of τ k.

For example, consider the set of three periodic tasks illustrated in Figure 10.3, which
are scheduled by the Rate-Monotonic algorithm. Computation times are 1, 4, and 4,
and periods are 4, 8, and 16, respectively. Since periods are harmonic and the total
utilization factor is U = 1, the task set is schedulable by RM (remember that U lub = 1
when periods are harmonic).

1

0 4 62 8 161412

τ

τ 2

τ 3

10

Figure 10.3 Feasible schedule of three periodic tasks under RM.

Now suppose that task τ2 (with utilization factor U2 = 0.5) is aborted at time t = 4
and that, at the same time, a new task τnew , having the same characteristics of τ2,
is created. If the total load of the processor is decremented by 0.5 at time t = 4,
task τnew would be guaranteed, having the same utilization factor as τ 2. However, as
shown in Figure 10.4, τ3 would miss its deadline. This happens because the effects of
τ2 execution on the schedule protract until the end of each period.

As a consequence, to keep the guarantee test consistent, the utilization factor of an
aborted task can be subtracted from the total load only at the end of the current period.
In the interval of time between the abort operation and the end of its period, τ 2 is

354 Chapter 10

1

newτ

killed2τ

3τ

22

τ

10 12 14 16 18 242082 640

2τ

time overflow

Figure 10.4 The effects of τ2 do not cancel at the time it is aborted, but protract till the
end of its period.

1

killed2τ

newτ

3τ

24

τ

10 12 14 16 18 20 2282 640

2τ
zombie

Figure 10.5 The new task set is schedulable when τnew is activated at the end of the
period of τ2.

said to be in a ZOMBIE state, since it does not exist in the system, but it continues to
occupy processor bandwidth. Figure 10.5 shows that the task set is schedulable when
the activation of τnew is delayed until the end of the current period of τ2.

A more complete state transition diagram including the states described above (DE-
LAY, RECEIVE, and ZOMBIE) is illustrated in Figure 10.6. Note that at the end of its
last period, a periodic task (aborted or terminated) leaves the system completely and
all its data structures are deallocated.

In order to simplify the description of DICK, the rest of this chapter only describes the
essential functions of the kernel. In particular, the message passing mechanism and
the delay primitive are not considered here; as a consequence, the states RECEIVE

Kernel Design Issues 355

send

dispatching

FREE

RUN

RECEIVE

delay

TIMER

resume

receive

terminateactivate

signal wait

READY

preemption

IDLE

DELAY

WAIT

ZOMBIE

end_cycle

Figure 10.6 State transition diagram including RECEIVE, DELAY, and ZOMBIE states.

and DELAY are not present. However, these services can easily be developed on top
of the kernel, as an additional layer of the operating system.

In DICK, activation and suspension of aperiodic tasks are handled by two primitives,
activate and sleep, which introduce another state, called SLEEP. An aperiodic task
enters the SLEEP state by executing the sleep primitive. A task exits the SLEEP state
and goes to the READY state only when an explicit activation is performed by another
task.

Task creation and activation are separated in DICK. The creation primitive (create)
allocates and initializes all data structures needed by the kernel to handle the task;
however, the task is not inserted in the ready queue, but it is left in the SLEEP state,
until an explicit activation is performed. This is mainly done for reducing the runtime
overhead of the activation primitive. The state transition diagram used in DICK is
illustrated in Figure 10.7.

356 Chapter 10

READY

FREE

RUN

TIMER

terminate

signal wait

IDLE

preemption

WAIT

create
SLEEP

activate
sleep

resume

dispatching

ZOMBIE

end_cycle

Figure 10.7 State transition diagram in DICK.

10.3 DATA STRUCTURES

In any operating system, the information about a task are stored in a data structure, the
Task Control Block (TCB). In particular, a TCB contains all the parameters specified
by the programmer at creation time, plus other temporary information necessary to the
kernel for managing the task. In a real-time system, the typical fields of a TCB are
shown in Figure 10.8 and contain the following information:

An identifier; that is, a character string used by the system to refer the task in
messages to the user;

The memory address corresponding to the first instruction of the task;

The task type (periodic, aperiodic, or sporadic);

The task criticality (hard, soft, or non-real-time);

The priority (or value), which represents the importance of the task with respect
to the other tasks of the application;

The current state (ready, running, idle, waiting, and so on);

The worst-case execution time;

Kernel Design Issues 357

The task period;

The relative deadline, specified by the user;

The absolute deadline, computed by the kernel at the arrival time;

The task utilization factor (only for periodic tasks);

A pointer to the process stack, where the context is stored;

A pointer to a directed acyclic graph, if there are precedence constraints;

A pointer to a list of shared resources, if a resource access protocol is provided
by the kernel.

priority

precedence pointer

utilization factor

absolute deadline

task address

task type

task identifier

context pointer

relative deadline

period

computation time

criticalness

state

resource pointer

Task Control Block

pointer to the next TCB

Figure 10.8 Structure of the Task Control Block.

In addition, other fields are necessary for specific features of the kernel. For exam-
ple, if aperiodic tasks are handled by one or more server mechanisms, a field can be

358 Chapter 10

0

6

5

2

1

0

4

3

ready

vdes

7

Figure 10.9 Implementation of the ready queue as a list of Task Control Blocks.

used to store the identifier of the server associated with the task, or, if the scheduling
mechanism supports tolerant deadlines, a field can store the tolerance value for that
task.

Finally, since a TCB has to be inserted in the lists handled by the kernel, an additional
field has to be reserved for the pointer to the next element of the list.

In DICK, a TCB is an element of the vdes[MAXPROC] array, whose size is equal to
the maximum number of tasks handled by the kernel. Using this approach, each TCB
can be identified by a unique index, corresponding to its position in the vdes array.
Hence, any queue of tasks can be accessed by an integer variable containing the index
of the TCB at the head of the queue. Figure 10.9 shows a possible configuration of the
ready queue within the vdes array.

Similarly, the information concerning a semaphore is stored in a Semaphore Control
Block (SCB), which contains at least the following three fields (see also Figure 10.10):

A counter, which represents the value of the semaphore;

A queue, for enqueueing the tasks blocked on the semaphore;

A pointer to the next SCB, to form a list of free semaphores.

Kernel Design Issues 359

Semaphore Control Block

counter

semaphore queue

pointer to the next SCB

Figure 10.10 Semaphore Control Block.

Each SCB is an element of the vsem[MAXSEM] array, whose size is equal to the maxi-
mum number of semaphores handled by the kernel. According to this approach, tasks,
semaphores, and queues can be accessed by an integer number that represents the
index of the corresponding control block. For the sake of clarity, however, tasks,
semaphores and queues are defined as three different types.

typedef int queue; /* head index */

typedef int sem; /* semaphore index */

typedef int proc; /* process index */

typedef int cab; /* cab buffer index */

typedef char* pointer; /* memory pointer */

360 Chapter 10

struct tcb {
char name[MAXLEN+1]; /* task name */

proc (*addr)(); /* first instruction address */

int type; /* task type */

int state; /* task state */

long dline; /* absolute deadline */

int period; /* task period */

int prt; /* task priority */

int wcet; /* worst-case execution time */

float util; /* task utilization factor */

int *context; /* pointer to the context */

proc next; /* pointer to the next tcb */

proc prev; /* pointer to previous tcb */

};

struct scb {
int count; /* semaphore counter */

queue qsem; /* semaphore queue */

sem next; /* pointer to the next */

};

struct tcb vdes[MAXPROC]; /* tcb array */

struct scb vsem[MAXSEM]; /* scb array */

proc pexe; /* task in execution */

queue ready; /* ready queue */

queue idle; /* idle queue */

queue zombie; /* zombie queue */

queue freetcb; /* queue of free tcb’s */

queue freesem; /* queue of free semaphores */

float util fact; /* utilization factor */

Kernel Design Issues 361

tick lifetime

1 ms 50 days
5 ms 8 months
10 ms 16 months
50 ms 7 years

Table 10.1 System lifetime for some typical tick values.

10.4 MISCELLANEOUS

10.4.1 TIME MANAGEMENT

To generate a time reference, a timer circuit is programmed to interrupt the processor
at a fixed rate, and the internal system time is represented by an integer variable, which
is reset at system initialization and is incremented at each timer interrupt. The interval
of time with which the timer is programmed to interrupt defines the unit of time in the
system; that is, the minimum interval of time handled by the kernel (time resolution).
The unit of time in the system is also called a system tick.

In DICK, the system time is represented by a long integer variable, called sys clock,
whereas the value of the tick is stored in a float variable called time unit. At any
time, sys clock contains the number of interrupts generated by the timer since sys-
tem initialization.

unsigned long sys clock; /* system time */

float time unit; /* unit of time (ms) */

If Q denotes the system tick and n is the value stored in sys clock, the actual time
elapsed since system initialization is t = nQ. The maximum time that can be rep-
resented in the kernel (the system lifetime) depends on the value of the system tick.
Considering that sys clock is an unsigned long represented on 32 bits, Table 10.1
shows the values of the system lifetime for some tick values.

The value to be assigned to the tick depends on the specific application. In general,
small values of the tick improve system responsiveness and allow handling periodic
activities with high activation rates. On the other hand, a very small tick causes a large
runtime overhead due to the timer handling routine and reduces the system lifetime.

362 Chapter 10

Typical values used for the time resolution can vary from 1 to 50 milliseconds. To
have a strict control on task deadlines and periodic activations, all time parameters
specified on the tasks should be multiple of the system tick. If the tick can be selected
by the user, the best possible tick value is equal to the greatest common divisor of all
the task periods.

The timer interrupt handling routine has a crucial role in a real-time system. Other than
updating the value of the internal time, it has to check for possible deadline misses
on hard tasks, due to some incorrect prediction on the worst-case execution times.
Other activities that can be carried out by the timer interrupt handling routine concern
lifetime monitoring, activation of periodic tasks that are in idle state, awakening tasks
suspended by a delay primitive, checking for deadlock conditions, and terminating
tasks in zombie state.

In DICK, the timer interrupt handling routine increments the value of the sys clock

variable, checks the system lifetime, checks for possible deadline misses on hard tasks,
awakes idle periodic tasks at the beginning of their next period and, at their deadlines,
deallocates all data structures of the tasks in zombie state. In particular, at each timer
interrupt, the corresponding handling routine

saves the context of the task in execution;

increments the system time;

generates a timing error, if the current time is greater than the system lifetime;

generates a time-overflow error, if the current time is greater than some hard
deadline;

awakens those idle tasks, if any, that have to begin a new period;

calls the scheduler, if at least a task has been awakened;

removes all zombie tasks for which their deadline is expired;

loads the context of the current task; and

returns from interrupt.

The runtime overhead introduced by the execution of the timer routine is proportional
to its interrupt rate. In Section 10.7 we see how this overhead can be evaluated and
taken into account in the schedulability analysis.

Kernel Design Issues 363

t

0

max priority min priority

2550

MAXDLINEMAXDLINE - 255

Figure 10.11 Mapping NRT priorities into deadlines.

10.4.2 TASK CLASSES AND SCHEDULING

ALGORITHM

Real-world control applications usually consist of computational activities having dif-
ferent characteristics. For example, tasks may be periodic, aperiodic, time-driven, and
event-driven and may have different levels of criticality. To simplify the description of
the kernel, only two classes of tasks are considered in DICK:

HARD tasks, having a critical deadline, and

non-real-time (NRT) tasks, having a fixed priority.

HARD tasks can be activated periodically or aperiodically depending on how an in-
stance is terminated. If the instance is terminated with the primitive end cycle, the task
is put in the idle state and automatically activated by the timer at the beginning of its
next period; if the instance is terminated with the primitive end aperiodic, the task is
put in the sleep state, from where it can be resumed only by explicit activation. HARD
tasks are scheduled using the Earliest Deadline First (EDF) algorithm, whereas NRT
tasks are executed in background based on their priority.

In order to integrate the scheduling of these classes of tasks and avoid the use of two
scheduling queues, priorities of NRT tasks are transformed into deadlines so that they
are always greater than HARD deadlines. The rule for mapping NRT priorities into
deadlines is shown in Figure 10.11 and is such that

dNRT
i = MAXDLINE − PRT LEV + Pi,

where MAXDLINE is the maximum value of the variable sys clock (2 31 − 1),
PRT LEV is the number of priority levels handled by the kernel, and P i is the priority
of the task, in the range [0, PRT LEV-1] (0 being the highest priority). Such a priority
mapping slightly reduces system lifetime but greatly simplifies task management and
queue operations.

364 Chapter 10

10.4.3 GLOBAL CONSTANTS

In order to clarify the description of the source code, a number of global constants
are defined here. Typically, they define the maximum size of the main kernel data
structures, such as the maximum number of processes and semaphores, the maximum
length of a process name, the number of priority levels, the maximum deadline, and so
on. Other global constants encode process classes, states, and error messages. They
are listed below:

#define MAXLEN 12 /* max string length */

#define MAXPROC 32 /* max number of tasks */

#define MAXSEM 32 /* max No of semaphores */

#define MAXDLINE 0x7FFFFFFF /* max deadline */

#define PRT LEV 255 /* priority levels */

#define NIL -1 /* null pointer */

#define TRUE 1

#define FALSE 0

#define LIFETIME MAXDLINE - PRT LEV

/*---*/

/* Task types */

/*---*/

#define HARD 1 /* critical task */

#define NRT 2 /* non real-time task */

/*---*/

/* Task states */

/*---*/

#define FREE 0 /* TCB not allocated */

#define READY 1 /* ready state */

#define EXE 2 /* running state */

#define SLEEP 3 /* sleep state */

#define IDLE 4 /* idle state */

#define WAIT 5 /* wait state */

#define ZOMBIE 6 /* zombie state */

Kernel Design Issues 365

/*---*/

/* Error messages */

/*---*/

#define OK 0 /* no error */

#define TIME OVERFLOW -1 /* missed deadline */

#define TIME EXPIRED -2 /* lifetime reached */

#define NO GUARANTEE -3 /* task not schedulable */

#define NO TCB -4 /* too many tasks */

#define NO SEM -5 /* too many semaphores */

10.4.4 INITIALIZATION

The real-time environment supported by DICK starts when the ini system primitive
is executed within a sequential C program. After this function is executed, the main
program becomes a NRT task in which new concurrent tasks can be created.

The most important activities performed by ini system concern

initializing all queues in the kernel;

setting all interrupt vectors;

preparing the TCB associated with the main process; and

setting the timer period to the system tick.

366 Chapter 10

void ini system(float tick)

{
proc i;

time unit = tick;

<enable the timer to interrupt every time unit>

<initialize the interrupt vector table>

/* initialize the list of free TCBs and semaphores */

for (i=0; i<MAXPROC-1; i++) vdes[i].next = i+1;

vdes[MAXPROC-1].next = NIL;

for (i=0; i<MAXSEM-1; i++) vsem[i].next = i+1;

vsem[MAXSEM-1].next = NIL;

ready = NIL;

idle = NIL;

zombie = NIL;

freetcb = 0;

freesem = 0;

util fact = 0;

<initialize the TCB of the main process>

pexe = <main index>;

}

10.5 KERNEL PRIMITIVES

The structure of DICK is logically divided in a number of hierarchical layers, as il-
lustrated in Figure 10.1. The lowest layer includes all interrupt handling drivers and
the routines for saving and loading a task context. The next layer contains the func-
tions for list manipulation (insertion, extraction, and so on) and the basic mechanisms
for task management (dispatching and scheduling). All kernel services visible from
the user are implemented at a higher level. They concern task creation, activation,
suspension, termination, synchronization, and status inquiry.

Kernel Design Issues 367

10.5.1 LOW-LEVEL PRIMITIVES

Basically, the low-level primitives implement the mechanism for saving and loading
the context of a task; that is, the values of the processor registers.

/*---*/

/* save context -- of the task in execution */

/*---*/

void save context(void)

{
int *pc; /* pointer to context of pexe */

<disable interrupts>

pc = vdes[pexe].context;

pc[0] = <register 0> /* save register 0 */

pc[1] = <register 1> /* save register 1 */

pc[2] = <register 2> /* save register 2 */

...

pc[n] = <register n> /* save register n */

}

368 Chapter 10

/*---*/

/* load context -- of the task to be executed */

/*---*/

void load context(void)

{
int *pc; /* pointer to context of pexe */

pc = vdes[pexe].context;

<register 0> = pc[0]; /* load register 0 */

<register 1> = pc[1]; /* load register 1 */

...

<register n> = pc[n]; /* load register n */

<enable interrupts>

<return from interrupt>

}

10.5.2 LIST MANAGEMENT

Since tasks are scheduled based on EDF, all queues in the kernel are ordered by de-
creasing deadlines. In this way, the task with the earliest deadline can be simply ex-
tracted from the head of a queue, whereas an insertion operation requires in the worst
case a scan of all elements on the list. All lists are implemented with bidirectional
pointers (next and prev). The insert function is called with two parameters: the index
of the task to be inserted and the pointer of the queue. It uses two auxiliary pointers, p
and q, whose meaning is illustrated in Figure 10.12.

Kernel Design Issues 369

head index

lastfirst

NIL

NIL

p

new

q

Figure 10.12 Inserting a TCB in a queue.

/*---*/

/* insert -- a task in a queue based on its deadline */

/*---*/

void insert(proc i, queue *que)

{
long dl; /* deadline of the task to be inserted */

int p; /* pointer to the previous TCB */

int q; /* pointer to the next TCB */

p = NIL;

q = *que;

dl = vdes[i].dline;

/* find the element before the insertion point */

while ((q != NIL) && (dl >= vdes[q].dline)) {
p = q;

q = vdes[q].next;

}
if (p != NIL) vdes[p].next = i;

else *que = i;

if (q != NIL) vdes[q].prev = i;

vdes[i].next = q;

vdes[i].prev = p;

}

370 Chapter 10

head index

lastfirst

NIL

NIL

remove
to

p q

Figure 10.13 Extracting a TCB from a queue.

The major advantage of using bidirectional pointers is in the implementation of the
extraction operation, which can be realized in one step without scanning the whole
queue. Figure 10.13 illustrates the extraction of a generic element, whereas Fig-
ure 10.14 shows the extraction of the element at the head of the queue.

/*---*/

/* extract -- a task from a queue */

/*---*/

proc extract(proc i, queue *que)

{
int p, q; /* auxiliary pointers */

p = vdes[i].prev;

q = vdes[i].next;

if (p == NIL) *que = q; /* first element */

else vdes[p].next = vdes[i].next;

if (q != NIL) vdes[q].prev = vdes[i].prev;

return(i);

}

Kernel Design Issues 371

head index

lastfirst

NIL

NIL

second

q

Figure 10.14 Extracting the TCB at the head of a queue.

/*---*/

/* getfirst -- extracts the task at the head of a queue */

/*---*/

proc getfirst(queue *que)

{
int q; /* pointer to the first element */

q = *que;

if (q == NIL) return(NIL);

*que = vdes[q].next;

vdes[*que].prev = NIL;

return(q);

}

Finally, to simplify the code reading of the next levels, two more functions are defined:
firstdline and empty. The former returns the deadline of the task at the head of the
queue, while the latter returns TRUE if a queue is empty, FALSE otherwise.

372 Chapter 10

/*---*/

/* firstdline -- returns the deadline of the first task */

/*---*/

long firstdline(queue *que)

{
return(vdes[que].dline);

}

/*---*/

/* empty -- returns TRUE if a queue is empty */

/*---*/

int empty(queue *que)

{
if (que == NIL)

return(TRUE);

else

return(FALSE);

}

10.5.3 SCHEDULING MECHANISM

The scheduling mechanism in DICK is realized through the functions schedule and
dispatch. The schedule primitive verifies whether the running task is the one with the
earliest deadline. If so, there is no action, otherwise the running task is inserted in the
ready queue and the first ready task is dispatched. The dispatch primitive just assigns
the processor to the first ready task.

Kernel Design Issues 373

/*---*/

/* schedule -- selects the task with the earliest deadline */

/*---*/

void schedule(void)

{
if (firstdline(ready) < vdes[pexe].dline) {

vdes[pexe].state = READY;

insert(pexe, &ready);

dispatch();

}
}

/*---*/

/* dispatch -- assigns the cpu to the first ready task */

/*---*/

void dispatch(void)

{
pexe = getfirst(&ready);

vdes[pexe].state = RUN;

}

The timer interrupt handling routine is called wake up and performs the activities de-
scribed in Section 10.4.1. In summary, it increments the sys clock variable, checks for
the system lifetime and possible deadline misses, removes those tasks in zombie state
whose deadlines are expired, and, finally, resumes those periodic tasks in idle state at
the beginning of their next period. Note that if at least a task has been resumed, the
scheduler is invoked and a preemption takes place.

374 Chapter 10

/*---*/

/* wake up -- timer interrupt handling routine */

/*---*/

void wake up(void)

{
proc p;

int count = 0;

save context();

sys clock++;

if (sys clock >= LIFETIME) abort(TIME EXPIRED);

if (vdes[pexe].type == HARD)

if (sys clock > vdes[pexe].dline)

abort(TIME OVERFLOW);

while (!empty(zombie) &&

(firstdline(zombie) <= sys clock)) {
p = getfirst(&zombie);

util fact = util fact - vdes[p].util;

vdes[p].state = FREE;

insert(p, &freetcb);

}
while (!empty(idle) && (firstdline(idle) <= sys clock)) {

p = getfirst(&idle);

vdes[p].dline += (long)vdes[p].period;

vdes[p].state = READY;

insert(p, &ready);

count++;

}
if (count > 0) schedule();

load context();

}

Kernel Design Issues 375

10.5.4 TASK MANAGEMENT

It concerns creation, activation, suspension, and termination of tasks. The create prim-
itive allocates and initializes all data structures needed by a task and puts the task in
SLEEP. A guarantee is performed for HARD tasks.

/*---*/

/* create -- creates a task and puts it in sleep state */

/*---*/

proc create(

char name[MAXLEN+1], /* task name */

proc (*addr)(), /* task address */

int type, /* type (HARD, NRT) */

float period, /* period or priority */

float wcet) /* execution time */

{
proc p;

<disable cpu interrupts>

p = getfirst(&freetcb);

if (p == NIL) abort(NO TCB);

if (vdes[p].type == HARD)

if (!guarantee(p)) return(NO GUARANTEE);

vdes[p].name = name;

vdes[p].addr = addr;

vdes[p].type = type;

vdes[p].state = SLEEP;

vdes[p].period = (int)(period / time unit);

vdes[p].wcet = (int)(wcet / time unit);

vdes[p].util = wcet / period;

vdes[p].prt = (int)period;

vdes[p].dline = MAX LONG + (long)(period - PRT LEV);

<initialize process stack>

<enable cpu interrupts>

return(p);

}

376 Chapter 10

/*---*/

/* guarantee -- guarantees the feasibility of a hard task */

/*---*/

int guarantee(proc p)

{
util fact = util fact + vdes[p].util;

if (util fact > 1.0) {
util fact = util fact - vdes[p].util;

return(FALSE);

}
else return(TRUE);

}

The system call activate inserts a task in the ready queue, performing the transition
SLEEP–READY. If the task is HARD, its absolute deadline is set equal to the current
time plus its period. Then the scheduler is invoked to select the task with the earliest
deadline.

/*---*/

/* activate -- inserts a task in the ready queue */

/*---*/

int activate(proc p)

{
save context();

if (vdes[p].type == HARD)

vdes[p].dline = sys clock + (long)vdes[p].period;

vdes[p].state = READY;

insert(p, &ready);

schedule();

load context();

}

Kernel Design Issues 377

The transition RUN–SLEEP is performed by the sleep system call. The running task is
suspended in the sleep state, and the first ready task is dispatched for execution. Note
that this primitive acts on the calling task, which can be periodic or aperiodic. For
example, the sleep primitive can be used at the end of a cycle to terminate an aperiodic
instance.

/*---*/

/* sleep -- suspends itself in a sleep state */

/*---*/

void sleep(void)

{
save context();

vdes[pexe].state = SLEEP;

dispatch();

load context();

}

The primitive for terminating a periodic instance is a bit more complex than its ape-
riodic counterpart, since the kernel has to be informed on the time at which the timer
has to resume the job. This operation is performed by the primitive end cycle, which
puts the running task into the idle queue. Since it is assumed that deadlines are at the
end of the periods, the next activation time of any idle periodic instance coincides with
its current absolute deadline.

In the particular case in which a periodic job finishes exactly at the end of its period,
the job is inserted not in the idle queue but directly in the ready queue, and its deadline
is set to the end of the next period.

378 Chapter 10

/*---*/

/* end cycle -- inserts a task in the idle queue */

/*---*/

void end cycle(void)

{
long dl;

save context();

dl = vdes[pexe].dline;

if (sys clock < dl) {
vdes[pexe].state = IDLE;

insert(pexe, &idle);

}
else {

dl = dl + (long)vdes[pexe].period;

vdes[pexe].dline = dl;

vdes[pexe].state = READY;

insert(pexe, &ready);

}
dispatch();

load context();

}

A typical example of periodic task is shown in the following code:

proc cycle()

{
while (TRUE) {

<periodic code>

end cycle();

}
}

Kernel Design Issues 379

There are two primitives for terminating a process: the first, called end process, di-
rectly operates on the calling task; the other one, called kill, terminates the task passed
as a formal parameter. Note that if the task is HARD, it is not immediately removed
from the system but put in ZOMBIE state. In this case, the complete removal will be
done by the timer routine at the end of the current period:

/*---*/

/* end process -- terminates the running task */

/*---*/

void end process(void)

{
<disable cpu interrupts>

if (vdes[pexe].type == HARD)

insert(pexe, &zombie);

else {
vdes[pexe].state = FREE;

insert(pexe, &freetcb);

}
dispatch();

load context();

}

380 Chapter 10

/*---*/

/* kill -- terminates a task */

/*---*/

void kill(proc p)

{
<disable cpu interrupts>

if (pexe == p) {
end process();

return;

}
if (vdes[p].state == READY) extract(p, &ready);

if (vdes[p].state == IDLE) extract(p, &idle);

if (vdes[p].type == HARD)

insert(p, &zombie);

else {
vdes[p].state = FREE;

insert(p, &freetcb);

}
<enable cpu interrupts>

}

10.5.5 SEMAPHORES

In DICK, synchronization and mutual exclusion are handled by semaphores. Four
primitives are provided to the user to allocate a new semaphore (newsem), deallocate
a semaphore (delsem), wait for an event (wait), and signal an event (signal).

The newsem primitive allocates a free semaphore control block and initializes the
counter field to the value passed as a parameter. For example, s1 = newsem(0) de-
fines a semaphore for synchronization, whereas s2 = newsem(1)defines a semaphore
for mutual exclusion. The delsem primitive just deallocates the semaphore control
block, inserting it in the list of free semaphores.

Kernel Design Issues 381

/*---*/

/* newsem -- allocates and initializes a semaphore */

/*---*/

sem newsem(int n)

{
sem s;

<disable cpu interrupts>

s = freesem; /* first free semaphore index */

if (s == NIL) abort(NO SEM);

freesem = vsem[s].next; /* update the freesem list */

vsem[s].count = n; /* initialize counter */

vsem[s].qsem = NIL; /* initialize sem. queue */

<enable cpu interrupts>

return(s);

}

/*---*/

/* delsem -- deallocates a semaphore */

/*---*/

void delsem(sem s)

{
<disable cpu interrupts>

vsem[s].next = freesem; /* inserts s at the head */

freesem = s; /* of the freesem list */

<enable cpu interrupts>

}

The wait primitive is used by a task to wait for an event associated with a semaphore.
If the semaphore counter is positive, it is decremented, and the task continues its exe-
cution; if the counter is less than or equal to zero, the task is blocked, and it is inserted
in the semaphore queue. In this case, the first ready task is assigned to the processor
by the dispatch primitive.

382 Chapter 10

To ensure the consistency of the kernel data structures, all semaphore system calls
are executed with cpu interrupts disabled. Note that semaphore queues are ordered
by decreasing absolute deadlines, so that, when more tasks are blocked, the first task
awakened will be the one with the earliest deadline.

/*---*/

/* wait -- waits for an event */

/*---*/

void wait(sem s)

{
<disable cpu interrupts>

if (vsem[s].count > 0) vsem[s].count --;

else {
save context();

vdes[pexe].state = WAIT;

insert(pexe, &vsem[s].qsem);

dispatch();

load context();

}
<enable cpu interrupts>

}

The signal primitive is used by a task to signal an event associated with a semaphore.
If no tasks are blocked on that semaphore (that is, if the semaphore queue is empty),
the counter is incremented, and the task continues its execution. If there are blocked
tasks, the task with the earliest deadline is extracted from the semaphore queue and
is inserted in the ready queue. Since a task has been awakened, a context switch
may occur; hence, the context of the running task is saved, a task is selected by the
scheduler and a new context is loaded.

Kernel Design Issues 383

/*---*/

/* signal -- signals an event */

/*---*/

void signal(sem s)

{
proc p;

<disable cpu interrupts>

if (!empty(vsem[s].qsem)) {
p = getfirst(&vsem[s].qsem);

vdes[p].state = READY;

insert(p, &ready);

save context();

schedule();

load context();

}
else vsem[s].count++;

<enable cpu interrupts>

}

It is worth observing that classical semaphores are prone to the priority inversion phe-
nomenon, which introduces unbounded delays during tasks’ execution and prevents
any form of guarantee on hard tasks (this problem is discussed in Chapter 7). As a
consequence, this type of semaphores should be used only by non-real-time tasks, for
which no guarantee is performed. Real-time tasks, instead, should rely on more pre-
dictable mechanisms, based on time-bounded resource access protocols (such as Stack
Resource Policy) or on asynchronous communication buffers. In DICK, the communi-
cation among hard tasks occurs through an asynchronous buffering mechanism, which
is described in Section 10.6.

10.5.6 STATUS INQUIRY

DICK also provides some primitives for inquiring the kernel about internal variables
and task parameters. For example, the following primitives can be used to get the
system time, the state, the deadline, and the period of a desired task.

384 Chapter 10

/*---*/

/* get time -- returns the system time in milliseconds */

/*---*/

float get time(void)

{
return(time unit * sys clock);

}

/*---*/

/* get state -- returns the state of a task */

/*---*/

int get state(proc p)

{
return(vdes[p].state);

}

/*---*/

/* get dline -- returns the deadline of a task */

/*---*/

long get dline(proc p)

{
return(vdes[p].dline);

}

/*---*/

/* get period -- returns the period of a task */

/*---*/

float get period(proc p)

{
return(vdes[p].period);

}

Kernel Design Issues 385

10.6 INTERTASK COMMUNICATION MECHANISMS

Intertask communication is a critical issue in real-time systems, even in a uniprocessor
environment. In fact, the use of shared resources for implementing message passing
schemes may cause priority inversion and unbounded blocking on tasks’ execution.
This would prevent any guarantee on the task set and would lead to a highly unpre-
dictable timing behavior.

In this section, we discuss problems and solutions related to the most typical commu-
nication semantics used in operating systems: the synchronous and the asynchronous
model.

In the pure synchronous communication model, whenever two tasks want to commu-
nicate they must be synchronized for a message transfer to take place. This synchro-
nization is called a rendez-vous. Thus, if the sender starts first, it must wait until the
recipient receives the message; on the other hand, if the recipient starts first, it must
wait until the sender produces its message.

In a dynamic real-time system, synchronous communication schemes easily lead to
unpredictable behavior, due to the difficulty of estimating the maximum blocking time
for a process rendez-vous. In a static real-time environment, the problem can be solved
off-line by transforming all synchronous interactions into precedence constraints. Ac-
cording to this approach, each task is decomposed into a number of subtasks that
contain communication primitives not inside their code but only at their boundary.
In particular, each subtask can receive messages only at the beginning of its execution
and can send messages only at the end. Then a precedence relation is imposed between
all adjacent subtasks deriving from the same father task and between all subtasks com-
municating through a send-receive pair. An example of such a task decomposition is
illustrated in Figure 10.15.

In a pure asynchronous scheme, communicating tasks do not have to wait for each
other. The sender just deposits its message into a channel and continues its execution,
independently of the recipient condition. Similarly, assuming that at least a message
has been deposited into the channel, the receiver can directly access the message with-
out synchronizing with the sender.

Asynchronous communication schemes are more suitable for dynamic real-time sys-
tems. In fact, if no unbounded delays are introduced during tasks’ communication,
timing constraints can easily be guaranteed without increasing the complexity of the
system (for example, overconstraining the task set with additional precedence rela-

386 Chapter 10

2-b

receive(mes, A)

1

(a)

send(mes, A)

τ

subtask

1-bτ

τ

subtask

1-a
subtask

2-aτ

subtask

τ 2

τ

receive

send

(b)

A

Figure 10.15 Decomposition of communicating tasks (a) into subtasks with precedence
constraints (b).

Mailbox

Producer Consumer

Figure 10.16 The mailbox scheme.

tions). Remember that having simple online guarantee tests (that is, with polynomial
time complexity) is crucial for dynamic systems.

In most commercial real-time operating systems, the asynchronous communication
scheme is implemented through a mailbox mechanism, illustrated in Figure 10.16. A
mailbox is a shared memory buffer capable of containing a fixed number of messages
that are typically kept in a FIFO queue. The maximum number of messages that at
any instant can be held in a mailbox represents its capacity.

Two basic operations are provided on a mailbox – namely, send and receive. A
send(MX, mes) operation causes the message mes to be inserted in the queue of mail-
box MX . If at least a message is contained on mailbox MX , a receive(MX, mes)

operation extracts the first message from its queue. Note that, if the kernel provides
the necessary support, more than two tasks can share a mailbox, and channels with
multiple senders and/or multiple receivers can be realized. As long as it is guaran-
teed that a mailbox is never empty and never full, sender(s) and receiver(s) are never
blocked.

Kernel Design Issues 387

Unfortunately, a mailbox provides only a partial solution to the problem of asyn-
chronous communication, since it has a bounded capacity. Unless sender and receiver
have particular arrival patterns, it is not possible to guarantee that the mailbox queue
is never empty or never full. If the queue is full, the sender must be delayed until some
message is received. If the queue is empty, the receiver must wait until some message
is inserted.

For example, consider two periodic tasks, τ1 and τ2, with periods T1 and T2, that
exchange messages through a mailbox having a capacity of n. Let τ 1 be the sender
and τ2 the receiver. If T1 < T2, the sender inserts in the mailbox more messages than
the receiver can extract; thus, after a certain interval of time the queue becomes full
and the sender must be delayed. From this time on, the sender has to wait for the
receiver, so it synchronizes with its period (T2). Vice versa, if T1 > T2, the receiver
reads faster than the sender can write; thus, after a while the queue becomes empty and
the receiver must wait. From this time on, the receiver synchronizes with the period
of the sender (T1). In conclusion, if T1
= T2, sooner or later both tasks will run at the
lowest rate, and the task with the shortest period will miss its deadline.

An alternative approach to asynchronous communication is provided by cyclic asyn-
chronous buffers, which are described in the next section.

10.6.1 CYCLIC ASYNCHRONOUS BUFFERS

Cyclic Asynchronous Buffers, or CABs, represent a particular mechanism purposely
designed for the cooperation among periodic activities, such as control loops and sen-
sory acquisition tasks. This approach was first proposed by Clark [Cla89] for imple-
menting a robotic application based on hierarchical servo-loops, and it is used in the
HARTIK system [But93, BDN93] as a basic communication support among periodic
hard tasks.

A CAB provides a one-to-many communication channel, which at any instant contains
the latest message or data inserted in it. A message is not consumed (that is, extracted)
by a receiving process but is maintained into the CAB structure until a new message
is overwritten. As a consequence, once the first message has been put in a CAB, a
task can never be blocked during a receive operation. Similarly, since a new message
overwrites the old one, a sender can never be blocked.

Note that using such a semantics, a message can be read more than once if the receiver
is faster than the sender, while messages can be lost if the sender is faster than the
receiver. However, this is not a problem in many control applications, where tasks

388 Chapter 10

are interested only in fresh sensory data rather than in the complete message history
produced by a sensory acquisition task.

CABs can be created and initialized by the open cab primitive, which requires speci-
fying the CAB name, the dimension of the message, and the number of messages that
the CAB may contain simultaneously. The delete cab primitive removes a CAB from
the system and releases the memory space used by the buffers.

To insert a message in a CAB, a task must first reserve a buffer from the CAB memory
space, then copy the message into the buffer, and finally put the buffer into the CAB
structure, where it becomes the most recent message. This is done according to the
following scheme:

buf pointer = reserve(cab id);

<copy message in *buf pointer>

putmes(buf pointer, cab id);

Similarly, to get a message from a CAB, a task has to get the pointer to the most recent
message, use the data, and release the pointer. This is done according to the following
scheme:

mes pointer = getmes(cab id);

<use message>

unget(mes pointer, cab id);

Note that more tasks can simultaneously access the same buffer in a CAB for reading.
On the other hand, if a task P reserves a CAB for writing while another task Q is
using that CAB, a new buffer is created, so that P can write its message without
interfering with Q. As P finishes writing, its message becomes the most recent one in
that CAB. The maximum number of buffers that can be created in a CAB is specified
as a parameter in the open cab primitive. To avoid blocking, this number must be
equal to the number of tasks that use the CAB plus one.

Kernel Design Issues 389

10.6.2 CAB IMPLEMENTATION

The data structure used to implement a CAB is shown in Figure 10.17. A CAB con-
trol block must store the maximum number of buffers (max buf), their dimension
(dim buf), a pointer to a list of free buffers (free), and a pointer to the most recent
buffer (mrb). Each buffer in the CAB can be implemented as a data structure with
three fields: a pointer (next) to maintain a list of free buffers, a counter (use) that
stores the current number of tasks accessing that buffer, and a memory area (data) for
storing the message.

The code of the four CAB primitives is shown below. Note that the main purpose of
the putmes primitive is to update the pointer to the most recent buffer (MRB). Before
doing that, however, it deallocates the old MRB if no tasks are accessing that buffer.
Similarly, the unget primitive decrements the number of tasks accessing that buffer
and deallocates the buffer only if no task is accessing it and it is not the MRB.

empty

NIL
useuse use

empty
most

recent

next

p

reading task

free

max_buf

mrb

dim_buf

use

data

next

buffer

Figure 10.17 CAB data structure.

390 Chapter 10

/*---*/

/* reserve -- reserves a buffer in a CAB */

/*---*/

pointer reserve(cab c)

{
pointer p;

<disable cpu interrupts>

p = c.free; /* get a free buffer */

c.free = p.next; /* update the free list */

return(p);

<enable cpu interrupts>

}

/*---*/

/* putmes -- puts a message in a CAB */

/*---*/

void putmes(cab c, pointer p)

{
<disable cpu interrupts>

if (c.mrb.use == 0) { /* if not accessed, */

c.mrb.next = c.free; /* deallocate the mrb */

c.free = c.mrb;

}
c.mrb = p; /* update the mrb */

<enable cpu interrupts>

}

Kernel Design Issues 391

/*---*/

/* getmes -- gets a pointer to the most recent buffer */

/*---*/

pointer getmes(cab c)

{
pointer p;

<disable cpu interrupts>

p = c.mrb; /* get the pointer to mrb */

p.use = p.use + 1; /* increment the counter */

return(p);

<enable cpu interrupts>

}

/*---*/

/* unget -- deallocates a buffer only if it is not accessed */

/* and it is not the most recent buffer */

/*---*/

void unget(cab c, pointer p)

{
<disable cpu interrupts>

p.use = p.use - 1;

if ((p.use == 0) && (p != c.mrb)) {
p.next = c.free;

c.free = p;

}
<enable cpu interrupts>

}

392 Chapter 10

2

timer interrupts

J 1

σ

J

δQ

Figure 10.18 Effects of the overhead on tasks’ execution.

10.7 SYSTEM OVERHEAD

The overhead of an operating system represents the time used by the processor for han-
dling all kernel mechanisms, such as enqueueing tasks, performing context switches,
updating the internal data structures, sending messages to communication channels,
servicing the interrupt requests, and so on. The time required to perform these opera-
tions is usually much smaller than the execution times of the application tasks; hence,
it can be neglected in the schedulability analysis and in the resulting guarantee test.
In some cases, however, when application tasks have small execution times and tight
timing constraints, the activities performed by the kernel may not be so negligible
and may create a significant interference on tasks’ execution. In these situations, pre-
dictability can be achieved only by considering the effects of the runtime overhead in
the schedulability analysis.

The context switch time is one of the most significant overhead factors in any operat-
ing system. It is an intrinsic limit of the kernel that does not depend on the specific
scheduling algorithm, nor on the structure of the application tasks. For a real-time
system, another important overhead factor is the time needed by the processor to ex-
ecute the timer interrupt handling routine. If Q is the system tick (that is, the period
of the interrupt requests from the timer) and σ is the worst-case execution time of the
corresponding driver, the timer overhead can be computed as the utilization factor U t

of an equivalent periodic task:

Ut =
σ

Q
.

Figure 10.18 illustrates the execution intervals (σ) due to the timer routine and the
execution intervals (δ) necessary for a context switch. The effects of the timer routine
on the schedulability of a periodic task set can be taken into account by adding the
factor Ut to the total utilization of the task set. This is the same as reducing the least

Kernel Design Issues 393

lub

net

U

U

σ

lubU
Q

Figure 10.19 Net utilization bound as a function of the tick value.

upper bound of the utilization factor U lub by Ut, so that the net bound becomes

Unet = Ulub − Ut = Ulub −
σ

Q
= Ulub

(

Q − σ/Ulub

Q

)

.

From this result we can note that to obtain Unet > 0, the system tick Q must always be
greater than (σ/Ulub). The plot of Unet as a function of Q is illustrated in Figure 10.19.
To have an idea of the degradation caused by the timer overhead, consider a system
based on the EDF algorithm (Ulub = 1) and suppose that the timer interrupt handling
routine has an execution time of σ = 100µs. In this system, a 10 ms tick would cause a
net utilization bound Unet = 0.99; a 1 ms tick would decrease the net utilization bound
to Unet = 0.9; whereas a 200µs tick would degrade the net bound to Unet = 0.5. This
means that, if the greatest common divisor among the task periods is 200µs, a task set
with utilization factor U = 0.6 cannot be guaranteed under this system.

The overhead due to other kernel mechanisms can be taken into account as an addi-
tional term on tasks’ execution times. In particular, the time needed for explicit context
switches (that is, the ones triggered by system calls) can be considered in the execution
time of the kernel primitives; thus, it will be charged to the worst-case execution time
of the calling task. Similarly, the overhead associated with implicit context switches
(that is, the ones triggered by the kernel) can be charged to the preempted tasks.

In this case, the schedulability analysis requires a correct estimation of the total num-
ber of preemptions that each task may experience. In general, for a given scheduling

394 Chapter 10

algorithm, this number can be estimated off-line as a function of tasks’ timing con-
straints. If Ni is the maximum number of preemptions that a periodic task τ i may
experience in each period, and δ is the time needed to perform a context switch, the
total utilization factor (overhead included) of a periodic task set can be computed as

Utot =

n
∑

i=1

Ci + δNi

Ti
+ Ut =

n
∑

i=1

Ci

Ti
+

(

δ

n
∑

i=1

Ni

Ti
+ Ut

)

.

Hence, we can write
Utot = Up + Uov,

where Up is the utilization factor of the periodic task set and Uov is a correction factor
that considers the effects of the timer handling routine and the preemption overhead
due to intrinsic context switches (explicit context switches are already considered in
the Ci’s terms):

Uov = Ut + δ

n
∑

i=1

Ni

Ti
.

Finally, notice that an upper bound for the number of preemptions N i on a task τi can
be computed as

Ni =

i−1
∑

k=1

⌊

Ti

Tk

⌋

.

However, this bound is too pessimistic, and better bounds can be found for particular
scheduling algorithms.

10.7.1 ACCOUNTING FOR INTERRUPT

Two basic approaches can be used to handle interrupts coming from external devices.
One method consists of associating an aperiodic or sporadic task to each source of in-
terrupt. This task is responsible for handling the device and is subject to the scheduling
algorithm as any other task in the system. With this method, the cost for handling the
interrupt is automatically taken into account by the guarantee mechanism, but the task
may not start immediately, due to the presence of higher-priority hard tasks. This
method cannot be used for those devices that require immediate service for avoiding
data loss.

Another approach allows interrupt handling routines to preempt the current task and
execute immediately at the highest priority. This method minimizes the interrupt la-
tency, but the interrupt handling cost has to be explicitly considered in the guarantee
of the hard tasks.

Kernel Design Issues 395

Jeffay and Stone [JS93] found a schedulability condition for a set of n hard tasks and
m interrupt handlers. In their work, the analysis is carried out by assuming a discrete
time, with a resolution equal to a tick. As a consequence, every event in the system
occurs at a time that is a multiple of the tick. In their model, there is a set I of m
handlers, characterized by a worst-case execution time C H

i and a minimum separation
time T H

i , just as sporadic tasks. The difference is that interrupt handlers always have
a priority higher than the application tasks.

The upper bound, f(l), for the interrupt handling cost in any time interval of length l
can be computed by the following recurrent relation [JS93]:

f(0) = 0

f(l) =

{

f(l − 1) + 1 if
∑m

i=1

⌈

l
T H

i

⌉

CH
i > f(l − 1)

f(l − 1) otherwise.
(10.1)

In the particular case in which all the interrupt handlers start at time t = 0, function
f(l) is exactly equal to the amount of time spent by processor in executing interrupt
handlers in the interval [0, l].

Theorem 10.1 (Jeffay-Stone) A set T of n periodic or sporadic tasks and a set I of

m interrupt handlers is schedulable by EDF if and only if for all L, L ≥ 0,

n
∑

i=1

⌊

L

Ti

⌋

Ci ≤ L − f(L). (10.2)

The proof of Theorem 10.1 is very similar to the one presented for Theorem 4.5. The
only difference is that, in any interval of length L, the amount of time that the processor
can dedicate to the execution of application tasks is equal to L − f(L).

It is worth noting that Equation (10.2) can be checked only for a set of points equal
to release times less than the hyperperiod, and the complexity of the computation is
pseudo-polynomial.

11
APPLICATION DESIGN ISSUES

In this chapter we discuss some important issues related to the design and the devel-
opment of complex real-time applications requiring sensory acquisition, control, and
actuation of mechanical components. The aim of this part is to give a precise char-
acterization of control applications, so that theory developed for real-time computing
and scheduling algorithms can be practically used in this field to make complex control
systems more reliable. In fact, a precise observation of the timing constraints specified
in the control loops and in the sensory acquisition processes is a necessary condition
for guaranteeing a stable behavior of the controlled system, as well as a predictable
performance.

As specific examples of control activities, we consider some typical robotic appli-
cations, in which a robot manipulator equipped with a set of sensors interacts with
the environment to perform a control task according to stringent user requirements.
In particular, we discuss when control applications really need real-time computing
(and not just fast computing), and we show how time constraints, such as periods and
deadlines, can be derived from the application requirements, even though they are not
explicitly specified by the user.

Finally, the basic set of kernel primitives presented in Chapter 10 is used to illustrate
some concrete programming examples of real-time tasks for sensory processing and
control activities.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1 11

397

 Springer Science+Business Media, LLC 2011©

398 Chapter 11

11.1 INTRODUCTION

All complex control applications that require the support of a computing system can
be characterized by the following components:

1. The system to be controlled. It can be a plant, a car, a robot, or any physical
device that has to exhibit a desired behavior.

2. The controller. For our purposes, it will be a computing system that has to pro-
vide proper inputs to the controlled system based on a desired control objective.

3. The environment. It is the external world in which the controlled system has to
operate.

The interactions between the controlled system and the environment are, in general,
bidirectional and occur by means of two peripheral subsystems (considered part of the
controlled system): an actuation subsystem, which modifies the environment through
a number of actuators (such as motors, pumps, engines, and so on), and a sensory

subsystem, which acquires information from the environment through a number of
sensing devices (such as microphones, cameras, transducers, and so on). A block
diagram of the typical control system components is shown in Figure 11.1. Depending

ENVIRONMENT
Controller

Input
System

Figure 11.1 Block diagram of a generic control system.

on the interactions between the controlled system and the environment, three classes
of control systems can be distinguished:

1. Monitoring systems,

2. open-loop control systems, and

3. feedback control systems.

Application Design Issues 399

ENVIRONMENT

USER
System

Real-Time

Sensor

Sensor

Sensor

Display

Figure 11.2 General structure of a monitoring system.

Monitoring systems do not modify the environment but only use sensors to perceive
its state, process sensory data, and display the results to the user. A block diagram
of this type of system is shown in Figure 11.2. Typical applications of these systems
include radar tracking, air traffic control, environmental pollution monitoring, surveil-
lance, and alarm systems. Many of these applications require periodic acquisitions
of multiple sensors, and each sensor may need a different sampling rate. Moreover,
if sensors are used to detect critical conditions, the sampling rate of each sensor has
to be constant in order to perform a correct reconstruction of the external signals. In
these cases, using a hard real-time kernel is a necessary condition for guaranteeing a
predictable behavior of the system. If sensory acquisition is carried out by a set of
concurrent periodic tasks (characterized by proper periods and deadlines), the task set
can be analyzed off-line to verify the feasibility of the schedule within the imposed
timing constraints.

Open-loop control systems are systems that interact with the environment. However,
the actions performed by the actuators do not strictly depend on the current state of
the environment. Sensors are used to plan actions, but there is no feedback between
sensors and actuators. This means that, once an action is planned, it can be executed
independently of new sensory data (see Figure 11.3).

As a typical example of an open-loop control system, consider a robot workstation
equipped with a vision subsystem, whose task is to take a picture of an object, iden-
tify its location, and send the coordinates to the robot for triggering a pick and place
operation. In this task, once the object location is identified and the arm trajectory
is computed based on visual data, the robot motion does not need to be modified on-
line; therefore, no real-time processing is required. Note that real-time computing is
not needed even though the pick and place operation has to be completed within a
deadline. In fact, the correct fulfillment of the robot operation does not depend on
the kernel but on other factors, such as the action planner, the processing speed of
visual data, and the robot speed. For this control problem, fast computing and smart
programming may suffice to meet the goal.

400 Chapter 11

User input System
Real-Time ENVIRONMENT

Actuator

Actuator

ActuatorSensory input

Figure 11.3 General structure of an open-loop control system.

Sensors

Input

System

Plant

ENVIRONMENT

Controller Actuators

feedback

Figure 11.4 General structure of a feedback control system.

Feedback control systems (or closed-loop control systems) are systems that have fre-
quent interactions with the environment in both directions; that is, the actions produced
by the actuators strictly depend on the current sensory information. In these systems,
sensing and control are tied together, and one or more feedback paths exist from the
sensory subsystem to the controller. Sensors are often mounted on actuators and are
used to probe the environment and continuously correct the actions based on actual
data (see Figure 11.4).

Human beings are perhaps the most sophisticated examples of feedback control sys-
tems. When we explore an unknown object, we do not just see it, but we look at it
actively, and, in the course of looking, our pupils adjust to the level of illumination,
our eyes bring the object into sharp focus, our eyes converge or diverge, we move our
head or change our position to get a better view of it, and we use our hands to perceive
and enhance tactile information.

Modern “fly-by-wire” aircrafts are also good examples of feedback control systems.
In these aircrafts, the basic maneuvering commands given by the pilot are converted
into a series of inputs to a computer, which calculates how the physical flight controls
shall be displaced to achieve a maneuver, in the context of the current flight conditions.

Application Design Issues 401

The robot workstation described above as an example of open-loop control system
can also be a feedback control system if we close a loop with the camera and use the
current visual data to update the robot trajectory online. For instance, visual feedback
becomes necessary if the robot has to grasp a moving object whose trajectory is not
known a priori.

In feedback control systems, the use of real-time computing is essential for guarantee-
ing a predictable behavior; in fact, the stability of these systems depends not only on
the correctness of the control algorithms but also on the timing constraints imposed
on the feedback loops. In general, when the actions of a system strictly depend on
actual sensory data, wrong or late sensor readings may cause wrong or late actions
on the environment, which may have negative effects on the whole system. In some
case, the consequences of a late action can even be catastrophic. For example, in cer-
tain environmental conditions, under autopilot control, reading the altimeter too late
could cause the aircraft to stall in a critical flight configuration that could prevent re-
covery. In delicate robot assembling operations, missing deadlines on force readings
could cause the manipulator to exert too much force on the environment, generating
an unstable behavior.

These examples show that, when developing critical real-time applications, the fol-
lowing issues should be considered in detail, in addition to the classical design issues:

1. Structuring the application in a number of concurrent tasks, related to the activi-
ties to be performed;

2. assigning the proper timing constraints to tasks; and

3. using a predictable operating environment able to guarantee that those timing
constraints can be satisfied.

These and other issues are discussed in the following sections.

11.2 TIME CONSTRAINTS DEFINITION

When we say that a system reacts in real time within a particular environment, we
mean that its response to any event in that environment has to be effective, according
to some control strategy, while the event is occurring. This means that, in order to be
effective, a control task must produce its results within a specific deadline, which is
defined based on the characteristics of the environment and the system itself.

402 Chapter 11

If meeting a given deadline is critical for the system operation and may cause catas-
trophic consequences, the task must be treated as a hard task. If meeting time con-
straints is desirable, but missing a deadline does not cause any serious damage, the
task can be treated as a soft task. In addition, activities that require regular activation
should be handled as periodic tasks.

From the operating system point of view, a periodic task is a task whose activation is
directly controlled by the kernel in a time-driven fashion, so that it is intrinsically guar-
anteed to be regular. Vice versa, an aperiodic task is a task that is activated by other
application tasks or by external events. Hence, activation requests for an aperiodic
task may come from the explicit execution of specific system calls or from the arrival
of an interrupt associated with the task. Note that even though the external interrupts
arrive at regular intervals, the associated task should still be handled as an aperiodic
task by the kernel, unless precise upper bounds on the activation rate are guaranteed
for that interrupt source.

If the interrupt source is well known and interrupts are generated at a constant rate, or
have a minimum interarrival time, then the aperiodic task associated with the corre-
sponding event is said to be sporadic and its timing constraints can be guaranteed in
worst-case assumptions – that is, assuming the maximum activation rate.

Once all application tasks have been identified and time constraints have been speci-
fied (including periodicity and criticality), the real-time operating system supporting
the application is responsible for guaranteeing that all hard tasks complete within their
deadlines. Soft and non-real-time tasks should be handled by using a best-effort strat-
egy (or optimal, whenever possible) to reduce (or minimize) their average response
times.

In the rest of this section we illustrate a few examples of control systems to show how
time constraints can be derived from the application requirements even in those cases
in which they are not explicitly defined by the user.

11.2.1 OBSTACLE AVOIDANCE

Consider a wheel-vehicle equipped with range sensors that has to operate in a certain
environment running within a maximum given speed. The vehicle could be a com-
pletely autonomous system, such as a robot mobile base, or a partially autonomous
system driven by a human, such as a car or a train having an automatic braking system
for stopping motion in emergency situations.

Application Design Issues 403

In order to simplify our discussion and reduce the number of controlled variables, we
will consider a vehicle like a train, which moves along a straight line, and suppose
that we have to design an automatic braking system able to detect obstacles in front
of the vehicle and control the brakes to avoid collisions. A block diagram of the
automatic braking system is illustrated in Figure 11.5. The Brake Control Unit (BCU)

Controls

Unit
Control

stop
emergency

sensors
range

Human BRAKESUnit
DistributionDashboard

Brake

Figure 11.5 Scheme of the automatic braking system.

is responsible for acquiring a pair of range sensors, computing the distance of the
obstacle (if any), reading the state variables of the vehicle from instruments on the
dashboard, and deciding whether an emergency stop has to be superimposed. Given
the criticality of the braking action, this task has to be periodically executed on the
BCU. Let T be its period.

In order to determine a safe value for T , several factors have to be considered. In
particular, the system must ensure that the maximum latency from the time at which
an obstacle appears and the time at which the vehicle reaches a complete stop is less
than the time to impact. Equivalently, the distance D of the obstacle from the vehicle
must always be greater than the minimum space L needed for a complete stop. To
compute the length L, consider the plot illustrated in Figure 11.6, which shows the
velocity v of the vehicle as a function of time when an emergency stop is performed.

Three time intervals have to be taken in to account to compute the worst-case latency:

The detection delay, which is the interval between the time at which an obstacle
appears and the time at which the obstacle is detected by the BCU. This interval
is at most equal to the period T of the sensor acquisition task.

The transmission delay, ∆t, which is the interval between the time at which the
stop command is activated by the BCU and the time at which the command starts
to be actuated by the brakes.

The braking duration, ∆b, which is the interval needed for a complete stop.

404 Chapter 11

0

Tv

obstacle

∆ t ∆ b

vehicle
at restdetected

V

obstacle
appears

brake
pushed

t

Figure 11.6 Velocity during brake.

If v is the actual velocity of the vehicle and µf is the wheel-road friction coefficient,
the braking duration ∆b is given by

∆b =
v

µfg
,

where g is the acceleration of gravity (g = 9.8m/s2). Thus, the resulting braking
space xb is

xb =
v2

2µfg
.

Hence, the total length L needed for a complete stop is

L = v(T + ∆t) + xb.

By imposing D > L, we obtain the relation that must be satisfied among the variables
to avoid a collision:

D >
v2

2µfg
+ v(T + ∆t). (11.1)

If we assume that obstacles are fixed and are always detected at a distance D from the
vehicle, Equation (11.1) allows determining the maximum value that can be assigned
to period T :

T <
D

v
− v

2µfg
− ∆t. (11.2)

For example, if D = 100 m, µf = 0.5, ∆t = 250 ms, and vmax = 30 m/s (about 108
km/h), then the resulting sampling period T must be less than 22 ms.

Application Design Issues 405

It is worth observing that this result can also be used to evaluate how long we can look
away from the road while driving at a certain speed and visibility. For example, if D
= 50 m (visibility under fog conditions), µf = 0.5, ∆t = 300 ms (our typical reaction
time), and v = 60 km/h (about 16.67 m/s or 37 mi/h), we can look away from the road
for no more than one second!

11.2.2 ROBOT DEBURRING

Consider a robot arm that has to polish an object surface with a grinding tool mounted
on its wrist, as shown in Figure 11.7. This task can be specified as follows:

Slide the grinding tool on the object surface with a constant speed v, while
exerting a constant normal force F that must not exceed a maximum value
equal to Fmax.

force
sensor

object to debur

robot

tool

camera

Figure 11.7 Example of a robot deburring workstation.

In order to maintain a constant contact force against the object surface, the robot must
be equipped with a force sensor, mounted between the wrist flange and the grinding
tool. Moreover, to keep the normal force within the specified maximum value, the
force sensor must be acquired periodically at a constant rate, which has to be deter-
mined based on the characteristics of the environment and the task requirements. At
each cycle, the robot trajectory is corrected based on the current force readings.

As illustrated in Figure 11.8, if T is the period of the control process and v is the robot
horizontal speed, the space covered by the robot end-effector within each period is
LT = vT . If an impact due to a contour variation occurs just after the force sensor has

406 Chapter 11

robot end-effector

object surface

F(t+1)F(t-1) F(t)

v

Figure 11.8 Force on the robot tool during deburring.

been read, the contact will be detected at the next period; thus, the robot keeps moving
for a distance LT against the object, exerting an increasing force that depends on the
elastic coefficient of the robot-object interaction.

As the contact is detected, we also have to consider the braking space LB covered by
the tool from the time at which the stop command is delivered to the time at which the
robot is at complete rest. This delay depends on the robot dynamic response and can
be computed as follows. If we approximate the robot dynamic behavior with a transfer
function having a dominant pole fd (as typically done in most cases), then the braking
space can be computed as LB = vτd, being τd = 1

2πfd
. Hence, the longest distance

that can be covered by the robot after a collision is given by

L = LT + LB = v(T + τd).

If K is the rigidity coefficient of the contact between the robot end-effector and the
object, then the worst-case value of the horizontal force exerted on the surface is F h =
KL = Kv(T + τd). Since Fh has to be maintained below a maximum value Fmax,
we must impose that

Kv(T + τd) < Fmax,

which means

T < (
Fmax

Kv
− τd). (11.3)

Note that in order to be feasible, the right side of condition (11.3) must not only be
greater than zero but must also be greater than the system time resolution, fixed by the
system tick Q; that is,

Fmax

Kv
− τd > Q. (11.4)

Equation (11.4) imposes an additional restriction on the application. For example, we
may derive the maximum speed of the robot during the deburring operation as

v <
Fmax

K(Q + τd)
, (11.5)

Application Design Issues 407

or, if v cannot be arbitrarily reduced, we may fix the tick resolution such that

Q ≤ (
Fmax

Kv
− τd).

Once the feasibility is achieved – that is, condition (11.4) is satisfied – the result ex-
pressed in Equation (11.3) states that stiff environments and high robot velocities re-
quire faster control loops to guarantee that force does not exceed the limit given by
Fmax.

11.2.3 MULTILEVEL FEEDBACK CONTROL

In complex control applications characterized by nested servo loops, the frequencies
of the control tasks are often chosen to separate the dynamics of the controllers. This
greatly simplifies the analysis of the stability and the design of the control law.

Consider, for instance, the control architecture shown in Figure 11.9. Each layer of
this control hierarchy effectively decomposes an input task into simpler subtasks exe-
cuted at lower levels. The top-level input command is the goal, which is successively
decomposed into subgoals, or subtasks, at each hierarchical level, until at the lowest
level output signals drive the actuators. Sensory data enter this hierarchy at the bottom
and are filtered through a series of sensory-processing and pattern-recognition mod-
ules arranged in a hierarchical structure. Each module processes the incoming sensory
information, applying filtering techniques, extracting features, computing parameters,
and recognizing patterns.

Sensory information that is relevant to control is extracted and sent as feedback to the
control unit at the same level; the remaining partially processed data is then passed to
the next higher level for further processing. As a result, feedback enters this hierarchy
at every level. At the lowest level, the feedback is almost unprocessed and hence is
fast-acting with very short delays, while at higher levels feedback passes through more
and more stages and hence is more sophisticated but slower. The implementation of
such a hierarchical control structure has two main implications:

Since the most recent data have to be used at each level of control, information
can be sent through asynchronous communication primitives, using overwrite se-
mantic and non-consumable messages. The use of asynchronous message pass-
ing mechanisms avoids blocking situations and allows the interaction among pe-
riodic tasks running at different frequencies.

408 Chapter 11

When the frequencies of hierarchical nested servo loops differ for about an order
of magnitude, the analysis of the stability and the design of the control laws are
significantly simplified.

For instance, if at the lowest level a joint position servo is carried out with a period of
1 ms, a force control loop closed at the middle level can be performed with a period
of 10 ms, while a vision process running at the higher control level can be executed
with a period of 100 ms.

11.3 HIERARCHICAL DESIGN

In this section, we present a hierarchical design approach that can be used to develop
sophisticated control applications requiring sensory integration and multiple feedback
loops. Such a design approach has been actually adopted and experimented on sev-
eral robot control applications built on top of a hard real-time kernel [But91, BAF94,
But96].

F3

SU = Sensing Unit

SU

SU

3SU

2 2

11
F1

F2

3

S3

S2

S1

C3

C2

C1

output to
the user

CU

CU

CU

CU = Control Unit
ROBOT

high level goal

Figure 11.9 Example of a hierarchical control system.

Application Design Issues 409

grasp

Level

Level

assembly

REAL-TIME SUPPORT

Device

Behavior

servo

Level avoidance
obstacle

display
output

reading
force/torquejoint

following

reading
joint angle

control
hybrid

control
position

contour

control control

adaptiveAction

Level
Application

acquisition
image

impedance

visual
tracking

force

insertion
peg-in-hole

exploration
object

cleaning
surface

catching

Figure 11.10 Hierarchical software environment for programming complex robotic ap-
plications.

The main advantage of a hierarchical design approach is to simplify the implementa-
tion of complex tasks and provide a flexible programming interface, in which most of
the low- and middle-level real-time control strategies are built in the system as part of
the controller and hence can be viewed as basic capabilities of the system.

Figure 11.10 shows an example of a hierarchical programming environment for com-
plex robot applications. Each layer provides the robot system with new functions and
more sophisticated capabilities. The importance of this approach is not simply that one
can divide the program into parts; rather, it is crucial that each procedure accomplishes
an identifiable task that can be used as a building block in defining other procedures.

The Device Level includes a set of modules specifically developed to manage all pe-
ripheral devices used for low-level I/O operations, such as sensor acquisition, joint
servo, and output display. Each module provides a set of library functions, whose
purpose is to facilitate device handling and to encapsulate hardware details, so that
higher-level software can be developed independently from the specific knowledge of
the peripheral devices.

The Behavior Level is the level in which several sensor-based control strategies can be
implemented to give the robot different kinds of behavior. The functions available at
this level of the hierarchy allow the user to close real-time control loops, by which the
robot can modify its trajectories based on sensory information, apply desired forces
and torques on the environment, operate according to hybrid control schemes, or be-
have as a mechanical impedance.

410 Chapter 11

These basic control strategies are essential for executing autonomous tasks in unknown
conditions, and in fact, they are used in the next level to implement more skilled
actions.

Based on the control strategies developed in the Behavior Level, the Action Level

enhances the robot capability by adding more sophisticated sensory-motor activities,
which can be used at the higher level for carrying out complex tasks in unstructured
environments. Some representative actions developed at this level include (1) the abil-
ity of the robot to follow an unknown object contour, maintaining the end-effector in
contact with the explored surface; (2) the reflex to avoid obstacles, making use of vi-
sual sensors; (3) the ability to adapt the end-effector to the orientation of the object to
be grasped, based on the reaction forces sensed on the wrist; (4) visual tracking, to fol-
low a moving object and keep it at the center of the visual field. Many other different
actions can be easily implemented at this level by using the modules available at the
Behavior Level or directly taking the suited sensory information from the functions at
the Device Level.

Finally, the Application Level is the level at which the user defines the sequence of
robot actions for accomplishing application tasks, such as assembling mechanical
parts, exploring unknown objects, manipulating delicate materials, or catching mov-
ing targets. Note that these tasks, although sophisticated in terms of control, can be
readily implemented thanks to the action primitives included in the lower levels of the
hierarchical control architecture.

11.3.1 EXAMPLES OF REAL-TIME ROBOTICS

APPLICATIONS

In this section we describe a number of robot applications that have been implemented
by using the control architecture presented above. In all the examples, the arm trajec-
tory cannot be pre-computed off-line to accomplish the goal, but it must be continu-
ously replanned based on the current sensory information. As a consequence, these
applications require a predictable real-time support to guarantee a stable behavior of
the robot and meet the specification requirements.

Application Design Issues 411

ASSEMBLY: PEG-IN-HOLE INSERTION

Robot assembly has been an active area of research for several years. Assembly tasks
include inserting electronic components on circuit boards, placing armatures, bush-
ings, and end housings on motors, pressing bearings on shafts, and inserting valves in
cylinders.

Theoretical investigations of assembly have focused on the typical problem of insert-
ing a peg into a hole, whose direction is known with some degree of uncertainty. This
task is common to many assembly operations and requires the robot to be actively
compliant during the insertion, as well as to be highly responsive to force changes, in
order to continuously correct its motion and adapt to the hole constraints.

The peg-in-hole insertion task has typically been performed by using a hybrid posi-
tion/force control scheme [Cut85, Whi85, AS88]. According to this method, the robot
is controlled in position along the direction of the hole, whereas it is controlled in force
along the other directions to reduce the reaction forces caused by the contact. Both
position and force servo loops must be executed periodically at a proper frequency
to ensure stability. If the force loop is closed around the position loop, as it usually
happens, then the position loop frequency must be about an order of magnitude higher
to avoid dynamics interference between the two controllers.

SURFACE CLEANING

Cleaning a flat and delicate surface, such as a window glass, implies large arm move-
ments that must be controlled to keep the robot end-effector (such as a brush) within
a plane parallel to the surface to be cleaned. In particular, to efficiently perform this
task, the robot end-effector must be pressed against the glass with a desired constant
force. Because of the high rigidity of the glass, a small misalignment of the robot with
respect to the surface orientation could cause the arm to exert large forces in some
points of the glass surface or lose the contact in some other parts.

Since small misalignments are always possible in real working conditions, the robot
is usually equipped with a force sensing device and is controlled in real time to exert
a constant force on the glass surface. Moreover, the end-effector orientation must be
continuously adjusted to be parallel to the glass plane.

The tasks for controlling the end-effector orientation, exerting a constant force on the
surface, and controlling the position of the arm on the glass must proceed in parallel
and must be coordinated by a global planner, according to the specified goal.

412 Chapter 11

OBJECT TACTILE EXPLORATION

When working in unknown environments, object exploration and recognition are es-
sential capabilities for carrying out autonomous operations. If vision does not provide
enough information or cannot be used because of insufficient light conditions, tactile
and force sensors can be effectively employed to extract local geometric features, such
as shape, contour, holes, edges, or protruding regions, from the explored objects.

Like the other tasks described above, tactile exploration requires the robot to conform
to a given geometry. More explicitly, the robot should be compliant in the direction
normal to the object surface, so that unexpected variations in the contour do not pro-
duce large changes in the force that the robot applies against the object. In the direc-
tions parallel to the surface, however, the robot needs to maintain a desired trajectory
and should therefore be position-controlled.

Strict time constraints for this task are necessary to guarantee robot stability during
exploration. For example, periods of servo loops can be derived as a function of
the robot speed, maximum applied forces, and rigidity coefficients, as shown in the
example described in Section 11.2.2. Other issues involved in robot tactile exploration
are discussed by Dario and Buttazzo [DB87] and by Bajcsy [Baj88].

CATCHING MOVING OBJECTS

Catching a moving object with one hand is one of the most difficult tasks for humans,
as well as for robot systems. In order to perform this task, several capabilities are re-
quired, such as smart sensing, visual tracking, motion prediction, trajectory planning,
and fine sensory-motor coordination. If the moving target is an intelligent being, like
a fast insect or a little mouse, the problem becomes more difficult to solve, since the
prey may unexpectedly modify its trajectory, velocity, and acceleration. In this situa-
tion, sensing, planning, and control must be performed in real time – that is, while the
target is moving – so that the trajectory of the arm can be modified in time to catch the
prey.

Strict time constraints for the tasks described above derive from the maximum velocity
and acceleration assumed for the moving object. An implementation of this task,
using a six degrees of freedom robot manipulator and a vision system, is described by
Buttazzo, Allotta, and Fanizza [BAF94].

Application Design Issues 413

11.4 A ROBOT CONTROL EXAMPLE

In order to illustrate a concrete real-time application, we show an implementation of a
robot control system capable of exploring unknown objects by integrating visual and
tactile information. To perform this task the robot has to exert desired forces on the
object surface and follow its contour by means of visual feedback. Such a robot system
has been realized using a Puma 560 robot arm equipped with a wrist force/torque
sensor and a CCD camera. The software control architecture is organized as two servo
loops, as shown in Figure 11.11, where processes are indicated by circles and CABs by
rectangles. The inner loop is dedicated to image acquisition, force reading, and robot
control, whereas the outer loop performs scene analysis and surface reconstruction.
The application software consists of four processes:

A sensory acquisition process periodically reads the force/torque sensor and puts
data in a CAB named force. This process must have guaranteed execution time,
since a missed deadline could cause an unstable behavior of the robot system.
Hence, it is created as a hard task with a period of 20 ms.

A visual process periodically reads the image memory filled by the camera frame
grabber and computes the next exploring direction based on a user defined strat-
egy. Data are put in a CAB named path. This is a hard task with a period of
80 ms. A missed deadline for this task could cause the robot to follow a wrong
direction on the object surface.

Based on the contact condition given by the force/torque data and on the explor-
ing direction suggested by the vision system, a robot control process computes
the cartesian set points for the Puma controller. A hybrid position/force control
scheme [Whi85, KB86] is used to move the robot end-effector along a direction
tangential to the object surface and to apply forces normal to the surface. The
control process is a periodic hard task with a period of 28 ms (this rate is im-
posed by the communication protocol used by the robot controller). Missing a
deadline for this task could cause the robot to react too late and exert too large
forces on the explored surface, which could break the object or the robot itself.

A representation process reconstructs the object surface based on the current
force/torque data and on the exploring direction. Since this is a graphics ac-
tivity that does not affect robot motion, the representation process is created as a
soft task with a period of 60 ms.

To better illustrate the application, we show the source code of the tasks. It is written
in C language and includes the DICK kernel primitives described in Chapter 10.

414 Chapter 11

camera

"force"

monitorsensor

force

displayvision

control

robot

cab

cab

"path"

Figure 11.11 Process structure for the surface exploration example.

/*---*/

/* Global constants */

/*---*/

#include "dick.h" /* DICK header file */

#define TICK 1.0 /* system tick (1 ms) */

#define T1 20.0 /* period for force (20 ms) */

#define T2 80.0 /* period for vision (80 ms) */

#define T3 28.0 /* period for control (28 ms) */

#define T4 60.0 /* period for display (60 ms) */

#define WCET1 0.300 /* exec-time for force (ms) */

#define WCET2 4.780 /* exec-time for vision (ms) */

#define WCET3 1.183 /* exec-time for control (ms) */

#define WCET4 2.230 /* exec-time for display (ms) */

Application Design Issues 415

/*---*/

/* Global variables */

/*---*/

cab fdata; /* CAB for force data */

cab angle; /* CAB for path angles */

proc force; /* force sensor acquisition */

proc vision; /* camera acq. and processing */

proc control; /* robot control process */

proc display; /* robot trajectory display */

/*---*/

/* main -- initializes the system and creates all tasks */

/*---*/

proc main()

{
ini system(TICK);

fdata = open cab("force", 3*sizeof(float), 3);

angle = open cab("path", sizeof(float), 3);

create(force, HARD, PERIODIC, T1, WCET1);

create(vision, HARD, PERIODIC, T2, WCET2);

create(control, HARD, PERIODIC, T3, WCET3);

create(display, SOFT, PERIODIC, T4, WCET4);

activate all();

while (sys clock() < LIFETIME) /* do nothing */;

end system();

}

416 Chapter 11

/*---*/

/* force -- reads the force sensor and puts data in a cab */

/*---*/

proc force()

{
float *fvect; /* pointer to cab data */

while (1) {
fvect = reserve(fdata);

read force sensor(fvect);

putmes(fvect, fdata);

end cycle();

}
}

/*---*/

/* control -- gets data from cabs and sends robot set points */

/*---*/

proc control()

{
float *fvect, *alfa; /* pointers to cab data */

float x[6]; /* robot set-points */

while (1) {
fvect = getmes(fdata);

alfa = getmes(angle);

control law(fvect, alfa, x);

send robot(x);

unget(fvect, fdata);

unget(alfa, angle);

end cycle();

}
}

Application Design Issues 417

/*---*/

/* vision -- gets the image and computes the path angle */

/*---*/

proc vision()

{
char image[256][256];

float *alfa; /* pointer to cab data */

while (1) {
get frame(image);

alfa = reserve(angle);

*alfa = compute angle(image);

putmes(alfa, angle);

end cycle();

}
}

/*---*/

/* display -- represents the robot trajectory on the screen */

/*---*/

proc display()

{
float *fvect, *alfa; /* pointers to cab data */

float point[3]; /* 3D point on the surface */

while (1) {
fvect = getmes(fdata);

alfa = getmes(angle);

surface(fvect, *alfa, point);

draw pixel(point);

unget(fvect, fdata);

unget(alfa, angle);

end cycle();

}
}

12
REAL-TIME OPERATING

SYSTEMS AND STANDARDS

This chapter presents a brief overview of the state of art of real-time systems and stan-
dards. It first discusses the most common operating systems standard interfaces that
play a major role for developing portable real-time applications. Then, it gives a brief
description of the most used commercial and open source real-time kernels available
today, including some research kernels developed within academia to make experi-
ments with some novel features and lead future development. Finally, it presents a set
of development tools that can be used to speed up system analysis and implementation.

12.1 STANDARDS FOR REAL-TIME OPERATING

SYSTEMS

The role of standards in operating systems is very important as it provides portability
of applications from one platform to another. In addition, standards allow the possibil-
ity of having several kernel providers for a single application, so promoting competi-
tion among vendors and increasing quality. Current operating system standards mostly
specify portability at the source code level, requiring the application developer to re-
compile the application for every different platform. There are four main operating
system standards available today:

POSIX, the main general-purpose operating system standard, with real-time ex-
tensions (RT-POSIX);

OSEK, for the automotive industry;

APEX, for avionics systems;

µITRON, for small embedded systems.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

419

12

 Springer Science+Business Media, LLC 2011©

420 Chapter 12

12.1.1 RT-POSIX

The goal of the POSIX standard (Portable Operating System Interface based on UNIX
operating systems) is the portability of applications at the source code level. Its real-
time extension (RT-POSIX) is one of the most successful standards in the area of
real-time systems, adopted by all major kernel vendors.

The standard specifies a set of system calls for facilitating concurrent programming.
Services include mutual exclusion synchronization with priority inheritance, wait and
signal synchronization via condition variables, shared memory objects for data shar-
ing, and prioritized message queues for inter-task communication. It also specifies
services for achieving predictable timing behavior, such as fixed priority preemptive
scheduling, sporadic server scheduling, time management with high resolution, sleep
operations, multipurpose timers, execution-time budgeting for measuring and limiting
task execution times, and virtual memory management, including the ability to dis-
connect virtual memory for specific real-time tasks. Since the POSIX standard is so
large, subsets are defined to enable implementations for small systems. The following
four real-time profiles are defined by POSIX.13 [POS03]:

Minimal Real-Time System profile (PSE51). This profile is intended for small
embedded systems, so most of the complexity of a general purpose operating
system is eliminated. The unit of concurrency is the thread (processes are not
supported). Input and output are possible through predefined device files, but
there is not a complete file system. PSE51 systems can be implemented with a
few thousand lines of code, and memory footprints in the tens of kilobytes range.

Real-Time Controller profile (PSE52). It is similar to the PSE51 profile, with
the addition of a file system in which regular files can be created, read, or written.
It is intended for systems like a robot controller, which may need support for a
simplified file system.

Dedicated Real-Time System profile (PSE53). It is intended for large embed-
ded systems (e.g., avionics) and extends the PSE52 profile with the support for
multiple processes that operate with protection boundaries.

Multi-Purpose Real-Time System profile (PSE54). It is intended for general-
purpose computing systems running applications with real-time and non-real-
time requirements. It requires most of the POSIX functionality for general pur-
pose systems and, in addition, most real-time services.

In summary, the RT-POSIX standard enables portability of real-time applications and
specifies real-time services for the development of fixed-priority real-time systems
with high degree of predictability. In the future it is expected that RT-POSIX will
evolve toward more flexible scheduling schemes.

Real-time operating systems and standards 421

12.1.2 OSEK/VDX

OSEK/VDX1 is a joint project of many automotive industries that aims at the def-
inition of an industrial standard for an open-ended architecture for distributed con-
trol units in vehicles [OSE03]. The term OSEK means “Offene Systeme und deren

Schnittstellen f-ur die Elektronik im Kraftfahrzeug” (Open systems and the correspond-
ing interfaces for automotive electronics); the term VDX means Vehicle Distributed

eXecutive.

The objective of the standard is to describe an environment that supports efficient uti-
lization of resources for automotive application software. This standard can be viewed
as an application program interface (API) for real-time operating systems integrated
on a network management system (VDX), which describes the characteristics of a
distributed environment that can be used for developing automotive applications.

The typical applications considered by the standard are control applications with tight
real-time constraints, high criticality, and large production volumes. To save on pro-
duction costs, there is a strong push toward code optimization, by reducing the mem-
ory footprint to a minimum and enhancing the OS performance as much as possible.
A typical OSEK system has the following characteristics:

Scalability. The operating system is intended to be used on a wide range of
hardware platforms (from 8-bit microcontrollers to more powerful processors).
To support such a wide range of systems, the standard defines four conformance
classes with increasing complexity. Memory protection is not supported at all.

Software portability. An ISO/ANSI-C interface between the application and the
operating system is adopted to simplify software portability. However, due to the
wide variety of hardware platforms, the standard does not specify any interface to
the I/O subsystem. This reduces portability of the application source code, since
the I/O system strongly impacts on the software architecture.

Configurability. Appropriate configuration tools proposed by the OSEK stan-
dard help the designer in tuning the system services and the system footprint.
Objects that need to be instantiated in the application can be specified through a
language called OIL (OSEK Implementation Language).

Static allocation of software components. All the kernel objects and the ap-
plication components are statically allocated. The number of tasks, their code,
the required resources and services are defined at compile time. This approach
simplifies the internal structure of the kernel and makes it easier to deploy the
kernel and the application code on a ROM.

1OSEK/VDX: http://www.osek-vdx.org

422 Chapter 12

Kernel Awareness. The OSEK standard supports a standard OSEK Run Time
Interface (ORTI) used to instruct a debugger about the meaning of specific data
structures, so that specific information can be visualized on the screen in the
proper way. For example, when tracing the running task, it is possible to visualize
the corresponding task identifier, as well as the time at which context switches
take place.

Support for Time Triggered Architectures. The OSEK Standard provides the
specification of OSEKTime OS, a time-triggered operating system that can be
fully integrated in the OSEK/VDX framework.

DETAILS ON THE OSEK/VDX STANDARD

The first feature that distinguishes an OSEK kernel from other operating systems is
that all kernel objects are statically defined at compile time. In particular, most of
these systems do not support dynamic memory allocation and dynamic tasks creation.
To help the user in configuring the system, the OSEK/VDX standard defines an OSEK
Implementation Language" (OIL) to specify the objects that must be instantiated in
the application. When the application is compiled, the OIL Compiler generates the
operating system data structures, allocating the exact amount of memory needed by
the application, to be put in flash memory (which is less expensive than RAM memory
on most microcontrollers).

The second feature distinguishing an OSEK/VDX system is the support for Stack

Sharing. The reason for providing stack sharing is to save RAM memory, which is
very expensive on small microcontrollers. The possibility of implementing a stack
sharing system is related to how the task code is written. In traditional real-time sys-
tems, a periodic task is structured according to the following scheme:

Task(x) {
int local;

initialization();

for (;;) {
do instance();

end instance();

}
}

Real-time operating systems and standards 423

Such a scheme is characterized by a forever loop containing an instance of the periodic
task that terminates with a blocking primitive (end instance()), which has the effect
of suspending the task until its next activation. When following such a programming
scheme (called extended task in OSEK/VDX), the task is always present in the stack,
even when waiting for its next activation. In this case, the stack cannot be shared and
a separate stack space must be allocated for each task.

To enable stack sharing, OSEK/VDX provides support for basic tasks, which are spe-
cial tasks that are implemented in a way more similar to functions, according to the
following scheme:

int local;

Task x() {
do instance();

}
system initialization() {

initialization();

. . .
}

With respect to extended tasks, in basic tasks, the persistent state that must be main-
tained between different instances is not stored in the stack, but in global variables.
Also, the initialization part is moved at system initialization, because tasks are not dy-
namically created, but they exist since the beginning. No synchronization primitive is
needed to block the task until its next period, because the task is activated every time
a new instance starts. Finally, the task cannot call any blocking primitive; therefore, it
can either be preempted by higher priority tasks or execute until completion. In this
way, the task behaves like a function, which allocates a frame on the stack, runs, and
then cleans the stack frame. For this reason, such tasks do not occupy stack space
between two executions, allowing the stack to be shared among them.

Concerning task management, OSEK/VDX kernels provide support for Fixed Priority
Scheduling with Immediate Priority Ceiling (see Section 7.5) to avoid the Priority
Inversion problem. The usage of Immediate Priority Ceiling is supported through the
specification of the resource usage of each task in the OIL configuration file. The
OIL Compiler computes the resource ceiling of each task based on the resource usage
declared by each task in the OIL file.

424 Chapter 12

OSEK/VDX systems also support non-preemptive scheduling and Preemption Thresh-
olds (see Section 8.3) to limit the overall stack usage. The main idea is that limiting
the preemption between tasks reduces the number of tasks allocated on the system
stack at the same time, further reducing the overall amount of required RAM. Note
that reducing preemptions may degrade the schedulability of the tasks set; hence the
degree of preemption must be traded with the system schedulability and the overall
RAM memory used in the system.

Another requirement for operating systems designed for small microcontrollers is
scalability, which implies the possibility of supporting reduced versions of the API for
smaller footprint implementations. In mass production systems, in fact, the memory
footprint has a significant impact on the overall system cost. In this context, scala-
bility is provided through the concept of Conformance Classes, which define specific
subsets of the operating system API. Conformance classes are also accompanied by
an upgrade path between them, with the final objective of supporting partial imple-
mentation of the standard with reduced footprint. The conformance classes supported
by the OSEK/VDX standard are as follows:

BCC1: This is the smallest conformance class, supporting a minimum of eight
tasks with different priority and a single shared resource.

BCC2: Compared to BCC1, this conformance class adds the possibility of hav-
ing more tasks at the same priority. Each task can have pending activa-
tions; that is, the operating system records the number of instances that
have been activated but not yet executed.

ECC1: Compared to BCC1, this conformance class adds the possibility of hav-
ing extended tasks that can wait for an event to occur.

ECC2: This conformance class adds both multiple activations and extended
tasks.

Anther interesting feature of OSEK/VDX systems is that the system provides an API
for controlling interrupts. This is a major difference when compared to POSIX-like
systems, where the interrupts are the exclusive domain of the operating system and
are not exported to the operating system API. The rationale for this is that on small
microcontrollers users often want to directly control interrupt priorities; hence it is
important to provide a standard way of dealing with interrupt disabling/enabling.

Real-time operating systems and standards 425

The OSEK/VDX standard specifies two types of Interrupt Service Routines (ISR):

ISR1: simpler and faster, does not implement a call to the scheduler at the end
of the interrupt handler;

ISR2: this mechanism can call primitives that change the scheduling behavior.
The end of the ISR is a rescheduling point. ISR1 always has higher
priority than ISR2.

An important feature of OSEK/VDX kernels is the possibility to fine-tune the footprint
by removing error checking code from the production versions, as well as define hooks
that will be called by the system when specific events occur. These features allow the
programmer to fine-tune the application footprint, which will be larger (and safer)
when debugging and smaller in production, when most bugs are found and removed
from the code.

To support a better debugging experience, the OSEK/VDX standard defines a textual
language, named ORTI, which describes where the various objects of the operating
system are allocated. The ORTI file is typically generated by the OIL compiler and
is used by debuggers to print detailed information about operating system objects de-
fined in the system (for example, the debugger could print the list of the task in an
application with their current status).

AUTOSAR OS

Starting from the OSEK/VDX specification, AUTOSAR2 (AUTomotive Open System
ARchitecture) defines a standard for automotive software architecture, jointly devel-
oped by automobile manufacturers, suppliers and tool developers, to minimize the
current barriers among functional domains in future vehicle applications.

Within the AUTOSAR standard, AUTOSAR OS provides the specification at the op-
erating system level, extending the OSEK/VDX standard functionality in various di-
rections, including memory protection, operating system applications, deadline moni-
toring, execution time monitoring, multi-core support, and scheduling tables (for im-
plementing time triggered activities).

The AUTOSAR OS specification extends and defines those behaviors that were left
unspecified as "implementation dependent" in the OSEK/VDX specification, and pro-
poses a configuration system described using AUTOSAR XML files.

2AUTOSAR: http://www.autosar.org

426 Chapter 12

12.1.3 ARINC - APEX

ARINC 653 (Avionics Application Standard Software Interface) is a software specifi-
cation for avionics real-time systems that specifies how to host multiple applications
on the same hardware. To decouple the operating system from the application soft-
ware, ARINC 653 defines an API called APEX (APplication/EXecutive). The goal of
APEX is to allow analyzable safety critical real-time applications to be implemented,
certified and executed. Several critical real-time systems have been successfully built
and certified using APEX, including some critical components for the Boeing 777
aircraft.

Traditionally, avionics computer systems have followed a federated approach, where
separate functions are allocated to dedicated (often physically disjoint) computing
“black-boxes.” In recent years there has been a considerable effort by ARINC to
define standards for Integrated Modular Avionics (IMA) [ARI91] that allow saving
physical resources. IMA defines a standard operating system interface for distributed
multiprocessor applications with shared memory and network communications called
the Avionics Application Software Standard Interface [ARI96]. The standard provides
some indication about the kernel services expressed as pseudo-code.

Physical memory is subdivided into partitions, and software sub-systems occupy dis-
tinct partitions at run-time. An off-line cyclic schedule is used to schedule partitions.
Each partition is temporally isolated from the others and cannot consume more pro-
cessing time than that allocated to it in the cyclic schedule. Each partition contains one
or more application processes, having attributes such as period, time capacity, priority,
and running state. Processes within a partition are scheduled on a fixed priority basis.
Under APEX, a missed deadline is detected when a rescheduling operation occurs;
thus deadlines expiring outside the partition time-slice are only recognized at the start
of the next time-slice for that partition.

Communication between processes in different partitions occurs via message passing
over logical ports and physical channels. Currently, APEX restricts such messages
to be from a single sender to a single receiver. Physical channels are established at
initialization time, and many ports may be mapped to a single channel. Two types
of messages are supported: Sampling Messages, where the arrival of a new message
overwrites the previous one and messages are read non-consumable; and Queuing

Messages, where messages are enqueued in FIFO order and read operation is destruc-
tive. A sender blocks when the buffer is full, and a receiver blocks when the buffer
is empty. Processes within a partition can communicate using a variety of facilities,
including conventional buffers, semaphores and events, but none of these mechanisms
are visible outside the partition.

Real-time operating systems and standards 427

12.1.4 MICRO-ITRON

The ITRON (Industrial TRON - The Real-time Operating system Nucleus) project
began in 1984, in Japan. ITRON is an architecture for real-time operating systems
used to build embedded systems. The ITRON project has developed a series of de-
facto standards for real-time kernels, the previous of which was the Micro-ITRON 3.0
specification [Sak98], released in 1993. It included connection functions that allow a
single embedded system to be implemented over a network. There are approximately
50 ITRON real-time kernel products for 35 processors registered with the TRON as-
sociation, almost exclusively in Japan.

The ITRON standards primarily aim at small systems (8-16 and 32 bits). ITRON
specification kernels have been applied over a large range of embedded application
domains: audio/visual equipment (TVs, VCRs, digital cameras, STBs, audio com-
ponents), home appliances (microwave ovens, rice cookers, air-conditioners, wash-
ing machines), personal information appliances (PDAs, personal organizers, car nav-
igation systems), entertainment (game gear, electronic musical instruments), PC pe-
ripherals (printers, scanners, disk drives, CD-ROM drives), office equipment (copiers,
FAX machines, word processors), communication equipment (phone answering ma-
chines, ISDN telephones, cellular phones, PCS terminals, ATM switches, broadcasting
equipment, wireless systems, satellites), transportation (automobiles), industrial con-
trol (plant control, industrial robots) and others (elevators, vending machines, medical
equipment, data terminals).

The Micro-ITRON 4.0 specification [Tak02] combines the loose standardization that
is typical for ITRON standards with a Standard Profile that supports the strict stan-
dardization needed for portability. In defining the Standard Profile, an effort has been
made to maximize software portability while maintaining scalability. As an example,
a mechanism has been introduced for improving the portability of interrupt handlers
while keeping overhead small.

The Standard Profile assumes the following system image: high-end 16-32 bit proces-
sor, kernel size from 10 to 20 KB, whole system linked in one module, kernel object
statically generated. There is no protection mechanism. The Standard Profile supports
task priorities, semaphores, message queues, and mutual exclusion primitives with
priority inheritance and priority ceiling protocols.

428 Chapter 12

12.2 COMMERCIAL REAL-TIME SYSTEMS

At the present time, there are more than a hundred commercial products that can be
categorized as real-time operating systems, from very small kernels with a memory
footprint of a few kilobytes, to large multipurpose systems for complex real-time ap-
plications. Most of them provide support for concurrency through processes and/or
threads. Processes usually provide protection through separate address spaces, while
threads can cooperate more efficiently by sharing the same address space, but with no
protection. Scheduling is typically preemptive, because it leads to smaller latencies
and a higher degree of resource utilization, and it is based on fixed priorities. At the
moment, there are only a few systems providing deadline-driven priority scheduling.
The most advanced kernels implement some form of priority inheritance to prevent
priority inversion while accessing mutually exclusive resources. Note that this also
requires the use of priority queues instead of regular FIFO queues.

Many operating systems also provide a set of tools for facilitating the development
of real-time applications. Besides the general programming tools, such as editors,
compilers, and debuggers, there are a number of tools specifically made for real-time
systems. Advanced tools include memory analyzers, performance profilers, real-time
monitors (to view variables while the program is running), and execution tracers (to
monitor and display kernel events in a graphical form). Another useful tool for real-
time systems is the schedulability analyzer, which enables designers to verify the fea-
sibility of the task set against various design scenarios. There are also code analyzers
to determine worst-case execution times of tasks on specific architectures.

Some major players in this field are

VxWorks (Wind River);

OSE (OSE Systems);

Windows CE (Microsoft);

QNX;

Integrity (Green Hills).

Some of these kernels are described below.

Real-time operating systems and standards 429

12.2.1 VXWORKS

This real-time operating system is produced by Wind River Systems [VxW95] and it
is marketed as the run-time component of the Tornado development platform. The
kernel uses priority-based preemptive scheduling as a default algorithm, but round-
robin scheduling can be also selected as well. It provides 256 priority levels, and a
task can change its priority while executing.

Different mechanisms are supplied for intertask communication, including shared
memory, semaphores for basic mutual exclusion and synchronization, message queues
and pipes for message passing within a CPU, sockets and remote procedure calls for
network-transparent communication, and signals for exception handling. Priority in-
heritance can be enabled on mutual exclusion semaphores to prevent priority inversion.

The kernel can be scaled, so that additional features can be included during develop-
ment to speed up the work (such as the networking facilities), and then excluded to
save resources in the final version.

A performance evaluation tool kit is available, which includes an execution timer for
timing a routine or group of routines, and some utilities to show the CPU utilization
percentage by tasks. An integrated simulator, VxSim, simulates a VxWorks target for
use as a prototyping and testing environment.

VxWorks 5.x conforms to the real-time POSIX 1003.1b standard. Graphics, mul-
tiprocessing support, memory management unit, connectivity, Java support, and file
systems are available as separate services. All major CPU platforms for embedded
systems are supported.

Another version, called VxWorks AE, conforms to POSIX and APEX standards. The
key new concept in AE is the “protection domain,” which corresponds to the partition
in ARINC. All memory-based resources, such as tasks, queues, and semaphores are
local to the protected domain, which also provides the basis for automated resource
reclamation. An optional Arinc-653 compatible protection domain scheduler (Arinc
scheduler for short) extends the protection to the temporal domain. Such a two-level
scheduler provides a guaranteed CPU time window for a protection domain in which
tasks are able to run with temporal isolation. Priority-based preemptive scheduling
is used within a protection domain, not between protection domains. VxWorks 5.x
applications can run in an AE protected domain without modifications. VxWorks AE
is available for a limited set of CPUs.

430 Chapter 12

12.2.2 OSE

OSE is a real-time operating system produced by ENEA [OSE04]. It comes in three
flavors: OSE, OSEck and Epsilon. OSE is the portable kernel written mostly in C,
OSEck is the compact kernel version aimed at digital signal processors (DSPs), and
Epsilon is a set of highly optimized assembly kernels. The different kernels implement
the OSE API in different levels, from A to D: A is the smallest set of features that is
guaranteed to exist on all OSE supported platforms, while D is the full set of features
including virtual memory, memory protection and concept of users. OSE operating
systems are widely used in the automotive industry and the communications industry.

OSE processes can either be static or dynamic; that is, created at compile-time or at
run-time. Five different types of processes are supported: interrupt process, timer in-
terrupt process, prioritized process, background process, and phantom process. There
are different scheduling principles for different processes: priority-based, cyclic, and
round-robin. The interrupt processes and the prioritized processes are scheduled ac-
cording to their priority, while timer interrupt processes are triggered cyclically. The
background processes are scheduled in a round-robin fashion. The phantom processes
are not scheduled at all and are used as signal redirectors.

Processes can be grouped into blocks, and each block may be treated as a single pro-
cess; for example, one can start and stop a whole block at once. Moreover, one can
associate each block a memory pool that specifies the amount of memory available
for that block. Pools can be grouped into segments that can feature hardware memory
protection if available. There is a special pool for the system.

OSE processes use messages (called signals) as their primary communication method.
Signals are sent from one process to another and do not use the concept of mailboxes.
Each process has a single input queue from which it can read signals. It is possible
to use filters to read only specific types of messages. A process may also have a redi-
rection table that forwards certain types of messages to other processes. By the use of
“link handlers” signals may be sent between OSE systems over various communica-
tion channels (network, serial lines, etc).

There is an API functionality to get information about processes on other OSE sys-
tems so the right receiver can be determined. Sending signals to a higher-priority
process transfers the execution to the receiver. Sending to lower processes does not.
Signals going between processes inside the same memory area do not undergo copy-
ing. Only when it is necessary from memory point of view, the signal buffer is copied.
Semaphores also exist in more than one flavor, but the use of these is discouraged due
to priority inversion problems.

Real-time operating systems and standards 431

An application can be written across several CPUs by using signal IPC and link han-
dlers. One can mix any kernel type with any other; links are monitored for hardware
failures, and alternate routes are automatically attempted to be established upon a link
failure. Processes are notified upon link failure events.

Errors in system calls are not indicated by a traditional return code, but as a call to an
error handler. The error handlers exist on several levels: process, block, and system
level. If an error handler on one level cannot handle the error, it is propagated to the
next level, until it reaches the system level.

12.2.3 QNX NEUTRINO

QNX Neutrino [Hil92] is a real-time operating system used for mission-critical appli-
cations, from medical instruments and Internet routers to telematics devices, process
control applications, and air traffic control systems.

The QNX Neutrino microkernel implements only the most fundamental services in the
kernel, such as signals, timers, and scheduling. All other components Ů file systems,
drivers, protocol stacks, applications Ů run outside the kernel, in a memory-protected
user space. As a result, a faulty component can be automatically restarted without
affecting other components or the kernel.

Some of the real-time features include distributed priority inheritance to eliminate
priority inversion and nested interrupts to allow priority driven interrupt handling. All
components communicate via message passing, which forms a virtual "software bus"
that allows the user to dynamically plug in, or plug out, any component on the fly.
It provides support for transparent distributed processing using standard messages to
access hardware and software resources on remote nodes.

QNX complies with the POSIX 1003.1-2001 standard, providing realtime extensions
and threads. It includes a power management framework to enable control over the
power consumption of system components. This allows the application developer to
determine power management policies.

Finally, QNX Neutrino also provides advanced graphics features, using layering tech-
niques, to create visual applications for markets such as automotive, medical, indus-
trial automation and interactive gaming. A support for accelerated 3D graphics ren-
dering (based on the Mesa implementation of the OpenGL standard) allows for the
creation of sophisticated displays with little impact on CPU performance.

432 Chapter 12

12.3 LINUX RELATED REAL-TIME KERNELS

Linux is a general purpose operating system originally designed to be used in server
or desktop environments. For this reason, not much attention has been dedicated to
real-time issues. As a result, the latency experienced by real-time activities can be
as large as hundreds of milliseconds. This makes common Linux distributions not
suitable for hard real-time applications with tight timing constraints. On the other
hand, making Linux a real-time operating system would enable the full-power of a real
operating system for real-time applications, including a broad range of open source
drivers and development tools. For this reason, a considerable amount of work has
been done during the last years to provide Linux with real-time features. Two different
approaches have been followed.

The first approach is called interrupt abstraction and it is based on a small real-
time executive having full control of interrupts and processor key features, which
executes Linux as a thread. To achieve real-time behavior, the whole Linux kernel
is treated by the real-time scheduler as the idle task, so Linux only executes when
there are no real-time tasks to run. The Linux task can never block interrupts
or prevent itself from being preempted. This approach has been successfully
implemented in several existing frameworks, the most notable examples of which
are RTLinux, RTAI, and Xenomai. It is an efficient solution, as it obtains low
latencies, but is also invasive, and, often, not all standard Linux facilities are
available to tasks running with real-time privileges.

The second approach consists in directly modifying the Linux internals to re-
duce latency and add real-time features. This is the approach followed by the
PREEMPT RT, SCHED EDF, and Linux/RK projects.

12.3.1 RTLINUX

RTLinux has been the first real-time extension for Linux, created by Victor Yodaiken.
Currently, two versions of RTLinux are available: an Open-Source version, called
RTLinuxFree,3 and a commercial version covered by patent, distributed by Wind River
as Wind River Real-Time Core for Linux.4 RTLinux works as a small executive with
a real-time scheduler that runs Linux as its lowest priority thread. The Linux thread is
made preemptable so that real-time threads and interrupt handlers do not experience
long blocking delays by non-real-time operations. The executive modifies the standard
Linux interrupt handler routine and the interrupt enabling and disabling macros.

3RTLinuxFree: http://www.rtlinuxfree.com
4RTLinux Wind River: http://www.windriver.com/products/linux/

Real-time operating systems and standards 433

When an interrupt is raised, the micro-kernel interrupt routine is executed. If the
interrupt is related to a real-time activity, a real-time thread is notified and the real-
time kernel executes its own scheduler. If the interrupt is not related to a real-time
activity, then it is “flagged.” When no real-time threads are active, Linux is resumed
and executes its own code. Moreover, any pending interrupt related to Linux is served.

In this way, Linux is executed as a background activity in the real-time executive. This
approach has the advantage of separating as much as possible the interactions between
the Linux kernel, which is very complex and difficult to modify, and the real-time
executive. It also obtains a very low average latency for real-time activities and, at the
same time, the full power of Linux on the same machine. However, there are several
drawbacks. Real-Time tasks execute in the same address space as the Linux kernel;
therefore, a fault in a user task may crash the kernel. When working with the real-time
threads, it is not possible to use the standard Linux device driver mechanism; as a
result, it is often necessary to rewrite the device drivers for the real-time application.
For example, for using the network in real-time, it is necessary to use another device
driver expressly designed for RTLinux. The real-time scheduler is a simple fixed
priority scheduler, which is POSIX compliant. There is no direct support for resource
management facilities. Some Linux drivers directly disable interrupts during some
portions of their execution. During this time, no real-time activities can be executed,
and thus the worst-case latency of real-time activities is increased.

12.3.2 RTAI

RTAI5 (Real Time Application Interface) started as a modification of RTLinux by
Paolo Mantegazza at the Dipartimento di Ingegneria Aerospaziale, Politecnico di Mi-
lano, Italy. Through the years, the original idea of RTLinux has been considerably
changed and enhanced. RTAI is now a community project, and the source code is re-
leased as open source. Because of some uncertainty about the legal repercussion of the
RTLinux patent on RTAI, the RTAI community has developed the Adaptive Domain

Environment for Operating Systems (Adeos) nano-kernel as an alternative for RTAI’s
core to get rid of the old kernel patch and exploit a more structured and flexible way to
add a real-time environment to Linux. The purpose of Adeos is not limited to RTAI’s
core, but it is to provide a flexible environment for sharing hardware resources among
multiple operating systems. It also makes it easier to plug in additional features, such
as debuggers, analyzers, and standard open middleware layers, serving all operating
systems running on top of it almost without any intrusion. A comparison between
latency with and without RTAI was done by Lipari and Scordino [LS06].

5RTAI: http://www.rtai.org

434 Chapter 12

RTAI offers the same services of the Linux kernel core, adding the features of an
industrial real-time operating system. It basically consists of an interrupt dispatcher
that traps the peripherals interrupts and, if necessary, reroutes them to Linux. It is not
an intrusive modification of the kernel: it uses the concept of hardware abstraction
layer (HAL) to get information from Linux and trap some fundamental functions.

RTAI uniformly mixes hard and soft real-time activities by symmetrically integrating
the scheduling of RTAI tasks, Linux kernel threads and user-space tasks. By using
Linux schedulable objects, RTAI benefits from threads protection at the price of a
slight increase in latencies. RTAI offers also a native, dynamically extensible, light
middleware layer based on the remote procedure call concept, which uses the whole
API in a distributed way.

One of the major limits of RTAI is that the project mainly focuses on x86 architec-
tures, thus there is a very limited support for embedded platforms. For this reason,
developers working in the embedded area often prefer using Xenomai.

12.3.3 XENOMAI

Started as a branch of the RTAI project, Xenomai6 is the evolution of the Fusion
project, an effort to execute real-time RTAI tasks in user space. Xenomai brings the
concept of virtualization one step further: like RTAI, it uses the Adeos nano-kernel to
provide the interrupt virtualization, but it also allows a real-time task to execute in user
space. This is done by introducing the concept of domains: in the primary domain,
the task is controlled by the RTOS, while in the secondary domain it is controlled by
the Linux scheduler. Normally, a real-time task starts in the primary domain, where
it remains as long as it invokes only the RTOS API. It is automatically migrated to
the secondary domain as soon as it invokes a standard Linux system call or it needs
to handle events such as exceptions or Linux signals. However, the task keeps its
real-time priority, being scheduled with the SCHED FIFO or SCHED RR Linux
policies.

While running in the secondary mode, the task can experience some delay and latency,
due to the fact that it is scheduled by Linux. However, at any time after the function
call has been completed, it can go back to the primary mode by explicitly calling a
function. In this way, real-time applications can use the full power of Linux at the cost
of some limited unpredictability.

6Xenomai: http://www.xenomai.org

Real-time operating systems and standards 435

Xenomai also provides a set of “skins” that implement various APIs offered by com-
mon RTOSs (e.g., VxWorks), as well as a POSIX API and a “native” API. This feature
increases portability of application code from other platforms to Xenomai.

With respect to RTAI, Xenomai offers the support for a whole set of embedded ar-
chitectures, including ARM, Blackfin, Altera Nios2, and PowerPC. Xenomai devel-
opers are currently putting considerable effort into integrating its code with the PRE-
EMPT RT patch, in order to have the benefits of both patches on the same system.

12.3.4 PREEMPT RT

PREEMPT RT7 is a kernel patch to make a Linux system more predictable and deter-
ministic. This is done through several optimizations. The patch makes almost all ker-
nel code preemptable, except for the most critical kernel routines, so reducing the max-
imum latency experienced by a task (at the cost of a slightly higher average latency).
This feature is achieved by replacing almost every spinlock in the kernel code with
preemptable mutexes with Priority Inheritance (see Section 7.6). A numerical evalua-
tion of the PREEMPT RT patch has been carried out by Lipari and Scordino [LS06].

The patch also provides “threaded interrupts” by converting interrupt handlers into
preemptable kernel threads that are managed in “process context” by the regular Linux
scheduler. Whenever some parts of the PREEMPT RT patch are considered to be
stable enough (e.g., the priority inheritance algorithm), they are merged in the official
Linux kernel distribution.

12.3.5 SCHED DEADLINE

SCHED DEADLINE8 is a Linux kernel patch developed by Evidence s.r.l. in the
context of the ACTORS European project.9 It adds a deadline-based scheduler with
resource reservations in the standard Linux kernel. The implemented algorithm is
a global Constant Bandwidth Server (see Section 6.9), implemented as a partitioned
algorithm with migration. Migration can be disabled, thus it can also work as a parti-
tioned algorithm.

7PREEMPT RT: http://rt.wiki.kernel.org
8SCHED DEADLINE: http://gitorious.org/sched deadline/pages/Home
9ACTORS: http://www.actors-project.eu

436 Chapter 12

The patch adds a new scheduling class to the Linux scheduler, so normal tasks can still
behave as when the patch is not applied. The patch also adds one further system call
to set budget and period for any SCHED DEADLINE task.

The patch is platform-independent; therefore, it supports any embedded platform sup-
ported by the standard Linux kernel. It also natively supports multicore architectures.
Several options are available at run-time, like bandwidth reclaiming, soft or hard reser-
vations, deadline inheritance, and so on. The development is still ongoing, and new
versions are often released on the Linux Kernel Mailing List (LKML). Eventually, this
patch might be merged inside the official Linux kernel.

12.3.6 LINUX/RK

In Linux/RK, the Linux kernel has been directly modified [Raj98, Raj00] to introduce
real-time features. The kernel is supported by TimeSys Inc. RK stands for “Resource
Kernel,” because the kernel provides resource reservations directly to user processes.
The use of this mechanism is transparent; thus it is possible to assign a reservation to
a legacy Linux application. Moreover, it is possible to access a specific API to take
advantage of the reservations and the quality of service management.

A reserve represents a share of a single computing resource, which can be CPU time,
physical memory pages, a network bandwidth, or a disk bandwidth. The kernel keeps
track of the use of a reserve and enforces its utilization, when necessary. A reserve
can be time-multiplexed or dedicated. Temporal resources like CPU cycles, network
bandwidth and disk bandwidth are time-multiplexed, whereas spatial resources, like
memory pages, are dedicated. A time-multiplexed resource is characterized by three
parameters: C, D, T, where T represents a recurrence period, C represents the pro-
cessing time required within T, and D is the deadline within which the C units of
processing time must be available within T.

Within Linux/RK an application can request the reservation of a certain amount of a
resource, and the kernel can guarantee that the requested amount is available to the ap-
plication. Such a guarantee of resource allocation gives an application the knowledge
of the amount of its currently available resources. A QoS manager or an application
itself can then optimize the system behavior by computing the best QoS obtained from
the available resources.

To simplify portability, the modifications to the original Linux kernel were limited as
much as possible, and the RK layer has been developed as an independent module
with several callback hooks.

Real-time operating systems and standards 437

12.4 OPEN-SOURCE REAL-TIME RESEARCH

KERNELS

The main characteristics that distinguish this type of operating systems include the
following:

The ability to treat tasks with explicit timing constraints, such periods and dead-
lines.

The presence of guarantee mechanisms that verify in advance whether the appli-
cation constraints can be met during execution.

The possibility to characterize tasks with additional parameters that are used to
analyze the dynamic performance of the system.

The use of specific resource access protocols that avoid priority inversion and
limit the blocking time on mutually exclusive resources.

Some of the first operating systems that have been developed according to these prin-
ciples are CHAOS [SGB87], MARS [KDK+89], Spring [SR91], ARTS [TM89], RK
[LKP88], TIMIX [LK88], MARUTI [LTCA89], HARTOS [KKS89], YARTOS [JSP92],
and HARTIK [But93]. Most of these kernels never evolved to a commercial product,
but they were useful for experimenting novel mechanisms, some of which are to be
integrated in next-generation operating systems.

The main differences among the kernels mentioned above concern the supporting ar-
chitecture on which they have been developed, the static or dynamic approach adopted
for scheduling shared resources, the types of tasks handled by the kernel, the schedul-
ing algorithm, the type of analysis performed for verifying the schedulability of tasks,
and the presence of fault-tolerance techniques.

The rest of this section presents three examples of such kernels:

Erika Enterprise, an OSEK kernel for small embedded platforms;

Shark, a POSIX-like kernel for PC platforms;

Marte OS, a POSIX-like kernel for PC platforms supporting C++ and Ada 2005.

438 Chapter 12

12.4.1 ERIKA ENTERPRISE

Erika Enterprise10 is a real-time operating system that proposes a free of charge open-
source implementation of the OSEK/VDX API. Erika Enterprise is supported by RT-
Druid, a set of Eclipse plug-ins implementing an OSEK OIL compiler, able to produce
an OSEK ORTI file compatible with Lauterbach Trace32 debuggers. The kernel is
characterized by a minimal memory footprint of 1-4 Kb flash and an easy-to-use API.
ERIKA Enterprise also supports stack sharing, allowing all basic tasks in the system
to share a single stack, so reducing the overall RAM memory used for this purpose.
Several examples are available and maintained by the online community of developers.

In addition to the standard OSEK/VDX conformance classes, Erika Enterprise pro-
vides other customized conformance classes implementing EDF and soft real-time
resource reservations with the IRIS algorithm [MLBC04]. It also supports a subset
of the AUTOSAR Scalability Class SC4, including memory protection support and
OS Applications. Erika Enterprise supports a number of third-party libraries, includ-
ing TCP/IP, 802.15.4, CMOS cameras, analog and digital sensors, encoders, DACs,
ADCs, 3-axis accelerometers, DC motors, and many others. It also provides direct
support for code generation from ScicosLab 11 models, useful for implementing model-
driven data-flow control loops by the CAL12 open dataflow language. As a result of
its compliancy to the OSEK/VDX standard, ERIKA Enterprise is now used by var-
ious companies for automotive applications and white goods systems (e.g., washing
machines, air conditioners, refrigerators, and stoves).

EFFICIENT EDF IMPLEMENTATION

ERIKA Enterprise contains an efficient implementation of the EDF scheduler, imple-
mented as an extension to the OSEK/VDX specification.

There are two problems that need to be solved to implement an EDF scheduler on an
OSEK system. The first is to provide a lightweight internal timing reference, since
OSEK only exports an alarm interface, leaving the counter objects unspecified and
implementation dependent. ERIKA Enterprise resolved the issue by adding an inter-
nal timing support that is implicitly used by the kernel primitives that follow the EDF
specification. The second problem is to provide a timing reference with both high res-
olution (to handle short and fast activities with deadlines in the order of tens/hundreds
of microseconds) and long lifetime (to handle absolute deadlines).

10Erika Enterprise: http://erika.tuxfamily.org
11ScicosLab: http://www.scicos.org
12CAL: http://embedded.eecs.berkeley.edu/caltrop/language.html

Real-time operating systems and standards 439

In POSIX systems, such timing properties have been resolved by using a struct

timespec data structure, containing a 32 bit integer representing nanoseconds (thus
providing high resolution), and a 32 bit integer representing seconds (thus giving a
lifetime of around 136 years, more than enough for practical applications). Unfortu-
nately, this approach cannot be implemented on small microcontrollers, where han-
dling a 64 bit data structure imposes a significant overhead in the scheduler imple-
mentation. To overcome this problem, Erika adopts a circular timer [CB03], which
replaces the absolute timing reference with a timing reference relative to the current
time t, implemented by a free running timer.

In this way, it is possible to handle absolute deadlines that can range between t−P/2
and t + P/2, where P is the timer lifetime, defined as the minimum interval of time
between two non simultaneous events characterized by the same time representation.
For example, in a Microchip dsPIC microcontroller with a timer clock running at 2
MHz, the 32 bit hardware timer can achieve a lifetime of 1073 seconds (enough for
many practical applications).

If t(ei) is the absolute time at which event ei occurs, the circular time method can be
expressed follows.

If events are represented by n-bit unsigned integers, such that

∀t ∀ei, ej ∈ E(t) |t(ei) − t(ej)| <
P

2
(12.1)

then ∀t ∀ei, ej ∈ E(t) we have

1. t(ei) > t(ej) ⇐⇒ (ei ⊖ ej) < P
2 , (ei ⊖ ej)
= 0

2. t(ei) < t(ej) ⇐⇒ (ei ⊖ ej) > P
2

3. t(ei) = t(ej) ⇐⇒ (ei ⊖ ej) = 0

where ⊖ denotes a subtraction between n-bit integers, evaluated as an unsigned n-bit
integer. It is worth observing that for 8/16/32-bit integers such a subtraction operation
does not require a special support since it is implemented in all CPUs.

Figure 12.1 shows a set of events that satisfies condition (12.1).

440 Chapter 12

FFFF 0000

dta

dtb

e1

e2= EAABh e3=0E39h

Figure 12.1 Circular timer implementation in ERIKA Enterprise.

The main property of the ⊖ operator is that

∀a, b ∈ [0, 2n − 1] unsigned(b⊖ a) = dist(a, b)

where

dist(x, y) is the distance from x to y evaluated on the time circle in the direction
of increasing time values. Note that dist(x, y) = d means that if t = x then,
after a delay of d, we have t = y, independently from the fact that x and y belong
to two different cycles.

unsigned(x) is the value of x, interpreted as an n-bit unsigned value. We recall
that according to the 2’s complement representation,

unsigned(x) =

{

x if x ≥ 0
2n + x otherwise

For example, when evaluating the two events e2 and e3 in Figure 12.1, we have that
dta = (e2 − e3) = DC72H > 8000H = P/2. Hence, we conclude that e2 must
precede e3 and that the actual time difference between the events is dtb = (e3 − e2) =
238EH < P/2.

Real-time operating systems and standards 441

The implementation of EDF is done in a new conformance class, called “EDF”. The
EDF conformance class retains the same static approach of the OSEK/VDX standard,
with a slightly simplified API (basically, the API does not include the TerminateTask
primitive). The configuration of the EDF scheduler is then specified in the OIL file
used by ERIKA Enterprise. For example, an EDF conformance class with a timer tick
of 25 nanoseconds is specified as follows:

KERNEL_TYPE = EDF { TICK_TIME = "25 ns ";};

A relative deadline of 10 milliseconds can be specified (in the OIL file) as

TASK myTask1 {

REL_DEADLINE = "10 ms ";

};

The OIL compiler converts the milliseconds in the proper number of ticks, using the
tick duration specified in the TICK TIME variable. The rest of the OSEK/VDX kernel
primitives are basically the same, since all system calls do not have periodicity and
priorities as parameters.

Finally, based on the EDF scheduler, ERIKA Enterprise also supports resource reser-
vation (see Section 9.3). The implementation was carried out within the FRESCOR
European Project13 and consisted in the development of the IRIS scheduler [MLBC04]
on top of the EDF scheduler. As a result, ERIKA Enterprise is able to support resource
reservation under EDF with reclaiming of unused computation time and with a foot-
print of about 10Kb Flash.

MULTICORE SUPPORT

Another feature that distinguishes ERIKA Enterprise from other real-time kernels is
the support for multicore systems; that is, the possibility for an application to be stati-
cally partitioned on the various cores available on modern architectures.

Under ERIKA Enterprise each concurrent task is statically linked at build time to
a given CPU. Each CPU includes a separate copy of the operating system and of
the device drivers that are present on the particular CPU. The partitioned approach is
typically forced by modern multicore system-on-a-chip, since it is often not efficient
to migrate the execution of a thread from one CPU to another.

13FRESCOR Project: http://www.frescor.org

442 Chapter 12

Ideally, to allow the designer to write partitioning-independent code, tasks partitioning
should be done at the end of the application design, without changing the application
source code. In practice, partitioning can be limited by the fact that some hardware
peripherals may not be available on all cores. The minimal partitioning item in a
system is the source file; hence the code of tasks allocated to different CPUs must be
on different files, to allow an easy partitioning in different CPU in a later stage of the
development.

In a heterogeneous system, each core usually has different peripherals and the memory
spaces shared between cores may vary. Cache coherency is often not present due to
cost reasons, and proper cache disabling techniques have to be used to avoid data
corruption. One of the CPUs usually works as the master CPU, which plays the role
of initializing the global data structures. That master CPU is also responsible for the
implementation of a startup barrier, which is used to synchronize all cores to have a
coherent operating system startup.

The current implementation of ERIKA Enterprise (available open source) supports
Altera Nios II multicore designs on FPGA, and Freescale PPC 5668G FADO, which
is a dual core hosting a PPC z6 and a PPC z0 (the second processor is typically used
to handle high-speed peripherals).

12.4.2 SHARK

SHARK14 (Soft and HArd Real-time Kernel) is a dynamic configurable real-time op-
erating system developed at the Scuola Superiore S. Anna of Pisa [GAGB01] to sup-
port the development and testing of new scheduling algorithms, aperiodic servers, and
resource management protocols. The kernel is designed to be modular, so that ap-
plications can be developed independently of a particular system configuration, and
schedulers can be implemented independently of other kernel mechanisms.

The kernel is compliant with the POSIX 1003.13 PSE52 specifications and currently
runs on Intel x86 architectures. SHARK is currently used for education in several
real-time systems courses all over the world. It is available for free under GPL license
at http://shark.sssup.it.

14SHARK: http://shark.sssup.it/

Real-time operating systems and standards 443

EDF module

CBS module

PIP module

Kernel

Generic

Hardware dependent layer

Libraries

Figure 12.2 The SHARK Architecture.

KERNEL ARCHITECTURE

To make scheduling algorithms independent of applications and other internal mecha-
nisms, SHARK is based on the notion of a Generic Kernel, which does not implement
any particular scheduling algorithm, but postpones scheduling decisions to external
entities, the scheduling modules. In a similar fashion, the access to shared resources
is coordinated by resource modules. A simplified scheme of the kernel architecture is
shown in Figure 12.2.

The Generic Kernel provides the mechanisms used by the modules to perform schedul-
ing and resource management, thus allowing the system to abstract from the algo-
rithms that can be implemented. The Generic Kernel simply provides the primitives
without specifying any algorithm, whose implementation resides in external modules,
configured at run-time with the support of the Model Mapper.

Each module consists of a set of data and functions used for implementing a specific
algorithm, whose implementation is independent from the other modules in the sys-
tem. In this way, many different module configurations are possible. For example, a
Polling Server can either work with Rate Monotonic or EDF without any modification.
Moreover, scheduling modules can be composed into priority layers, as in a multilevel
scheduling approach. Several scheduling modules are already available, such as Rate
Monotonic, EDF, Polling Server, Deferrable Server, Slot Shifting, Total Bandwidth
Server, Constant Bandwidth Server, Elastic Scheduling, as well as a number of re-
source protocols, such as Priority Inheritance, Priority Ceiling, and Stack Resource
Policy.

444 Chapter 12

Another important component of the Generic Kernel is the Job Execution Time (JET)
estimator, which monitors the computation time actually consumed by each job. This
mechanism is used for statistical measurements, resource accounting, and temporal
protection.

The API is exported through a set of Libraries, which use the Generic Kernel to sup-
port some common hardware devices (i.e., keyboard, sound cards, network cards, and
graphic cards). They provide a compatibility layer with the POSIX interface (POSIX
1003.13 PSE52) to simplify porting of applications developed for other POSIX com-
pliant kernels.

Independence between applications and scheduling algorithms is achieved by intro-
ducing the notion of task model. Two kinds of models are provided: Task Models
and Resource Models. A task model expresses the QoS requirements of a task for
the CPU scheduling. A resource model is used to define the QoS parameters relative
to a set of shared resources used by a task. For example, the resource model can be
used to specify the semaphore protocol to be used for protecting critical sections (e.g.,
Priority Inheritance, Priority Ceiling, or SRP). Requirements are specified through a
set of parameters that depend on the specific models. Models are used by the Generic
Kernel to assign a task to a specific module.

Task creation works as follows (see Figure 12.3): when an application issues a request
to the kernel for creating a new task, it also sends the model describing the requested
QoS. A kernel component, namely the model mapper, passes the model to a module,
selected according to an internal policy, and the module checks whether it can provide
the requested QoS; if the selected module cannot serve the task, the model mapper
selects a different module. When a module manages the task described by the spec-
ified model, it converts the model’s QOS parameters into the appropriate scheduling
parameters. Such a conversion is performed by a module component, called the QoS

Mapper.

SCHEDULING MODULES

Scheduling Modules are used by the Generic Kernel to schedule tasks, or serve aperi-
odic requests using an aperiodic server. In general, the implementation of a schedul-
ing algorithm should possibly be independent of resource access protocols, and handle
only the scheduling behavior. Nevertheless, the implementation of an aperiodic server
relies on the presence of another scheduling module, called the Host Module (for ex-
ample, a Deferrable Server can be used if the base scheduling algorithm is RM or
EDF, but not Round Robin). Such a design choice reflects the traditional approach
followed in the literature, where most aperiodic servers insert their tasks directly into

Real-time operating systems and standards 445

hard task

Generic

Model Mapper

soft task

soft

model

model

hard

Module 1QoS Mapper

algorithm

Specific

Internal data

structures

Module 2QoS Mapper

algorithm

Specific

Internal data

structures

Figure 12.3 The interaction between the Model Mapper and the QOS Mapper.

the scheduling queues of the base scheduling algorithm. Again, the modularity of the
architecture hides this mechanism with the task models: an aperiodic server must use
a task model to insert his tasks into the Host Module. In this way, the Guest Module
does not have to rely on the implementation of the Host Module.

The Model Mapper distributes the tasks to the registered modules according to the task
models the set of modules can handle. For this reason, the task descriptor includes an
additional field (task level), which points to the module that is handling the task.

When the Generic Kernel has to perform a scheduling decision, it asks the modules
for the task to schedule, according to fixed priorities: First, it invokes a scheduling
decision to the highest priority module, then (if the module does not manage any task
ready to run) it asks the next high priority module, and so on. In this way, each module
manages its private ready task list, and the Generic Kernel schedules the first task of
the highest priority non empty module’s queue.

The interface functions provided by a scheduling module can be grouped in three
classes: Level Calls, Task Calls and Guest Calls.

446 Chapter 12

SHARED RESOURCE ACCESS PROTOCOLS

As for scheduling, SHARK also achieves modularity in the implementation of shared
resource access protocols. Resource modules are used to make resource protocols
modular and almost independent from the scheduling policy and from the others re-
source protocols. Each resource module exports a common interface, similar to the
one provided by POSIX for mutexes, and implements a specific resource access pro-
tocol. A task may also require a specified protocol through a resource model.

To make the protocol independent of a particular scheduling algorithm, SHARK sup-
ports a generic priority inheritance mechanism independent of the scheduling modules.
Such a mechanism is based on the concept of shadow tasks. A shadow task is a task
that is scheduled in place of another task chosen by the scheduler. When a task is
blocked by the protocol, it is kept in the ready queue, and a shadow task is associated
to it; when the blocked task becomes the first task in the ready queue, its associated
shadow task is scheduled instead. In this way, the shadow task “inherits” the priority
of the blocked task.

To implement this solution, a new field shadow is added to the generic part of the task
descriptor. This field points to the shadow task. Initially, the shadow field is equal to
the task ID (no substitution). When the task blocks, the shadow field is set to the task
ID of the blocking task, or to the task that must inherit the blocked task priority. In
general, a graph can grow from a blocking task (see Figure 12.4). In this way, when the
blocked task is scheduled, the blocking (shadow) task is scheduled, thus allowing the
schedulers to abstract from the resource protocols. This approach has also the benefit
of allowing a classical deadlock detection strategy, by simply searching for cycles in
the shadow graph.

shadow

blocked task

shadow

blocked task

shadow

blocked task

shadow

blocked task

Figure 12.4 The shadow task mechanism.

Real-time operating systems and standards 447

DEVICE MANAGEMENT

In SHARK, device management is performed outside the kernel, so that the device
manager will not steal execution time from the application code. To allow precise
resource accounting, SHARK distinguishes between device drivers and device man-

agers. Device drivers are the hardware dependent part of the device management
code, implementing the routines necessary to perform low-level accesses to the de-
vices. Drivers can easily be inherited from other free operating systems (e.g., Linux)
that support most of the current PC hardware. The driver code is compiled using some
glue code, which remap the other system calls to the Generic Kernel interface.

The device manager is hardware independent and only performs device scheduling,
taking device management costs into account to provide some form of guarantee on
hardware accesses. For this purpose, the manager can be implemented as a dedicated
thread, or as an application code. If the thread is handled by server implementing
temporal protection, the first solution ensures that the device management will not
influence the other system’s activities. The second solution, however, allows a better
precision in accounting the CPU time used by the device manager to the application
using the hardware resource.

12.4.3 MARTE OS

Marte OS15 (Minimal Real-Time Operating System for Embedded Applications) is a
real-time kernel for embedded applications that follows the Minimal Real-Time Sys-
tem Profile (PSE51) defined in the POSIX.13 standard [POS03]. The services pro-
vided by the kernel have a time-bounded response, so hard real-time requirements can
be supported. It allows executing concurrent real-time applications on a bare PC and,
with some limitations, in a Linux box. MaRTE OS is distributed under a modified-
GPL free-software license.

Most of the internal code of MaRTE OS is written in Ada with some C and assembler
parts. Nonetheless, application program interfaces (APIs) for different programming
languages are provided, allowing for the development of concurrent real-time applica-
tions written in Ada, C and C++. It is even possible to mix different languages in the
same application, for instance with coexisting (and cooperating) C threads and Ada
tasks running under a coherent real-time scheduling policy.

MaRTE OS was initially designed to support embedded applications running on a bare
computer. Currently, the supported architecture is a bare PC using an 80386 processor

15Marte OS: http://marte.unican.es/

448 Chapter 12

or higher. A basic hardware abstraction layer (HAL) is defined to facilitate porting
to other architectures. Such a layer can be implemented using the services of another
operating system that acts as a virtual processor. An implementation of MaRTE OS is
also available on the Linux operating system, which is useful for testing, development,
and teaching purposes.

The development environment is based on the GNU compilers GNAT and gcc, as well
as on their associated utilities, such as the gdb debugger. When developing embedded
applications, a cross development environment is used with the development tools
hosted in a Linux system. The executable images can be uploaded to the target via an
Ethernet link, and cross debugging is possible through a serial line. It is also possible
to write the executable image to a bootable device such as a flash memory, for isolated
execution in the target. MaRTE OS has been used to develop industrial embedded
systems and is also an excellent tool for educational activities related to real-time
embedded systems programming.

SUPPORTED FUNCTIONALITY

MaRTE OS is an implementation of the POSIX.13 minimal real-time system profile,
and as such it provides to C/C++ applications the services defined in the standard,
which can be grouped as follows:

Concurrency services supporting the management of threads.

Scheduling with real-time policies based on preemptive fixed priorities and sup-
porting variants such as FIFO within priorities, round robin within priorities, or
the Sporadic Server.

Synchronization through counting semaphores, mutexes, and condition variables.
Mutexes have support for real-time mutual exclusion through the priority inheri-
tance or priority ceiling protocols.

Signals, as an asynchronous notification mechanism.

Time management through clocks and timers. A monotonic clock that cannot
have backward jumps is provided for real-time applications. Timers can be cre-
ated to measure the passage of an absolute or relative time and will generate a
signal to notify the application about their expiration.

Execution-time clocks and timers are used to monitor tasks’ execution time and
enforce time bounds under resource reservations.

Real-time operating systems and standards 449

Dynamic memory management. MaRTE OS uses the TLSF16 algorithm, which
is a fast time-bounded dynamic memory allocator with low fragmentation.

Device I/O through a simplified device name space and the standard operations,
like open/close/read/write/ioctl.

In addition to the POSIX services, MaRTE OS also provides extensions that are useful
to develop advanced real-time applications:

Timed handlers, as a lightweight mechanism to define small handlers that are
executed in interrupt context at the expiration of a timer. These handlers can also
be used in conjunction with execution-time clocks.

Earliest-Deadline-First (EDF) scheduling. This is a preemptive dynamic-priority
thread dispatching policy that can be used to maximize the resource utilization in
real-time applications. It requires an implementation of the Stack Resource Pro-
tocol [Bak91] for avoiding unbounded blocking effects when accessing protected
objects.

Thread sets or groups that can be used to create clocks for measuring the execu-
tion time of a group of threads. These clocks can in turn be used to create timers
and timed handlers to implement advanced scheduling policies or to detect and
bound the effects of timing violations by a group of threads.

Interrupt management with the ability to install interrupt handlers and manage
interrupt masking. In MaRTE OS there is separate accounting for the execution
time of interrupt handlers.

Application-defined scheduling [RH01, RH04], which is a group of services in-
tended to allow an application to install its own scheduler for the OS threads. This
feature is particularly interesting for implementing advanced scheduling policies
being defined by the real-time research community.

APPLICATION-DEFINED SCHEDULING

MARTE OS allows Ada and C++ applications to define its own scheduling algorithm
[RH01, RH04] in a way compatible with the scheduler interface defined in POSIX and
in the Ada 2005 Real-Time Systems Annex. Several application-defined schedulers,
implemented as special user tasks, can coexist in the system in a predictable way.

16TLSF: Memory Allocator for Real-Time: http://rtportal.upv.es/rtmalloc/

450 Chapter 12

Each application scheduler is responsible for scheduling a set of tasks that have previ-
ously been attached to it. The scheduler is typically a task that executes a loop where it
waits for scheduling events, and then determines the application task(s) to be activated
or suspended. A scheduling event is generated every time a task requests attachment
to the scheduler or terminates, gets ready or blocks, invokes a yield operation, changes
its scheduling parameters, inherits or uninherits a priority, or executes any operation
on an application-scheduled mutex.

The application scheduler can make use of the regular operating system services, in-
cluding the high-resolution timers to program future events, and the execution time
clock and timers to impose execution-time budgets on the different threads and to
simplify the implementation of scheduling algorithms such as the Sporadic Server or
the Constant Bandwidth Server.

Because mutexes may cause priority inversion, it is necessary that the scheduler task
knows about the use of mutexes to establish its own protocols. Two types of mutexes
are considered:

System-scheduled mutexes, created with the current POSIX protocols and sched-
uled by the system.

Application-scheduled mutexes, whose protocol will be defined by the applica-
tion scheduler.

INTERRUPT MANAGEMENT AT APPLICATION LEVEL

MARTE offers to Ada and C programmers an application program interface (API) that
deals with hardware interrupts in an easy way. Basically, this API offers operations to

enable and disable hardware interrupts;

install interrupts procedures (several can be installed for the same interrupt num-
ber); and

synchronize threads with the hardware interrupts.

Semaphores can be used as an alternative synchronization mechanism between inter-
rupt handlers and tasks.

Real-time operating systems and standards 451

DRIVERS FRAMEWORK

MARTE includes a driver framework that simplifies and standardizes installation and
use of drivers, allowing programmers to share their drivers with other people in a
simple way. This framework also facilitates the adaptation of drivers written for open
operating systems (such as Linux).

The implementation model is similar to what is used in most UNIX-like operating sys-
tems. Applications access devices through “device files” using standard file operations
(open, close, write, read, ioctl). In this case the device files are stored as a set of data
tables inside the kernel, with pointers to the driver primitive operations.

ADA SUPPORT

The run-time of the GNAT Ada compiler has been adapted to run on the POSIX in-
terface provided by MaRTE OS. Ada applications running on top of MaRTE OS can
use the full basic Ada language functionality. MaRTE OS also supports most of the
services defined in the Ada 2005 Reference Manual real-time annex:

Timing events.

Execution-time clocks and timers.

Group execution-time budgets.

Dynamic priorities for protected objects.

EDF and round-robin scheduling policies.

Priority-specific dispatching.

452 Chapter 12

12.5 DEVELOPMENT TOOLS

The implementation of complex real-time applications requires the use of specific
tools for analyzing and verifying the behavior of a system. In addition to the gen-
eral programming tools, such as editors, compilers, source code browsers, debuggers,
and version control systems, there are a number of tools specifically aimed at cross
development and run-time analysis. In particular:

Memory analyzers show memory usage and reveal memory leaks before they
cause a system failure.

Performance profilers reveal code performance bottlenecks and show where a
CPU is spending its cycles, providing a detailed function-by-function analysis.

Real-time monitors allow the programmer to store or view any set of variables,
while the program is running.

Execution tracers display the function calls and function calling parameters of a
running program, as well as return values and actual execution time.

Event analyzers allow the programmer to view and track application events in
a graphical viewer with stretchable time scale, showing tasks, context switches,
semaphores, message queues, signals, timers, etc.

Timing analysis tools perform a static analysis of the task code and derive a set
of data used to verify the timing behavior of the application.

Schedulability analyzers verify the feasibility of the schedule produced by a
scheduling algorithm on a specific task set.

Scheduling simulators simulate the execution behavior of specific scheduling al-
gorithms on synthetic task sets with randomly generated parameters and desired
workload. They are useful for testing the timing behavior of the system in several
circumstances, to detect possible deadline misses, blocking conditions and task
response times.

In the following, we give a brief overview of tools for timing analysis, schedulability
analysis, and scheduling simulations.

Real-time operating systems and standards 453

12.5.1 TIMING ANALYSIS TOOLS

Obtaining accurate information about the longest execution time a software compo-
nent can take to run on a specific platform is a key feature for ensuring that an embed-
ded real-time system will operate correctly.

These tools perform a static analysis of the task code (some at the source level, some
at the executable level) to determine a set of data that are essential to verify the timing
behavior of a real-time application. Examples of such data include task worst-case
execution times (WCETs), cache-related preemption delays (CRPDs), and stack usage
profiles. The following are two commercial tools in this category.

RapiTime17 is a timing analysis tool, developed by Rapita Systems Ltd, targeted
at real-time embedded applications. RapiTime collects execution traces and de-
rives execution time measurement statistics to help the programmer in estimating
tasks’ worst-case execution times.

aiT18 is a WCET analyzer that statically computes tight bounds for the task
WCETs in real-time systems. It directly analyzes binary executables taking the
intrinsic cache and pipeline behavior into account. It was developed by Absint
in the DAEDALUS European project, according to the requirements of Airbus
France for validating the timing behavior of critical avionics software, includ-
ing the flight control software of the A380 aircraft. A graphical user interface
supports the visualization of the worst-case program path and the interactive in-
spection of all pipeline and cache states at arbitrary program points.

17RapiTime: http://www.rapitasystems.com/rapitime
18aiT: http://www.absint.com/ait/

454 Chapter 12

12.5.2 SCHEDULABILITY ANALYSIS

This type of tool allows designers to test software models against various design sce-
narios and evaluate how different implementations might optimize the performance
of the system, isolating and identifying potential scheduling bottlenecks. Some of
commercial schedulability analysis tools are reported below.

RTDruid19 is the development environment for ERIKA Enterprise, helping the
programmer to write, compile and analyze real-time applications in a comfortable
environment. RT-Druid is composed by a set of plug-ins for the Eclipse frame-
work, including the Code Generator (implementing the OIL language compiler)
and a schedulability analyzer for verifying the feasibility of real-time applica-
tions and estimating worst-case response times of real-time tasks under differ-
ent scheduling algorithms. RT-Druid also includes importers/exporters for AU-
TOSAR XML specifications produced by ARTOP20 and dSpace SystemDesk. It
also includes integration with tools like Papyrus UML, Absint aiT, and Lauter-
bach Trace32.

TimeWiz21 is an integrated design environment for building predictable embed-
ded, real-time systems. It allows representing, analyzing, and simulating real-
time systems. It works for the simplest micro-controller with a mini-executive up
to a large distributed system with tens or even hundreds of processors.

symTA/S22 is a scheduling analysis tool suite used for budgeting, scheduling ver-
ification and optimization for processors, electronic control units (ECUs), com-
munication buses, networks and complete integrated systems. It enables end-
to-end timing analysis, visualization and optimization for distributed systems. In
automotive electronics, SymTA/S supports standards such as OSEK, AUTOSAR-
OS, CAN, and FlexRay.

chronVAL23 is a real-time analysis tool to analyze, optimize and validate sin-
gle and distributed embedded systems with regard to worst-case scenarios. The
tool enables designers to analyze the dynamic behavior of embedded software
and bus communication, including multiprocessor configurations. Key features
include mathematical analysis of the real-time behavior, verification of applica-
tion deadlines, validation of maximum message latencies, evaluation of system
performance, and graphical visualization of results.

19RTDruid: http://erika.tuxfamily.org/
20ARTOP: http://www.artop.org
21TimeWiz: http://www.embeddedtechnology.com/product.mvc/TimeWiz-0001
22symTA/S: http://www.symtavision.com/symtas.html
23chronVAL: http://www.inchron.com/

Real-time operating systems and standards 455

12.5.3 SCHEDULING SIMULATORS

These tools are useful for generating the schedule produced by given scheduling algo-
rithm on synthetic task sets. Some of the existing tools are reported below.

RTSim24 (Real-Time system SIMulator) is a collection of programming libraries
written in C++ for simulating real-time control systems. RTSim was developed
at the Retis Lab of the Scuola Superiore Sant’Anna of Pisa (Italy) as an internal
project. It has been primarily used for testing the performance of new scheduling
algorithms under different workload conditions. For this reason, it contains, al-
ready implemented, most of the real-time scheduling algorithms developed in the
real-time community. The tool is released as open source to let other researchers
play with the simulator and build a shared simulation platform for comparing the
performance of new scheduling algorithms. RTSim is currently compatible with
many systems, including several distributions of Linux, recent FreeBSD, Mac OS
X and Cygwin.

TrueTime25 is a Matlab/Simulink-based simulator developed at the University
of Lund (Sweden) for testing the behavior of real-time distributed control sys-
tems. TrueTime facilitates co-simulation of controller task execution in real-
time kernels, network transmissions, and continuous plant dynamics. Features
of the tool include the simulation of external interrupts, or the possibility to call
Simulink block diagrams, including network blocks (Ethernet, CAN, TDMA,
FDMA, Round Robin, Switched Ethernet, FlexRay and PROFINET), wireless
network blocks (802.11b WLAN and 802.15.4 ZigBee), and battery-powered de-
vices using Dynamic Voltage Scaling.

chronSIM26 is a tool that allows engineers to perform real-time simulation, anal-
ysis and forecast of embedded software dynamic performance. It creates the task
structure, interrupt service routines scheme and scheduling procedures to maxi-
mize data throughput and comply with all specified response times. chronSIM
uncovers and visualizes hidden dynamic operating sequences using state of the art
UML-based diagrams (sequence, task, state, stack, processor load, function nest-
ing, etc.) It allow performing Monte Carlo simulations and stress tests through
random variations of the event times.

24RTSim: http://rtsim.sssup.it/
25TrueTime: http://www3.control.lth.se/truetime/
26chronSIM: http://www.inchron.com/chronsim.html

13
SOLUTIONS TO THE EXERCISES

SOLUTIONS FOR CHAPTER 1

1.1 Fast computing tends to minimize the average response time of computation
activities, whereas real-time computing is required to guarantee the timing con-
straints of each task.

1.2 The main limitations of the current real-time kernels are mainly due to the fact
that they are developed to minimize runtime overhead (hence functionality)
rather than offering support for a predictable execution. For example, short in-
terrupt latency is good for servicing I/O devices, but introduces unpredictable
delays in task execution for the high priority given to the interrupt handlers.
Scheduling is mostly based on fixed priority, and explicit timing constraints
cannot be specified on tasks. No specific support is usually provided for peri-
odic tasks and no aperiodic service mechanism is available for handling event-
driven activities. Access to shared resources is often realized through classical
semaphores, which are efficient, but prone to priority inversion if no protocol
is implemented for entering critical sections. Finally, no temporal protection
or resource reservation mechanism is usually available in current real-time ker-
nels for coping with transient overload conditions, so a task executing too much
may introduce unbounded delays on the other tasks.

1.3 A real-time kernel should allow the user to specify explicit timing constraints
on application tasks and support a predictable execution of real-time activi-
ties with specific real-time mechanisms, including scheduling, resource man-
agement, synchronization, communication, and interrupt handling. In critical

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

4

13

57

 Springer Science+Business Media, LLC 2011©

458 Chapter 13

real-time systems, predictability is more important than high performance, and
often an increased functionality can only be reached at the expense of a higher
runtime overhead. Other important features that a real-time system should have
include maintainability, fault-tolerance, and overload management.

1.4 Three approaches can be used. The first one is to disable all external interrupts,
letting application tasks access peripheral devices through polling. This solu-
tion gives great programming flexibility and reduces unbounded delays caused
by the driver execution, but it characterized by a low processor efficiency on
I/O operations, due to the busy wait.

A second solution is to disable interrupts and handle I/O devices by polling
through a dedicated periodic kernel routine, whose load can be taken into ac-
count through a specific utilization factor. As in the previous solution, the
major problem of this approach is due to the busy wait, but the advantage is
that all hardware details can be encapsulated into a kernel routine and do not
need to be known to the application tasks. An additional overhead is due to the
extra communication required among application tasks and the kernel routine
for exchanging I/O data.

A third approach is to enable interrupts but limit the execution of interrupt
handlers as much as possible. In this solution, the interrupt handler activates a
device handler, which is a dedicated task that is scheduled (and guaranteed) by
the kernel as any other application task. This solution is efficient and minimizes
the interference caused by interrupts.

1.5 The restrictions that should be used in a programming language to permit
the analysis of real-time applications should limit the variability of execution
times. Hence, a programmer should avoid using dynamic data structures, re-
cursion, and all high level constructs that make execution time unpredictable.
Possible language extensions should be aimed at facilitating the estimation of
worst-case execution times. For example, a language could allow the program-
mer to specify the maximum number of iterations in each loop construct, and
the probability of taking a branch in conditional statements.

SOLUTIONS FOR CHAPTER 2

2.1 A schedule is formally defined as a step function σ : R
+ → N such that

∀t ∈ R
+, ∃t1, t2 such that t ∈ [t1, t2) and ∀t′ ∈ [t1, t2) σ(t) = σ(t′). For any

k > 0, σ(t) = k, means that task Jk is executing at time t, while σ(t) = 0

Solutions to the exercises 459

means that the CPU is idle. A schedule is said to be preemptive if the running
task can be arbitrarily suspended at any time to assign the CPU to another task
according to a predefined scheduling policy. In a preemptive schedule, tasks
may be executed in disjointed interval of times. In a non-preemptive schedule,
a running task cannot be interrupted and therefore it proceeds until completion.

2.2 A periodic task consists of an infinite sequence of identical jobs that are regu-
larly activated at a constant rate. If φi is the activation time of the first job of
task τi, the activation time of the kth job is given by φi +(k−1)Ti, where Ti is
the task period. Aperiodic tasks also consist of an infinite sequence of identical
jobs; however, their activations are not regular. An aperiodic task where con-
secutive jobs are separated by a minimum interarrival time is called a sporadic
task. The most important timing parameters defined for a real-time task are

the arrival time (or release time); that is, the time at which a task becomes
ready for execution;

the computation time; that is, the time needed by the processor for exe-
cuting the task without interruption;

the absolute deadline; that is, the time before which a task should be
completed to avoid damage to the system;

the finishing time; that is, the time at which a task finishes its execution;

the response time; that is, the difference between the finishing time and
the release time: Ri = fi − ri;

2.3 A real-time application consisting of tasks with precedence relations is shown
in Section 2.2.2.

2.4 A static scheduler is one in which scheduling decisions are based on fixed pa-
rameters, assigned to tasks before their activation. In a dynamic scheduler,
scheduling decisions are based on dynamic parameters that may change dur-
ing system evolution. A scheduler is said to be off-line if it is pre-computed
(before task activation) and stored in a table. In an online scheduler, schedul-
ing decisions are taken at runtime when a new task enters the system or when
a running task terminates. An algorithm is said to be optimal if it minimizes
some given cost function defined over the task set. A common optimality cri-
terion for real-time system is related to feasibility. Then, a scheduler is optimal
whenever it can find a feasible schedule, if one exists. Heuristic schedulers use
a heuristic function to search for a feasible schedule; hence it is not guaranteed
that a feasible solution is found.

2.5 An example of domino effect is shown in Figure 2.15.

460 Chapter 13

SOLUTIONS FOR CHAPTER 3

3.1 To check whether the EDD algorithm produces a feasible schedule, tasks must
be ordered with increasing deadlines, as shown in Table 13.1:

J ′
1 J ′

2 J ′
3 J ′

4

C′
i 2 4 3 5

D′
i 5 9 10 16

Table 13.1 Task set ordered by deadline.

Then applying Equation (3.1) we have

f ′
1 = C′

1 = 2

f ′
2 = f ′

1 + C′
2 = 6

f ′
3 = f ′

2 + C′
3 = 9

f ′
4 = f ′

3 + C′
4 = 14

Since each finishing time is less than the corresponding deadline, the task set
is schedulable by EDD.

3.2 The algorithm for finding the maximum lateness of a task set scheduled by the
EDD algorithm is shown in Figure 13.1.

3.3 The scheduling tree constructed by the Bratley’s algorithm for the following
set of non-preemptive tasks is illustrated in Figure 13.2.

J1 J2 J3 J4

ai 0 4 2 6
Ci 6 2 4 2
Di 18 8 9 10

Table 13.2 Task set parameters for the Bratley’s algorithm.

3.4 The schedule found by the Spring algorithm on the scheduling tree developed
in the previous exercise with the heuristic function H = a+ C + D is {J2, J4,
J3, J1}, which is unfeasible, since J3 and J4 miss their deadlines. Noted that
the feasible solution is found with H = a + d.

Solutions to the exercises 461

Algorithm: EDD Lmax(J)

{
Lmax = −Dn;

f0 = 0;

for (each Ji ∈ J) {
fi = fi−1 + Ci;

Li = fi + Di;

if (Li > Lmax) Lmax = Li;

}
return(Lmax);

}

Figure 13.1 Algorithm for finding the maximum lateness of a task set scheduled by EDD.

1 3

2

1 4

1

14 10

8

66

16

6

2
8

4

41
812

33

2

2

4

2

Figure 13.2 Scheduling tree constructed by the Bratley’s algorithm for the task set shown
in Table 13.2.

3.5 The precedence graph is shown in Figure 13.3.

By applying the transformation algorithm by Chetto and Chetto, we get the
parameters shown in Table 13.3.

So the schedule produced by EDF will be {B, A, D, C, E, F , G}.

462 Chapter 13

A B

C D

E F G

Figure 13.3 Precedence graph for Exercise 3.5.

Ci ri r∗i di d∗i

A 2 0 0 25 20
B 3 0 0 25 15
C 3 0 3 25 23
D 5 0 3 25 20
E 1 0 6 25 25
F 2 0 8 25 25
G 5 0 8 25 25

Table 13.3 Task set parameters modified by the Chetto and Chetto’s algorithm.

SOLUTIONS FOR CHAPTER 4

4.1 The processor utilization factor of the task set is

U =
2

6
+

2

8
+

2

12
= 0.75

and considering that for three tasks the utilization least upper bound is

Ulub(3) = 3(21/3 − 1) ≃ 0.78

from the Liu and Layland test, since U ≤ U lub, we can conclude that the task
set is schedulable by RM, as shown in Figure 13.4.

Solutions to the exercises 463

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.4 Schedule produced by Rate Monotonic for the task set of Exercise 4.1.

4.2 The processor utilization factor of the task set is

U =
3

5
+

1

8
+

1

10
= 0.825,

which is greater than Ulub(3). Hence, we cannot verify the feasibility with the
Liu and Layland test. Using the Hyperbolic Bound, we have the following:

n
∏

i=1

(Ui + 1) = 1.98,

which is less than 2. Hence, we can conclude that the task set is schedulable
by RM, as shown in Figure 13.5.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.5 Schedule produced by Rate Monotonic for the task set of Exercise 4.2.

4.3 Applying the Liu and Layland test we have

U =
1

4
+

2

6
+

3

10
= 0.88 > 0.78,

so we cannot conclude anything. With the Hyperbolic Bound we have

n
∏

i=1

(Ui + 1) = 2.16 > 2

464 Chapter 13

so we cannot conclude anything. Applying the Response Time Analysis we
have to compute the response times and verify that they are less than or equal
to the relative deadlines (which in this case are equal to periods). Hence, we
have the following:

R1 = C1 = 1

So τ1 does not miss its deadline. For τ2 we have

R
(0)
2 =

2
∑

j=1

Cj = C1 + C2 = 3

R
(1)
2 = C2 +

⌈

R
(0)
2

T1

⌉

C1 = 2 +

⌈

3

4

⌉

1 = 3.

So R2 = 3, meaning that τ2 does not miss its deadline. For τ3 we have

R
(0)
3 =

3
∑

j=1

Cj = C1 + C2 + C3 = 6

R
(1)
3 = C3 +

⌈

R
(0)
3

T1

⌉

C1 +

⌈

R
(0)
3

T2

⌉

C2 = 2 +

⌈

6

4

⌉

1 +

⌈

6

6

⌉

2 = 7

R
(2)
3 = 2 +

⌈

7

4

⌉

1 +

⌈

7

6

⌉

2 = 9

R
(3)
3 = 2 +

⌈

9

4

⌉

1 +

⌈

9

6

⌉

2 = 10

R
(4)
3 = 2 +

⌈

10

4

⌉

1 +

⌈

10

6

⌉

2 = 10.

So R3 = 10, meaning that τ3 does not miss its deadline. Hence, we can
conclude that the task set is schedulable by RM, as shown in Figure 13.6.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.6 Schedule produced by Rate Monotonic for the task set of Exercise 4.3.

Solutions to the exercises 465

4.4 Applying the Response Time Analysis, we can easily verify that R3 = 10 (see
the solution of the previous exercise); hence the task set is not schedulable by
RM.

4.5 Since

U =
1

4
+

2

6
+

3

8
= 0.96 < 1

the task set is schedulable by EDF, as shown in Figure 13.7.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.7 Schedule produced by EDF for the task set of Exercise 4.5.

4.6 Applying the processor demand criterion, we have to verify that

∀L ∈ D
n
∑

i=1

⌊

L + Ti − Di

Ti

⌋

Ci ≤ L.

where
D = {dk | dk ≤ min(L∗, H)}.

For the specific example, we have

U =
2

6
+

2

8
+

4

12
=

11

12

L∗ =

∑n
i=1(Ti − Di)Ui

1 − U
= 32

H = lcm(6, 8, 12) = 24.

Hence, the set of checking points is given by D = {4, 5, 8, 11, 12, 17, 20, 23}.
Since the demand in these intervals is {2, 4, 8, 10, 12, 14, 20, 22} we can con-
clude that the task set is schedulable by EDF. The resulting schedule is shown
in Figure 13.8.

4.7 Applying the Response Time Analysis, we have to start by computing the re-
sponse time of task τ2, which is the one with the shortest relative deadline, and
hence the highest priority:

R2 = C2 = 2.

466 Chapter 13

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.8 Schedule produced by EDF for the task set of Exercise 4.6.

So τ2 does not miss its deadline. For τ1 we have

R
(0)
1 =

2
∑

j=1

Cj = C1 + C2 = 4

R
(1)
1 = C1 +

⌈

R
(0)
1

T2

⌉

C2 = 2 +

⌈

4

8

⌉

2 = 4

So R1 = 4, meaning that τ1 does not miss its deadline. For τ3 we have

R
(0)
3 =

3
∑

j=1

Cj = C1 + C2 + C3 = 8

R
(1)
3 = C3 +

⌈

R
(0)
3

T2

⌉

C2 +

⌈

R
(0)
3

T1

⌉

C1 = 4 +

⌈

8

8

⌉

2 +

⌈

8

6

⌉

2 = 10

And since R
(1)
3 > D3, we can conclude that the task set is not schedulable by

DM. The resulting schedule is shown in Figure 13.9.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.9 Schedule produced by Deadline Monotonic for the task set of Exercise 4.7.

Solutions to the exercises 467

SOLUTIONS FOR CHAPTER 5

5.1 The maximum Sporadic Server size can be computed by Equation (5.24):

Umax
SS =

2 − P

P

where

P =
n
∏

i=1

(Ui + 1) =
7

6
· 9

7
=

3

2
.

Hence substituting the value of P into Equation (5.24) we have

Umax
SS =

1

3
.

To enhance aperiodic responsiveness, the server must run at the highest priority,
and this can be achieved by setting its period to Ts = T1 = 6. Then, assuming
Us = Umax

SS , its capacity will be Cs = UsTs = 2.

5.2 The maximum Deferrable Server size can be computed by Equation (5.15).
Hence:

Umax
DS =

2 − P

2P − 1
.

And substituting the value of P = 3/2 into Equation (5.15) we have

Umax
DS =

1

4
.

Hence, by setting Us = Umax
DS and Ts = T1 = 6, the capacity will be Cs =

UsTs = 6/4 = 1.5.

5.3 Following the same steps reported in Exercise 5.1, we know that the maximum
utilization that can be assigned to a Polling Server to guarantee the periodic
task set is

Umax
PS =

2 − P

P
=

1

3
.

So, by setting Ts = 6 (intermediate priority) and Cs = 2, we satisfy the con-
straints. The resulting schedule is illustrated in Figure 13.10.

468 Chapter 13

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

3 1 1

ape

PS

Figure 13.10 Schedule produced by Rate Monotonic and Polling Server for the task set
of Exercise 5.3.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

3 1 1

ape

SS +2 +2 +1

Figure 13.11 Schedule produced by Rate Monotonic and Sporadic Server for the task set
of Exercise 5.4.

5.4 A Sporadic Server can be guaranteed with the same method used for the Polling
Server. So, using the same parameters computed before (C s = 2 and Ts = 6)
we have the schedule shown in Figure 13.11.

5.5 Applying Equation (5.15) to the considered task set, we see that the maximum
utilization that can be assigned to a Deferrable Server to guarantee the periodic
task set is Usmax

= 1/4. So, by setting Ts = 4 (maximum priority) and
Cs = 1, we satisfy the constraints. The resulting schedule is illustrated in
Figure 13.12.

Solutions to the exercises 469

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

DS

3 1 1

ape

Figure 13.12 Schedule produced by Rate Monotonic and Deferrable Server for the task
set of Exercise 5.5.

5.6 The resulting schedule is illustrated in Figure 13.13.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

2

ape

SS

1 2

+2 +1 +1+1

Figure 13.13 Schedule produced by Rate Monotonic and Sporadic Server for the task set
of Exercise 5.6.

470 Chapter 13

SOLUTIONS FOR CHAPTER 6

6.1 For any dynamic server we must have Up + Us ≤ 1; hence, considering that
Up = 2/3, the maximum server utilization that can be assigned to a Dynamic
Sporadic Server is

Us = 1 − Up = 1/3.

6.2 The deadlines computed by the server for the aperiodic jobs result: d 1 = a1 +
Ts = 7, d2 = d1 + Ts = 13, and d3 = a3 + Ts = 21. The resulting schedule
produced by EDF + DSS is illustrated in Figure 13.14.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

ape

3 1 1

DSS +2 +2 +1

d3d2d1

Figure 13.14 Schedule produced by EDF + DDS for the task set of Exercise 6.2.

6.3 The deadlines computed by the server for the aperiodic jobs are d 1 = a1 +
C1/Us = 10, d2 = d1 + C2/Us = 13, and d3 = a3 + C3/Us = 18. The
resulting schedule produced by EDF + TBS is illustrated in Figure 13.15.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU = 1/3

3 1 1TBS d1 d3d2

Figure 13.15 Schedule produced by EDF + TBS for the task set of Exercise 6.3.

Solutions to the exercises 471

6.4 The events handled by the CBS are

time event action

t = 1 arrival cs = Qs, ds = a1 + Ts = 7
t = 4 cs = 0 cs = Qs, ds = ds + Ts = 13
t = 5 arrival enqueue request
t = 11 cs = 0 cs = Qs, ds = ds + Ts = 19
t = 15 arrival cs = Qs, ds = a3 + Ts = 21

The resulting schedule produced by EDF + CBS is illustrated in Figure 13.16.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

ape

3 1 1

CBS

d2d1 d3

Figure 13.16 Schedule produced by EDF + CBS for the task set of Exercise 6.4.

6.5 The deadlines computed by the server are

d
(0)
1 = a1 + C1/Us = 10

d
(1)
1 = f

(0)
1 = 8

d
(0)
2 = d

(0)
2 + C2/Us = 13

d
(1)
2 = f

(0)
2 = 11

d
(0)
3 = a3 + C3/Us = 18

d
(1)
3 = f

(0)
3 = 16.

The resulting schedule produced by EDF + TB(1) is illustrated in Figure 13.17.

472 Chapter 13

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU = 1/3

3 1TB(1) d1 d2 d31

Figure 13.17 Schedule produced by EDF + TB(1) for the task set of Exercise 6.5.

6.6 The deadlines computed by the server are

d
(0)
1 = a1 + C1/Us = 10

d
(1)
1 = f

(0)
1 = 8

d
(2)
1 = f

(1)
1 = 5

d
(3)
1 = f

(2)
1 = 4

d
(0)
2 = d

(0)
2 + C2/Us = 13

d
(1)
2 = f

(0)
2 = 11

d
(2)
2 = f

(1)
2 = 9

d
(3)
2 = f

(2)
2 = 6

d
(0)
3 = a3 + C3/Us = 18

d
(1)
3 = f

(0)
3 = 16.

The resulting schedule produced by EDF + TB* is illustrated in Figure 13.18.

6.7 The resulting schedule is illustrated in Figure 13.19.

Solutions to the exercises 473

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU = 1/3

3TB* d31d1 d21

Figure 13.18 Schedule produced by EDF + TB* for the task set of Exercise 6.6.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU

sU

TBS2

1TBS1

= 1/10

= 1/6

d11 d2

21 d1 d2

Figure 13.19 Schedule produced by EDF+TB1+TB2 for the task set of Exercise 6.7.

6.8 First of all, the utilization of the periodic task set is

Up =
8

20
+

6

30
=

3

5
= 0.6;

hence, the largest utilization that can be assigned to a CBS is Us = 1 − Up =
0.4. Then, converting all times in microseconds and substituting the values in
Equation (6.15) we obtain

Cavg = 1200 µs

Ts =
10

4

(

20 +

√

20 · 1200

0.6

)

= 550µs

Qs = TsUs = 220µs.

474 Chapter 13

SOLUTIONS FOR CHAPTER 7

7.1 Applying Equation (7.19), we can verify that

∀i, 1 ≤ i ≤ n,

i
∑

k=1

Ck

Tk
+

Bi

Ti
≤ i(21/i − 1).

So we have

C1 + B1

T1
=

9

10
< 1

C1

T1
+

C2 + B2

T2
=

4

10
+

6

15
= 0.8 < 0.83

C1

T1
+

C2

T2
+

C3

T3
=

4

10
+

3

15
+

4

20
= 0.8 > 0.78.

Being condition (7.19) only sufficient, we cannot conclude anything about fea-
sibility. By applying the response time analysis we have to verify that

∀i, 1 ≤ i ≤ n, Ri ≤ Di

where

Ri = Ci + Bi +

i−1
∑

k=1

⌈

Ri

Tk

⌉

Ck.

So we have

R1 = C1 + B1 = 9 < 10

R
(0)
2 = C1 + C2 + B2 = 10

R
(1)
2 = C2 + B2 +

⌈

10

10

⌉

4 = 10 < 15

R
(0)
3 = C1 + C2 + C3 = 11

R
(1)
3 = C3 +

⌈

11

10

⌉

4 +

⌈

11

15

⌉

3 = 15

R
(2)
3 = C3 +

⌈

15

10

⌉

4 +

⌈

15

15

⌉

3 = 15 < 20.

Hence, we can conclude that the task set is schedulable by RM.

Solutions to the exercises 475

7.2 Using the Priority Inheritance Protocol, a task τ i can be blocked at most for
one critical section by each lower priority task. Moreover, a critical section
can block τi only if it belongs to a task with lower priority and it is shared
with τi (direct blocking) or with higher priority tasks (push-through blocking).
Finally, we have to consider that two critical sections cannot block a task if they
are protected by the same semaphore or they belong to the same task. Hence,
if Zi,k denotes the longest critical section of τi guarded by semaphore Sk, we
have the following:

Task τ1 can only experience direct blocking (since there are no tasks with
higher priority), and the set of critical sections that can potentially block
it is {Z2A, Z3A, Z3C}. It can be blocked at most for the duration of two
critical sections in this set. Thus, the maximum blocking time is given
by the sum of the two longest critical sections in this set. In this case,
however, note that the longest critical sections are Z3A and Z3C , which
belong to the same task; hence they cannot be selected together. Hence,
the maximum blocking time for τ1 is B1 = (δ2A − 1) + (δ3C − 1) =
2 + 5 = 7.

Task τ2 can experience direct blocking on Z3A and Z3B and push-through
blocking on Z3A and Z3C . Hence, the set of critical sections that can
potentially block τ2 is {Z3A, Z3B , Z3C}. It can be blocked at most for the
duration of one critical section in this set. Thus, the maximum blocking
time is given by the longest critical section in this set, that is Z3C . Hence,
we have B2 = δ3C − 1 = 5.

Task τ3 cannot be blocked, because it is the task with the lowest priority (it
can only be preempted by higher priority tasks). Hence, we have B 3 = 0.

7.3 Using the Priority Ceiling Protocol, a task τi can be blocked at most for one
critical section during its execution. The set of critical sections that can poten-
tially block τi is the same as that computed for the Priority Inheritance Protocol.
Hence, if Zi,k denotes the longest critical section of τi guarded by semaphore
Sk, we have the following:

The set of critical sections that can block τ1 is {Z2A, Z3A, Z3C}. Hence,
the maximum blocking time for τ1 is B1 = δ3C − 1 = 5.

The set of critical sections that can block τ2 is {Z3A, Z3B , Z3C}. Hence,
the maximum blocking time for τ2 is B2 = δ3C − 1 = 5.

Task τ3 cannot be blocked, because it is the task with the lowest priority
(it can only be preempted by higher priority tasks). Hence, B 3 = 0.

476 Chapter 13

7.4 The maximum blocking time for τ2 is given by a push-through blocking on
Z3C . For this to happen, τ3 must start first and must enter its critical section
Z3C . Then, τ1 must preempt τ3, so that τ3 can inherit the highest priority to
prevent τ2 from executing. The situation is illustrated in Figure 13.20.

τ 1

τ 2

τ 3

WC

P1

A B

A

C C

C

A B

Figure 13.20 Schedule produced by RM + PIP for the task set of Exercise 7.2.

7.5 To compute the maximum blocking time under the Priority Inheritance Proto-
col we reason as follows.

The set of critical sections that can potentially block τ1 is {Z2C , Z3B ,
Z3E , Z4A, Z4C , Z4E}. Among these, we have to select the three longest
ones, one for each lower priority task. Note that, if we select Z 2C and
Z3E , we cannot select Z4E (which is the longest of τ4) because resource
E has already been selected for τ3, and we cannot select Z4C for the same
reason. So, we have to select Z4A. Hence, the maximum blocking time
for τ1 is B1 = (δ2C − 1) + (δ3E − 1) + (δ4A − 1) = 26.

Task τ2 can experience direct blocking on Z4C and push-through block-
ing on Z3B , Z3E , Z4A, Z4C , and Z4E . Hence, the set of critical sections
that can potentially block τ2 is {Z3B , Z3E , Z4A, Z4C , Z4E}. It can be
blocked at most for the duration of two critical sections in this set. Thus,
we have B2 = (δ3E − 1) + (δ4C − 1) = 21. Note that Z3E and Z4E

cannot block τ2 together.

Task τ3 can experience direct blocking on Z4E and push-through block-
ing on Z4A, Z4C , and Z4E . Hence, the set of critical sections that can
block τ3 is {Z4A, Z4C , Z4E}. It can be blocked at most for the duration
of one critical section in this set. Thus, we have B3 = δ4E − 1 = 10.

Task τ4 cannot be blocked, because it is the task with the lowest priority (it
can only be preempted by higher priority tasks). Hence, we have B 4 = 0.

Solutions to the exercises 477

7.6 The sets of critical sections that can cause blocking under the Priority Ceiling
Protocol are the same as those derived in the previous exercise for the Priority
Inheritance Protocol. The only difference is that under the Priority Ceiling
Protocol each task can only be blocked for the duration of a single critical
section. Hence, we have the following:

The set of critical sections that can potentially block τ1 is {Z2C , Z3B ,
Z3E , Z4A, Z4C , Z4E}. Hence, the maximum blocking time for τ1 is
B1 = δ3E − 1 = 13

The set of critical sections that can potentially block τ2 is {Z3B, Z3E ,
Z4A, Z4C , Z4E}. Hence, the maximum blocking time for τ2 is B2 =
δ3E − 1 = 13.

The set of critical sections that can potentially block τ3 is {Z4A, Z4C ,
Z4E}. Hence, the maximum blocking time for τ3 is B3 = δ4E − 1 = 10.

Task τ4 cannot be blocked, because it is the task with the lowest priority (it
can only be preempted by higher priority tasks). Hence, we have B 4 = 0.

7.7 The maximum blocking time for τ2 is given by a push-through blocking on C4

and E3. This means that for this to happen, τ4 must start first and must enter
its critical section C4. Then, τ3 must preempt τ4, entering E3. Now, when τ1

arrives, it experiences a chained blocking when entering C 1 and E1, which are
both locked. The situation is illustrated in Figure 13.21.

τ 1

τ 2

τ 3

τ 4

P1

WE

P1

WC

C

E

C

C

E

E

C

Figure 13.21 Schedule produced by RM + PIP for the task set of Exercise 7.7.

7.8 If tasks are assigned decreasing preemption levels as π1 = 3, π2 = 2, and
π3 = 1, the resource ceilings have the values shown in Table 13.4.

478 Chapter 13

CR(3) CR(2) CR(1) CR(0)

A 0 1 2 3
B 0 0 0 2
C - 0 2 3

Table 13.4 SRP resource ceilings resulting for Exercise 7.8.

SOLUTIONS FOR CHAPTER 8

8.1 We first note that the task set is feasible in fully preemptive mode, in fact

R1 = C1 = 2 ≤ D1

R
(0)
2 = C1 + C2 = 4

R
(1)
2 = C2 +

⌈

4

T1

⌉

C1 = 4 ≤ D2

R
(0)
3 = C1 + C2 + C3 = 8

R
(1)
3 = C3 +

⌈

8

T1

⌉

C1 +

⌈

8

T2

⌉

C2 = 10

R
(2)
3 = C3 +

⌈

10

T1

⌉

C1 +

⌈

10

T2

⌉

C2 = 12

R
(3)
3 = C3 +

⌈

12

T1

⌉

C1 +

⌈

12

T2

⌉

C2 = 12 ≤ D2

Hence, by the result of Theorem 8.1, the feasibility of the task set in non-
preemptive mode can be verified by just checking the first job of each task,
when activated at its critical instant. The critical instant for task τi occurs when
τi is activated together with all higher priority tasks, and one unit after the
longest lower priority task.

Using Equation (8.1), the blocking times result to be B 1 = 3, B2 = 3, B3 = 0,
and tasks response times can be computed as Ri = Si + Ci, where Si is given

Solutions to the exercises 479

by Equation (8.8). So we have

S1 = B1 = 3

R1 = S1 + C1 = 3 + 2 = 5 ≤ D1

S
(0)
2 = B2 + C1 = 5

S
(1)
2 = B2 +

(⌊

5

T1

⌋

+ 1

)

C1 = 5

R2 = S2 + C2 = 7 > D2.

Hence, the task set is not schedulable by non-preemptive RM, since τ2 misses
its deadline.

8.2 We first note that the task set is not feasible in fully preemptive mode, since

R
(0)
3 = C1 + C2 + C3 = 9

R
(1)
3 = C3 +

⌈

9

T1

⌉

C1 +

⌈

9

T2

⌉

C2 = 12

R
(2)
3 = C3 +

⌈

12

T1

⌉

C1 +

⌈

12

T2

⌉

C2 = 15 > D3.

Therefore, the response time of a task τ i cannot be restricted to its first job, but
has to be extended up to job Ki = ⌈Li

Ti
⌉, where Li is the longest Level-i Active

Period. Using Equations (8.1), (8.2), and (8.3), we get the following results:

Bi Li Ki

τ1 2 5 1
τ2 2 8 1
τ3 1 37 3
τ4 0 38 1

For task τ1 we have

s1,1 = B1 = 2

f1,1 = s1,1 + C1 = 2 + 3 = 5

R1 = f1,1 = 5 ≤ D1.

480 Chapter 13

For task τ2 we have

s
(0)
2,1 = B2 + C1 = 5

s
(1)
2,1 = B2 +

(⌊

5

T1

⌋

+ 1

)

C1 = 5

f2,1 = s2,1 + C2 = 5 + 2 = 7

R2 = f2,1 = 7 ≤ D2.

For task τ3, the response time must be checked in the first three jobs.

For k = 1:

s
(0)
3,1 = B3 + C2 + C1 = 7

s
(1)
3,1 = B3 +

(⌊

7

T1

⌋

+ 1

)

C1 +

(⌊

7

T2

⌋

+ 1

)

C2 = 7

f3,1 = s3,1 + C3 = 7 + 3 = 10

R3,1 = f3,1 = 10.

For k = 2:

s
(0)
3,2 = B3 + C3 + C1 + C2 = 10

s
(1)
3,2 = B3 + C3 +

(⌊

10

T1

⌋

+ 1

)

C1 +

(⌊

10

T2

⌋

+ 1

)

C2 = 16

s
(2)
3,2 = B3 + C3 +

(⌊

16

T1

⌋

+ 1

)

C1 +

(⌊

16

T2

⌋

+ 1

)

C2 = 19

s
(3)
3,2 = B3 + C3 +

(⌊

19

T1

⌋

+ 1

)

C1 +

(⌊

19

T2

⌋

+ 1

)

C2 = 22

s
(4)
3,2 = B3 + C3 +

(⌊

22

T1

⌋

+ 1

)

C1 +

(⌊

22

T2

⌋

+ 1

)

C2 = 22

f3,2 = s3,2 + C3 = 22 + 3 = 25

R3,2 = f3,2 − T3 = 25− 14 = 11.

Solutions to the exercises 481

For k = 3:

s
(0)
3,3 = B3 + 2C3 + C1 + C2 = 13

s
(1)
3,3 = B3 + 2C3 +

(⌊

13

T1

⌋

+ 1

)

C1 +

(⌊

13

T2

⌋

+ 1

)

C2 = 19

s
(2)
3,3 = B3 + 2C3 +

(⌊

19

T1

⌋

+ 1

)

C1 +

(⌊

19

T2

⌋

+ 1

)

C2 = 25

s
(3)
3,3 = B3 + 2C3 +

(⌊

25

T1

⌋

+ 1

)

C1 +

(⌊

25

T2

⌋

+ 1

)

C2 = 28

s
(4)
3,3 = B3 + 2C3 +

(⌊

28

T1

⌋

+ 1

)

C1 +

(⌊

28

T2

⌋

+ 1

)

C2 = 31

s
(5)
3,3 = B3 + 2C3 +

(⌊

31

T1

⌋

+ 1

)

C1 +

(⌊

31

T2

⌋

+ 1

)

C2 = 31

f3,3 = s3,3 + C3 = 31 + 3 = 34

R3,3 = f3,3 − 2T3 = 34 − 28 = 6.

Hence for τ3 we have that R3 = max{R3,1, R3,2, R3,3} = 11 ≤ D3. For τ4,
it can be easily verified that R4 = L4 = 38 ≤ D4. Hence, we conclude that
the task set is schedulable by non-preemptive RM.

8.3 Using the Liu and Layland test, the blocking tolerance of each task can be
computed by Equation (8.20), where U lub = 1, since tasks are scheduled by
EDF:

βi =

⎢

⎢

⎢

⎣Ti

⎛

⎝1 −
∑

h:Ph≥Pi

Ch

Th

⎞

⎠

⎥

⎥

⎥

⎦ .

and, according to Theorem (8.2), Q i results to be:

Qi = min{Qi−1, βi−1 + 1}

where Q1 = ∞ and β1 = D1 − C1. Hence, we have

Ui

∑i
h=1 Uh βi Qi

τ1 1/4 1/4 6 ∞
τ2 1/5 9/20 5 7
τ3 1/6 37/60 11 6
τ4 1/12 42/60 18 6
τ5 1/30 44/60 24 6

482 Chapter 13

Note that, being Qi ≥ Ci for all i’s, all tasks can execute non preemptively.

8.4 Under Rate Monotonic, using the Liu and Layland test, the blocking tolerance
of each task can be computed by Equation (8.20):

βi = Ti

(

Ulub(i) −
i

∑

h=1

Ch

Th

)

.

And, according to Theorem (8.2), Q i results to be:

Qi = min{Qi−1, βi−1 + 1}

where Q1 = ∞ and β1 = D1 − C1. Hence, we have

Ulub(i)
∑i

h=1 Uh βi Qi

τ1 1.0 1/4 6 ∞
τ2 0.828 9/20 3 7
τ3 0.780 37/60 4 4
τ4 0.757 42/60 3 4
τ5 0.743 44/60 0 4

Hence, to make the task set schedulable under RM, one preemption point must
be inserted in τ3 and τ4.

8.5 First of all, from the task structures, the following parameters can be derived:

Ci Ti Ui qmax
i qlast

i Bi

τ1 6 24 1/4 3 0 7
τ2 10 40 1/4 4 4 7
τ3 18 120 3/20 8 5 5
τ4 15 150 1/10 6 6 0

We note that since the total utilization is U = 0.75, the task set is schedulable
under Rate Monotonic in fully preemptive mode (in fact U lub(4) = 0.757).
Hence, the worst-case response time of each task can be computed considering
the first job under the critical instant, using Equations (8.32) and (8.33).

For task τ1 we have

R1 = B1 + C1 = 7 + 6 = 13.

Solutions to the exercises 483

For task τ2 we have

S
(0)
2 = B2 + C1 + C2 − qlast

2 = 7 + 6 + 10 − 4 = 19

S
(1)
2 = B2 + C2 − qlast

2 +

(⌊

19

T1

⌋

+ 1

)

C1 = 19

R2 = S2 + qlast
2 = 19 + 4 = 23.

For task τ3 we have:

S
(0)
3 = B3 + C1 + C2 + C3 − qlast

3 = 5 + 6 + 10 + 18 − 5 = 34

S
(1)
3 = B3 + C3 − qlast

3 +

(⌊

34

T1

⌋

+ 1

)

C1 +

(⌊

34

T2

⌋

+ 1

)

C2 = 40

S
(2)
3 = B3 + C3 − qlast

3 +

(⌊

40

T1

⌋

+ 1

)

C1 +

(⌊

40

T2

⌋

+ 1

)

C2 = 50

S
(3)
3 = B3 + C3 − qlast

3 +

(⌊

50

T1

⌋

+ 1

)

C1 +

(⌊

50

T2

⌋

+ 1

)

C2 = 56

S
(4)
3 = B3 + C3 − qlast

3 +

(⌊

56

T1

⌋

+ 1

)

C1 +

(⌊

56

T2

⌋

+ 1

)

C2 = 56

R3 = S3 + qlast
3 = 56 + 5 = 61

For task τ4 we have

S
(0)
4 = B4 + C1 + C2 + C3 + C4 − qlast

4 = 6 + 10 + 18 + 15 − 6 = 43

S
(1)
4 = B4 + C4 − qlast

4 +

(⌊

43

T1

⌋

+1

)

C1 +

(⌊

43

T2

⌋

+1

)

C2 +

(⌊

43

T3

⌋

+1

)

C3 = 59

S
(2)
4 = B4 + C4 − qlast

4 +

(⌊

59

T1

⌋

+1

)

C1 +

(⌊

59

T2

⌋

+1

)

C2 +

(⌊

59

T3

⌋

+1

)

C3 = 65

S
(3)
4 = B4 + C4 − qlast

4 +

(⌊

65

T1

⌋

+1

)

C1 +

(⌊

65

T2

⌋

+1

)

C2 +

(⌊

65

T3

⌋

+1

)

C3 = 65

R4 = S4 + qlast
4 = 65 + 6 = 71.

484 Chapter 13

SOLUTIONS FOR CHAPTER 9

9.1 Applying the definition of instantaneous load we have

time ρ1(t) ρ2(t) ρ(t)

t = 0 0 5/10 = 0.5 0.5
t = 1 0 4/9 = 0.444 0.444
t = 2 0 3/8 = 0.375 0.375
t = 3 3/5 = 0.6 (3+2)/7 = 0.714 0.714
t = 4 2/4 = 0.5 (2+2)/6 = 0.667 0.667
t = 5 1/3 = 0.333 (1+2)/5 = 0.6 0.6
t = 6 0 2/4 = 0.5 0.5
t = 7 0 1/3 = 0.333 0.333
t = 8 0 0 0

9.2 Checking condition (9.24), necessary for the schedulability of the task set, we
have

n
∑

i=1

Ci(Si − 1)

TiSi
=

2

5
+

2 · 3
6 · 4 +

4 · 4
8 · 5 =

21

20
> 1.

Hence, we conclude that the task set is not schedulable by EDF.

9.3 From the service intervals provided by the server, it is clear that the longest
service delay occurs when a task is ready at time t = 2, since it has to wait
for 3 units of time. Then, the service will be provided according to the supply
function illustrated in Figure 13.22.

From the graph, it is easy to see that the associated bounded delay function has
parameters α = 0.4 and ∆ = 3.5.

9.4 By applying Equation (9.33) to the tasks we have

U1 = U10
− (U0 − Ud)

E1

E0
= 0.6 − (1.4 − 1.0)

1

4
= 0.5

U2 = U20
− (U0 − Ud)

E2

E0
= 0.8 − (1.4 − 1.0)

3

4
= 0.5.

Solutions to the exercises 485

20 6 8 95 15 16 181210

Z(t)

∆

t

t

Figure 13.22 Supply function and bounded delay function of the server.

Hence,

T ′
1 =

C1

U1
=

9

0.5
= 18

T ′
2 =

C2

U2
=

16

0.5
= 32.

9.5 By applying Equation (9.42) to the tasks we have

T ′
1 = T10

U0

Ud
= 15 · 1.4 = 21

T ′
2 = T20

U0

Ud
= 20 · 1.4 = 28.

GLOSSARY

Absolute jitter The difference between the maximum and the minimum start time
(relative to the request time) of all instances of a periodic task.

Acceptance test A schedulability test performed at the arrival time of a new task,
whose result determines whether the task can be accepted into the system or re-
jected.

Access protocol A programming scheme that has to be followed by a set of tasks
that want to use a shared resource.

Activation A kernel operation that moves a task from a sleeping state to an active
state, from where it can be scheduled for execution.

Admission Control A kernel mechanism that regulates the admission of new tasks
in the system, typically to prevent overload conditions.

Aperiodic task A type of task that consists of a sequence of identical jobs (in-
stances), activated at irregular intervals.

Arrival rate The average number of jobs requested per unit of time.

Arrival time The time instant at which a job or a task enters the ready queue. It is
also called request time.

Background scheduling Task-management policy used to execute low-priority tasks
in the presence of high-priority tasks. Lower-priority tasks are executed only when
no high-priority tasks are active.

Blocking A job is said to be blocked when it has to wait for a job having a lower
priority.

G.C. Buttazzo,

 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications 1 4614 676 1

487

 Springer Science+Business Media, LLC 2011©

488 Glossary

Buffer A memory area shared by two or more tasks for exchanging data.

Capacity The maximum amount of time dedicated by a periodic server, in each
period, to the execution of a service.

Ceiling Priority level associated with a semaphore or a resource according to an
access protocol.

Ceiling blocking A special form of blocking introduced by the Priority Ceiling Pro-
tocol.

Channel A logical link through which two or more tasks exchange information by
a message-passing mechanism.

Chained blocking A sequence of blocking experienced by a task while attempting
to access a set of shared resources.

Clairvoyance An ideal property of a scheduling algorithm that implies the future
knowledge of the arrival times of all the tasks that are to be scheduled.

Competitive factor A scheduling algorithm A is said to have a competitive factor
ϕA if and only if it can guarantee a cumulative value at least ϕA times the cumula-
tive value achieved by the optimal clairvoyant scheduler.

Completion time The time at which a job finishes executing. It is also called finish-

ing time.

Computation time The amount of time required by the processor to execute a job
without interruption. It is also called service time or processing time.

Concurrent processes Processes that overlap in time.

Context A set of data that describes the state of the processor at a particular time,
during the execution of a task. Typically the context of a task is the set of values
taken by the processor registers at a particular instant.

Context switch A kernel operation consisting in the suspension of the currently
executing job for assigning the processor to another ready job (typically the one
with the highest priority).

Glossary 489

Creation A kernel operation that allocates and initializes all data structures neces-
sary for the management of the object being created (such as task, resource, com-
munication channel, and so on).

Critical instant The time at which the release of a job produces the largest response
time.

Critical section A code segment subject to a mutual exclusion.

Critical zone The interval between a critical instant of a job and its corresponding
finishing time.

Cumulative value The sum of the task values gained by a scheduling algorithm after
executing a task set.

Deadline The time within which a real-time task should complete its execution.

Deadlock A situation in which two or more processes are waiting indefinitely for
events that will never occur.

Direct blocking A form of blocking due to the attempt of accessing an exclusive
resource, held by another task.

Dispatching A kernel operation consisting in the assignment of the processor to the
task having highest priority.

Domino effect A phenomenon in which the arrival of a new task causes all previ-
ously guaranteed tasks to miss their deadlines.

Dynamic scheduling A scheduling method in which all active jobs are reordered
every time a new job enters the system or a new event occurs.

Event An occurrence that requires a system reaction.

Exceeding time The interval of time in which a job stays active after its deadline. It
is also called tardiness.

Exclusive resource A shared resource that cannot be accessed by more than one
task at a time.

490 Glossary

Feasible schedule A schedule in which all real-time tasks are executed within their
deadlines and all the other constraints, if any, are met.

Finishing time The time at which a job finishes executing. It is also called comple-

tion time.

Firm task A task in which each instance must be either guaranteed to complete
within its deadline or entirely rejected.

Guarantee A schedulability test that verifies whether a task or a set of tasks can
complete within the specified timing constraints.

Hard task A task whose instances must be a priori guaranteed to complete within
their deadlines.

Hyperperiod The minimum time interval after which the schedule repeats itself. For
a set of periodic tasks, it is equal to the least common multiple of all the periods.

Idle state The state in which a task is not active and waits to be activated.

Idle time Time in which the processor does not execute any task.

Instance A particular execution of a task. A single job belonging to the sequence of
jobs that characterize a periodic or an aperiodic task.

Interarrival time The time interval between the activation of two consecutive in-
stances of the same task.

Interrupt A timing signal that causes the processor to suspend the execution of its
current process and start another process.

Jitter The difference between the start times (relative to the request times) of two or
more instances of a periodic task. See also absolute jitter and relative jitter.

Job A computation in which the operations, in the absence of other activities, are
sequentially executed by the processor until completion.

Kernel An operating environment that enables a set of tasks to execute concurrently
on a single processor.

Glossary 491

Lateness The difference between the finishing time of a task and its deadline (L =
f − d). Note that a negative lateness means that a task has completed before its
deadline.

Laxity The maximum delay that a job can experience after its activation and still
complete within its deadline. At the arrival time, the laxity is equal to the relative
deadline minus the computation time (D − C). It is also called slack time.

Lifetime The maximum time that can be represented inside the kernel.

Load Computation time demanded by a task set in an interval, divided by the length
of the interval.

Mailbox A communication buffer characterized by a message queue shared between
two or more jobs.

Message A set of data, organized in a predetermined format for exchanging infor-
mation among tasks.

Mutual Exclusion A kernel mechanism that serializes the execution of concurrent
tasks on critical sections of code.

Non-Preemptive Scheduling A form of scheduling in which jobs, once started, can
continuously execute on the processor without interruption.

Optimal algorithm A scheduling algorithm that minimizes some cost function de-
fined over the task set.

Overhead The time required by the processor to manage all internal mechanisms
of the operating system, such as queuing jobs and messages, updating kernel data
structures, performing context switches, activating interrupt handlers, and so on.

Overload Exceptional load condition on the processor, such that the computation
time demanded by the tasks in a certain interval exceeds the available processor
time in the same interval.

Overrun Situation in which the computational demand of a job in a given interval
of time exceeds its expected value. It can occur because a task executes more
than expected (execution overrun) or it is activated earlier than expected (activation
overrun).

492 Glossary

Period The interval of time between the activation of two consecutive instances of a
periodic task.

Periodic task A type of task that consists of a sequence of identical jobs (instances),
activated at regular intervals.

Phase The time instant at which a periodic task is activated for the first time, mea-
sured with respect to some reference time.

Polling A service technique in which the server periodically examines the requests
of its clients.

Port A general intertask communication mechanism based on a message passing
scheme.

Precedence graph A directed acyclic graph that describes the precedence relations
in a group of tasks.

Precedence constraint Dependency relation between two or more tasks that spec-
ifies that a task cannot start executing before the completion of one or more tasks
(called predecessors).

Predictability An important property of a real-time system that allows a program-
mer to analyze and anticipate the consequence of any scheduling decision.

Preemption An operation of the kernel that interrupts the currently executing job
and assigns the processor to a more urgent job ready to execute.

Preemptive Scheduling A form of scheduling in which jobs can be interrupted at
any time and the processor is assigned to more urgent jobs that are ready to execute.

Priority A number associated with a task and used by the kernel to establish an
order of precedence among tasks competing for a common resource.

Priority Inversion A phenomenon for which a task is blocked by a lower-priority
task for an unbounded amount of time.

Process A computation in which the operations are executed by the processor one at
a time. A process may consist of a sequence of identical jobs, also called instances.
The word task is often used as a synonym.

Glossary 493

Processing time The amount of time required by the processor to execute a job
without interruption. It is also called computation time or service time.

Program A description of a computation in a formal language, called a Program-
ming Language.

Push-through blocking A form of blocking introduced by the Priority Inheritance
and the Priority Ceiling protocols.

Queue A set of jobs waiting for a given type of resource and ordered according to
some parameter.

Relative Jitter The maximum difference between the start times (relative to the re-
quest times) of two consecutive instances of a periodic task.

Request time The time instant at which a job or a task requests a service to the
processor. It is also called arrival time.

Resource Any entity (processor, memory, program, data, and so on) that can be used
by tasks to carry on their computation.

Resource constraint Dependency relation among tasks that share a common re-
source used in exclusive mode.

Resource Reservation A kernel mechanism for partitioning a resource among con-
current tasks, so that each task is assigned a fraction of the resource according to a
predefined designed strategy.

Response time The time interval between the request time and the finishing time of
a job.

Schedulable task set A task set for which a feasible schedule exists.

Schedule An assignment of tasks to the processor, so that each task is executed until
completion.

Scheduling An activity of the kernel that determines the order in which concurrent
jobs are executed on a processor.

494 Glossary

Semaphore A kernel data structure used to synchronize the execution of concurrent
jobs.

Server A kernel process dedicated to the management of a shared resource.

Service time The amount of time required by the processor to execute a job without
interruption. It is also called computation time or processing time.

Shared resource A resource that is accessible by two or more processes.

Slack time The maximum delay that a job can experience after its activation and still
complete within its deadline. At the arrival time, the slack is equal to the relative
deadline minus the computation time (D − C). It is also called laxity.

Soft task A task whose instances should be possibly completed within their dead-
lines, but no serious consequences occur if a deadline is missed.

Sporadic task An aperiodic task characterized by a minimum interarrival time be-
tween consecutive instances.

Start time The time at which a job starts executing for the first time.

Starvation A phenomenon for which an active job waits for the processor for an
unbounded amount of time.

Static scheduling A method in which all scheduling decisions are precomputed off-
line, and jobs are executed in a predetermined fashion, according to a time-driven
approach.

Synchronization Any constraint that imposes an order to the operations carried out
by two or more concurrent jobs. A synchronization is typically imposed for satis-
fying precedence or resource constraints.

Tardiness The interval of time in which a job stays active after its deadline. It is
also called exceeding time.

Task A computation in which the operations are executed by the processor one at a
time. A task may consist of a sequence of identical jobs, also called instances. The
word process is often used as a synonym.

Glossary 495

Task control block A kernel data structure associated with each task containing all
the information necessary for task management.

Temporal Isolation A kernel mechanism able to enforce resource reservation on
the processor, so that the tasks running within the reservation are guaranteed to
receive the reserved amount of time and do not interfere on the others for more
than the reserved amount. Temporal isolation allows each task to behave as it were
executing alone on a slower processor with speed equal to the reserved fraction.

Task protection A synonym of Temporal Isolation.

Tick The minimum interval of time that is handled by the kernel. It defines the time
resolution and the time unit of the system.

Timeout The time limit specified by a programmer for the completion of an action.

Time-overflow Deadline miss. A situation in which the execution of a job continues
after its deadline.

Timesharing A kernel mechanism in which the available time of the processor is
divided among all active jobs in time slices of the same length.

Time slice A continuous interval of time in which a job is executed on the processor
without interruption.

Utilization factor The fraction of the processor time utilized by a periodic compu-
tation. The utilization factor of a periodic task τ i is the ratio of its computation time
and its period (Ui = Ci/Ti). The utilization factor of a periodic task set is the sum
of the individual task utilizations (U =

∑

i Ui).

Utility function A curve that describes the value of a task as a function of its finish-
ing time.

Value A task parameter that describes the relative importance of a task with respect
to the other tasks in the system.

Value Density The ratio between the value of a task and its computation time.

REFERENCES

[AAS97] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS negotiation in
real-time systems and its applications to automated flight control. In
Proceedings of the IEEE Real-Time Technology and Applications Sym-

posium (RTAS’97), Montreal, Canada, June 1997.

[AB98] L. Abeni and G. C. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of the 19th IEEE Real-Time Systems

Symposium (RTSS’98), Madrid, Spain, December 2-3, 1998.

[AB01] L. Abeni and G. C. Buttazzo. Hierarchical qos management for time
sensitive applications. In Proceedings of the IEEE Real-Time Technology

and Applications Symposium (RTAS’01), Taipei, Taiwan, May 30 - June
1, 2001.

[AB04] L. Abeni and G. C. Buttazzo. Resource reservations in dynamic real-time
systems. Real-Time Systems, 27(2):123–165, 2004.

[ABR+93] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8(5):284–292, September
1993.

[ABRW92] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: The deadline monotonic approach. In IEEE Work-

shop on Real-Time Operating Systems, 1992.

[AG08] S. Altmeyer and G. Gebhard. WCET analysis for preemptive scheduling.
In Proc. of the 8th Int. Workshop on Worst-Case Execution Time (WCET)

Analysis, pages 105–112, Prague, Czech Republic, July 2008.

[AL86] L. Alger and J. Lala. Real-time operating system for a nuclear power
plant computer. In Proceedings of the IEEE Real-Time Systems Sympo-

sium, December 1986.

[AMMA01] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Optimal reward-
based scheduling for periodic real-time tasks. IEEE Transactions on

Computers, 50(2):111–130, February 2001.

497

498

[ARI91] ARINC. ARINC 651: Design Guidance for Integrated Modular Avion-

ics. Airlines Electronic Engineering Committee (AEEC), November
1991.

[ARI96] ARINC. ARINC 653: Avionics Application Software Standard Interface

(Draft 15). Airlines Electronic Engineering Committee (AEEC), June
1996.

[AS88] R. J. Anderson and M. W. Spong. Hybrid impedance control of robotic
manipulators. IEEE Journal of Robotics and Automation, 4(5), October
1988.

[B+93] J. Blazewicz et al. Scheduling in Computer and Manufacturing Systems.
Springer-Verlag, 1993.

[Bab97] R. L. Baber. The Ariane 5 explosion: a software engineer’s view. Risks

Digest, 18(89), March 1997.

[BAF94] G. C. Buttazzo, B. Allotta, and F. Fanizza. Mousebuster: a robot for
catching fast objects. IEEE Control Systems Magazine, 14(1):49–56,
February 1994.

[Baj88] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):996–1005,
August 1988.

[Bak91] T. P. Baker. Stack-based scheduling of real-time processes. Journal of

Real-Time Systems, 3, 1991.

[BAL98] G. C. Buttazzo, L. Abeni, and G. Lipari. Elastic task model for adap-
tive rate control. In IEEE Real Time System Symposium, Madrid, Spain,
December 1998.

[Bar05] S. K. Baruah. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In Proc. of the 17th Euromicro Conf. on Real-Time

Systems (ECRTS’05), pages 137–144, Palma de Mallorca, Balearic Is-
lands, Spain, July 6-8, 2005.

[Bar06] S. K. Baruah. Resource sharing in EDF-scheduled systems: a closer
look. In Proceedings of the 27th IEEE Real-Time Systems Symposium

(RTSS’06), Rio de Janeiro, Brazil, December 5-8, 2006.

[BB02] G. Bernat and A. Burns. Multiple servers and capacity sharing for im-
plementing flexible scheduling. Real-Time Systems, 22:49–75, January
2002.

eferencesR

References 499

[BB04] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Transactions on Computers, 53(11):1462–1473,
2004.

[BB05] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[BB06] G. C. Buttazzo and E. Bini. Optimal dimensioning of a constant band-
width server. In Proc. of the IEEE 27th Real-Time Systems Symposium

(RTSS 2006), Rio de Janeiro, Brasil, December 6-8, 2006.

[BBB01] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. A hyperbolic bound for
the rate monotonic algorithm. In Proceedings of the IEEE Euromicro

Conference on Real-Time Systems, pages 59–66, June 2001.

[BBB03] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic scheduling:
The hyperbolic bound. IEEE Transactions on Computers, 52(7):933–
942, July 2003.

[BBB04] G. Bernat, I. Broster, and A. Burns. Rewriting history to exploit gain
time. In Proceedings of the 25th IEEE Real-Time Systems Symposium

(RTSS’04), Lisbon, Portugal, December 5-8, 2004.

[BBL09] E. Bini, G. C. Buttazzo, and G. Lipari. Minimizing CPU energy in real-
time systems with discrete speed management. ACM Transactions on

Embedded Computing Systems, 8(4):31:1–31:23, July 2009.

[BC07] G. C. Buttazzo and A. Cervin. Comparative assessment and evaluation
of jitter control methods. In Proceedings of the 15th Int. Conf. on Real-

Time and Network Systems (RTNS’07), pages 137–144, Nancy, France,
March 29-30, 2007.

[BCRZ99] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate modulation
of soft real-time tasks in autonomous robot control systems. In IEEE

Proceedings of the 11th Euromicro Conference on Real-Time Systems,
June 1999.

[BCSM08] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache par-
titioning on multi-tasking real-time embedded systems. In IEEE Pro-

ceedings of the 14th Int. Conf. on Embedded and Real-Time Computing

Systems and Applications, pages 101–110, Kaohsiung, Taiwan, August
2008.

[BDN93] G. C. Buttazzo and M. Di Natale. HARTIK: a hard real-time kernel for
programming robot tasks with explicit time constraints and guaranteed

500

execution. In Proceedings of IEEE International Conference on Robotics

and Automation, May 1993.

[BDNB08] E. Bini, M. Di Natale, and G. C. Buttazzo. Sensitivity analysis for fixed-
priority real-time systems. Real-Time Systems, 39(1-3):5–30, August
2008.

[BFB09] M. Bertogna, N. Fisher, and S. K. Baruah. Resource-sharing servers
for open environments. IEEE Transactions on Industrial Informatics,
5(3):202–220, August 2009.

[BFR71] P. Bratley, M. Florian, and P. Robillard. Scheduling with earliest start
and due date constraints. Naval Research Quarterly, 18(4), 1971.

[BH73] P. Brinch Hansen. Operating System Principles. Prentice-Hall, 1973.

[BKM+92] S. K. Baruah, G. Koren, D. Mao, A. R. B. Mishra, L. Rosier, D. Shasha,
and F. Wang. On the competitiveness of on-line real-time task schedul-
ing. Journal of Real-Time Systems, 4, 1992.

[BLCA02] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling
for flexible workload management. IEEE Transactions on Computers,
51(3):289–302, March 2002.

[Blo77] A. Bloch. Murphy’s Law. Price/Stern/Sloan Publishers, Los Angeles,
California, 1977.

[Blo80] A. Bloch. Murphy’s Law Book Two. Price/Stern/Sloan Publishers, Los
Angeles, California, 1980.

[Blo88] A. Bloch. Murphy’s Law Book Three. Price/Stern/Sloan Publishers, Los
Angeles, California, 1988.

[BLV09] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption. Real-Time System, 42(1-3):63–119, 2009.

[BNSS10] M. Behnam, T. Nolte, M. Sjödin, and I. Shin. Overrun methods and
resource holding times for hierarchical scheduling of semi-independent
real-time systems. IEEE Transactions on Industrial Informatics, 6(1),
February 2010.

[BR91] S. K. Baruah and L. E. Rosier. Limitations concerning on-line scheduling
algorithms for overloaded real-time systems. In Eighth IEEE Workshop

on Real-Time Operating Systems and Software, 1991.

eferencesR

References 501

[BRH90] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Journal of Real-Time Systems, 2, 1990.

[BS93] G. C. Buttazzo and J. Stankovic. RED: A robust earliest deadline
scheduling algorithm. In Proceedings of Third International Workshop

on Responsive Computing Systems, 1993.

[BS95] G. C. Buttazzo and J. Stankovic. Adding robustness in dynamic preemp-
tive scheduling. In D. S. Fussel and M. Malek, editors, Responsive Com-

puter Systems: Steps Toward Fault-Tolerant Real-Time Systems. Kluwer
Academic Publishers, 1995.

[BS99] G. C. Buttazzo and F. Sensini. Optimal deadline assignment for schedul-
ing soft aperiodic tasks in hard real-time environments. IEEE Transac-

tions on Computers, 48(10):1035–1052, October 1999.

[BSNN07] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems. In
Proceedings of the 7th ACM/IEEE International Conference on Embed-

ded Software (EMSOFT’07), pages 279–288, October 2007.

[BSNN08] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Scheduling of semi-
independent real-time components: Overrun methods and resource hold-
ing times. In Proceedings of 13th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA’08), pages 575–
582, September 2008.

[BSR88] S. Biyabani, J. Stankovic, and K. Ramamritham. The integration of dead-
line and criticalness in hard real-time scheduling. In Proceedings of the

IEEE Real-Time Systems Symposium, 1988.

[Bur94] A. Burns. Preemptive priority based scheduling: An appropriate engi-
neering approach. S. Son, editor, Advances in Real-Time Systems, pages
225–248, 1994.

[But91] G. C. Buttazzo. HAREMS: Hierarchical architecture for robotics exper-
iments with multiple sensors. In IEEE Proceedings of the Fifth Interna-

tional Conference on Advanced Robotics (’91 ICAR), June 1991.

[But93] G. C. Buttazzo. HARTIK: A real-time kernel for robotics applications.
In Proceedings of the IEEE Real-Time Systems Symposium, December
1993.

502

[But96] G. C. Buttazzo. Real-time issues in advanced robotics applications. In
Proceedings of the 8th IEEE Euromicro Workshop on Real-Time Sys-

tems, pages 77–82, June 1996.

[But03] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day. In Proceedings

of the 3rd International Conference on Embedded Software (EMSOFT

2003), pages 67–83, Philadelphia, Pennsylvania, USA, October 2003.

[But05] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day. Real-Time

Systems, 29(1):5–26, January 2005.

[But06] G. C. Buttazzo. Achieving scalability in real-time systems. IEEE Com-

puter, 39(5):54–59, May 2006.

[BXM+11] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. C. Buttazzo.
Optimal selection of preemption points to minimize preemption over-
head. In Proceedings of 23rd Euromicro Conference on Real-Time Sys-

tems (ECRTS 11), Porto, Portugal, July 6-8, 2011.

[CB97] M. Caccamo and G. C. Buttazzo. Exploiting skips in periodic tasks for
enhancing aperiodic responsiveness. In IEEE Real-Time Systems Sym-

posium, pages 330–339, San Francisco, California, USA, 1997.

[CB03] A. Carlini and G. C. Buttazzo. An efficient time representation for real-
time embedded systems. In Proceedings of the ACM Symposium on Ap-

plied Computing (SAC 2003), Melbourne, Florida, USA, 2003.

[CBS00] M. Caccamo, G. C. Buttazzo, and L. Sha. Capacity sharing for over-
run control. In Proceedings of the IEEE Real-Time Systems Symposium,
Orlando, Florida, USA, 2000.

[CBT05] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient reclaiming in
reservation-based real-time systems with variable execution times. IEEE

Transactions on Computers, 54(2):198–213, February 2005.

[CC89] H. Chetto and M. Chetto. Some results of the earliest deadline schedul-
ing algorithm. IEEE Transactions on Software Engineering, 15(10),
1989.

[Cer03] A. Cervin. Integrated control and real-time scheduling. Doctoral dis-
sertation (page 94), isrn lutfd2/tfrt-1065-se, Department of Automatic
Control, University of Lund, Sweden, April 2003.

[CL90] M. Chen and K. Lin. Dynamic priority ceilings: A concurrency control
protocol for real-time systems. Journal of Real-Time Systems, 2, 1990.

eferencesR

References 503

[Cla89] D. Clark. HIC: An operating system for hierarchies of servo loops. In
Proceedings of IEEE International Conference on Robotics and Automa-

tion, 1989.

[CSB90] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Journal of Real-Time Systems,
2, 1990.

[Cut85] M. R. Cutkosky. Robot Grasping and Fine Manipulation. Kluwer Aca-
demic Publishers, 1985.

[DB87] P. Dario and G. C. Buttazzo. An anthropomorphic robot finger for inves-
tigating artificial tactile perception. International Journal of Robotics

Research, 6(3):25–48, Fall 1987.

[DB06] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed prior-
ity pre-emptive systems. In Proceedings of the 27 th IEEE International

Real-Time Systems Symposium, pages 257–270, Rio de Janeiro, Brazil,
December 5-8, 2006.

[Der74] M. L. Dertouzos. Control robotics: the procedural control of physical
processes. Information Processing, 74, 1974.

[DG00] R. Devillers and J. Goossens. Liu and laylandŠs schedulability test re-
visited. Information Processing Letters, 73(5):157–161, March 2000.

[Dij68] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages. Academic Press, New York, 1968.

[DRSK89] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-time oper-
ating system of MARS. Operating System Review, 23(3):141–157, July
1989.

[DTB93] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in fixed
priority pre-emptive systems. In Proceedings of the IEEE Real-Time

Systems Symposium, December 1993.

[EAL07] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using EDP resource models. In Proceedings of the 28 th IEEE Interna-

tional Real-Time Systems Symposium, pages 129–138, Tucson, Arizona,
USA, 2007.

[ERC95] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemptively
scheduling with high context switch cost. In Proc. of the 7th Euromicro

Workshop on Real-Time Systems, Odense, Denmark, June 14-16, 1995.

504

[FM02] X. Feng and A. K. Mok. A model of hierarchical real-time virtual re-
sources. In Proceedings of the 23rd IEEE Real-Time Systems Symposium,
pages 26–35, Austin, Texas, USA, December 2002.

[GA07] G. Gebhard and S. Altmeyer. Optimal task placement to improve cache
performance. In Proc. of the 7th ACM-IEEE Int. Conf. on Embedded

Software (EMSOFT 07), pages 166–171, Salzburg, Austria, 2007.

[GAGB01] P. Gai, L. Abeni, M. Giorgi, and G. C. Buttazzo. A new kernel approach
for modular real-time systems development. In Proceedings of the 13th

IEEE Euromicro Conference on Real-Time Systems, Delft, The Nether-
lands, June 2001.

[GB95] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a deadline schedul-
ing environment. Journal of Real-Time Systems, 9, 1995.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GLLK79] R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

[GR91] N. Gehani and K. Ramamritham. Real-time concurrent C: A language
for programming dynamic real-time systems. Journal of Real-Time Sys-

tems, 3, 1991.

[Gra76] R. L. Graham. Bounds on the performance of scheduling algorithms. In
Computer and Job Scheduling Theory, pages 165–227. John Wiley and
Sons, 1976.

[Gua09] Q. Guangming. An earlier time for inserting and/or accelerating tasks.
Real-Time Systems, 41(3):181–194, 2009.

[HHPD87] V. P. Holmes, D. Harris, K. Piorkowski, and G. Davidson. Hawk: An
operating system kernel for a real–time embedded multiprocessor. Tech-
nical report, Sandia National Laboratories, 1987.

[Hil92] D. Hildebrand. An architectural overview of QNX. In Proceedings of

the Usenix Workshop on MicroKernels and Other Kernel Architectures,
April 1992.

[HLC91] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest deadline scheduling
for real-time database systems. In Proceedings of the IEEE Real-Time

Systems Symposium, December 1991.

eferencesR

References 505

[Hor74] W. Horn. Some simple scheduling algorithms. Naval Research Logistics

Quarterly, 21, 1974.

[Jac55] J. R. Jackson. Scheduling a production line to minimize maximum tardi-
ness. Management Science Research Project 43, University of Califor-
nia, Los Angeles, USA, 1955.

[JM97] J.-M. Jézéquel and B. Meyer. Design by contract: The lessons of Ariane.
IEEE Computer, 30(2):129–130, January 1997.

[JS93] K. Jeffay and D. L. Stone. Accounting for interrupt handling costs in
dynamic priority task systems. In Proceedings of the IEEE Real-Time

Systems Symposium, pages 212–221, December 1993.

[JSM91] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling
of periodic and sporadic tasks with varying execution priority. In Pro-

ceedings of the IEEE Real-Time Systems Symposium, pages 129–139,
December 1991.

[JSP92] K. Jeffay, D. L. Stone, and D. Poirier. YARTOS: Kernel support for effi-
cient, predictable real-time systems. In W. Halang and K. Ramamritham,
editors, Real-Time Programming, pages 7–12. Pergamon Press, 1992.

[Kar92] R. Karp. On-line algorithms versus off-line algorithms: How much is it
worth to know the future? Information Processing, 92(1), 1992.

[KB86] O. Khatib and J. Burdick. Motion and force control of robot manipula-
tors. In Proceedings of IEEE Conference on Robotics and Automation,
1986.

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabla, C. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The mars
approach. IEEE Micro, 9(1), February 1989.

[KIM78] H. Kise, T. Ibaraki, and H. Mine. A solvable case of the one machine
scheduling problem with ready and due times. Operations Research,
26(1):121–126, 1978.

[KKS89] D. D. Kandlur, D. L. Kiskis, and K. G. Shin. HARTOS: A distributed
real-time operating system. Operating System Review, 23(3), July 1989.

[KM91] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-time sys-
tems. In Proceedings of the 12th IEEE Real-Time Systems Symposium,
December 1991.

506

[KS86] E. Kligerman and A. Stoyenko. Real-Time Euclid: A language for re-
liable real-time systems. IEEE Transactions on Software Engineering,
12(9), September 1986.

[KS92] G. Koren and D. Shasha. D-over: An optimal on-line scheduling al-
gorithm for overloaded real-time systems. In Proceedings of the IEEE

Real-Time Systems Symposium, 1992.

[KS95] G. Koren and D. Shasha. Skip-Over: Algorithms and complexity for
overloaded systems that allow skips. In Proceedings of the IEEE Real-

Time Systems Symposium, December 1995.

[Law73] E. L. Lawler. Optimal sequencing of a single machine subject to prece-
dence constraints. Managements Science, 19, 1973.

[LB03] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. In Proceedings of the 15th Euromicro Conference on Real-Time

Systems (ECRTS’03), pages 151–158, Porto, Portugal, July 2003.

[LB05] C. Lin and S. A. Brandt. Improving soft real-time performance through
better slack management. In Proc. of the IEEE Real-Time Systems Sym-

posium (RTSS 2005), Miami, Florida, USA, December 5Ű8, 2005.

[LDS07] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch.
In Proc. of ACM Workshop on Experimental Computer Science (Ex-

pCS’07), San Diego, California, USA, June 13-14, 2007.

[LHS+98] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim. Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling. IEEE Transactions on Computers,
47(6):700–713, 1998.

[LK88] I. Lee and R. King. Timix: A distributed real-time kernel for multi-
sensor robots. In Proceedings of IEEE International Conference on

Robotics and Automation, 1988.

[LKP88] I. Lee, R. King, and R. Paul. RK: A real-time kernel for a distributed
system with predictable response. MS-CIS-88-78, GRASP LAB 155 78,
Department of Computer Science, University of Pennsylvania, Philadel-
phia, Pennsylvania, USA, October 1988.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Association for

Computing Machinery, 20(1), 1973.

eferencesR

References 507

[LLA01] G. Lamastra, G. Lipari, and L. Abeni. A bandwidth inheritance algo-
rithm for real-time task synchronization in open systems. In IEEE Pro-

ceedings of the 22nd Real-Time Systems Symposium (RTSS’01), London,
UK, December 3-6, 2001.

[LLN87] J. W. S. Liu, K. J. Lin, and S. Natarajan. Scheduling real-time, peri-
odic jobs using imprecise results. In Proceedings of the IEEE Real-Time

System Symposium, December 1987.

[LLS+91] J. W. S. Liu, K. Lin, W. Shih, A. Yu, C. Chung, J. Yao, and W. Zhao.
Algorithms for scheduling imprecise computations. IEEE Computer,
24(5):58–68, May 1991.

[LNL87] K. J. Lin, S. Natarajan, and J. W. S. Liu. Concord: a system of imprecise
computation. In Proceedings of the 1987 IEEE Compsac, October 1987.

[Loc86] C. D. Locke. Best-effort Decision Making for Real-Time Scheduling.
PhD thesis, Carnegie-Mellon University, Computer Science Department,
Pittsburgh, Pennsylvania, USA, 1986.

[LRKB77] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of ma-
chine scheduling problems. Annals of Discrete Mathematics, 7(1):343–
362, 1977.

[LRM96] C. Lee, R. Rajkumar, and C. Mercer. Experiences with processor reser-
vation and dynamic QOS in real-time mach. In Proceedings of Multime-

dia Japan 96, April 1996.

[LRT92] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for schedul-
ing soft-aperiodic tasks in fixed-priority preemptive systems. In Pro-

ceedings of the IEEE Real-Time Systems Symposium, December 1992.

[LS06] G. Lipari and C. Scordino. Linux and real-time: Current approaches and
future opportinities. In Proceedings of the 50th Int. Congress of ANIPLA

on Methodologies for Emerging Technologies in Automation (ANIPLA

2006), Rome, Italy, November 2006.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior. In Proceedings

of the 10th IEEE Real-Time Systems Symposium (RTSS’89), pages 166–
171, Santa Monica, California, USA, December 5-7, 1989.

[LSL+94] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. Y. Chung. Imprecise
computations. Proceedings of the IEEE, 82(1):83–94, January 1994.

508

[LSS87] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic respon-
siveness in hard real-time environments. In Proceedings of the IEEE

Real-Time Systems Symposium, December 1987.

[LTCA89] S.-T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The
MARUTI hard real-time operating system. Operating System Review,
23(3), July 1989.

[LW82] J. Leung and J. Whitehead. On the complexity of fixed-priority schedul-
ing of periodic real-time tasks. Performance Evaluation, 2(4):237–250,
1982.

[MFC01] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time
systems. In Proceedings of the 7th IEEE Real-Time Technology and Ap-

plications Symposium, pages 75–84, Taipei, Taiwan, May 2001.

[MLBC04] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS: A new re-
claiming algorithm for server-based real-time systems. In Proc. of the

IEEE Real-Time and Embedded Technology and Applications Sympo-

sium, Toronto, Canada, May 2004.

[MST93] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves
for multimedia operating systems. Technical Report CMU-CS-93-157,
Carnegie Mellon University, Pittsburg, Pennsylvania, USA, May 1993.

[MST94a] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves
for multimedia operating systems. In Proceedings of IEEE international

conference on Multimedia Computing and System, May 1994.

[MST94b] C. W. Mercer, S. Savage, and H. Tokuda. Temporal protection in real-
time operating systems. In Proceedings of th 11th IEEE workshop on

Real-Time Operating System and Software, pages 79–83. IEEE, May
1994.

[Nak98] T. Nakajima. Resource reservation for adaptive qos mapping in real-
time mach. In Sixth International Workshop on Parallel and Distributed

Real-Time Systems (WPDRTS), April 1998.

[Nat95] S. Natarajan, editor. Imprecise and Approximate Computation. Kluwer
Academic Publishers, 1995.

[NSBS09] T. Nolte, I. Shin, M. Behnam, and M. Sjödin. A synchronization proto-
col for temporal isolation of software components in vehicular systems.
IEEE Transactions on Industrial Informatics, 5(4):375–387, November
2009.

eferencesR

References 509

[NT94] T. Nakajima and H. Tezuka. A continuous media application supporting
dynamic qos control on real-time mach. In ACM Multimedia, 1994.

[OSE03] OSEK. OSEK/VDX Operating System Specification 2.2.1. OSEK Group,
http://www.osek-vdx.org, 2003.

[OSE04] OSE. OSE Real-Time Operating System. ENEA Embedded Technology,
http://www.ose.com, 2004.

[PALW02] L. Palopoli, L. Abeni, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Proceedings of the 23rd IEEE

Real-Time Systems Symposium (RTSS’02), Austin, Texas, USA, Decem-
ber 3-5, 2002.

[PGBA02] P. Pedreiras, P. Gai, G. C. Buttazzo, and L. Almeida. FTT-Ethernet:
A platform to implement the elastic task model over message streams.
In Fourth IEEE Workshop on Factory Communication Systems (WFCS

2002), pages 225–232, August 2002.

[POS03] POSIX. IEEE Standard 1003.13-2003, Standard for Information Tech-

nology - Standardized Application Environment Profile - POSIX Real-

time and Embedded Application Support (AEP). The Institute of Electri-
cal and Electronics Engineers, 2003.

[PS85] J. Peterson and A. Silberschatz. Operating Systems Concepts. Addison-
Wesley, 1985.

[Raj91] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-

tance Approach. Kluwer Academic Publishers, 1991.

[Rea86] J. Ready. VRTX: A real-time operating system for embedded micropro-
cessor applications. IEEE Micro, August 1986.

[Reg02] J. Regehr. Scheduling tasks with mixed preemption relations for robust-
ness to timing faults. In Proceedings of the 23rd IEEE Real-Time Systems

Symposium (RTSS’02), pages 315–326, Austin, Texas, USA, December
3-5, 2002.

[RH01] M. A. Rivas and M. G. Harbour. MaRTE OS: An ada kernel for real-time
embedded applications. In Proceedings of the International Conference

on Reliable Software Technologies, Ada-Europe-2001, Leuven, Belgium,

LNCS, May 2001.

[RH04] M. A. Rivas and M. G. Harbour. A new generalized approach to
application-defined scheduling. In Proceedings of 16th Euromicro Con-

ference on Real-Time Systems (WiP), Catania, Italy, June 30 - July 2
2004.

510

[RJMO98] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels:
A resource-centric approach to real-time and multimedia systems. In
SPIE/ACM Conference on Multimedia Computing and Networking, Jan-
uary 1998.

[RM06] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible pre-
emption points. In Proceedings of the 27th IEEE Real-Time Systems

Symposium (RTSS’06), pages 212–224, Rio de Janeiro, Brazil, Decem-
ber 5-8, 2006.

[RM08] H. Ramaprasad and F. Mueller. Bounding worst-case response time for
tasks with non-preemptive regions. In Proceedings of the Real-Time and

Embedded Technology and Applications Symposium (RTAS’08), pages
58–67, St. Louis, Missouri, USA, April 22-24, 2008.

[RM09] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible pre-
emptions. ACM Transactions on Embedded Computing Systems, 2009.
Not yet published.

[RS84] K. Ramamritham and J. A. Stankovic. Dynamic task scheduling in dis-
tributed hard real-time systems. IEEE Software, 1(3), July 1984.

[RTL93] S. Ramos-Thuel and J. P. Lehoczky. On-line scheduling of hard deadline
aperiodic tasks in fixed-priority systems. In Proceedings of the IEEE

Real-Time Systems Symposium, December 1993.

[Sak98] K. Sakamura. micro-ITRON: An Open and Portable Real-Time Oper-

ating System for Embedded Systems: Concept and Specification. IEEE
Computer Society, April 1998.

[SB94] M. Spuri and G. C. Buttazzo. Efficient aperiodic service under earliest
deadline scheduling. In Proceedings of the IEEE Real-Time Systems

Symposium, December 1994.

[SB96] M. Spuri and G. C. Buttazzo. Scheduling aperiodic tasks in dynamic
priority systems. Journal of Real-Time Systems, 10(2), 1996.

[SBG86] K. Schwan, W. Bo, and P. Gopinath. A high performance, object-based
operating system for real-time robotics application. In Proceedings of

the IEEE Real-Time Systems Symposium, December 1986.

[SBS95] M. Spuri, G. C. Buttazzo, and F. Sensini. Robust aperiodic scheduling
under dynamic priority systems. In Proceedings of the IEEE Real-Time

Systems Symposium, December 1995.

eferencesR

References 511

[SGB87] K. Schwan, P. Gopinath, and W. Bo. CHAOS–kernel support for ob-
jects in the real-time domain. IEEE Transactions on Computers, 36(8),
August 1987.

[Sha85] S. Shani. Concepts in Discrete Mathematics. Camelot Publishing Com-
pany, 1985.

[SL03] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24 th Real-Time Systems Symposium,
pages 2–13, Cancun, Mexico, December 2003.

[SLC91] W. Shih, W. S. Liu, and J. Chung. Algorithms for scheduling impre-
cise computations with timing constraints. SIAM Journal of Computing,
20(3):537–552, July 1991.

[SLCG89] W. Shih, W. S. Liu, J. Chung, and D. W. Gillies. Scheduling tasks with
ready times and deadlines to minimize average error. Operating System

Review, 23(3), July 1989.

[SLR88] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical
problems in prioritized preemptive scheduling. In Proceedings of the

IEEE Real-Time Systems Symposium, December 1988.

[SLS95] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algo-
rithm for enhancing aperiodic responsiveness in hard-real-time environ-
ments. IEEE Transactions on Computers, 4(1), January 1995.

[SLSS96] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in
real-time control system. In Proceedings of the IEEE Real-Time Systems

Symposium, December 1996.

[Spu95] M. Spuri. Earliest Deadline Scheduling in Real-Time Systems. PhD
thesis, Scuola Superiore Sant’Anna, Pisa, Italy, 1995.

[SR87] J. Stankovic and K. Ramamritham. The design of the spring kernel.
In Proceedings of the IEEE Real-Time Systems Symposium, December
1987.

[SR88] J. Stankovic and K. Ramamritham, editors. Tutorial on Hard Real-Time

Systems. IEEE Computer Society Press, 1988.

[SR90] J. A. Stankovic and K. Ramamritham. What is predictability for real-
time systems? Journal of Real-Time Systems, 2, 1990.

[SR91] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A new
paradigm for real-time systems. IEEE Software, 8(3):62–72, May 1991.

512

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Com-

puters, 39(9), September 1990.

[SRS93] C. Shen, K. Ramamritham, and J. Stankovic. Resource reclaiming in
multiprocessor real-time systems. IEEE Transactions on Parallel and

Distributed Computing, 4(4):382–397, April 1993.

[SSDNB95] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Buttazzo. Implica-
tions of classical scheduling results for real-time systems. IEEE Com-

puter, 28(6), June 1995.

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Journal of Real-Time Systems, 1, July 1989.

[Sta88] J. A. Stankovic. Misconceptions about real-time computing. IEEE Com-

puter, 21(10), October 1988.

[SW00] M. Saksena and Y. Wang. Scalable real-time system design using pre-
emption thresholds. In Proc. of the 21st IEEE Real-Time Systems Sym-

posium (RTSS’00), Orlando, Florida, USA, November 27-30, 2000.

[SZ92] K. Schwan and H. Zhou. Dynamic scheduling of hard real-time tasks
and real-time threads. IEEE Transactions on Software Engineering,
18(8):736–748, August 1992.

[Tak02] H. Takada. micro-ITRON 4.0 specification (version 4.00.00). TRON
association, Japan, 2002, http://www.ertl.jp/ITRON/SPEC/home-e.html,
2002.

[TK88] H. Tokuda and M. Kotera. A real-time tool set for the ARTS kernel.
In Proceedings of the IEEE Real-Time Systems Symposium, December
1988.

[TLS95] T. S. Tia, J. W. S. Liu, and M. Shankar. Algorithms and optimality
of scheduling aperiodic requests in fixed-priority preemptive systems.
Journal of Real-Time Systems, 1995.

[TM89] H. Tokuda and C. W. Mercer. ARTS: A distributed real-time kernel.
Operating System Review, 23(3), July 1989.

[TT89] P. Thambidurai and K. S. Trivedi. Transient overloads in fault-tolerant
real-time systems. In Proceedings of the IEEE Real-Time Systems Sym-

posium, December 1989.

eferencesR

References 513

[TWW87] H. Tokuda, J. Wendorf, and H. Wang. Implementation of a time-driven
scheduler for real-time operating systems. In Proceedings of the IEEE

Real-Time Systems Symposium, December 1987.

[VxW95] VxWorks. VxWorks Programmer’s Guide: Algorithms for Real-Time

Scheduling Problems. Wind River Systems, Inc., Alameda, California,
USA, 1995.

[Whi85] D. E. Whitney. Historical perspective and state of the art in robot force
control. In Proceedings of IEEE Conference on Robotics and Automa-

tion, 1985.

[WR91] E. Walden and C. V. Ravishankar. Algorithms for real-time schedul-
ing problems. Technical report, University of Michigan, Department
of Electrical Engineering and Computer Science, Ann Arbor, Michigan,
USA, April 1991.

[WS99] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with pre-
emption threshold. In Proc. of the 6th IEEE Int. Conference on Real-

Time Computing Systems and Applications (RTCSA’99), pages 328–335,
Hong Kong, China, December 13-15, 1999.

[YBB09] G. Yao, G. C. Buttazzo, and M. Bertogna. Bounding the maximum
length of non-preemptive regions under fixed priority scheduling. In
Proc. of the 15th IEEE Int. Conf. on Embedded and Real-Time Com-

puting Systems and Applications (RTCSA’09), pages 351–360, Beijing,
China, August 24-26, 2009.

[YBB10a] G. Yao, G. C. Buttazzo, and M. Bertogna. Feasibility analysis under
fixed priority scheduling with fixed preemption points. In Proc. of the

16th IEEE Int. Conf. on Embedded and Real-Time Computing Systems

and Applications (RTCSA’10), pages 71–80, Macau, SAR, China, Au-
gust 23-25, 2010.

[YBB10b] G. Yao, G. C. Buttazzo, and M. Bertogna. Comparative evaluation of
limited preemptive methods. In Proc. of the 15th IEEE Int. Conf. on

Emerging Techonologies and Factory Automation (ETFA 2010), Bilbao,
Spain, September 13-16, 2010.

[YS07] P. M. Yomsi and Y. Sorel. Extending rate monotonic analysis with exact
cost of preemptions for hard real-time systems. In Proc. of the 19th

EuroMicro Conf. on Real-Time Systems (ECRTS’07), Pisa, Italy, July
4-6, 2007.

514

[Zlo93] G. Zlokapa. Real-time systems: Well-timed scheduling and scheduling
with precedence constraints. Ph.D. thesis, CS-TR 93 51, Department of
Computer Science, University of Massachusetts, Amherst, MA, Febru-
ary 1993.

eferencesR

INDEX

A

Absolute Deadline, 27
Absolute Finishing Jitter, 82
Absolute Start Time Jitter, 82
Accidents, 3
Actuators, 400
Ada language, 20
Admission control, 305
Adversary argument, 298
Aperiodic service

Background scheduling, 120
Deferrable Server, 130
Dynamic Priority Exchange, 162
Dynamic Sporadic Server, 167
EDL server, 174
IPE server, 179
Polling Server, 122
Priority Exchange, 139
Slack Stealer, 149
Sporadic Server, 143
TB server, 181
Total Bandwidth Server, 171

Aperiodic task, 28, 53
APEX, 426
Applications, 1, 397
Ariane 5, 6
ARINC, 426
Arrival time, 26
ARTS, 437
Assembly language, 2
Asynchronous communication, 386
Audsley, 105
Autonomous system, 402

AUTOSAR, 425
Average response time, 8–9, 11

B

Background scheduling, 120
Baker, 234
Baruah, 110, 297, 304
Best-effort, 38
Bini, 97
Biyabani, 307
Blocking, 205
Bouchentouf, 73
Braking control system, 402
Bratley, 66
Burns, 152
Busy wait, 16–18
Buttazzo, 162, 171, 288, 308

C

CAB, 387
Cache, 14
Carey, 307
Ceiling, 227
Ceiling blocking, 229
Chained blocking, 225
CHAOS, 437
Chen, 209
Chetto, 73, 174–175, 177
ChronSIM, 455
ChronVAL, 454
Clairvoyant scheduler, 36
Clairvoyant scheduling, 295

515

516 Index

Clark, 387
Communication channel, 387
Competitive factor, 297
Complete schedule, 65
Completion time, 27
Computation time, 27
Concurrency control protocols, 247
Context switch, 25, 351
Control applications, 397
Control loops, 397
Cost function, 39
Critical instant, 81
Critical section, 31, 205
Critical time zone, 81
Criticality, 27
Cumulative value, 42, 294
Cyclic Asynchronous Buffers, 387
Cyclic Executive, 84

D

Dashboard, 403
Davis, 152
Deadline, 8
Deadline Monotonic, 103
Deadline tolerance, 308
Deadline

firm, 9, 294
hard, 9
soft, 9

Deadlock, 226
Deadlock prevention, 226, 230, 242
Deferrable Server, 130
Dertouzos, 59
DICK, 349, 355
Direct blocking, 216
Directed acyclic graph, 28
Dispatching, 23, 366
DMA, 14

cycle stealing, 14
timeslice, 14

Domino Effect, 37, 291
D-over, 312
D-over algorithm, 312
Driver, 15
Dynamic Priority Exchange, 162
Dynamic priority servers, 161

Dynamic Priority Exchange, 162
Dynamic Sporadic Server, 167
EDL server, 174
IPE server, 179
TB server, 181
Total Bandwidth Server, 171

Dynamic scheduling, 36
Dynamic Sporadic Server, 167

E

Earliest Deadline First, 58, 100
Earliest Due Date, 55
EDF, 438
EDL server, 174
Efficiency, 12
Embedded Systems, 2
Empty schedule, 65
Environment, 398
Erika Enterprise, 438
ERIKA Enterprise, 438, 441, 454
Event, 6, 18
Event-driven scheduling, 119
Exceeding time, 27, 309
Exclusive resource, 205
Execution time, 27
Exhaustive search, 65
Exponential time algorithm, 34

F

Fault tolerance, 13
Feasible schedule, 25
Feedback, 400
Finishing time, 27

Index 517

Firm task, 9, 26, 119, 294
First Come First Served, 121
Fixed-priority servers, 120

Deferrable Server, 130
Polling Server, 122
Priority Exchange, 139
Slack Stealer, 149

Friction, 404

G

Graceful degradation, 293, 308
Graham, 42
Graham’s notation, 53
Guarantee mechanism, 37
Gulf War, 3

H

Hard real-time system, 9
Hard task, 9, 26
Haritsa, 307
HARTIK, 387, 437
HARTOS, 437
Heuristic function, 68
Heuristic scheduling, 36
Hierarchical design, 408
Highest Locker Priority, 212
Hit Value Ratio, 313
Horn’s algorithm, 58
Howell, 110
Hybrid task sets, 119
Hyperbolic Bound, 97
Hyperperiod, 81, 113
Hyper-planes test, 110

I

Idle state, 352
Idle time, 24
Immediate Priority Ceiling, 212

Imprecise computation, 344
Instance, 28
Interarrival time, 119
Interference, 104, 106, 182
Interrupt handling, 15
Intertask communication, 385
IPE server, 179
ITRON, 427

J

Jackson’s rule, 55
Jeffay, 65, 110, 394
Jitter, 81
Job, 28
Job response time, 81

K

Karp, 305
Kernel, 349
Kernel primitive

activate, 376
create, 355
end cycle, 377
end process, 379
kill, 379
sleep, 355

Koren, 312

L

Language, 13, 20
Lateness, 27
Latest Deadline First, 70
Lawler, 70
Laxity, 27
Layland, 86
Lehoczky, 130, 133, 139, 149, 157,

214, 226
Leung, 103

518 Index

Lifetime, 361
Limited Preemptive Scheduling, 251
Lin, 209
Linux, 432
List management, 368
Liu, 86, 152
Livny, 307
Load, 288
Locke, 307

M

Mach, 307
Mailbox, 386
Maintainability, 13
Mantegazza, 433
MARS, 437
Marte OS, 447
Martel, 65
MARUTI, 437
Maximum lateness, 39
Memory management, 19
Message, 386
Message passing, 385
Metrics, 39
Micro-ITRON, 427
Multimedia, 38
Murphy’s Laws, 4
Mutual exclusion, 19, 31, 205, 380
Mutually exclusive resource, 31

N

Nested critical section, 210
Non-idle scheduling, 65
Non-Preemptive Protocol, 210
Non-preemptive scheduling, 35, 63
Non-real-time task, 119
NP-complete, 35
NP-hard, 35

O

Off-line scheduling, 36
On-line guarantee, 37
On-line scheduling, 36
Optimal scheduling, 36
ORTI, 438
OSE, 430
OSEK, 421, 438
Overhead, 392
Overload, 289
Overrun, 289

P

Partial schedule, 65
Patriot missiles, 3
Performance, 39, 42
Period, 28, 80
Periodic task, 28, 79
Phase, 28, 80
Polling Server, 122
Polynomial algorithm, 34
Precedence constraints, 28, 70
Precedence graph, 29
Predecessor, 29
Predictability, 12–13
PREEMPT RT, 435
Preemption, 24
Preemption level, 235
Preemptive scheduling, 35
Priority Ceiling Protocol, 226
Priority Exchange Server, 139
Priority Inheritance Protocol, 214
Priority inversion, 208
Process, 23
Processor demand, 110
Processor utilization factor, 82
Programming language, 13, 20
Pruning, 66
Push-through blocking, 216

Index 519

Q

QNX Neutrino, 431
Quality of service, 38
Queue, 23
Queue operations

extract, 370
insert, 368

Queue
idle, 352
ready, 23, 352
wait, 34, 206, 352

R

Rajkumar, 214, 222, 226
Ramamritham, 68, 307
Ramos-Thuel, 149, 157
Rate Monotonic, 86
Ready queue, 23, 352
Real Time, 6
Receive operation, 386
Reclaiming mechanism, 166, 307
Recovery strategy, 309
Recursion, 20
RED algorithm, 308
Relative Deadline, 27
Relative Finishing Jitter, 82
Relative Start Time Jitter, 81
Release time, 79
Residual laxity, 308
Resource, 31, 205
Resource access protocol, 205
Resource ceiling, 212
Resource constraints, 32, 205
Resource reclaiming, 166, 308
Resource reservation, 316
Response time, 27, 81
Richard’s anomalies, 42
RK, 437
Robot assembly, 411

Robotic applications, 397
Robust scheduling, 305
Robustness, 13
Rosier, 110
RTAI, 433
RTDruid, 454
RTLinux, 432
RTSim, 455
Running state, 23

S

SCHED DEADLINE, 435
Schedulable task set, 25
Schedule, 24

feasible, 25
preemptive, 25

Scheduling, 366
Scheduling algorithm, 23

Deadline Monotonic, 103
D-over, 312
Earliest Deadline First, 100, 58
Earliest Due Date, 55
Horn’s algorithm, 58
Jackson’s rule, 55
Latest Deadline First, 70
Rate Monotonic, 86
Robust Earliest Deadline, 308

Scheduling anomalies, 43
Scheduling policy, 23
Scheduling problem, 34
Scheduling

best effort, 305
dynamic, 36
guaranteed, 305
heuristic, 36
non-preemptive, 35
off-line, 36
online, 36
optimal, 36
preemptive, 35

520 Index

robust, 305
static, 36

Schwan, 307
Search tree, 65
Semaphore, 19, 33, 205, 380
Semaphore Control Block, 358
Semaphore queue, 352
Send operation, 386
Sensitivity analysis, 110
Sensory acquisition, 397
Server budget, 121
Server capacity, 121
Sha, 130, 133, 139, 157, 214, 226
Shankar, 152
Shared resource, 31, 205
SHARK, 442
Shasha, 312
Signal, 34, 206, 382
Silly, 73
Slack Stealer, 149
Slack time, 27
Sleep state, 355
Soft task, 9, 26
Sporadic Server, 143
Sporadic task, 28
Sporadic tasks, 119
Spring, 437
Spring algorithm, 68
Sprunt, 143, 157
Spuri, 162, 171, 209
Stack Resource Policy, 234
Stack sharing, 243
Stanat, 65
Stankovic, 68, 288, 307–308
Start time, 27
Static scheduling, 36
Stone, 110, 395
Strosnider, 130, 133, 139, 157
SymTA/S, 454
Synchronization, 380
Synchronous communication, 385
System call

activate, 376
create, 355
end cycle, 377
end process, 379
kill, 379
sleep, 355

System ceiling, 238
System tick, 361

T

Tactile exploration, 412
Tardiness, 27, 309
Task, 23
Task Control Block, 356
Task instance, 28
Task response time, 81
Task states, 351

delay, 352
idle, 352
ready, 352
receive, 353
running, 352
sleep, 355
waiting, 352
zombie, 354

Task
active, 23
firm, 294
ready, 23
running, 23

Temporal isolation, 316
Temporal protection, 316–317
Thambidurai, 307
Thread, 23
Tia, 152
Tick, 361
Time, 4
Time resolution, 361
Time slice, 25
Time-driven scheduling, 119

521

Timeline Scheduling, 84
Timeliness, 12
Time-overflow, 362
Timer interrupt, 362
TimeWiz, 454
Timing constraints, 26
TIMIX, 437
Tindell, 152
Total Bandwidth Server, 171
Transitive inheritance, 217
Trivedi, 307
TrueTime, 455
Turing machine, 34

U

Utility function, 41, 293
Utilization factor, 82

V

Value, 27, 293
Value density, 293, 304
Vehicle, 402
VxWorks, 247, 429

W

Wait, 34, 206, 381
Waiting state, 34, 206
Whitehead, 103
Workload, 288
Worst-case scenario, 36

X

Xenomai, 434

Y

Yodaiken, 432

Z

Zhou, 307
Zlokapa, 307
Zombie state, 354

Index

	Cover
	Real-Time Systems Series
	Hard Real-Time Computing Systems, 3rd Edition
	ISBN 9781461406754
	CONTENTS
	PREFACE
	Contents of the chapters
	Difference with the second edition
	Acknowledgments

	1 A GENERAL VIEW
	1.1 INTRODUCTION
	1.2 WHAT DOES REAL TIME MEAN?
	1.2.1 THE CONCEPT OF TIME
	1.2.2 LIMITS OF CURRENT REAL-TIME SYSTEMS
	1.2.3 DESIRABLE FEATURES OF REAL-TIME SYSTEMS

	1.3 ACHIEVING PREDICTABILITY
	1.3.1 DMA
	1.3.2 CACHE
	1.3.3 INTERRUPTS
	APPROACH A
	APPROACH B
	APPROACH C

	1.3.4 SYSTEM CALLS
	1.3.5 SEMAPHORES
	1.3.6 MEMORY MANAGEMENT
	1.3.7 PROGRAMMING LANGUAGE

	Exercises

	2 BASIC CONCEPTS
	2.1 INTRODUCTION
	2.2 TYPES OF TASK CONSTRAINTS
	2.2.1 TIMING CONSTRAINTS
	2.2.2 PRECEDENCE CONSTRAINTS
	2.2.3 RESOURCE CONSTRAINTS

	2.3 DEFINITION OF SCHEDULING PROBLEMS
	2.3.1 CLASSIFICATION OF SCHEDULING ALGORITHMS
	GUARANTEE-BASED ALGORITHMS
	BEST-EFFORT ALGORITHMS

	2.3.2 METRICS FOR PERFORMANCE EVALUATION

	2.4 SCHEDULING ANOMALIES
	NUMBER OF PROCESSORS INCREASED
	COMPUTATION TIMES REDUCED
	PRECEDENCE CONSTRAINTS WEAKENED
	ANOMALIES UNDER RESOURCE CONSTRAINTS
	ANOMALIES UNDER NON-PREEMPTIVE SCHEDULING
	ANOMALIES USING A DELAY PRIMITIVE

	Exercises

	3 APERIODIC TASK SCHEDULING
	3.1 INTRODUCTION
	3.2 JACKSON’S ALGORITHM
	3.2.1 EXAMPLES
	EXAMPLE 1
	EXAMPLE 2

	3.2.2 GUARANTEE

	3.3 HORN’S ALGORITHM
	3.3.1 EDF OPTIMALITY
	3.3.2 EXAMPLE
	3.3.3 GUARANTEE

	3.4 NON-PREEMPTIVE SCHEDULING
	3.4.1 BRATLEY’S ALGORITHM
	3.4.2 THE SPRING ALGORITHM

	3.5 SCHEDULING WITH PRECEDENCE CONSTRAINTS
	3.5.1 LATEST DEADLINE FIRST
	3.5.2 EDF WITH PRECEDENCE CONSTRAINTS
	MODIFICATION OF THE RELEASE TIMES
	MODIFICATION OF THE DEADLINES
	PROOF OF OPTIMALITY

	3.6 SUMMARY
	Exercises

	4 PERIODIC TASK SCHEDULING
	4.1 INTRODUCTION
	4.1.1 PROCESSOR UTILIZATION FACTOR

	4.2 TIMELINE SCHEDULING
	4.3 RATE MONOTONIC SCHEDULING
	4.3.1 OPTIMALITY
	4.3.2 CALCULATION OF ULUB FOR TWO TASKS
	4.3.3 CALCULATION OF ULUB FOR N TASKS
	4.3.4 HYPERBOLIC BOUND FOR RM

	4.4 EARLIEST DEADLINE FIRST
	4.4.1 SCHEDULABILITY ANALYSIS
	4.4.2 AN EXAMPLE

	4.5 DEADLINE MONOTONIC
	4.5.1 SCHEDULABILITY ANALYSIS
	4.5.2 RESPONSE TIME ANALYSIS
	4.5.3 WORKLOAD ANALYSIS

	4.6 EDF WITH CONSTRAINED DEADLINES
	4.6.1 THE PROCESSOR DEMAND APPROACH
	4.6.2 REDUCING TEST INTERVALS
	EXAMPLE

	4.7 COMPARISON BETWEEN RM AND EDF
	Exercises

	5 FIXED-PRIORITY SERVERS
	5.1 INTRODUCTION
	5.2 BACKGROUND SCHEDULING
	5.3 POLLING SERVER
	5.3.1 SCHEDULABILITY ANALYSIS
	5.3.2 DIMENSIONING A POLLING SERVER
	5.3.3 APERIODIC GUARANTEE

	5.4 DEFERRABLE SERVER
	5.4.1 SCHEDULABILITY ANALYSIS
	CALCULATION OF ULUB FOR RM+DS

	5.4.2 DIMENSIONING A DEFERRABLE SERVER
	5.4.3 APERIODIC GUARANTEE

	5.5 PRIORITY EXCHANGE
	5.5.1 SCHEDULABILITY ANALYSIS
	5.5.2 PE VERSUS DS

	5.6 SPORADIC SERVER
	5.6.1 SCHEDULABILITY ANALYSIS

	5.7 SLACK STEALING
	5.7.1 SCHEDULABILITY ANALYSIS

	5.8 NON-EXISTENCE OF OPTIMAL SERVERS
	5.9 PERFORMANCE EVALUATION
	5.10 SUMMARY
	Exercises

	6 DYNAMIC PRIORITY SERVERS
	6.1 INTRODUCTION
	6.2 DYNAMIC PRIORITY EXCHANGE SERVER
	6.2.1 SCHEDULABILITY ANALYSIS
	6.2.2 RECLAIMING SPARE TIME

	6.3 DYNAMIC SPORADIC SERVER
	6.3.1 SCHEDULABILITY ANALYSIS

	6.4 TOTAL BANDWIDTH SERVER
	6.4.1 SCHEDULABILITY ANALYSIS

	6.5 EARLIEST DEADLINE LATE SERVER
	6.5.1 EDL SERVER PROPERTIES

	6.6 IMPROVED PRIORITY EXCHANGE SERVER
	6.6.1 SCHEDULABILITY ANALYSIS
	6.6.2 REMARKS

	6.7 IMPROVING TBS
	6.7.1 AN EXAMPLE
	6.7.2 OPTIMALITY

	6.8 PERFORMANCE EVALUATION
	6.9 THE CONSTANT BANDWIDTH SERVER
	6.9.1 DEFINITION OF CBS
	6.9.2 SCHEDULING EXAMPLE
	6.9.3 FORMAL DEFINITION
	6.9.4 CBS PROPERTIES
	6.9.5 SIMULATION RESULTS
	6.9.6 DIMENSIONING CBS PARAMETERS
	TAKING OVERHEADS INTO ACCOUNT

	6.10 SUMMARY
	Exercises

	7 RESOURCE ACCESS PROTOCOLS
	7.1 INTRODUCTION
	7.2 THE PRIORITY INVERSION PHENOMENON
	7.3 TERMINOLOGY AND ASSUMPTIONS
	7.4 NON-PREEMPTIVE PROTOCOL
	7.4.1 BLOCKING TIME COMPUTATION

	7.5 HIGHEST LOCKER PRIORITY PROTOCOL
	7.5.1 BLOCKING TIME COMPUTATION

	7.6 PRIORITY INHERITANCE PROTOCOL
	7.6.1 PROTOCOL DEFINITION
	EXAMPLES

	7.6.2 PROPERTIES OF THE PROTOCOL
	7.6.3 BLOCKING TIME COMPUTATION
	EXAMPLE

	7.6.4 IMPLEMENTATION CONSIDERATIONS
	7.6.5 UNSOLVED PROBLEMS
	CHAINED BLOCKING
	DEADLOCK

	7.7 PRIORITY CEILING PROTOCOL
	7.7.1 PROTOCOL DEFINITION
	EXAMPLE

	7.7.2 PROPERTIES OF THE PROTOCOL
	7.7.3 BLOCKING TIME COMPUTATION
	7.7.4 IMPLEMENTATION CONSIDERATIONS

	7.8 STACK RESOURCE POLICY
	7.8.1 DEFINITIONS
	PRIORITY
	PREEMPTION LEVEL
	RESOURCE UNITS
	RESOURCE REQUIREMENTS
	RESOURCE CEILING
	SYSTEM CEILING

	7.8.2 PROTOCOL DEFINITION
	OBSERVATIONS
	EXAMPLE

	7.8.3 PROPERTIES OF THE PROTOCOL
	7.8.4 BLOCKING TIME COMPUTATION
	7.8.5 SHARING RUNTIME STACK
	7.8.6 IMPLEMENTATION CONSIDERATIONS

	7.9 SCHEDULABILITY ANALYSIS
	7.10 SUMMARY
	Exercises

	8 LIMITED PREEMPTIVE SCHEDULING
	8.1 INTRODUCTION
	8.1.1 TERMINOLOGY AND NOTATION

	8.2 NON-PREEMPTIVE SCHEDULING
	8.2.1 FEASIBILITY ANALYSIS

	8.3 PREEMPTION THRESHOLDS
	8.3.1 FEASIBILITY ANALYSIS
	8.3.2 SELECTING PREEMPTION THRESHOLDS

	8.4 DEFERRED PREEMPTIONS
	8.4.1 FEASIBILITY ANALYSIS
	8.4.2 LONGEST NON-PREEMPTIVE INTERVAL

	8.5 TASK SPLITTING
	8.5.1 FEASIBILITY ANALYSIS
	8.5.2 LONGEST NON-PREEMPTIVE INTERVAL

	8.6 SELECTING PREEMPTION POINTS
	8.6.1 SELECTION ALGORITHM

	8.7 ASSESSMENT OF THE APPROACHES
	8.7.1 IMPLEMENTATION ISSUES
	8.7.2 PREDICTABILITY
	8.7.3 EFFECTIVENESS
	8.7.4 CONCLUSIONS

	Exercises

	9 HANDLING OVERLOAD CONDITIONS
	9.1 INTRODUCTION
	9.1.1 LOAD DEFINITIONS
	9.1.2 TERMINOLOGY

	9.2 HANDLING APERIODIC OVERLOADS
	9.2.1 PERFORMANCE METRICS
	9.2.2 ON-LINE VERSUS CLAIRVOYANT SCHEDULING
	9.2.3 COMPETITIVE FACTOR
	TASK GENERATION STRATEGY
	PROOF OF THE BOUND
	EXTENSIONS

	9.2.4 TYPICAL SCHEDULING SCHEMES
	9.2.5 THE RED ALGORITHM
	9.2.6 DOVER: A COMPETITIVE ALGORITHM
	9.2.7 PERFORMANCE EVALUATION

	9.3 HANDLING OVERRUNS
	9.3.1 RESOURCE RESERVATION
	9.3.2 SCHEDULABILITY ANALYSIS
	9.3.3 HANDLING WRONG RESERVATIONS
	9.3.4 RESOURCE SHARING
	SOLUTION 1: BUDGET CHECK
	SOLUTION 2: BUDGET OVERRUN

	9.4 HANDLING PERMANENT OVERLOADS
	9.4.1 JOB SKIPPING
	SCHEDULABILITY ANALYSIS
	Sufficient condition
	Necessary condition

	EXAMPLE
	SKIPS AND BANDWIDTH SAVING
	EXAMPLE

	9.4.2 PERIOD ADAPTATION
	EXAMPLES
	THE ELASTIC MODEL
	SPRINGS WITH NO LENGTH CONSTRAINTS
	INTRODUCING LENGTH CONSTRAINTS
	COMPRESSING TASKS’ UTILIZATIONS
	DECOMPRESSION

	9.4.3 IMPLEMENTATION ISSUES
	PERIOD RESCALING
	CONCLUDING REMARKS

	9.4.4 SERVICE ADAPTATION

	Exercises

	10 KERNEL DESIGN ISSUES
	10.1 STRUCTURE OF A REAL-TIME KERNEL
	10.2 PROCESS STATES
	10.3 DATA STRUCTURES
	10.4 MISCELLANEOUS
	10.4.1 TIME MANAGEMENT
	10.4.2 TASK CLASSES AND SCHEDULING ALGORITHM
	10.4.3 GLOBAL CONSTANTS
	10.4.4 INITIALIZATION

	10.5 KERNEL PRIMITIVES
	10.5.1 LOW-LEVEL PRIMITIVES
	10.5.2 LIST MANAGEMENT
	10.5.3 SCHEDULING MECHANISM
	10.5.4 TASK MANAGEMENT
	10.5.5 SEMAPHORES
	10.5.6 STATUS INQUIRY

	10.6 INTERTASK COMMUNICATION MECHANISMS
	10.6.1 CYCLIC ASYNCHRONOUS BUFFERS
	10.6.2 CAB IMPLEMENTATION

	10.7 SYSTEM OVERHEAD
	10.7.1 ACCOUNTING FOR INTERRUPT

	11 APPLICATION DESIGN ISSUES
	11.1 INTRODUCTION
	11.2 TIME CONSTRAINTS DEFINITION
	11.2.1 OBSTACLE AVOIDANCE
	11.2.2 ROBOT DEBURRING
	11.2.3 MULTILEVEL FEEDBACK CONTROL

	11.3 HIERARCHICAL DESIGN
	11.3.1 EXAMPLES OF REAL-TIME ROBOTICS APPLICATIONS
	ASSEMBLY: PEG-IN-HOLE INSERTION
	SURFACE CLEANING
	OBJECT TACTILE EXPLORATION
	CATCHING MOVING OBJECTS

	11.4 A ROBOT CONTROL EXAMPLE

	12 REAL-TIME OPERATING SYSTEMS AND STANDARDS
	12.1 STANDARDS FOR REAL-TIME OPERATING SYSTEMS
	12.1.1 RT-POSIX
	12.1.2 OSEK/VDX
	DETAILS ON THE OSEK/VDX STANDARD
	AUTOSAR OS

	12.1.3 ARINC - APEX
	12.1.4 MICRO-ITRON

	12.2 COMMERCIAL REAL-TIME SYSTEMS
	12.2.1 VXWORKS
	12.2.2 OSE
	12.2.3 QNX NEUTRINO

	12.3 LINUX RELATED REAL-TIME KERNELS
	12.3.1 RTLINUX
	12.3.2 RTAI
	12.3.3 XENOMAI
	12.3.4 PREEMPT RT
	12.3.5 SCHED DEADLINE
	12.3.6 LINUX/RK

	12.4 OPEN-SOURCE REAL-TIME RESEARCH KERNELS
	12.4.1 ERIKA ENTERPRISE
	EFFICIENT EDF IMPLEMENTATION
	MULTICORE SUPPORT

	12.4.2 SHARK
	KERNEL ARCHITECTURE
	SCHEDULING MODULES
	SHARED RESOURCE ACCESS PROTOCOLS
	DEVICE MANAGEMENT

	12.4.3 MARTE OS
	SUPPORTED FUNCTIONALITY
	APPLICATION-DEFINED SCHEDULING
	INTERRUPT MANAGEMENT AT APPLICATION LEVEL
	DRIVERS FRAMEWORK
	ADA SUPPORT

	12.5 DEVELOPMENT TOOLS
	12.5.1 TIMING ANALYSIS TOOLS
	12.5.2 SCHEDULABILITY ANALYSIS
	12.5.3 SCHEDULING SIMULATORS

	13 SOLUTIONS TO THE EXERCISES
	SOLUTIONS FOR CHAPTER 1
	SOLUTIONS FOR CHAPTER 2
	SOLUTIONS FOR CHAPTER 3
	SOLUTIONS FOR CHAPTER 4
	SOLUTIONS FOR CHAPTER 5
	SOLUTIONS FOR CHAPTER 6
	SOLUTIONS FOR CHAPTER 7
	SOLUTIONS FOR CHAPTER 8
	SOLUTIONS FOR CHAPTER 9

	GLOSSARY
	REFERENCES
	INDEX

