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Preface

This is a book about feedback control—not a topic that programmers
(among others) tend to know much about. This is a pity, because feed‐
back control was originally devised to solve a problem that should be
all too familiar to software engineers, especially those who are working
on enterprise systems. Feedback control is a way to make sure that
large, complicated systems run reliably, even when subject to external
disturbances, and to make efficient use of constrained resources.

If you are looking for a system that can spin up some additional servers
when traffic in your data center spikes and take them down again when
the rush is over, then you have come to the right place.

What Is Feedback?
Feedback works by constantly comparing the actual behavior of a sys‐
tem to its desired behavior. If the actual behavior differs from the de‐
sired one, a corrective action is applied to counteract the deviation and
drive the system back to its target. This process is repeated constantly,
as long as the system is running.

One appealing feature of feedback control is that it requires relatively
little knowledge about the controlled system. As long as one knows
which direction to “nudge” the system when it has gotten off course,
one can build a feedback loop. For this reason, feedback is an attractive
technique for controlling large, complex, and opaque systems.

Moreover, feedback systems are self-correcting even in the presence
of external disturbances. Because the system’s behavior is monitored
and adjusted all the time, a feedback system naturally and automati‐
cally responds to changes in operating conditions. No need to make
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special provisions to activate additional servers for rush hour: the
feedback controller will notice the increase in load and spin up further
instances until the desired quality of service is met. It will also take the
instances down again, once the rush has passed, in proportion to the
lightening load.

One needs to be careful, though, since control actions that are either
too large or improperly timed can “overcorrect” a disturbance. Instead
of reducing the difference between the desired and the actual behavior,
such control actions replace a deviation in one direction with another
deviation in the opposite direction. In the worst case, the amplitude
of these deviations grows with each step until the system becomes
dysfunctional or, often literally, blows up!

To avoid this outcome, control theory has developed specific experi‐
ments for analyzing a system’s behavior. The results from these ex‐
periments can then be used to design and tune control loops that are
safe to operate and that will track a reference value accurately and
reliably.

Why This Book?
Feedback control has a long and successful history in applications to
electronic circuits, industrial processes, and vehicular engineering.
But it can do more. Feedback is self-correcting, so it can keep a system
on target even if conditions change unpredictably. Feedback requires
only limited knowledge about the process to be controlled; hence it
can be applied to situations involving complex and opaque systems,
such as those typical of enterprise environments.

In this book we will study the application of feedback principles to
several software engineering problems, such as the optimal sizing of
a cache, the management of a server farm, the control of waiting
queues or buffers, and more. In all these examples, feedback will help
us to make efficient use of scarce or expensive resources and to do so
in the face of changing conditions.

But applying feedback principles to computer systems raises different
questions than one typically encounters in the traditional application
areas. The laws describing the behavior of computer systems are much
less constrained than those for systems in the physical world; so we
will rely more on experimental measurements and phenomenological
descriptions than on theoretical analysis. (This is similar to the situa‐
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tion one finds in the application of feedback methods to industrial
processes.) At the same time, computer systems offer a greater variety
of control signals than most physical assemblies do; we therefore have
greater freedom in choosing the best signal to use and hence must be
aware of the trade-offs involved. We will pay particular attention to
such questions.

Feedback control has been barely explored as a design paradigm for
software systems. I hope to convince you that feedback control has
much to offer in this regard and is, in fact, the correct solution to many
problems that software engineers commonly face.

How to Read This Book
It can be difficult for an outsider to learn about feedback. Textbooks
and articles use specialized terminology and examples from existing
application areas, which sometimes obscures the underlying concepts.
The problems that arise in the classical application areas are not nec‐
essarily the same problems that are of greatest interest to program‐
mers. One also needs to be aware that many textbooks on feedback
control are primarily concerned with the mathematical manipulations
that underlie control theory and so give less attention to conceptual
development or practical implementation questions.

This book takes a different approach. Theoretical development, im‐
portant and beautiful as it may be, has been relegated to Part IV in the
back of the book. An introductory Part I introduces the concepts of
feedback control, system dynamics, and controller design. Part II de‐
scribes a variety of practical techniques for the implementation and
tuning of controllers, and it also discusses some examples of “design
patterns” for feedback loops. Part III consists of a collection of case
studies: specific problems involving computer systems that are solved
using feedback methods. For each case study, a number of different
approaches and their trade-offs are discussed in some detail.

The case studies are the heart of the book. I suggest beginning with
the introductory Part I in order to become familiar with the basic
feedback concepts. Then tackle the case studies, diving into Part II
(Practice) or Part IV (Theory) as the need for additional information
arises. (The sequence of case studies is arranged roughly in order of
increasing complexity.)
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All case studies are realized as computer simulations, and the code is
available from the book’s website. The code is intentionally simple and
straightforward so that it can be easily extended and modified. Ex‐
perimenting with simulations is an excellent way to build intuition for
the sometimes surprising behavior of closed-loop systems—and to
build the necessary confidence that this feedback stuff really works!

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic
Shows text that should be replaced with user-supplied values or
by values determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book
includes code examples, you may use the code in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book
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does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not re‐
quire permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Feedback
Control for Computer Systems by Philipp K. Janert (O’Reilly). Copy‐
right 2014 Philipp K. Janert, 978-1-449-36169-3.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com)
is an on-demand digital library that delivers expert
content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of product mixes and pricing pro‐
grams for organizations, government agencies, and individuals. Sub‐
scribers have access to thousands of books, training videos, and pre‐
publication manuscripts in one fully searchable database from pub‐
lishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and doz‐
ens more. For more information about Safari Books Online, please
visit us online.
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How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at http://bit.ly/
feedback-control.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Foundations





1. Every time an advertisement is shown on a website, this event is counted as an im‐
pression. The concept is important in the advertising industry, since advertisers often
buy a certain number of such impressions.

CHAPTER 1

Why Feedback? An Invitation

Workflow, order processing, ad delivery, supply chain management—
enterprise systems are often built to maintain the flow of certain items
through various processing steps. For instance, at a well-known online
retailer, one of our systems was responsible for managing the flow of
packages through the facilities. Our primary control mechanism was
the number of pending orders we would release to the warehouses at
any one time. Over time, these orders would turn into shipments and
be ready to be loaded onto trucks. The big problem was to throttle the
flow of pending orders just right so that the warehouses were never
idle, but without overflowing them (quite literally) either.

Later I encountered exactly the same problem, but in an entirely dif‐
ferent context, at a large publisher of Internet display ads. In this case,
the flow consisted of ad impressions.1 Again, the primary “knob” that
we could adjust was the number of ads released to the web servers, but
the constraint was a different one. Overflowing the servers was not a
concern, but it was essential to achieve an even delivery of ads from
various campaigns over the course of the month. Because the intensity
of web traffic changes from hour to hour and from day to day, we were
constantly struggling to accomplish this goal.

As these two examples demonstrate, maintaining an even flow of items
or work units, while neither overwhelming nor starving downstream
processing steps, is a common objective when building enterprise sys‐
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tems. However, the changes and uncertainties that are present in all
real-world processes frequently make it difficult, if not impossible, to
achieve this goal. Conveyors run slower than expected and web traffic
suddenly spikes, disrupting all carefully made plans. To succeed, we
therefore require systems that can detect changes in the environment
and respond to them.

In this book, we will study a particular strategy that has proven its
effectiveness many times in all forms of engineering, but that has rarely
been exploited in software development: feedback control. The essen‐
tial ingredient is that we base the operations of our system specifically
on the system’s output, rather than on other, more general environ‐
mental factors. (For example, instead of monitoring the ups and downs
of web traffic directly, we will base our delivery plan only on the actual
rate at which ads are being served.) By taking the actual output into
account (that’s what “feedback” means), we establish a firm and reliable
control over the system’s behavior. At the same time, feedback intro‐
duces complexity and the risk of instability, which occurs when inap‐
propriate control actions reinforce each other, and much of our at‐
tention will be devoted to techniques that prevent this problem. Once
properly implemented, however, feedback control leads to systems
that exhibit reliable behavior, even when subject to uncertainty and
change.

A Hands-On Example
As we have seen, flow control is a common objective in enterprise
systems. Unfortunately, things often seem rigged to make this objec‐
tive difficult to attain. Here is a typical scenario (see Figure 1-1).

1. We are in charge of a system that releases items to a downstream
processing step.

2. The downstream system maintains a buffer of items.
3. At each time step, the downstream system completes work on

some number of items from its buffer. Completed items are re‐
moved from the buffer (and presumably kicked down to the next
processing step).

4. We cannot put items directly into the downstream buffer. Instead,
we can only release items into a “ready pool,” from which they will
eventually transfer into the downstream buffer.

4 | Chapter 1: Why Feedback? An Invitation



5. Once we have placed items into the ready pool, we can no longer
influence their fate: they will move into the downstream buffer
owing to factors beyond our control.

6. The number of items that are completed by the downstream sys‐
tem (step 3) or that move from the ready pool to the downstream
buffer (step 5) fluctuates randomly.

7. At each time step, we need to decide how many items to release
into the ready pool in order to keep the downstream buffer filled
without overflowing it. In fact, the owners of the downstream
system would like us to keep the number of items in their buffer
constant at all times.

Figure 1-1. Block diagram of a workflow system. Items are being re‐
leased into the “ready pool,” from which they are transferred to the
downstream buffer.

It is somewhat natural at this point to say: this is unfair! We are sup‐
posed to control a quantity (the number of units in the downstream
buffer) that we can’t even manipulate directly. How are we supposed
to do that—in particular, given that the downstream people can’t even
keep constant the number of items they complete at each time step?
Unfortunately, life isn’t always fair.

Hoping for the Best
What are we to do? One way of approaching this problem is to realize
that, in the steady state, the number of units flowing into the buffer
must equal the number of units flowing out. We can therefore measure
the average number of units leaving the buffer at each time step and
then make sure we release the same number of units into the ready
pool. In the long run, things should just work out. Right?

Figure 1-2 (top) shows what happens when we do this. The number
of units in the buffer (the queue length) fluctuates wildly—sometimes
exceeding 100 units and other times dropping down to zero. If the
space in the buffer is limited (which may well be the case if we are
dealing with a physical processing plant), then we may frequently be
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overflowing the buffer. Even so, we cannot even always keep the
downstream guys busy, since at times we can’t prevent the buffer from
running empty. But things may turn out even worse. Recall that we
had to measure the rate at which the downstream system is completing
orders. In Figure 1-3 (bottom) we see what happens to the buffer length
if we underestimate the outflow rate by as little as 2 percent: We keep
pushing more items downstream than can be processed, and it doesn’t
take long before the queue length “explodes.” If you get paged every
time this happens, finding a better solution becomes a priority.

Figure 1-2. Number of units in the buffer as a function of time, where
the consumption rate is equal to the inflow (top) or slightly smaller
than the inflow (bottom).
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Figure 1-3. Number of units in the buffer, after the introduction of a
controller that bases the inflow on the buffer’s current fill level, for
two different values of the controller gain k.

Establishing Control
Clearly, we need to come up with a better idea. The first step is to stop
relying on the “average” outflow rate (which, by the way, may itself be
changing as time goes on). Instead, we will monitor the actual length
of the queue from moment to moment. In fact, we will ask the down‐
stream team to give us a target: a specific queue length that they want
us to maintain. We will then compare the actual queue length to the
target. Only if the actual length is below the desired value will we re‐
lease additional units into the ready pool. Moreover—and this is im‐
portant—we will let the number of units released depend on the mag‐
nitude of the deviation: If the actual queue length is only slightly below
the target, then we will release fewer units than if the queue length is

Establishing Control | 7



way off the mark. Specifically, we will use the following formula to
calculate the number of units to release into the ready pool:

released units = k · (target – actual)

where k is a numerical constant. How large should k be? Aye, there’s
the rub. We don’t know yet. Why don’t we take k = 0.5 for starters—
that seems like a safe value.

Figure 1-3 (top) shows the actual queue length together with the de‐
sired target value. (Notice that the target value changes twice during
the period shown.)

Two things are immediately clear:

• We are doing a much better job keeping the queue length approx‐
imately constant. In fact, we are even able to follow the two
changes in the target value without too much trouble.

• Nevertheless, we don’t really manage to match the target value
exactly—the actual queue length falls short of the desired value.
This shortfall is especially pronounced for later times, when the
target itself is small: instead of the desired 10, we only manage to
keep the queue length at around 3. That’s quite a bit off!

Can we improve on our ability to track the target if we increase k (the
“controller gain”)? Figure 1-3 (bottom) shows what happens if we set
k = 2.0. Now the actual queue length does match the target in the long
run, but the queue length is fluctuating a great deal. In particular, when
the system is first switched on we overshoot by more than a factor of
2. That’s probably not acceptable.

In short, we are clearly on a good path. After all, the behavior shown
in Figure 1-3 is incomparably better than what we started with
(Figure 1-2). Yet we are probably still not ready for prime time.

Adding It Up
If we reflect on the way our control strategy works, we can see where
it falls short: we based the corrective action (that is, the number of
units to be released into the ready pool) on the magnitude of the de‐
viation from the target value. The problem with this procedure is that,
if the deviation is small, then the corrective action is also small. For
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instance, if we set k = 0.5, choose 50 as a target, and the current length
of the queue is 40, the corrective action is 0.5 · (50 – 40) = 5. This
happens to be approximately the number of units that are removed
from the buffer by the downstream process, so we are never able to
bring the queue length up to the desired value. We can overcome this
problem by increasing the controller gain, but with the result that then
we will occasionally overshoot by an unacceptable amount.

The remedy is to magnify the effect of persistent small deviations by
adding them up! After a few time steps, their influence will have grown
sufficiently to make itself felt. However, if the deviations are reliably
zero, then adding them up does not make a difference. Hence we
modify our control strategy as follows. We still calculate the tracking
error as (target – actual) at each time step, but we also keep a running
sum of all tracking errors up to this point. We then calculate the num‐
ber of units to be released as the combination of the two contributions:

released units = kp · error + ki · cumulative error

Now we have two numerical factors to worry about: one (kp) for the
term that is proportional to the error, and one (ki) for the term that is
proportional to the cumulative sum (or: the “integral”) of the error.
After some trial and error, we can obtain a result that’s quite adequate
(see Figure 1-4).

Figure 1-4. The number of units in the buffer when using a controller
that contains both a proportional and an integral term.
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Summary
The method we have utilized in this chapter is called feedback. The
goal of using feedback control is to make a system’s output track a
reference signal as closely as possible. This is achieved by continuously
comparing the output signal to the reference and applying a corrective
action to reduce the tracking error. Moreover, the magnitude of the
corrective action depends on the magnitude of the tracking error.

Feedback is a fairly robust control strategy—using feedback, one can
successfully track a reference signal even in the face of uncertainty.
The reason for the uncertainty does not matter: it may be due to ran‐
dom effects (“noise,” as in our queueing example); it may be due to our
lack of knowledge about the inner workings of a complicated, “black-
box” system that we need to control. In contrast, feedforward control—
whereby we attempt to work out all decisions ahead of time—requires
precise knowledge of all applicable laws yet still remains vulnerable to
the detrimental effects of inaccuracy and uncertainty.

The behavior of systems involving feedback loops can be complicated
and hard to predict intuitively. In particular, we run the danger of 
introducing instability: a corrective action leads to overshoot, which
in turn is corrected by an even greater overshoot in the opposite di‐
rection, in a rapidly escalating pattern. Even if such catastrophic blow-
ups can be avoided, it is often the case that feedback-controlled systems
exhibit undesirable oscillatory behavior (control oscillations).

The desire to avoid instability in feedback loops has led to the devel‐
opment of a deep and impressive theory describing such systems but
also to a set of heuristics and simple “rules of thumb” for practical
applications. Part II of this book provides an overview of some of these
heuristic tuning and design methods, and Part IV offers a brief intro‐
duction to the central theoretical methods and results.

Let’s close this first look with some general observations about feed‐
back control and the types of situations where it is most applicable.

• Feedback control applies an automatic correction to deviations
from a reference signal. This allows for tighter control but is ac‐
companied by a tendency toward oscillatory or even unstable be‐
havior.

• Feedback is about tracking a given reference signal. Without a
reference signal, there can be no feedback control.
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• It follows that feedback is about control, not about optimization.
A task such as “make the flow through the system as large as pos‐
sible” can not be solved by feedback alone—instead, such a task
requires an optimization strategy. However, feedback may prove
extremely useful if not necessary when you are seeking to imple‐
ment or execute such a strategy.

• Frequent, small changes are better suited to stabilizing a system
than rare, large changes. If we are unable to observe the system
constantly and apply corrective actions frequently, then feedback
won’t work.

• The choice of reference signal will often be determined by an ex‐
isting optimization strategy. In contrast, what is considered to be
a system’s “input” and “output” is arbitrary and depends on the
objectives and any existing constraints. In our example, we tried
to maintain a constant queue length in the buffer. Alternatively,
we could have tried, for example, to maintain a certain throughput
through the entire system. Identifying the most suitable input/
output variables to accomplish the desired task most easily can be
a real challenge, especially when applying feedback control to a
“nonstandard” situation.

Code to Play With
The graphs in Figure 1-2 through Figure 1-4 were produced using a
simulation of the buffer system described. The simulation is simple,
so it is easy to add your own extensions and variations. Play around
with this system a little: make some changes and see how it affects the
outcomes. It is extremely helpful to develop some experience with (and
intuition for) the effects that feedback control can have!

We begin with the class for the entire buffer system, including what
we have called the “ready pool.”

class Buffer:
    def __init__( self, max_wip, max_flow ):
        self.queued = 0
        self.wip = 0       # work-in-progress ("ready pool")

        self.max_wip = max_wip
        self.max_flow = max_flow # avg outflow is max_flow/2

    def work( self, u ):
        # Add to ready pool
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        u = max( 0, int(round(u)) )
        u = min( u, self.max_wip )
        self.wip += u

        # Transfer from ready pool to queue
        r = int( round( random.uniform( 0, self.wip ) ) )
        self.wip -= r
        self.queued += r

        # Release from queue to downstream process
        r = int( round( random.uniform( 0, self.max_flow ) ) )
        r = min( r, self.queued )
        self.queued -= r

        return self.queued

The Buffer maintains two pieces of state: the number of items cur‐
rently in the buffer, and the number of items in the ready pool. At each
time step, the work() function is called, taking the number of units to
be added to the ready pool as its argument. Some constraints and
business rules are applied; for example, the number of units must be
a positive integer, and the number of items added each time is
limited—presumably by some physical constraint of the real produc‐
tion line.

Then, a random fraction of the ready pool is promoted to the actual
buffer. (This could be modeled differently—for instance by taking into
account the amount of time each unit has spent in the ready pool
already.) Finally, a random number of units is “completed” at each time
step and leaves the buffer, with the average number of units completed
at each time step being a constant.

Compared with the downstream system, the Controller is much
simpler.

class Controller:
    def __init__( self, kp, ki ):
        self.kp, self.ki = kp, ki
        self.i = 0       # Cumulative error ("integral")

    def work( self, e ):
        self.i += e

        return self.kp*e + self.ki*self.i

The Controller is configured with two numerical parameters for the
controller gain. At each time step, the controller is passed the tracking
error as argument. It keeps the cumulative sum of all errors and pro‐
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duces a corrective action based on the current and the accumulated
error.

Finally, we need two driver functions that utilize those classes: one for
the open-loop mode of Figure 1-2 and one for the closed-loop oper‐
ation of Figure 1-3 and Figure 1-4.

def open_loop( p, tm=5000 ):
    def target( t ):
        return 5.0  # 5.1

    for t in range( tm ):
        u = target(t)
        y = p.work( u )

        print t, u, 0, u, y

def closed_loop( c, p, tm=5000 ):
    def setpoint( t ):
        if t < 100: return 0
        if t < 300: return 50
        return 10

    y = 0
    for t in range( tm ):
        r = setpoint(t)
        e = r - y
        u = c.work(e)
        y = p.work(u)

        print t, r, e, u, y

The functions take the system or process p (in our case, an instance of
Buffer) and an instance of the Controller c (for closed-loop oper‐
ations) as well as a maximum number of simulation steps. Both func‐
tions define a nested function to provide the momentary target value
and then simply run the simulation, printing progress to standard
output. (The results can be graphed any way you like. One option is
to use gnuplot—see Appendix B for a brief tutorial.)

With these class and function definitions in place, a simulation run is
easy to undertake: 

import random

class Queue:
  ...

class Controller:
  ...
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def open_loop():
  ...

def closed_loop():
  ...

c = Controller( 1.25, 0.01 )
p = Queue()

open_loop( p, 1000 )

# or: closed_loop( c, p, 1000 )
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CHAPTER 2

Feedback Systems

The method we employed in the previous chapter was based on the
feedback principle. Its basic idea can be simply stated as follows.

Feedback Principle
Continuously compare the actual output to its desired reference value;
then apply a change to the system inputs that counteracts any deviation
of the actual output from the reference.

In other words, if the output is too high, then apply a correction to the
input that will lead to a reduction in output; if the output is below the
reference, then apply a correction to the input that raises the value of
the output.

The essential idea utilized by the feedback concept is to “loop the sys‐
tem output back” and use it for the calculation of the input. This leads
to the generic feedback or closed-loop architecture (see Figure 2-1).
This should be compared to the feedforward or open-loop architecture
(Figure 2-2), which does not take the system output into account.

Basing the calculation of the next input value on the previous output
implies that feedback is an iterative scheme. Each control action is
intended only to take the system closer to the desired value, which it
does by making a step in the right direction. No special effort is made
to eliminate the difference between reference and output entirely; in‐
stead, we rely on the repetition of steps that merely reduce the error.
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Figure 2-1. The structure of a feedback loop: the system’s output is
routed back and compared to the reference value in order to calculate
a new input to the system.

Figure 2-2. The structure of an open-loop (or feedforward) arrange‐
ment: the system input is calculated directly from the reference value
without taking the system output into account.

As with any iterative scheme, three questions present themselves:

• Does the iteration converge? (Or does it diverge?)
• How quickly does it converge? (If it converges at all.)
• What value does it converge to? (Does it converge to the desired

solution or to a different one?)

Systems and Signals
We will consider different systems in this book that serve a variety of
purposes. What these systems have in common is that all of them
depend on configuration or tuning parameters that affect the system’s
behavior. To obtain knowledge about that behavior, we track or ob‐
serve various monitored metrics. In most cases, the system is expected
to meet or exceed some predefined quality-of-service measure. The
control problem therefore consists of adjusting the configuration pa‐
rameters in such a way that the monitored metrics fall within the range
prescribed by the quality-of-service requirements.

As far as the control problem is concerned, the configuration param‐
eters are the variables that we can influence or manipulate directly.
They are sometimes called the manipulated variables or simply the
(control) inputs. The monitored metrics are the variables that we want
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1. The manipulated parameter (and hence the input from a controls perspective) is the
cache size. This must not be confused with the functional “input” of cached items to
the cache.

to influence, and they are occasionally known as the process variables
or the (control) outputs. The inputs and outputs taken together con‐
stitute the control signals.

The terms “input” and “output” for (respectively) the manipulated and
the tracked quantities, are very handy, and we will use them often.
However, it is important to keep in mind that this terminology refers
only to the purpose of those quantities with respect to the control prob‐
lem and so has nothing to do with functional “inputs” or “outputs” of
the system. Whenever there is any risk of confusion, use the terms
“configurable parameter” and “tracked metric” in place of “input” and
“output.”

For the most part we will consider only those systems that have exactly
one control input and control output, so that there is only a single
configurable parameter that can be adjusted in order to influence the
a single tracked metric. Although this may seem like an extreme lim‐
itation, it does cover a wide variety of systems. (Treating systems that
have multiple inputs or outputs is possible in principle, but it poses
serious practical problems.)

Here is a list of some systems and their input and output signals from
enterprise programming and software engineering.
A cache:

The tracked metric is the hit rate, and the configurable variable is
the cache size (the maximum number of items that the cache can
hold).1

A server farm:
The tracked metric is the response latency, and the adjustable pa‐
rameter is the number of servers online.

A queueing system:
The tracked metric is the waiting time, and the adjustable param‐
eter is the number of workers serving the queue.

A graphics library:
The tracked quantity is the total amount of memory consumed,
and the configurable quantity is the resolution.
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Other examples:
A heated room or vessel:

The tracked metric is the temperature in the room or vessel, and
the adjustable quantity is the amount of heat supplied. (For a pot
on the stove, the adjustable quantity is the setting on the dial.)

A CPU cooler:
The tracked metric is the CPU temperature, and the adjustable
quantity is the voltage applied to the fan.

Cruise control in a car:
The tracked metric is the car’s speed, and the adjustable quantity
is the accelerator setting.

A sales situation:
The tracked metric is the number of units sold, and the adjustable
quantity is the price per item.

Tracking Error and Corrective Action
The feedback principle demands that the process output be constantly
compared to the reference value (usually known as the setpoint). The
deviation of the actual process output from the setpoint is the tracking
error:

tracking error = setpoint – output

The job of the controller in Figure 2-1 is to calculate a corrective action
based on the value of the tracking error. If the tracking error is positive
(meaning that the process output is too low) then the controller must
produce a new control input that will raise the output of the process,
and vice versa.

Observe that the controller can do this without detailed knowledge
about the system and its behavior. The controller mainly needs knowl‐
edge about the directionality of the process: does the input need to be
increased or decreased in order to raise the output value? Both situa‐
tions do occur: increasing the power supplied to a heating element will
lead to an increase in temperature, but increasing the power supplied
to a cooler will lead to a decrease!
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Once the direction for the control action has been determined, the
controller must also choose the magnitude of the correction. We will
have more to say on this in the next section.

Stability, Performance, Accuracy
The introduction of a feedback loop can make an originally stable
system unstable. The problem is usually due to persistent overcom‐
pensation, which results from corrective actions that are too large.
Consider the cache (from the examples listed previously) and assume
that the hit rate is initially below the desired value. To increase the hit
rate, we need to make the cache larger. But how much larger? If we
make the cache too large, then the hit rate will end up being above the
desired value so that the cache size ends up being reduced in the next
step; and so on. The system undergoes control oscillations, switching
rapidly and violently between different configurations; see Figure 2-3.

Control oscillations are rarely desirable—just imagine the cruise con‐
trol in your car behaving this way! But things can get worse: if each
over- or undershoot leads to an even larger compensating action, then
the amplitude of the oscillations grows with time. The system has thus
become unstable and will break up (or blow up) before long. Such
unstable behavior must be avoided in control loops at all cost.

The opposite problem is slow or sluggish behavior. If we are too timid
and apply control actions that are too small, then the system will be
slow to respond to disturbances and tracking errors will persist for a
long time (Figure 2-3). Although less dangerous than instability, such
sluggish behavior is also unsatisfactory. To achieve the quickest re‐
sponse, we will therefore want to apply the largest control action that
does not make the system unstable.

A well-designed control system should show good performance, which
means that it responds to changes quickly so that deviations between
the tracked metric and the reference value do not persist. The typical
response time of a control system describes how quickly it can react
to changes and therefore establishes a limit on the fastest possible dis‐
turbances it will be able to handle.

In the steady state, the quality of a control system is measured by the
accuracy with which it is able to follow a given reference value. The
behavior of feedback control systems is usually evaluated in terms of
stability, performance, and accuracy.
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We can now recast our three questions about the convergence of an
iterative system in these control-theoretic terms as follows.

Figure 2-3. Finding the optimal size of a cache to achieve a desired hit
rate. The top panel shows how an initial error leads to different itera‐
tions depending on the gain factor; the bottom panel shows the time
evolution of the hit rate for different controller gains. Corrections that
are too large lead to oscillatory behavior; corrections that are too
small result in sluggish performance.

Stability:
Is the system stable? Does it respond to changes without undue
oscillations? Is it guaranteed that the amplitude of oscillations will
never build up over time instead will decay rapidly?
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Performance:
How quickly does the system respond to changes? Is it able to
respond quickly enough for the given application? (The autopilot
for a plane needs to respond faster than one for a ship.)

Accuracy:
Does the system track the specified reference value with sufficient
accuracy?

It turns out that not all of these goals can be achieved simultaneously.
In particular, the design of a feedback system always involves a trade-
off between stability and performance, because a system that responds
quickly will tend to oscillate. Depending on the situation, one must
choose which aspect to emphasize.

In general, it is better to make many small adjustments quickly than
to make few large adjustments occasionally. With many small steps, a
correcting action will be taken quickly—before the system has had
much opportunity to build up a significant deviation from the desired
value. If corrective actions are taken only rarely, then the magnitude
of that deviation will be larger, which means there is a greater chance
of overcompensation and the associated risks for instability.

The Setpoint
The purpose of feedback systems is to track a reference value or set‐
point. The existence of such a reference value is mandatory; you can’t
have feedback control without a setpoint.

On the one hand, this is a triviality: there is obviously a desirable value
for the tracked metric, for why would we track it otherwise? But one
needs to understand the specific restrictive nature of the setpoint in
feedback control.

By construction, a feedback loop will attempt to replicate the given
reference value exactly. This rules out two other possible goals for a
control system. A standard feedback loop is not suitable for main‐
taining a metric within a range of values; instead, it will try to drive
the output metric to the precise value defined by the setpoint. For
many applications, this is too rigid. Feedback systems require addi‐
tional provisions to allow for floating range control (for instance, see
Chapter 18).

Moreover, one must take care not to confuse feedback control with
any form of optimization. Feedback control tries to replicate a setpoint,
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but it involves no notion of achieving the “best” or “optimal” output
under a given set of conditions. That being said, a feedback system
may well be an important part of an overall optimization strategy: if
there is an overall optimization plan that prescribes what output value
the system should maintain, then feedback control is the appropriate
tool to deliver or execute this plan. But feedback control itself is not
capable of identifying the optimal plan or setting.

One occasionally encounters additional challenges. For instance, the
self-correcting nature of the feedback principle requires that the actual
system output must be able to straddle the setpoint. Only if the output
can fall on either side of the setpoint is the feedback system capable of
applying a restoring action in either direction. For setpoint values at
the end of the achievable range, this is not possible. Consider, for ex‐
ample, a cache. If we want the hit rate (as the tracked metric) to equal
100 percent, then the actual hit rate can never be greater than the
setpoint; this renders impossible a corrective action that would di‐
minish the size of the cache. (In Chapter 15 we will see some ad hoc
measures that can be brought to bear in a comparable situation.) 

Uncertainty and Change
Feedback systems are clearly more complicated than straightforward
feedforward systems that do not involve feedback. The design of feed‐
back loops requires balancing a variety of different properties and
sometimes difficult trade-offs. Moreover, feedback systems introduce
the risk of instability into otherwise stable systems and therefore ne‐
cessitate extra measures to prevent “blow-ups.” Given all these chal‐
lenges, when and why are feedback systems worth the extra complex‐
ity? The answer is that feedback systems offer a way to achieve reliable
behavior even in the presence of uncertainty and change.

The way configuration parameters (control inputs) affect the behavior
of tracked metrics (control outputs) is not always well known. Con‐
sider the cache, again: making the cache larger will certainly increase
the hit rate—but by how much? Just how large does the cache have to
be in order to attain a specific hit rate? These are difficult questions
whose answers depend strongly on the nature of the access patterns
for cache items. (How many distinct items are being requested over
some time period, and so on.) This ignorance regarding the relation‐
ship between inputs and outputs leads to uncertainty. But even if we
were able to work out the input/output relation precisely at some par‐

22 | Chapter 2: Feedback Systems



ticular time, the system would still be subject to change: the access
patterns may (and will!) change over time. Different items are being
requested. The distribution of item requests is different in the morning
than in the afternoon. And so on.

Feedback is an appropriate mechanism to deal with these forms of
uncertainty and change. In the absence of either factor, feedback would
be unnecessary: if we know exactly how the cache size will affect the
hit rate and if we know that access patterns are not subject to change,
then there is no need for a feedback loop. Instead, we could simply
choose the appropriate cache size and be done with it. But how often
are we in that position?

To be fair, such situations do exist, mostly in isolated environments
(and are thus not subject to change) with clearly defined, well-known
rules (thereby avoiding uncertainty). Computer programs, for in‐
stance, are about as deterministic as it gets! Not much need for feed‐
back control.

But the same cannot be said about computer systems. As soon as sev‐
eral components interact with one another, there is the possibility of
randomness, uncertainty, and change. And once we throw human
users into the mix, things can get pretty crazy. All of a sudden, uncer‐
tainty is guaranteed and change is constant. Hence the need for feed‐
back control.

Feedback and Feedforward
One can certainly build feedforward systems intended to deal with
complex and changing situations. Such systems will be relatively com‐
plicated, possibly requiring deep and complicated analysis of the laws
governing the controlled system (such as understanding the nature of
cache request traffic). Nevertheless, they may still prove unreliable—
especially if something unexpected happens.

Feedback systems take a very different approach. They are intention‐
ally simple and require only minimal knowledge about the controlled
system. Only two pieces of information are really needed: the direction
of the relationship between input and output (does increasing the in‐
put drive the output up or down?) and the approximate magnitude of
the quantities involved. Instead of relying on detailed understanding
of the controlled system, feedback systems rely on the ability to apply
corrective actions repeatedly and quickly.
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2. Shortly before I began preparing this book, I overheard a coworker explain to a col‐
league: “The database field ‘priority’ here is used by the delivery system to sort different
contracts. It typically is set by the account manager to some value between 0.1 and 10
billion.” There has to be a better way!

In contrast to a typical feedforward system, the iterative nature of
feedback systems makes them, in some sense, nondeterministic. In‐
stead of mapping out a global plan, they only calculate a local change
and rely on repetition to drive the system to the desired behavior. At
the same time, it is precisely the absence of a global plan that allows
these systems to perform well in situations characterized by uncer‐
tainty and change. 

Feedback and Enterprise Systems
Enterprise systems (order or workflow processing systems, request
handlers, messaging infrastructure, and so on) are complicated, with
many interconnected but independently operating parts. They are
connected to the outside world and hence are subject to change, which
may be periodic (hour of the day, day of the week) or truly random.

In my experience, it is customary to steer such enterprise systems using
feedforward ideas. To cope with the inevitable complexities, program‐
mers and administrators resort to an ever-growing multitude of “con‐
figurational parameters” that control flow rates, active server instan‐
ces, bucket sizes, or what have you. Purely numerical weighting factors
or multipliers are common. These need to be adjusted manually in
order to accommodate changing conditions or to optimize the systems
in some way, and the effect of these adjustments is often difficult to
predict.2 There may even be complete subsystems that change the val‐
ues of these parameters according to the time of day or some other
schedule—but still in a strictly feedforward manner.

I believe that feedback control is an attractive alternative to all that,
and one that has yet to be explored. Enjoy!

Code to Play With
The following brief program demonstrates the effect that the magni‐
tude of the corrective action has on the speed and nature of the iter‐
ation. Assume that our intent is to control the size of a cache so that
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3. In case you are wondering why the updating is based on the cumulative error c instead
of the tracking error e, feel free to experiment. Use u = k*e instead and observe the
results closely. Can you see what is going on and why? The solution will be given (and
discussed in detail) in Chapter 4.

the success or hit rate for cache requests is 60 percent. Clearly, making
the cache larger (smaller) will increase (decrease) the hit rate.

In the code that follows we do not actually implement a cache (we will
do so in Chapter 13), we just mock one up. The function cache() takes
the size of the cache and returns the resulting hit rate, which is im‐
plemented as size/100. If the size falls below 0 or grows over 100, then
the reported hit rate is (respectively) 0 or 1. (Of course, other relations
between size and hit rate are possible—feel free to experiment.)

The program reads a gain factor k from the command line. This factor
controls the size of the corrective action that is being applied during
the iteration. The iteration itself first calculates the tracking error e as
the difference between setpoint r and actual hit rate y; it then calculates
the cumulative tracking error c. The new cache size is computed as
the product of the cumulative error and the gain factor: k*c.3

Depending on the value provided for the gain factor k, the iteration
will converge to the steady-state value more or less quickly and will
either oscillate or not. It will never diverge completely because the sys‐
tem output is constrained to lie between 0 and 1; hence the output
cannot grow beyond all bounds. Examples of the observable behavior
are shown in the top panel of Figure 2-3.

import sys
import math

r = 0.6                  # reference value or "setpoint"
k = float( sys.argv[1] ) # gain factor: 50..175

print "r=%f\tk=%f\n" % ( r, k ); t=0
print r, 0, 0, 0, 0

def cache( size ):
    if size < 0:
        hitrate = 0
    elif size > 100:
        hitrate = 1
    else:
        hitrate = size/100.0
    return hitrate
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y, c = 0, 0
for _ in range( 200 ):
    e = r - y      # tracking error
    c += e         # cumulative error
    u = k*c        # control action: cache size
    y = cache(u)   # process output: hitrate

    print r, e, c, u, y
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CHAPTER 3

System Dynamics

In Chapter 2 we discussed how a feedback loop can drive the output
of a system to a desired value. We also described the typical challenges
associated with this scheme: making sure that the overall system is
stable (meaning that it does, in fact, converge to the preset value) and
performs well (so that it converges quickly). However, this is not the
whole story.

Lags and Delays
The aspect that we have neglected so far is that many systems do not
respond immediately to a control input; instead, they respond with
some form of lag or delay. In addition, many systems exhibit even more
complicated behavior when stimulated. These factors need to be taken
into account when designing a control loop.

Let’s consider a few examples (see Figure 3-1 and Figure 3-2).
A heated vessel:

(Basically, this describes a pot on the stove.) As the heat is turned
on, the temperature in the vessel does not immediately jump to
its final value; rather, it shows a gradual response. Likewise, when
the external heat supply is later shut off, the temperature in the
vessel does not drop immediately but instead slowly decays to the
ambient temperature. The temperature in the vessel (which is the
tracked quantity or “output”) follows the temperature (which is
the configurable quantity or “input”), but it lags behind and shows
a more “rounded” behavior. This form of rounded, partial re‐
sponse is called a lag.
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A tank fed by a pipe:
Imagine a long hose or pipe that feeds into a storage tank. When
the valve at the beginning of the pipe is opened, the level in the
tank (which is the tracked metric in this case) does not change.
Only after the liquid has traveled the entire distance of the pipeline
and begins to flow into the tank does the tank’s fill level begin to
rise. This type of behavior is called a delay. In contrast to a lag,
which consists of an immediate but partial response, a delay is
characterized by an initial time interval during which there is no
response at all.

A mass on a spring:
Consider a mass supported by a spring. If we give the other end
of the spring a sudden jerk, the mass on the spring will begin to
oscillate. This system exhibits a lag, because there is an immediate
but gradual response. In addition, however, this system also dis‐
plays complicated behavior on its own; it has nontrivial internal
dynamics.

A fishing rod:
When a flexible fishing rod is yanked back, its tip initially moves
forward. In other words, for this system the first response to an
external stimulus is in the direction opposite to the stimulus. Such
systems occasionally do occur in practice and obviously pose par‐
ticular challenges for any controller. They are known as non-
minimum phase systems (for reasons involving the theoretical
description of such behavior), but a more descriptive name would
be “inverse response” systems.

Of course, all of these behaviors can also occur in combination.

Forced Response and Free Response
The examples discussed so far also demonstrate the difference between
forced and free (or internal) response. In the case of the heated pot, the
steady increase in temperature while the stove is turned on is the re‐
sponse to the external disturbance (namely, the applied heat). In con‐
trast, the exponential cooling off is subject only to the system’s internal
structure (because there is no input being applied from the outside).
The initial displacement of the mass on the spring is due to the exter‐
nally applied force on the free end of the spring; the subsequent os‐
cillation is the free response of the spring–mass system itself. The
storage tank does not have any free response: its fill level does not
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change unless liquid is flowing in. The dynamic response of the fishing
rod is extremely complicated and includes both forced and free com‐
ponents.

Transient Response and Steady-State Response
The response of a system to an external disturbance often consists of
both a transient component, which disappears over time, and a steady-
state component. These components are well illustrated by the spring–
mass system: the initial oscillations die away in time, so they are tran‐
sient. But the overall displacement of the mass, which is the result of
the change in position of the spring’s free end, persists in the steady
state.

Figure 3-1. Examples of dynamical systems and their response to an
external stimulus. These types of behavior are common among indus‐
trial processes and computer systems.
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Control actions are often applied to bring about a change in the steady-
state output. (If you turn up the heat, you want the room to be warmer
and to stay that way.) From this perspective, transient responses are
viewed mainly as a nuisance: unwanted accompaniments of an applied
change. Hence an important measure for the performance of a control
system is the time it takes for all transient components of the response
to have disappeared. Usually, handling the transient response in a
control system involves an engineering trade-off: systems in which
transients are strongly damped (so that they disappear quickly) will
respond more slowly to control inputs than do systems in which tran‐
sient behavior is suppressed less strongly. 

Figure 3-2. Additional examples of dynamical systems and their re‐
sponse to an external stimulus. The oscillatory response is especially
important among mechanical and electrical systems. The initial re‐
sponse in the direction opposite to the external influence makes non-
minimum phase systems difficult to control.
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Dynamics in the Physical World
and in the Virtual World
All objects in the physical world exhibit some form of lag or delay, and
most mechanical or electrical systems will also have a tendency to 
oscillate.

The reason for the lags or delays is that the world is (to use the proper
mathematical term) continuous: An object that is in some place now
cannot be at some totally different place a moment later. The object
has to move, continuously, from its initial to its final position. It can’t
move infinitely quickly, either. Moreover, to move a physical object
very quickly requires large amounts of force, energy, and power (in
the physical sense), which may not be available or may even be im‐
possible to supply. (Accelerating a car from 0 to 100 km/h in 5 seconds
takes a large engine, to do so in 0.5 seconds would take a significantly
larger engine, and a very different mode of propulsion, too.) The
amount by which objects in the physical world can move (or change
their state in any other way) is limited by the laws of nature. These laws
rule supreme: No amount of technical trickery can circumvent them.

For computer systems, however, these limitations do not necessarily
apply in quite this way! A computer program can arbitrarily change
its internal state. If I want to adjust the cache size from 10 items to 10
billion items, there is nothing to stop me—the next time through the
loop, the cache will have the new size. (The cache size may be limited
by the amount of memory available, but that is not a fundamental
limitation—you can always buy some more.) In particular, computer
programs do not exhibit the partial response that is typical of contin‐
uous systems. You will typically get the entire response at once. If you
asked for a 100-item cache, you will get the entire lot the next time
through the loop—not one item now, five more the next time around,
another 20 coming later, and so on. In other words, computer pro‐
grams typically do not exhibit lags. They do, however, exhibit delays;
these are referred to as “latency” in computer terminology. If you are
asking for 20 additional server instances in your cloud data center, it
will take a few minutes to spin them up. During that time, they are not
available to handle requests—not even partially. But once online, they
are immediately fully operational. Figure 3-3 shows schematically the
typical response characteristic of a computer program. Compared to
the “smooth” behavior of physical objects displayed in Figure 3-1 and
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Figure 3-2, the dynamics of computer applications tend to be discon‐
tinuous and “hard.”

Figure 3-3. Typical dynamical response of a computer system: The re‐
sponse is discontinuous and occurs after a measurable delay.

The considerations of the preceding paragraph apply to standalone
computer applications. For computer systems, which consist of mul‐
tiple computers (or computer programs) communicating with each
other and perhaps with the rest of the world (including human users),
things are not quite as clear-cut. For instance, recall our example of
the item cache. We can adjust the size of the cache from one iteration
to the next, and by an arbitrary amount. But it does not follow that the
hit rate (the tracked quantity or “output” for this system) will respond
just as quickly. To the contrary, the hit rate will show a relatively
smooth, lag-type response. The reason is that it takes time for the cache
to load, which slows the response down. Moreover, the hit rate itself
is necessarily calculated as some form of trailing average over recent
requests, so some time must elapse before the new cache size makes
itself felt. In the case of the additional server instances being brought
up in the data center, we may find that not all the requested instances
come online at precisely the same moment but instead one after an‐
other. This also will tend to “round out” the observed response.

Another case of computer systems exhibiting nontrivial dynamics
consists of systems that already include a “controller” (or control al‐
gorithm) of some form. For example, it is common practice to double
the size of a buffer whenever one runs out of space. Similar strategies
can be found, for instance, in network protocols, for the purpose of
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maximizing throughput without causing congestion. In these and
similar situations, the behavior of the computer system is constrained
by its own internal control algorithms and will not change in arbitrary
ways.

Dynamics and Memory
We saw that objects in the physical world cannot suddenly change 
their state (their position, temperature, whatever): Changes must oc‐
cur continuously. This is another way of saying that the state of such
an object is not independent of its past. These objects have a “memory”
of their past, and it is this memory that leads to nontrivial dynamics.
To make this point more concrete: The pot on the stove does not just
“forget” its current temperature when the stove is turned on; the pot
“remembers” its original temperature and therefore takes time to ad‐
just.

For objects in the physical world, different modes of energy storage
form the mechanism for the kind of memory that leads to “lags”; in
contrast “delays” are generally due to transport phenomena.

For computer systems, we need to evaluate whether or not they do
possess a “memory” (in the sense discussed here). The cache size does
not have a memory: It can change immediately and by an arbitrary
amount. The cache’s hit rate, however, does retain knowledge of its
past—not only through the cache loading but also through the aver‐
aging process implicit in the calculation of the hit rate.

All mechanisms that explicitly retain knowledge of their past are likely
to give rise to lags. With computer systems, words such as “buffer,”
“cache,” and “queue” serve as indicators for nonimmediate responses.
Another source of “memory” is any form of “time averaging,” “filter‐
ing,” or “smoothing.” All of these operations involve the current value
of some quantity as well as past values, thus leading to nontrivial dy‐
namical behavior. Lags tend to be collective phenomena.

Delays (or “latency”) tend to result from transport issues (as in the
physical world—think of network traffic) or to internal processes of
the system that are not observable in the monitored metrics. Examples
include the boot-up process of newly commissioned server instances,
the processing time of database requests, and also the delays that in‐
dividual events might experience while stuck in some form of opaque
queue. Delays can occur both for individual systems and for events. 
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The Importance of Lags and Delays
for Feedback Loops
The reason we spend so much time discussing these topics is that lags
and delays make it much more difficult to design a control system that
is both stable and performant. Take the heated vessel: Initially, we want
to raise its temperature and so we apply some heat. When we check
the output a short while later, we find that the temperature has barely
moved (because it’s lagging behind). If we now increase the heat input,
then we will end up overheating the vessel. To avoid this outcome, we
must take the presence (and length) of the lag into account.

Moreover, unless we are careful we might find ourselves applying cor‐
rective action at precisely the wrong moment: Applying a control ac‐
tion intended to reduce the output precisely when the output has al‐
ready begun to diminish (but before this is apparent in the actual sys‐
tem output). If we reach this scenario, then the closed-loop system
undergoes sustained oscillations. (Toward the end of this chapter, you
will find a brief computer exercise that demonstrates how the delay of
even a single step can lead to precisely this situation.)

Avoiding Delays
The whole feedback principle is based on the idea of applying correc‐
tive actions in response to deviations of the output from the reference
value. This scheme works better the more quickly any deviation is
detected: If we detect a deviation early, before it has had a chance to
become large, then the corrective action can be small. This is good not
only because it is obviously desirable to keep the tracking error small
(which is, after all, the whole point of the exercise!) but also because
small control actions are more likely to lead to stable behavior. Fur‐
thermore, there is often a “cost” associated with control actions, mak‐
ing large movements more expensive—in terms of wear and tear, for
instance. (This is not always true, however: sometimes there is a fixed
cost associated with making a control action, independent of its size.
When adding server instances, for example, there may be a fixed com‐
missioning fee in addition to the cost for CPU time used. In such cases,
we naturally want to limit the number of control actions. Nevertheless,
early detection of deviations is still relevant. It is up to the controller
to decide how to react.)
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For this reason, we should make an effort to ensure timely observation
of all relevant quantities. For physical systems, this means using quick-
acting sensors and placing them close to the action. Old-style ther‐
mometers, for instance, have their own lags (they are nothing but
“heated vessels” as discussed earlier) and transport delays (if they are
placed far away from the heat source).

Because computer systems manage “logical” signals, there is often
greater freedom in the choice of quantities that we use as monitoring
or “output” signals than for systems in the physical world. To quantify
the performance of a server farm, we can use the number of requests
pending, the average (or maximum) age of all requests, the number
(or fraction) of dropped requests, the arrival rate of incoming request,
the response time, and several other metrics. We should make the best
use of this freedom and make an effort to identify and use those output
variables that respond the most quickly to changes in process input.
In general, metrics that are calculated as averages or other summaries
will tend to respond more slowly than quantities based on individual
observations; the same is true for quantities that have been “smoothed”
to avoid noise. In fact, it is often better to use a noisy signal directly
than to run it through a smoothing filter: The slowdown incurred
through the filtering outweighs the benefits of having a smoother sig‐
nal. We will discuss some relevant choices in Chapter 5.

There is usually little that can be done about lags and delays inherent
in the dynamics of the controlled system—simply because the system
is not open to modification. (But don’t rule this possibility out, espe‐
cially if the “system” is merely a computer program rather than, say, a
chemical plant.) We should, however, make every effort to avoid delays
in the architecture of the control loop. Chapter 15 and Chapter 16 will
provide some examples.

Theory and Practice
There exists a very well-developed, beautiful, and rather deep theory
to describe the dynamic behavior of feedback loops, which we will
sketch in Part IV. An essential ingredient of this theory is knowledge
of the dynamic behavior of the controlled system. If we can describe
how the controlled system behaves by itself, then the theory helps us
understand how it will behave as part of a feedback loop. In particular,
the theory is useful for understanding and calculating the three es‐
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sential properties of a feedback system (stability, performance, and
accuracy) even in the presence of lags and delays.

The theory does require a reasonably accurate description of the dy‐
namics of the system that we wish to control. For many systems in the
physical world, such descriptions are available in the form of differ‐
ential equations. In particular, simple equations describing mechani‐
cal, electrical, and thermal systems are well known (the so-called laws
of nature), and the entire theory of feedback systems was really con‐
ceived with them in mind.

For computer systems, this is not the case. There are no laws, outside
the program itself, that govern the behavior of a computer program.
For entire computer systems there may be applicable laws, but they
are neither simple nor universal; furthermore, these laws are not
known with anything like the degree of certainty that applies to, say, a
mechanical assembly. For instance, one can (at least in principle) use
methods from the theory of stochastic processes to work out how long
it will take for a cache to repopulate after it has been resized. But such
results are difficult to obtain, are likely to be only approximate, and in
any case depend critically on the nature of the traffic—which itself is
probably not known precisely.

This does not mean that feedback methods are not applicable to com‐
puter systems—they are! But it does mean that the existing theory is
less easily applied and provides less help and insight than one might
wish. Developing an equivalent body of theoretical understanding for
computer systems and their dynamics is a research job for the future.

Code to Play With
To understand how even a simple delay can give rise to nontrivial
behavior when encountered in a feedback architecture, let’s consider
a system that simply replicates the input from the previous time step
to its output. We close the feedback loop as in Figure 2-1 and use a
controller, which merely multiplies its input by some constant k.

The brief listing that follows shows a program that can be used to
experiment with this closed-loop system. The program reads both the
setpoint r and the controller gain k from the command line. The iter‐
ation itself is simple: The tracking error and the controller output are
calculated as in Chapter 2, but the current output y is set to the value
of the controller output from the previous time step. Figure 3-4 shows
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the time evolution of the output y for two different values of the con‐
troller gain k.

import sys

r = float(sys.argv[1]) # Reference or "setpoint"
k = float(sys.argv[2]) # Controller gain

u = 0        # "Previous" output
for _ in range( 200 ):
    y = u        # One-step delay: previous output

    e = r - y    # Tracking error
    u = k*e      # Controller output

    print r, e, 0, u, y

Figure 3-4. Time evolution of the system yt+1 = k(r – yt) for two differ‐
ent values of k.
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Although the setpoint is constant, the process output oscillates. More‐
over, for values of the controller gain k greater than 1, the amplitude
of the oscillation grows without bounds: The system diverges.

If you look closely, you will also find that the value to which the system
converges (if it does converge) is not equal to the desired setpoint. (You
might want to base control actions on the cumulative error, as in
Chapter 2. Does this improve the behavior?)
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CHAPTER 4

Controllers

The purpose of a controller is to produce a signal that is suitable as
input to the controlled plant or process. Controllers occur in both
open-loop configurations (Figure 4-1) and closed-loop configurations
(Figure 4-2).

Figure 4-1. Open-loop control configuration consisting of controller K
and the controlled system H. Boxes indicate systems, and control sig‐
nals flow in the direction of the arrows.

Figure 4-2. Closed-loop control configuration consisting of controller
K and the controlled system H. The open circle forms the sum of all
incoming signals.

The need for a controller—simply to perform numerical transforma‐
tions—becomes apparent if we consider some examples. In the case
of the heated vessel, the controller input will be a temperature value,
but the input to the heating element itself will be a voltage, so if nothing
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else we need to transform units and numerical values. In the case of
the read-through cache, the controller input is a hit rate and so, by
construction, a number between 0 and 1 in magnitude. In contrast,
the size of the cache is always positive and possibly quite large (hun‐
dreds or thousands of elements). Again, there is (at least) a need to
perform a transformation of the numerical values.

Beyond the common need to transform numerical values, open-loop
(feedforward) and closed-loop (feedback) configurations put different
demands on a controller. In the open-loop case, the controller must
be relatively “smart” in order to compensate for the complexities of
the plant and its environment. By contrast, controllers used in closed
loops can be extremely simple because of the self-correcting effect of
the feedback path. Feedback systems trade increased complexity in
overall loop architecture for a simpler controller.

Although any component that transforms an input to an output can
be used as a controller in a feedback loop, only two types of controller
are encountered frequently: the on/off controller and the three-term
(or PID) controller. Both can be used in a feedback loop to transform
their input (namely the tracking error) into a signal that is suitable as
input to the controlled plant.

Block Diagrams
The structure of a control loop is easily visualized in a block diagram
(see Figure 4-1 and Figure 4-2). Block diagrams consist of only three
elements as follows.
Boxes:

Boxes represent systems, such as controllers, filters, and con‐
trolled processes.

Arrows:
Arrows show the flow and direction of control signals.

Circles:
Open circles indicate summers: all control signals arriving at an
open circle are summed to form the element’s output.

The takeoff point for a signal is sometimes indicated by a small filled
dot (as for the y signal in the extreme right of the closed-loop diagram
in Figure 4-2). The box labeled –1 has the effect of changing the sign
of its input.
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There exists a collection of rules (block-diagram algebra) for manip‐
ulating block diagrams. These rules make it possible to transform and
simplify diagrams purely graphically—that is, without recourse to an‐
alytic expressions—while maintaining their correct logical meaning
(see Chapter 21).

On/Off Control
The simplest type of controller consists of nothing more than a plain
on/off switch: whenever the tracking error is positive (that is, when
the plant output is below the desired setpoint), the plant is being
“turned on full”; whenever the tracking error is negative, the plant is
being turned off. Such controllers are sometimes known as “bang-bang
controllers.” See Figure 4-3.

Figure 4-3. Three forms of on/off controller: plain on/off control (top),
on/off control with dead zone (center), and on/off control with hyste‐
resis (bottom).
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Although deceptively simple, this control strategy has serious draw‐
backs that make it unsuitable for many practical applications. The
main problem is that the system never settles down to a steady state;
instead, it oscillates constantly and rapidly between its two extreme
states. Think of a car with cruise control (which is a feedback system
designed to maintain a constant speed) operating this way: instead of
maintaining a steady 65 mph, an on/off cruise control would open up
the throttle full whenever the speed falls even a fraction below the
reference speed, only to return the engine to idle as soon as the speed
exceeds the setpoint again. Such operation would be hard on the en‐
gine, the transmission, and the suspension—not to mention the pas‐
sengers!

We can improve on/off controllers by augmenting them with a strategy
to inhibit such rapid control oscillation. This can be done either by
introducing a dead zone or by employing hysteresis. With a dead zone,
the controller will not send a signal to the plant unless the tracking
error exceeds some threshold value. When using hysteresis, the con‐
troller maintains the same corrective action while the tracking error
switches from positive to negative (or vice versa), again until some
threshold is exceeded.

Proportional Control
It is a major step forward to let the magnitude of the corrective action
depend on the magnitude of the error. This has the effect that a small
error will lead to only a small adjustment, whereas a larger error will
result in a greater corrective action.

The simplest way to achieve this effect is to let the controller output
be proportional to the tracking error:

up t = kpe t kp > 0 constant

where kp, the controller gain, is a positive constant.

Why Proportional Control Is Not Enough
Strictly proportional controllers respond to tracking errors—in par‐
ticular, to changes in the tracking error—with a corrective action in
the correct direction; but in general they are insufficient to eliminate
tracking errors in the steady state entirely. When using a strictly pro‐
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portional controller, the system output y will always be less than the
desired setpoint value r, a phenomenon known as proportional droop.

The reason is that a proportional controller, by construction, can pro‐
duce a nonzero output only if it receives a nonzero input. If the track‐
ing error vanishes, then the proportional controller will no longer
produce an output signal. But most systems we wish to control will
require a nonzero input in the steady state. The consequence is that
some residual error will persist if we rely on purely proportional con‐
trol.

Proportional droop can be reduced by increasing the controller gain
k, but increasing k by too much may lead to instability in the plant.
Hence, a different method needs to be found if we want to eliminate
steady-state errors. Of course, one can intentionally adjust the setpoint
value to be higher than what is actually desired—so that, with the effect
of proportional droop, the process output settles on the proper value
(a process known as “manual reset”). But it turns out that this manual
process is not even necessary because there is a controller design that
can eliminate steady-state errors automatically. This brings us to the
topic of integral control.

Integral Control
The answer to proportional droop—and, more generally, to (possibly
small) steady-state errors—is to base the control strategy on the total
accumulated error. The effect of a proportional controller is based on
the momentary tracking error only. If this tracking error is small, then
the proportional controller loses its effectiveness (since the resulting
corrective actions will also be small). One way to “amplify” such small
steady-state errors is to keep adding them up: over time, the accumu‐
lated value will provide a significant control signal. On the other hand,
if the tracking error is zero, then the accumulated value will also be
zero. This is the idea behind integral control.

The output of an integral controller is proportional to the integral of
the tracking error over time:

ui t = ki∫
0

t
e τ dτ ki > 0 constant
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Bear in mind that an integral is simply a generalization of taking a sum.
In a computer implementation, where time progresses in discrete
steps, it becomes a sum again. An integral controller is straightforward
to implement as a cumulative sum of the error values. This approach
lends itself to a convenient “recursive” updating scheme:

Et = δt ·et +Et−1

ui,t = kiEt

where Et is the cumulative error at time step t, ki is the integral gain,
and ui,t is the output of the integral controller at time t.

This discrete updating scheme assumes that control actions are per‐
formed periodically. The factor δt is the length of time between suc‐
cessive control actions, expressed in the units in which we measure
time. (If we measure time in seconds and make 100 control actions
per second, then δt = 0.01; if we measure time in days and make one
update per day, then δt = 1.) Of course, δt could be absorbed into the
controller gain ki, but this would imply that if we change the update
frequency (for example, by switching to two updates per day instead
of one), then the controller gains also would have to change! It is better
to keep things separate: δt encapsulates the time interval between suc‐
cessive updates, and ki independently controls the contribution of the
integral term to the controller output.

It is common to use both a proportional and an integral controller in
parallel (see Figure 4-4). In fact, this particular arrangement—also
known as a PI (proportional-integral) controller—is the variant most
frequently used in applications.

Figure 4-4. Block diagram of the two-term (or PI) controller. The pa‐
rameters kp and ki are the controller gains.
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Integral Control Changes the Dynamics
The output of an integral controller depends not only on the momen‐
tary value of the error but also on the integral (or the sum) of the
observed tracking errors since the beginning of time. This dependence
on past values implies that an integral controller possesses nontrivial
dynamics (as discussed in Chapter 3), which may change the qualita‐
tive behavior of the entire loop.

In particular, an integral controller may introduce oscillations into a
loop even if the controlled system itself is not capable of oscillations.
If a positive tracking error persists, then the integral term in the con‐
troller will increase; the result will be a positive input to the plant that
will persist even after the tracking error is eliminated. As a conse‐
quence, the plant output will overshoot and the tracking error will
become negative. In turn, the tracking error reduces the value of the
integral term.

Depending on the values chosen for the controller gains kp and ki, these
oscillations may decay more or less quickly. Controller tuning is to the
process of finding values for these parameters that lead to the most
acceptable dynamic behavior of the closed-loop system (also see
Chapter 9).

Integral Control Can Generate a Constant Offset
One of the usual assumptions of control theory is that the relationship
between input and output of the controlled plant is linear: y = H u.
This implies that, in the steady state, there can be no nonzero output
unless there is a nonzero input. In a feedback loop we try to minimize
the tracking error, but we also use the tracking error as input to the
controller and therefore to the plant. So how can we maintain a non-
zero output when the error has been eliminated?

We can’t if we use a strictly proportional controller. That’s what “pro‐
portional droop” is all about: under proportional control, the system
needs to maintain some residual, nonzero tracking error in order to
produce a nonzero output. But we can drive the tracking error all the
way down to zero and still maintain a nonzero plant output—provided
that we include an integral term in the controller.

Here is how it works: consider (again) the heated pot on the stove.
Assume that the actual temperature (that is, the system output y) is
below the desired value and hence there is a nonzero, positive tracking
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error e = r – y. The proportional term multiplies this error by the gain
to produce its control signal (up = kpe); the integral term adds the error
to its internal sum of errors (E = E + e) and reports back its value (ui

= kiE). In response to the combined output of the controller, more heat
is supplied to the heated pot. Assume further that this additional heat
succeeds in raising the temperature in the pot to the desired value.
Now the tracking error is zero (e = 0) and therefore the control signal
due to the proportional term is also zero (up = kp · 0 = 0). However, the
internal sum of tracking errors maintained by the integral term has
not changed. (It was “increased” by the current value of the tracking
error, which is zero: E = E + 0 = E.) Hence the integral term continues
to produce a nonzero control signal (ui = kiE), which leads to a nonzero
process output. (In regards to the heated pot, the integral term ensures
that a certain amount of heat continues to be supplied to the pot and
thereby maintains the desired, elevated temperature in the vessel.) 

Derivative Control
Finally, we can also include a derivative term in the controller. Whereas
an integral term keeps track of the past, a derivative controller tries to
anticipate the future. The derivative is the rate of change of some
quantity. So if the derivative of the tracking error is positive, we know
that the tracking error is currently growing (and vice versa). Hence we
may want to apply a corrective action immediately, even if the value
of the error is still small, in order to counteract the error growth—that
is, before the tracking error has a chance to become large.

Therefore, we make the output of the derivative controller propor‐
tional to the derivative of the tracking error:

ud t = kd
de t

dt kd > 0 constant

In a discrete-time computer implementation, we can approximate the
derivative of e by the amount e has changed since the previous time
step. A derivative controller can thus be implemented as

ud,t = kd
et −et−1

δt
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where δt is the time interval between successive updates (as for the
integral term).

Like the integral controller, the derivative controller depends on past
values and therefore introduces its own, nontrivial dynamics into the
system.

Problems with Derivative Control
Whereas integral controllers are extremely “benevolent” and so are
often used together with proportional controllers, the same cannot be
said about derivative control. The problem is the potential presence
of high-frequency noise in the controller input.

The noise contribution will fluctuate around zero and will thus tend
to cancel itself out in an integral controller. (In other words, the inte‐
grator has a smoothing effect.) However, if we take the derivative of a
signal polluted by noise, then the derivative will enhance the effect of
the noise. For this reason, it will often be necessary to smooth the
signal. This adds complexity (and additional nontrivial dynamics) to
the controller, but it also runs the risk of defeating the purpose of
having derivative control in the first place: if we oversmooth the signal,
we will eliminate exactly the variations in the signal that the derivative
controller was supposed to pick up!

Another problem with derivative control is the effect of sudden set-
point changes. A sudden change in setpoint will lead to a very large
momentary spike in the output of the derivative controller, which will
be sent to the plant—an effect known as derivative kick. (In Chapter 10
we will discuss ways to avoid the derivative kick.)

Whereas proportional control is central to feedback systems, and in‐
tegral control is required in order to eliminate steady-state errors, it
should come as no surprise that derivative control is less widely used
in practice. Studies show that as many as 95 percent of all controllers
used in certain application areas are of the proportional-integral (PI)
type. 

The Three-Term or PID Controller
A controller including all three components (proportional, integral,
and derivative) is known as a three-term or PID controller (see
Figure 4-5). Its output is a combination of its three components:
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uPID t = up t +ui t +ud t

= kpe t +ki∫
0

t
e τ dτ +kd

de t
dt

Figure 4-5. In addition to the proportional and integral terms, the
three-term (or PID) controller also contains a derivative term with
gain kd.

This is the form most convenient for theoretical work. In application-
oriented contexts, an alternative form is often used that factors out an
overall gain factor:

uPID t = k e t + 1
T i
∫

0

t
e τ dτ +Td

de t
dt

The new parameters Ti and Td both have the dimension of time. The
two formulas for uPID(t) are equivalent, and their parameters are re‐
lated:

k = kp T i =
kp

ki
Td =

kd

kp

Of course, the numerical values of the parameters are different! When
comparing values for controller parameters, one must not forget to
establish which of the two forms they refer to.

Convention
In this book, controller gains are always nonnegative. (That is, they are
zero or greater.)
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We’ll pick up the study of PID controllers again in Chapter 22, by
which time we will have acquired a larger set of theoretical tools.

Code to Play With
The discrete-time updating schemes for the integral and derivative
terms lend themselves to straightforward computer implementations.
The following class implements a three-term controller:

class PidController:
    def __init__( self, kp, ki, kd=0 ):
        self.kp, self.ki, self.kd = kp, ki, kd
        self.i = 0
        self.d = 0
        self.prev = 0

    def work( self, e ):
        self.i += DT*e
        self.d = ( e - self.prev )/DT
        self.prev = e

        return self.kp*e + self.ki*self.i + self.kd*self.d

Here the factor DT represents the step length δt, which measures the
interval between successive control actions, expressed in the units in
which time is measured.

This controller implementation is part of a simulation framework that
can be used to explore control problems. In Chapter 12, we will discuss
this framework in more detail and also introduce a better controller
implementation that avoids some deficiencies of the straightforward
version presented here.
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CHAPTER 5

Identifying Input and
Output Signals

Initially, it can be difficult to see how feedback methods can be applied
to situations other than the “classical” application areas treated in
textbooks on control theory. The way control engineering decomposes
real-world systems into abstractions often does not easily align with
the way those systems appear to others. In this chapter, I want to step
through a handful of examples and show how they could be approach‐
ed from a control-theoretic point of view.

Control Input and Output
The essential abstraction in any control problem is the plant or pro‐
cess: the system that is to be controlled. From a controls perspective,
a plant or process is a black box that transforms an input to an output.
It is usually not difficult to recognize the plant itself, but identifying
what to use as control input and output can be challenging.

It is essential to realize that the terms “input” and “output” here are
used only in relation to the control problem and may be quite different
from the functional inputs and outputs of the controlled system.
Specifically:

• The input or control input is a quantity that we can adjust directly.
By adjusting the input, we hope to influence the output in a fa‐
vorable way.
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• The output or process output is the quantity we want to control:
we want the output to track the reference value (the setpoint).

These two observations should help to identify the quantities to use
as control signals, either as input or as output. Just ask yourself:

• What quantity can we influence directly?
• What quantity do we (ultimately) want to influence?

In books on control theory, the output is often referred to as the “pro‐
cess variable” (PV) and the input as the “control variable” or “manip‐
ulated variable” (MV). Both taken together define the system’s “inter‐
face” (in a software-engineering sense of the word).

There may be situations where both of these quantities are identical.
In this case, you are done and you can stop reading. But often they will
not be the same—and then you have a control problem.

Directionality of the Input/Output Relation
The basic idea of feedback control is to compare the actual plant output
y to the reference value r and then to apply a corrective action that will
reduce the tracking error e = r – y. In order to do so, we must know in
which direction to apply the correction. Let’s say that the output y is
smaller than what it should be (y < r), so that the tracking error is
positive. Obviously, we want to increase the process output—but does
this mean we need to increase the plant input u or decrease it?

The answer depends on the directionality of the input/output relation
for the controlled system. It is usually assumed that increasing the
control input will increase the control output:

• Increasing the power supplied to a heating element (the input) will
increase the temperature of the heated room or vessel (the output).

• Increasing the number of servers in a data center will increase the
number of requests handled per hour.

However, the opposite also occurs:

• Increasing the power supplied to a cooling unit (the input) will
decrease the temperature in the cooled room or vessel (the out‐
put).
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1. Of course, it is possible to absorb this step into the controller by using negative gains.
However, I find it convenient to follow the convention that controller gains are always
nonnegative and also to make the deviation from the standard loop architecture ex‐
plicit by introducing the additional inverter element. In this way, the controller is
always a “normal” element, for which an increase in input leads to an increase in output.

• Increasing the number of servers in a data center will reduce the
average response time for server requests.

The directionality depends on the specific choice of input and output
signals, not on the overall plant or process, as is demonstrated by the
data center example. Depending on the particular choice of output
signal, the same system can exhibit either form of directionality.

We need to take the input/output directionality into account when
designing a control loop to ensure that corrective actions are applied
in the appropriate direction. A standard loop (Figure 5-1) is suitable
for the “normal” case, where an increase in control input results in an
increase in control output. For the “inverse” case (where an increase
in control input leads to a decrease in output), we can use a loop as in
Figure 5-2. In this loop, the tracking error e is multiplied by −1 before
being passed to the controller.1 

Figure 5-1. The standard loop arrangement for systems where an in‐
crease in plant input u leads to an increase in plant output y.

Figure 5-2. A loop arrangement suitable for systems with an inverted
input/output relation, where an increase in plant input u leads to a
decrease in plant output y.
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Examples
Let’s consider a few examples and discuss the available options for both
control inputs and outputs as well as their advantages and disadvan‐
tages. When evaluating each situation, we are primarily concerned
with two properties: which signals are available and which signals will
show the speediest response. (In Part III, we will study many of these
examples in more depth.)

Thermal Control 1: Heating
Situation

A room is to be kept at a comfortable temperature, or a vessel con‐
taining some material is to be kept at a specific temperature.
Input

The input is the amount of heat applied; this may be the dial setting
on the stove, the voltage applied to the heating element, or the flow of
heating oil to the furnace.
Output

In any case, the temperature of the heated object is the output of the
process.
Commentary

This example is a conventional control problem, where the control
strategy—including the choice of input and output signals—is pretty
clear. Notice that the control strategy can vary: central heating often
has only an on/off controller, whereas stoves let you regulate their
power continuously.

Although simple in principle, this example does serve to demonstrate
some of the challenges of control engineering in the physical world.
We said that the output of the plant is “the temperature” and that its
input is “the heat supplied.” Both are physical quantities that are not
easy to handle directly. Just imagine having to develop a physical device
to use as a PID-controller that takes “a temperature” as input and pro‐
duces a proportional amount of “heat” as output! For this reason, most
control loops make use of electronic control signals. But this requires
the introduction of additional elements into the control loop that can
turn electric signals into physical action and observed quantities into
electric signals (see Figure 5-3, top).
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Figure 5-3. Typical physical control loops, including transducers to
convert between physical quantities and control signals (which are
usually electrical signals). Top: Schematic. Bottom: A control loop
configuration for the heated vessel example, showing the observed
quantities and control signals in some detail.
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Elements that convert back and forth between control signals and
physical quantities are generally known as transducers. A transducer
that measures a physical quantity and turns it into a control signal is
called a sensor, and a transducer that transforms a control signal into
a physical control action is called an actuator. In the case of the heated
vessel, the sensor might be a thermocouple (transforming a measured
temperature into a voltage), and the actuator would be a heating ele‐
ment, transforming an applied voltage into heat (Figure 5-3, bottom).
If the vessel to be heated is large (such as a reaction vessel in the chem‐
ical industry) or if high temperatures are required (as in a furnace),
then a single actuator might not be enough; instead we might find
additional power amplifiers between the controller and the actual
heating element.

Transducers introduce additional complexity into the control loop,
including nonlinearities and nontrivial dynamics. Sensors in partic‐
ular may be slow to respond and may also be subject to measurement
noise. (The latter might need to be smoothed using a filter, introducing
additional lags.) Actuators, for their part, are subject to saturation,
which occurs when they physically cannot “keep up” with the control
signal. This happens when the control signal requires the actuator to
produce a very large control action that the actuator is unable to de‐
liver. Actuators are subject to physical constraints (there are limits on
the amount of heat a heating element can produce per second and on
the speed with which a motor can move, for example), limiting their
ability to follow control signals that are too large.

In computer systems, transducers rarely appear as separate elements
(we do not need a special sensor element to observe the amount of
memory consumed, for instance), and—with the exception of actuator
saturation—most of their associated difficulties do not arise. Actuator
saturation, however, can be a serious concern even for purely virtual
control loops. We will return to this topic in Chapter 10 and in the case
studies in Part III.

Item Cache
Situation

Consider an item cache—for instance, a web server cache. If a request
is made to the system, the system first looks in the cache for the re‐
quested item and returns it to the user if the item is found. Only if the
item is not found will the item be retrieved from persistent storage.
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The cache can hold a finite number of items, so when an item is fetched
from persistent storage, it replaces the oldest item currently in the
cache. (We will discuss this system in detail as a case study in Chap‐
ter 13.)
Input

The quantity that can be controlled directly is the number of items in
the cache.
Output

The quantity that we want to influence is the resulting “hit” or success
rate. We desire that some fraction (such as 90 percent) of user requests
can be completed without having to access the persistent storage
mechanism.
Commentary

Observe that the quantities identified as “input” and “output” from a
control perspective have nothing to do with the incoming user requests
or the flow of items into and out of the cache. This is a good example
of how the control inputs and outputs can be quite different from the
functional inputs and outputs of a system—it is important not to con‐
fuse the two!

Also, the definition of the output signal is still rather vague. What does
“90 percent hit rate” mean in practice? Ultimately, each hit either suc‐
ceeds or fails: the outcome is binary. Apparently we need to average
the results of the last n hits to arrive at a hit rate, which leads us to ask:
how large should n be? If n is large, then the outcome will be less noisy
but the memory of the process will be longer, so it will respond more
slowly to changes (see Chapter 3). Selecting a specific value for n
therefore involves a typical engineering trade-off.

We also need to define how the average is to be taken. Do we simply
calculate a straight average over the last n requests? Or should we
rather weight more recent requests more heavily than older requests?
For practical implementations, it may be convenient to employ an ex‐
ponential smoothing method (a recursive digital filter), where the val‐
ue of the hit rate st at time t is calculated as a mixture of the outcome
of the most recent user request σt and the previous value of the hit rate:

st = ασ t + 1−α st−1 0 < α < 1
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Here, σt is either 0 or 1, depending on the outcome of the most recent
cache request. The smaller α is, the smoother the signal will be. (In
fact, we can choose whether to consider the filter as part of the system
itself or to treat it as a separate component. In the former case, the
system output will be the smoothed hit rate; in the latter case, the
system output will be the string of 0’s and 1’s corresponding to the
outcome of the most recent request.)

Finally, we should discuss the notion of “time” t. From the preceding
remarks it is clear that the system will not produce a new and different
value of its output unless a user request is made. We must decide when
control inputs (that is, changes to the size of the buffer) can be made:
only synchronously with user requests, or asynchronously at any time
that we desire (for instance, periodically once per second)? In the
asynchronous case, the main “worker thread” of the cache (the one
that handles user requests) will be separate from the “control thread”
that handles control inputs. This is yet another reminder that control
flow and functional flow are quite separate things.

Server Scaling
Situation

Imagine a central server performing some task. It could be a web server
serving user requests, or a compute server performing CPU-intensive
jobs, or even a DB server. In any case, we can control the number of
active “worker” instances (the number of threads in the case of the
web server, or the number of CPUs for the compute server, and so on).
Incoming requests are assigned to the next available worker instance;
it will take the worker some (random) amount of time to complete
each request. Requests that cannot be served immediately are sub‐
mitted to a queue. There is no guarantee that the throughput of the
server will scale linearly with the number of active worker instances!
(More specific systems fitting this general description will be discussed
in detail in Chapter 15 and Chapter 16.)
Input

We can select the number of active worker instances directly.
Output

Ultimately, we want to make sure tasks are flowing through the system
without being held up. However, we have a wide selection of metrics
that can be used for that purpose. These include:
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• Number of requests queued (the queue length)
• Net change in the length of the queue (over some time interval)
• Average age of requests in queue
• Maximum age of requests in queue (age of oldest request)
• Total age (since its arrival) of the last completed request
• Average age (since arrival) of the last k completed requests
• Requests completed in the last T seconds
• Fraction of idle time (over the last T seconds) across all active

worker instances

Which of these quantities to use will be one of the design choices.
Commentary

In this example, we observe again that the functional flow of requests
into the controlled system has nothing to do with the input and output
signals that we use for control purposes. Moreover, and also as in the
previous example, we find that the control input is easy enough to find,
yet we have considerable freedom in the definition of the process out‐
put.

From a business domain perspective, the maximum age among all the
requests in the queue seems like a good metric because it represents a
quantity that is immediately relevant: the worst-case waiting time.
However, because it depends on a single element only, this metric will
be noisier than the average waiting time across all elements currently
in the queue. On the other hand, the average waiting time responds
more slowly to changes in the environment because the effect of any
change is “averaged out” over the number of items in the queue. This
is not desirable: we want signals that make any change visible quickly
so that we can respond to them without delay.

Any form of smoothing or averaging operation slows signals down,
but a poor choice of raw signal can also result in delayed visibility. The
age of the last completed request has this property: if we use this
quantity as a control signal, then we will not learn about the growth
of the queue until every item has actually propagated through the
queue to a worker instance! With this choice of monitored quantity,
we are in the undesirable position that—by the time we learn what’s
going on—it’s already too late to do something about it. For this reason,
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we want to begin monitoring items as soon as possible, that is, when
they enter the queue and not when they leave it.

Although the maximum or average age of items in the queue may be
a desirable control signal from a business domain perspective, it may
not be available on technical grounds. We may not know the time
stamp for each item’s arrival simply because this information is not
being recorded! In this case, we may have to fall back on using the
number of items currently in the queue. This quantity has the advan‐
tage that it is both easy to obtain and responds quickly to changes, but
it is less directly related to the property that we really want to control.
(The queue length actually does not matter much provided that items
are being processed at a rapid rate.) In the end, the net change in the
length of the queue may seem like a good compromise: it responds
quickly, does not depend on a single item, and is relevant from a do‐
main perspective. Too bad it cannot be observed directly! We must
calculate it as the difference between the previous and the current
queue length—a procedure that still requires us to fix the interval at
which we observe the queue length.

All the quantities discussed so far tend to decrease as the input quantity
(namely the number of active worker instances) is increased, so we
will need to use a loop structure suitable for this kind of input/output
directionality. In contrast, the last two items in the list of possible out‐
put signals (requests completion rate and amount of idle time) tend
to increase with the number of server instances available.

Controlling Supply and Demand by Dynamic Pricing
Situation

Consider a merchant selling some arbitrary product. The merchant
has the goal of selling a certain number of units every day; the mer‐
chant’s primary control mechanism is the item price, which can be
adjusted on a daily basis. (An application of this situation is discussed
as a case study in Chapter 14.)
Input

The price per unit.
Output

The number of units sold.
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Commentary

In this example, the choice of input and output quantities is obvious;
but what exactly constitutes the “plant” and its dynamics merits some
discussion.

The input and output for this problem (namely, price and units sold)
are related through what economists call the demand curve (although
they tend to interchange the respective roles of price and demand).
Typical shapes of the demand curve—using our identification of in‐
dependent and dependent variables—are shown in Figure 5-4. (Note
that these curves, too, have the property that increasing the input leads
to a decrease in output, which makes the use of the “inverted” loop
structure necessary.)

If the merchant knew this curve, then there would be no need for a
feedback system to control demand: the merchant could simply pick
the exact price that would result in the sale of the desired number of
units. However, in general the merchant does not know the demand
curve—hence the need for a system that automatically applies correc‐
tive actions as needed.

So then where is the “memory” that, according to the discussion in
Chapter 3, is the hallmark of systems with nontrivial dynamics? At
first, it might appear as if there is no memory: at the beginning of each
day, the vendor can fix a new price that becomes effective immediately.
Nevertheless, the memory is there—in this case, it is quite literally in
the vendor’s head! The feedback mechanism will not work if the mer‐
chant randomly chooses a new price every day. Instead, for the feed‐
back loop to be closed, the price the merchant quotes tomorrow must
be based on the number of units sold today, which in turn is a conse‐
quence of today’s price. The feedback controller in this case does not
so much produce a new price as it produces an update to the current
price.

So far we have assumed that the demand curve itself does not change
over time—or, at least, that it changes sufficiently slowly that these
changes can be ignored for day-to-day price finding. Furthermore, we
assumed that the price–demand relationship is deterministic, without
random variations. That’s not likely to be the case in practice (demand
typically fluctuates), but this does not pose a fundamental challenge.
The demand could be averaged over a few days to obtain a smooth
control signal, even though this operation will introduce some inevi‐
table delays.
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Figure 5-4. Two typical shapes of the demand curve, which relates the
number of units sold to their price.

We also have not mentioned how the merchant chooses the number
of units to sell every day. Couldn’t the merchant make more money by
selling more units at a lower price? That’s an interesting question, but
it is extremely important to remember that feedback control does not
provide any help in answering it! Feedback control is a mechanism to
track a reference signal—not more, not less. In particular, feedback
control makes no statement, which value for the setpoint is “optimal.”
That question must be answered separately; once it has been answered,
feedback can be used to execute on this plan.

Finally, keep in mind that the terms “merchant,” “price,” and “demand”
in this example are largely metaphorical. Similar considerations apply
in other situations, as long as there is a long sequence of fundamentally
similar transactions that are being completed over time. A consumer,
repeatedly buying from a supplier, fits the same model. Note also that
the “price” or “cost” need not be measured in monetary units. For
example, the task server example discussed previously can be ex‐
pressed in these terms—provided the server is able to report on the
“effort” expended in a way that can be used as a control signal.

Thermal Control 2: Cooling
Situation

Many computer systems require active cooling (using fans) to keep
components at acceptable operating temperatures. (See Chapter 17 for
an in-depth discussion of this example.)
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Input

The input is the fan speed or the voltage applied to the fan—the details
will depend on the interface provided by the system.
Output

It may appear as if the process we want to control is the CPU and so
its temperature should be the output, but this is not quite right. The
process we want to control is the cooling of the CPU by the fan; there‐
fore the proper way to measure this process is the reduction in tem‐
perature achieved. Remember that if the process is off (that is, if the
fan is not running) the output should be zero, and that the process
output should increase in line with the input. (Yet another example of
an “inverted” output signal.)
Commentary

This example is interesting, because the physics is exactly the same as
in the heating example that opened this chapter, yet many details that
are relevant for a control application are different. We have already
seen that we need to be careful with the choice of output signal. An‐
other possible misidentification concerns the process dynamics.

The temperature of a computer component has its own dynamics,
which are the same as that of any other heated element: once switched
on, the temperature will increase and eventually reach a thermal equi‐
librium in which the component gives off as much heat as is being
supplied externally. But that is not the dynamic we want to control!
Instead, the dynamic that we care about from a control perspective is
how quickly the temperature of the chip drops once the fans are turned
on. The “off ” state of this process is a chip in thermal equilibrium, not
a chip that is switched off.

But this poses an interesting operational problem: a chip in thermal
equilibrium is “fried” and does not function anymore (otherwise, we
wouldn’t need active cooling to begin with). Therefore, the baseline is
a chip operating at its maximum permissible temperature, with just
enough cooling being supplied to keep it there. As the fan speed in‐
creases, we can see how much and how quickly the temperature drops
and thereby observe the dynamics of the actual control process.
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Criteria for Selecting Control Signals
There will frequently be more than one candidate quantity that can be
used as control input (or output), and we are free to choose from
among them. This choice amounts to an engineering decision, and we
obviously want to use those signals that have the most favorable char‐
acteristics. In this section, we discuss some criteria by which to eval‐
uate different possibilities.

For Control Inputs
Any quantity that is considered a candidate for being a control input
should be evaluated according to the following criteria.
Availability:

Only quantities that we can influence directly and immediately
are suitable as control inputs.

Responsiveness:
The system should respond quickly to a change in its input in
order to obtain good dynamic performance and accurate tracking
in the presence of change. Try to avoid inputs whose effect is sub‐
ject to latency or delays.

Granularity:
It is desirable to be able to adjust the control input in small incre‐
ments to achieve accurate tracking. The PID controller in partic‐
ular requires a system that is capable of responding to the con‐
tinuous output this controller produces. That is not always pos‐
sible—the number of server instances in a server farm, for in‐
stance, can be changed only in integer increments. If the “right”
number of servers is not a whole integer, then the system will not
reach a steady state under PID control. If a system’s output can be
adjusted only in large, fixed increments, then it may be necessary
to modify the controller or introduce special-purpose actuators
to obtain satisfactory control behavior. (The case studies in Chap‐
ter 15, Chapter 16, and Chapter 18 discuss some possibilities.)

Directionality:
Does increasing the input result in an increase or a decrease of the
chosen output? If an increase in input leads to a reduction in out‐
put, then an “inverted” loop must be used.
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For Control Outputs
To evaluate the suitability of a quantity as a control output, we should
consider the following criteria.
Availability:

The quantity must be observable—accurately, reliably, and quick‐
ly—without gaps in coverage and without delays.

Relevance:
The output signal should be a good measure for the behavior that
we want to control. This is a nonissue if the output itself is the
quantity to be controlled (as in the heating example earlier). But
if we are interested in measuring the system’s overall “quality of
service,” then a variety of metrics can be used as proxy for this
abstract idea, and we should be careful to choose the one that is
most informative with respect to the intended purpose. (The task
server example in this chapter was of this kind.)

Responsiveness:
The output metric should reveal changes in the system’s state or
behavior quickly. This means avoiding lags and delays. Lags typ‐
ically occur when the output metric is calculated as an “average”
over a set of values, whereas delays occur when some quantity
needs to “propagate” through the system in order to become ob‐
servable. (See Chapter 3.)

Smoothness:
In a closed-loop arrangement, the output is part of the control
input. Disturbances (such as discontinuities or noise) in the out‐
put will therefore result in sudden control actions— something
we usually want to avoid. For this reason, it is desirable to choose
an output signal that is already relatively smooth and does not
need to be filtered. But watch out: signals that are naturally smooth
may, in fact, be the result of an implicit filtering or averaging pro‐
cess (inside the controlled system) and therefore subject to lags.

With output signals especially, we must make trade-offs between the
various desirable properties on a case-by-case basis.

A Note on Multidimensional Systems
You may have noticed that all examples used only scalar input and
output signals. In each example, we used a single input control pa‐
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rameter to control a single output metric. This raises the question of
whether it is possible to construct control loops using multiple inputs
and outputs simultaneously.

This is certainly possible, but it is much more difficult, because the
various input and output signals will typically not be independent. That
is, changing one of the input signals will usually lead to changes in
several of the output signals. This prevents naive application of the
feedback principle (constantly compare the output to the setpoint and
then apply a corrective action that counteracts the deviation from the
setpoint—see Chapter 2), because we won’t be able to determine the
proper “direction” for the corrective action. For scalar control signals,
it is relatively easy to determine whether we need to increase or de‐
crease the control input in order to reduce the output (because there
are only these two possibilities), but for a system with several inputs,
things are no longer so simple. The number of different control input
combinations increases rapidly with the dimension of the control sig‐
nal, and determining the input/output relationships (including the
interactions between different input signals) from experiments alone
will usually be impractical. Hence control situations involving multi‐
ple input and output signals pretty much require a good theoretical
process model.

Even with a good model, controlling several outputs simultaneously
is a difficult problem. A general approach is to try and decouple the
various signals in order to reduce the multidimensional control prob‐
lem to a set of scalar ones. Is one of the control inputs clearly dominant?
If so, then we can try basing the entire control strategy on that signal
alone. Another possibility is to try decoupling multiple signals into
separate loops. If the system will respond to one of the signals much
faster than to another, then we can often treat these two signals as
independent, and there are special loop arrangements for this situation
(“cascaded control”; see Chapter 11). 
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CHAPTER 6

Review and Outlook

Before proceeding to practical matters that are directly relevant to ap‐
plications and implementations, let’s summarize the conceptual foun‐
dations of feedback control as we have developed them so far.

The Feedback Idea
The idea behind feedback control is simple:

Constantly compare the actual output to the setpoint; then apply a
correction in the correct direction and of approximately the correct size.

The comparison and corrections are performed at runtime. Precisely
because feedback relies on runtime observations and adjustments,
feedback control is capable of responding to unanticipated disturban‐
ces.

Iteration
Feedback is an iterative scheme. That we keep monitoring the output
and applying corrections is what makes feedback control feasible. In‐
stead of having to get it “right” in a single step, we need only make
things “better” because there is always another chance to fix any out‐
standing errors.

As a side effect, the ongoing iteration will also make the system robust
to change.
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Process Knowledge
One benefit of the feedback concept is that it does not require detailed
knowledge about the controlled system and its behavior. Only two bits
of information are required:

• We must be able to identify the correct direction for the applica‐
tion of a corrective action. (In other words, we must know whether
increasing the input will end up increasing or decreasing the out‐
put. This amount of process knowledge is indispensable.)

• In general, we want to apply the largest possible correction that
will not make the system unstable, in order to achieve the quickest
possible reduction and elimination of the tracking error. This im‐
plies that we must be able to estimate the typical size or scale of
the system’s response to an input change.)

Although feedback control does not require detailed knowledge about
the controlled process, we must have at least enough information to
answer the two preceding items in order to apply feedback control
successfully. (Incidentally, it is this requirement that makes multidi‐
mensional control so hard: obtaining even these insights is extremely
difficult if there is more than one control signal involved.)

Avoiding Instability
A system exhibits unstable behavior if it permanently oscillates be‐
tween over- and undercompensation, without converging to a steady
state. In extreme cases of instability, the amplitude of the oscillations
increases over time (until the system is destroyed). Instability is usually
the result of control actions that are too large.

The “theory” primarily tries to determine how large control actions
can be for a given system. The answer depends on the static “scale” of
the system’s input/output relation in the steady state and on the dy‐
namic response of the system to an input change. Any form of lag or
delay typically has the effect of reducing the magnitude of the correc‐
tive action that can be applied in any given moment.
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The Setpoint
Feedback control has the effect of reducing the tracking error, which
is the difference between the reference value (or setpoint) and the ac‐
tual process output.

A necessary ingredient for feedback control is the existence of such a
setpoint. We must have a notion of a desired value for the tracked
metric. If we cannot identify a setpoint and cannot formulate a specific
value (or, at least, a range of values) to track, then feedback control is
not applicable.

Control, Not Optimization
The setpoint must be a value, not a condition. In particular, it is not
possible to specify an extremal condition on the output (such as “the
greatest possible success rate” or “the shortest possible response time”).

Feedback must not be confused with an optimization scheme. It has
no notion of finding the “best” settings. Instead, feedback is a control
mechanism: it will find (and maintain) the appropriate process inputs
to produce a specific desired output, even in the presence of changing
external conditions.
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CHAPTER 7

Theory Preview

There exists a beautiful and rather deep theory of feedback systems,
which we will sketch in Part IV. Yet for most of the applications that
we are interested in, this theory is not strictly required. Moreover, the
theory makes several assumptions that are not necessarily fulfilled by
computer systems and is therefore not even fully applicable.

Nevertheless, the theoretical description yields several useful terms
and concepts that are pervasive in all of control theory. In this chapter,
we will summarize the most important of those ideas so that we can
use them in the sequel. At this point, we will skip most motivation and
justification—if you want to know more, please refer to Part IV.

Frequency Representation
The classical theory of feedback systems is based on a mathematical
operation (the Laplace transform) that allows us to express any func‐
tion of time t as a function of the (complex) frequency s. The two rep‐
resentations are completely equivalent, and we can freely transform
back and forth between the time domain and the frequency domain.

The Laplace transform is not universally applicable. It applies only to
systems whose time evolution is described by linear, time-invariant
differential equations. Many systems in the physical world are in this
category; in particular this is true for many of the mechanical, elec‐
trical, and thermal assemblies for which classical feedback theory was
originally developed.
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The Transfer Function
In the frequency representation, the effect that a system has on its input
is encapsulated in the system’s transfer function. If the input is given
by u(s) in the frequency representation, then the output y(s) of the
system is given simply by

y s = G s u s

where G(s) is the system’s transfer function in the frequency domain.
The output y(s) of the process can now be transformed back to obtain
the actual behavior in the time domain.

If the behavior of the system in the time domain is known (usually in
form of a differential equation), then the Laplace transform can be
used to find an explicit expression for the transfer function. Even if no
differential equation is available, one can often use experimental re‐
sults to obtain a phenomenological transfer function (see Chapter 8).

Block-Diagram Algebra
In the frequency representation, then, the effect of a system acting on
an input is given simply by multiplying the input with the transfer
function. Obviously, this process can be repeated. To let a second sys‐
tem (H(s)) act upon the output of the first (y(s) = G(s) u(s)) amounts
to a further multiplication:

z(s) = H(s)G(s)u(s)

Transfer functions are merely functions, so one can operate with them
as with numbers. But because transfer functions also contain all in‐
formation about the behavior of the systems that they describe, this
means that in frequency space one can operate with systems as if they
were numbers. In particular, one can establish “algebraic” rules that
can be used to combine several components together to form more
complicated assemblies. Figure 7-1 shows the three most basic such
rules.
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Figure 7-1. The three most important operations of block-diagram al‐
gebra: composition in sequence (top), addition in parallel (center),
and the negative feedback loop (bottom).

PID Controllers
The most common type of controller is the PID controller, which
combines proportional, integral, and derivative action. In the time
domain, its output (the control action) when acting upon a tracking
error (its input) is given by (see Chapter 4)

u t = kpe t +ki∫
0

t
e τ dτ +kd

de t
dt

This expression can be transformed to the frequency domain, yielding
the following transfer function for the PID controller:

K s = kp +
ki

s +kds

This transfer function is so compact that one often (in a figure, for
instance) represents the integral term by the fraction ki/s and the de‐
rivative term by kds.
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Poles of the Transfer Function
The transfer function of a system encapsulates that system’s entire dy‐
namics, but we do not need to evaluate the entire transfer function to
obtain information about the most dominant modes of behavior. For
that, it is sufficient to know the locations of the transfer function poles.

Transfer functions tend to be rational functions (one polynomial divi‐
ded by another):

H s =
bmsm +bm−1sm−1 +⋯+b0

sn +an−1sn−1 +⋯+a0

The poles of H(s) are those values of s for which the denominator
vanishes. At those positions, H(s) will become infinite, and we say that
H(s) has a pole at that point.

The “frequency” s = x + iy is in general a complex number, so poles can
exist within the entire complex plane. The location of the pole within
the complex plane determines the corresponding behavior of the sys‐
tem as follows (see Figure 7-2):

• A pole in the right half-plane (that is, with positive real part: x >
0) will correspond to an unstable mode, which grows over time.

• A pole in the left half-plane (with x < 0) corresponds to a stable
mode, which diminishes over time.

• Poles on the real axis (with vanishing imaginary part: y = 0) in‐
dicate nonoscillatory modes. Depending on the sign of the real
part, the corresponding mode grows or shrinks monotonically
over time.

• Poles that have imaginary parts always occur in complex conju‐
gate pairs (that is, to each pole at x + iy there exists a complex
conjugate pole at x – iy) and describe oscillatory behavior. The
larger the magnitude of the imaginary part, the higher will be the
frequency of the oscillation. The amplitude of the oscillation in‐
creases or diminishes over time, depending on the sign of the real
part.

Knowing only the positions of the poles of H(s) allows us to determine
whether the system will be stable or not and whether it does have a
tendency to oscillate. For this reason, schemes exist to trace out the
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locations of poles while some parameter (such as the controller gain)
is varied. (See Chapter 24.)

Figure 7-2. The position of a pole determines the corresponding dy‐
namic behavior. Poles in the left half-plane lead to stable behavior;
poles in the right half-plane are unstable. Poles on the real axis corre‐
spond to non-oscillatory (monotonic) behavior; poles off of the real
axis are oscillatory. (The bottom half-plane is not shown because the
behavior is symmetrical to the top half-plane.)

Process Models
Ideally, we have a good model of a system’s behavior, typically in the
form of a differential equation. If this is not the case, then we need to
formulate a phenomenological process model, which will be based on
the results of experiments undertaken with the purpose of under‐
standing the system’s dynamic behavior. Depending on our under‐
standing of the system and also on the accuracy of the experiments,
the process models developed in this way may be more or less sophis‐
ticated.

For the type of systems that we are most concerned about, there is
often not much information available and the experimental results
tend to be poor. Under such circumstances, it doesn’t make sense to
build complicated process models because simple ones will be suffi‐
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cient to capture all the information available. Yet because we care about
the model’s representation not only in the time domain (where the
experiment is carried out) but also in the frequency domain (where
calculations are performed), we will try to find models that are simple
in both domains. Luckily, simple time-domain behavior typically leads
to simple transfer functions as well. (We will see examples in Chap‐
ter 8.) 
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CHAPTER 8

Measuring the Transfer Function

If we have a good theoretical model for the system under considera‐
tion, then we can derive the transfer function directly from the model
by calculating the Laplace transform of the differential equation that
describes the system dynamics. More often than not, however, there
won’t be a good analytical model. In those cases, we will have to meas‐
ure the transfer function in a process known as system identification.
Even if we have a good model, we will still need to perform some
measurements to “fit” the model’s parameters.

There are basically two different questions we need to ask.
Static input/output relation:

If an input change of a certain size is applied, what’s the size and
direction of the ultimate change in process output?

Dynamic process response:
If an input change is applied suddenly, how long does it take for
the system to respond?

These are the basic questions we want to answer through observations.
The answer to the first one is captured in the static process character‐
istic, the answer to the second in the dynamic process reaction curve
or plant signature.

All measurements are done in an open-loop arrangement, and without
a controller:
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In that way, we can adjust the input in an arbitrary fashion as desired,
so that we observe only the response of the system or plant alone.

Static Input/Output Relation:
The Process Characteristic
The static process characteristic provides us with some basic but es‐
sential information. Obtaining it seems simple enough: apply a steady
input value, wait until the system has settled down, and record the
output. A typical graph might look like the one in Figure 8-1. There is
a minimal control input that is required to bring about any change,
and for large inputs the system begins to saturate and no longer follows
the input faithfully.

Figure 8-1. Typical process characteristic, showing both the propor‐
tional range and the areas of input saturation.

The most important feature of this curve is its local slope, which in
this context is also known as the process gain. Specifically:

• The magnitude of the process gain provides information about
the size or strength of the control actions that will be needed to
bring about significant change in process output.

• The sign of the process gain provides information about the di‐
rectionality of the input/output relation; if it is positive, then a
regular control loop will work. But if the process gain is negative,
then we must use an inverted loop arrangement (see Chapter 5).
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• If the process gain undergoes drastic change over the typical op‐
erating range (so that control actions of different strength are
needed to bring about comparable change for different input val‐
ues), then the system is harder to control and we may need to
consider gain scheduling (see Chapter 11).

Ideally, we’ll be able to operate our system in the linear region, where
the process output is more or less proportional to the control input
(as indicated in Figure 8-1).

Practical Considerations
The simple description of the measurement process omits several
practical considerations.

• How long should we wait—after making the input change—for
the system to reach its new steady state, so that we can take our
measurement?

• Will the system reach a steady state at all, or will the output keep
growing unless stopped? (The cache hit rate is an example for a
self-regulating process that naturally reaches a steady state. The
opposite is an accumulating process, such as water flowing into a
tank: once the input valve is open, the level in the tank will con‐
tinue to increase.)

• How repeatable are the measurements? If we run the same ex‐
periment multiple times, how much difference is there in the ob‐
served outputs? (This is a measure for the amount of noise in the
system.)

• If we perform the experiment with input values increasing from
data point to data point, and then run it again with input values
decreasing, do we find the same results? If not, this is a sign of
hysteresis in the plant.

• Will we even be able to perform extensive experimentation? On
production systems, it may not be possible to change the control
input in a random fashion.

We can see that, in many cases, circumstances are such that we will
have to make do with very small data sets indeed—possibly consisting
of just a handful of points. (In Chapter 14, we will discuss a system
where each data point requires a full day before a measurement can
be taken.)
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Nevertheless, we must be sure to obtain the two crucial bits of infor‐
mation about the process: the sign of the process gain and an approx‐
imate estimate for its magnitude. Without those bits of knowledge, we
can’t proceed.

Dynamic Response to a Step Input:
The Process Reaction Curve
To measure the dynamic response, all we really have to do is switch
the system on and see what happens! The system should be at rest
initially (with zero input). We then apply a sudden input change and
record the development of the output value over time. To obtain a
good signal-to-noise ratio, the input step should be large—and we
should probably repeat the whole process a few times with different
input amplitudes. (Remember that this is done on the plant alone,
without feedback and without a controller.)

It is possible in theory to extract all information about the transfer
function from the step response, but in practice we are usually most
interested in just a few essential parameters. For us, the following three
are the most important (compare Figure 8-2).
Process gain K:

This is the ratio between the value of the applied input signal and
the value of the final, steady-state process output after all transi‐
ents have disappeared. If the process is in the proportional range,
then the process gain will be independent of the input value (thus,
an input signal that is twice as large will lead to an output that it
also twice as large).

Time constant T:
The time it takes for the process to settle to a new steady state after
experiencing a disturbance. The time constant is usually defined
as the time it takes the process to reach about two thirds (or 1 –
exp(–1) ≈ 0.63) of its final value. (The process output approaches
the steady state asymptotically, so in principle the time required
to reach 100 percent of the final value is infinite.)

Dead time τ:
Some processes exhibit a measurable delay until an input change
begins to affect the output. In physical systems, such delays are
usually due to transport phenomena (like liquid flowing through
a pipe, or heat through a conductor, before reaching a sensor).
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Some important tuning methods are based on those parameters alone
(see Chapter 9).

Practical Aspects
Similar considerations apply in the case of experiments to determine
the dynamic response as when attempting to obtain the static process
characteristic, as discussed previously. In particular, we must be able
to apply a step input in a controlled fashion and then prevent any
further changes in input until the system has reached its steady state.
In the case of accumulating processes that do not settle to a steady
state, we must decide how long we can run them before exceeding the
system’s buffering capacity.

The primary reason for running experiments of this kind is to obtain
enough information for controller tuning. In Chapter 9, we will discuss
the Ziegler–Nichols tuning method, which attempts to make do with
only minimal process knowledge.

Process Models
We can also attempt to formulate an analytical model for the transfer
function and then “fit” it to the data obtained from the step-input
experiment (also known as a “bump test”). In the absence of knowl‐
edge about the process internals, we will choose models that are both
simple and convenient and also do a reasonable job of replicating the
observed behavior. These models tend to be parameterized by the same
three basic quantities already introduced: process gain K, time con‐
stant T, and delay τ. Such models are, of course, only phenomenolog‐
ical; their predictions need to be taken with a grain of salt, since they
are not justified by any theoretical arguments. (If we have knowledge
about the process internals, then we should of course take it into ac‐
count when formulating a model.) Examples of some of the most fre‐
quently encountered behaviors are discussed next.

Self-Regulating Process
This is the easiest case: in response to a step-like input, the system
simply approaches the steady state, possibly after a delay, but without
overshoot or oscillations (see Figure 8-2). Because they eventually set‐
tle to a steady state, such processes are called self-regulating.
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1. To find the step response, multiply the transfer function H(s) by the frequency repre‐
sentation of the unit step, which is 1/s, and then transform the resulting expression
back into the time domain. See Chapter 20 for a worked example.

Figure 8-2. Typical process reaction curve (plant signature) for a self-
regulating process.

One can obtain a rough estimate for the three parameters by using the
geometric construction shown in Figure 8-2, where a tangent is drawn
through the inflection point (the point with greatest slope) of the pro‐
cess reaction curve. The intersections of this tangent line with y = 0
and y = 0.63 are then used to determine the two time scales τ and T.
The process gain K is found from the value of the process output in
the long-time limit (divided by the amplitude of the input step
change).

Alternatively, one can estimate the parameters by fitting an appropri‐
ate model. The following model (in the time domain) is often used to
describe the step response for this type of process (see Figure 8-3):

f 1 t =
K 1−e− t−τ /T for t > τ
0 otherwise

where τ is the dead time and T is the time constant. This model is
chosen mainly because it has a particularly simple transfer function in
the frequency domain:1

H1 s = K
1+ sT e−sτ
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One problem with this model is that the slope of f1(t) does not vanish
as t → τ. So instead we can use the following, more complex model for
the step response that displays a little “foot” for small t (see Figure 8-3):

f 2 t =
K 1− 1+ t −τ

T e− t−τ /T for t > τ

0 otherwise

Although it is more complex in the time domain, in the frequency
domain this model is still fairly simple:

H2 s = K
1+ sT 2 e−sτ

Figure 8-3 shows the step response for both models. At first it may
appear as if the two models are really rather different, but by changing
the parameters T and τ the two models can be made to look quite
similar. The figure shows both f1(t) and f2(t) with the parameter values
T = 1 and τ = 2, as well as the simple model f1(t) but with parameters
T = 1.67 and τ = 2.53 (indicated as f1*(t) in the figure). With this choice
of values, the simple model f1(t) begins to look very much like the more
complex model f2(t), except for a short time at the beginning.

Figure 8-3. Different theoretical models for the process reaction curve
of a self-regulating process. Seemingly different analytical models can
lead to similar curves if the parameters are chosen appropriately.
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We should take two things away from this exercise. Unless we have
good reasons to choose a more complicated model, we might as well
stay with a simple one, since it is (within experimental accuracy) likely
to be almost as good a description of the process as a more complex
one. Furthermore, we should not put too much weight on the “fitted”
parameter values obtained in this way, since a seemingly small change
in model can lead to rather significant changes in parameter values.

Accumulating Process
For integrating or accumulating processes, the step-input response
does not settle to a steady state; instead, it continues to increase. This
type of process primarily describes queueing situations and other sce‐
narios where incoming items “pile up” until they are being handled.
The models from the previous section are obviously not suitable, so a
different model is needed (see Figure 8-4).

Figure 8-4. Typical process reaction curve (plant signature) for an ac‐
cumulating process. Without control, the process output continues to
grow with time.

We can again formulate a model that uses three parameters—namely,
the velocity gain or integrating gain V, the time constant T, and the
delay τ. Time constant and delay are familiar from before, but the
velocity gain V must not be confused with the static gain K. The ve‐
locity gain V is a measure of the final growth in output, and we can
obtain it from the slope of the asymptote (as shown in Figure 8-4).
Accordingly, its dimension is process output over time. (In contrast,
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the gain K is a measure of the final process output itself and has the
same dimension as the output signal.)

f 1 t =
V t −τ −T 1−e− t−τ /T if t > τ
0 otherwise

In the frequency domain, this model has the form

H1 s = V
s 1+ sT

e−sτ

The most important feature of accumulating processes is, of course,
the asymptotic growth in process output. Hence we can often neglect
the internal dynamics, which are determined by T. This leads to a
simplified model (see Figure 8-5) with the following step response in
the time domain:

f 2 t =
V t −τ if t > τ
0 otherwise

Figure 8-5. A simplified process model for accumulating processes, ne‐
glecting the plant’s internal dynamics.
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The model itself has the following transfer function in the frequency
domain:

H2 s = V
s e−sτ

The delay τ is the time after the step input at which the process output
first becomes nonzero. (Of course, the delay may be zero.) The velocity
gain V must be determined from the slope of the curve, as shown in
the figure.

Self-Regulating Process with Oscillation
Many mechanical or electrical devices exhibit a behavior that is more
complicated than the ones just discussed. Such systems do not simply
approach a new steady state value in response to an external disturb‐
ance but rather exhibit damped oscillations. In other words, in re‐
sponse to a step input, they overshoot the final value initially and then
continue to oscillate around it for some time (see Figure 8-6). Think
of a mass on a spring whose free end is suddenly moved to a different
position: unless its motion is restricted (by being submerged in honey
or otherwise damped), the mass will not just creep to its new position;
it will begin to oscillate.

Figure 8-6. Process reaction curve for a self-regulating process with os‐
cillations.
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2. The details are discussed in every book on control theory. See Appendix D for some
suggestions.

A common step-response model exhibiting oscillations is

f t = K 1−e−ζ ω0t ζ
ω0

ω sin ωt + cos ωt

with the frequency domain representation

  

Here ω0 is the natural frequency of the system, ζ is the damping factor
(controlling how quickly the amplitude of the oscillations diminishes),
and ω = ω0 1−ζ2 is the frequency of the damped oscillations.

Although extremely common among mechanical and electrical devi‐
ces, this process model is rare in computer systems or industrial pro‐
cesses.2

Non-Minimum Phase System
Systems with this ungainly name have the perverse characteristic that
their initial response to a control input is in the opposite direction
from the input! (See Figure 8-7.)

Figure 8-7. Process reaction curve for a non-minimum-phase system.
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3. The details are far beyond the scope of this book. Some accessible information can be
found in The Art of Control Engineering by K. Dutton, et al. (1997).

This is not as far-fetched as it may sound. For instance, think of a
compute server, where the input is the number of active CPU instances
and the output is the average query response time. If the process of
activating additional CPUs takes cycles away from the already active
CPUs, then the query response time will suffer while those new CPUs
are being activated. More generally, this kind of behavior can occur
whenever the system incorporates two distinct processes (with differ‐
ent time constants) that move the output in opposite directions. Sys‐
tems exhibiting this kind of inverse response are difficult to control
and require special techniques.

Other Methods of System Identification
The appeal of step input methods is their simplicity. For situations
where we have a need for higher accuracy (and where we have addi‐
tional understanding of the system dynamics), there are other, more
accurate, methods. For example, rather than applying a step input, we
can (at least in principle) apply a sinusoidal input signal. If the system
under investigation is, in fact, linear, then its output to such an input
will also have the shape of a sine wave with the same frequency but
perhaps with a different amplitude and phase. We would therefore
apply a sine input with a given frequency, wait until all transient be‐
havior has died away, and then compare the amplitude and phase of
the input and the output. This process is repeated for a variety of (in‐
put) frequencies and then plotted in a Bode plot (see Chapter 25).

This method has great theoretical appeal but can be difficult to apply
outside the electronics lab, mostly because it is time consuming. For
each of the (many) frequencies that need to be tried, one must wait
until all transients have disappeared before making a measurement.
This does not matter much if transients disappear in seconds, but if
the typical time scale of the process is measured in minutes or hours
then the process will clearly become very tedious. It may also not be
feasible to generate a sinusoidal input signal for a real-world process.

Still another set of methods is based on correlation functions. An input
signal is applied, and the correlation function between the input signal
and the output signal is calculated. From this information, the system’s
transfer function can be calculated.3 
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1. Some studies have found that over 95 percent of industrially installed controllers are
of the PID type—and that 80 percent of them function poorly, often because of im‐
proper tuning.

CHAPTER 9

PID Tuning

Although the functional form of a PID controller is fixed, the gain
parameters kp, ki, and kd are initially undetermined. To obtain a con‐
crete implementation, we must select values for these parameters. At
the same time, we are free to choose values that will lead to the most
desirable behavior, given the situation and our objectives.

Finding appropriate values for the controller gains (“tuning” the con‐
troller) can be a frustrating exercise:1 with two (for a PI controller) or
even three (for a PID controller) parameters, the number of possible
combinations to try out is very large. Moreover, it is often difficult to
predict intuitively what effect an increase or decrease of any one of the
parameters will have on the performance of the entire feedback loop.
Some sort of guidance is therefore highly desirable.

If a good analytical model of the process is available, then root locus
techniques (Chapter 24) can be extremely helpful. But if no analytical
expression for the transfer function is known, then we must resort to
measuring the dynamic response of the system and base our tuning
strategy on the experimental results. The Ziegler–Nichols rules are a
classic set of heuristics that require only a little information about the
process. We can go a step further and first “fit” a phenomenological
transfer function model to the experimental data (Chapter 8). That
model is then used to derive suitable values for the controller gains
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analytically. Methods taking this approach include the Cohen–Coon
and the modern AMIGO methods.

Tuning Objectives
The first goal of controller tuning is stability—unless we can be sure
that the system won’t blow up, nothing else matters much. Once we
have established stability boundaries for the parameters, we can at‐
tempt to find the best values within those boundaries in order to ach‐
ieve the desired performance of the overall, closed-loop system.

Control systems can be optimized for different behaviors depending
on the specific situation. Generally, this involves making typical en‐
gineering trade-offs between different desirable properties: fast sys‐
tems are more susceptible to noise and oscillatory behavior; systems
that are sluggish may provide better steady-state accuracy and robust‐
ness.

The most important questions for the performance of the overall,
closed-loop system are as follows.

1. Is a non-vanishing tracking error in the steady state acceptable? For
the overall system, a persistent error in the steady state is usually
not acceptable (suggesting the use of an integral term in the con‐
troller). However, a complex control system may contain subsys‐
tems for which quick responses are more important than tracking
accuracy. (Integral terms tend to slow the response down.)

2. Is oscillatory behavior acceptable, and how quickly do the oscilla‐
tions decay? Oscillatory behavior is often undesirable by itself (just
imagine a car’s cruise-control system subjecting the passengers to
such an experience). Furthermore, oscillatory systems necessarily
overshoot the final settling value initially, which may be prohibited
because it would violate some external constraint. That being said,
oscillatory systems respond faster than overdamped systems.

3. How quickly does the system have to respond to input changes? The
response time is determined by the duration of one period (for
oscillatory systems) or by the time until the system reaches about
two-thirds of its new steady-state value (for non-oscillatory sys‐
tems). The system cannot respond faster than its dominant time
scale.
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4. Must the system be robust to noise? Noise is a high-frequency dis‐
turbance. To suppress its influence, the system needs to be rela‐
tively sluggish. This will often rule out derivative control, but it
also requires longer response times overall. Systems that are ro‐
bust to noise respond more slowly.

Specific performance requirements can be expressed in terms of var‐
ious properties of the step response of the closed-loop system. For
instance, we may require that the closed-loop system must have a “rise
time” tr of less than 2.5 seconds to ensure sufficiently speedy response.
(See Figure 9-1; the “settling time” is the time until the amplitude of
the oscillations has fallen to less than 5 percent of the steady state.)

In addition to the customary requirements just enumerated, further
questions may arise from time to time. For instance, if very high
tracking accuracy is required, then a nested control loop (see Chap‐
ter 11) may be a good idea.

Figure 9-1. The step response of an oscillatory system together with
various quantities that can be used to describe its behavior.

All the standard tuning “rules” (such as the Ziegler–Nichols and other
methods discussed later in this chapter) make implicit choices about
the desired accuracy and response time. These choices are intended
to lead to acceptable performance for most practical applications, but
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they might well require augmentation on a case-by-case basis to deal
with special situations.

General Effect of Changes
to Controller Parameters
We can make some general statements about the typical effects that
changes to the controller gains have on closed-loop performance.
These observations can be useful when making manual adjustments
to the values obtained from one of the systematic tuning methods
described later in this chapter.

In general, increasing the controller gains leads to a speedier response
but also tends to make the system less stable. This is not true for the
derivative term: increasing the derivative gain leads to both greater
speed and greater stability, provided that the signal is sufficiently free
of noise. A nonzero integral gain is usually necessary to avoid a steady-
state error (proportional droop, Chapter 4).

For a controller of the form

K s = kp +
ki

s +kds

we can summarize the general rules as follows:

• Increasing kp:
— increases speed
— decreases stability
— enhances noise

• Increasing ki:
— decreases speed
— decreases stability
— reduces noise
— eliminates steady-state errors more quickly
— increases the tendency to oscillate

• Increasing kd:
— increases speed
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2. This section describes the step-response variant of the Ziegler–Nichols method; there
is also the so-called frequency-response variant. When using the frequency technique,
integral and derivative controls are disabled and then the controller gain is increased
“until the system begins to exhibit sustained, stable oscillations.” The controller gain
values are then expressed in terms of the frequency and gain of this oscillation. Al‐
though important for electrical devices, it is hard to see how this method can be applied
to general processes.

— increases stability
— strongly enhances noise

These observations about the effects of changing the controller gains
are often true, but not always. There are plants or processes that show
different behavior—for example, one can find “conditionally stable”
processes that become more stable when the proportional gain is in‐
creased in a closed-loop configuration.

Ziegler–Nichols Tuning
The Ziegler–Nichols tuning rules2 for PID controllers are a set of sim‐
ple heuristics intended to give adequate performance in a wide variety
of situations. An essential aspect of Ziegler–Nichols tuning is that no
knowledge of the plant’s transfer function is required: the rules are
expressed entirely in terms the plant’s step-input response.

The Ziegler–Nichols rules are primarily intended for self-regulating
processes, which eventually reach a steady state in response to a dis‐
turbance (Chapter 8). The method is similar to the one described in
Chapter 8 to measure the dynamic response. Initially, the system is at
rest, and then the response to a sudden setpoint change (in an open-
loop configuration and without a controller) is observed. A tangent is
fitted to the inflection point of the response curve (the point of greatest
slope), and the intersection of the tangent line with the coordinate axes
yields estimates for two parameters: τ and λ (see Figure 9-2).

Once τ and λ are known, numerical values for the parameters in a PID
controller can be found from the formulas included in Figure 9-2.
Notice that Ziegler–Nichols rules are usually quoted in a way that as‐
sumes the controller K(s) is of the form

K s = k 1+ 1
sT i

+ sTd

Ziegler–Nichols Tuning | 95



For controllers in the form K(s) = kp + ki/s + kds, it is necessary to use
the following conversion formula:

kp = k ki = k
T i

kd = kTd

The primary appeal of the Ziegler–Nichols method is its simplicity.
The formulas for the controller gains are elementary, and the experi‐
mental procedure is simple and relatively fast. The reason is that it
does not require the experiment to continue until the plant has reached
its steady state—it is sufficient to wait until the curve exhibits an in‐
flection point. However, the results will rarely be optimal, though they
often turn out to be “good enough” in practice. Other times, they
merely provide a starting point.

Figure 9-2. The Ziegler–Nichols tuning method.

Semi-Analytical Tuning Methods
The Ziegler–Nichols rules are pure heuristics that were developed
largely through empirical observations on real systems but without
theoretical justification. A more analytical approach, which also uti‐
lizes more process information, involves first fitting a model to the
step response and then moving the poles of the resulting transfer
function to the desired locations (see Chapter 23). The resulting ex‐
pression is then solved for the controller gains in terms of the model
parameters. Because the models used for this purpose are sufficiently
simple (in essence, they are the models we encountered in Chapter 8),
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3. The formulas given here follow the presentation of Advanced PID Control by Karl J.
Ångström and Tore Hägglund (2005).

one can express the result as closed formulas that require only “plug‐
ging in” of the experimental parameters.

Table 9-1 gives the results for two such methods—the classical Cohen–
Coon method and the more modern AMIGO method.3 Both methods
employ the same model introduced in Chapter 8 to describe nono‐
scillatory self-regulating processes:

F s = K
1+ sT e−sτ

Table 9-1. Cohen–Coon and AMIGO tuning formulas.

The AMIGO method also has a variant for accumulating processes, as
described by the following model (also familiar from Chapter 8):

F s = V
s e−sτ

We must obtain values for K (or V), T, and τ from comparison with a
step-response experiment as described earlier. The Cohen–Coon
method uses the following dimensionless combinations of T and τ:

θ = τ
τ +T
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This quantity is sometimes known as the “controllability ratio.” For
processes with a delay that is large compared to the process-internal
time constant, θ approaches 1. Such processes are harder to control
than processes with small θ.

Practical Aspects
The impressive appearance of the formulas in Table 9-1 should not
obscure the fundamental limits of this approach. First of all, generic
formulas cannot take problem-specific requirements into account.
They were derived to achieve specific closed-loop performance char‐
acteristics, which may or may not provide the best balance of speed
and stability for a particular application.

More importantly, these methods silently assume that the various pa‐
rameters (K, V, T, and τ) can be observed with satisfactory accuracy
(to within 1 percent for Cohen–Coon and AMIGO!). More often than
not, this assumption is not justified in practice. Besides the obvious
culprits (imperfect experimental setups, variations between experi‐
mental runs, and noise in the data), there is a more fundamental prob‐
lem lurking here: the simple-lag-with-delay model underlying all these
methods may not be particularly suitable for a given process. We saw
in Chapter 8 that different models may fit the same data comparably
well yet lead to quite different values for the parameters.

A particular concern is the “delay” parameter τ, since none of the
methods give meaningful results if the observed delay vanishes. For
industrial processes that have a lot of “inertia,” it is reasonable to expect
that all responses are gradual and exhibit an apparent delay (as in
Figure 9-2), but for other types of system the importance attached to
τ seems overstated.

The practical advice is that, when given a set of experimental obser‐
vations, try to make the best parameter estimates “in the spirit” of the
methods described. Because the three methods make slightly different
assumptions and attempt to optimize performance in slightly different
ways, using all three to calculate controller gains will provide a range
of numerical values over which one can expect reasonable perfor‐
mance of the closed-loop system. (In this context it is noteworthy that
the Cohen–Coon method results are similar to those of the Ziegler–
Nichols method for small θ.)

98 | Chapter 9: PID Tuning



A Closer Look at Controller Tuning Formulas
Tuning methods such as the Ziegler–Nichols method and its relatives
were developed using pole-placement methods (Chapter 23), primar‐
ily to describe industrial processes. It is interesting to take a closer,
deconstructive look at the results in order to understand what’s going
on—in particular with an eye to situations where the original assump‐
tions are not valid.

If we plug the results of any one of the three methods presented here
into the transfer function for the PID controller, we find that we can
always write it in the following form (but do not confuse the control‐
ler’s transfer function K(s) with the process gain K):

K s = C α+ β
τs +γτs

with numerical coefficients α, β, and γ. Only the numerical values of
the coefficients differ from method to method. Typically they fall into
the following ranges:

α = 0.3, . . . ,1.2 β = 0.25, . . . ,1.0 γ = 0.4, . . . ,0.5

For the Cohen–Coon and AMIGO methods, the factor C equals T
Kτ .

For the Ziegler–Nichols method, the factor C equals 1/λ, where λ is
the intersection of the tangent with the vertical axis. But since the slope
of the tangent is K/T and since the tangent passes through 0 at τ, we
can write 1

λ = T
Kτ  as in the other two methods. Therefore, the factor C

is always C = T
Kτ , even for the Ziegler–Nichols method.

Finally, the process gain K is the ratio of the change in process output
Δy that results from a change in control input Δu:

K = Δy
Δu

Pulling all the pieces together, we can write the controller’s transfer
function as

K s = T
τ α+ β

τs +γτs Δu
Δy
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This result makes imminent sense. The rightmost factor Δu/Δy cap‐
tures the static behavior of the plant: how much the input u needs to
change in order to bring about a desired change in output y. When
acting on a tracking error e, this factor will yield the change in input
required to bring about a static change in output that equals e in mag‐
nitude.

The rest of the transfer function consists of adjustments—to the size
of the control action—that take the system’s dynamic, time-dependent
behavior into account. The leftmost factor T/τ measures to what extent
the dynamics are dominated by lags or delays. Here it is helpful to
adopt a broader notion of T and τ than “intersections on a graph.”
Namely, the “delay” τ is the time duration until a change in input first
becomes visible in the output. The “time constant” T is the time it takes
for a change to fully take effect. The factor T/τ informs us that a slug‐
gish system requires stronger actions: if it takes twice as long for a
control action to fully take effect, then we must apply twice as large a
correction to achieve the same effect in the same time.

We can say this differently: when acting on an error e, the term Δu
Δy e

yields the control action u required to bring about a change in process
output that would cancel e—provided the plant responds completely
within the next time step. But since the plant response is stretched over
a duration T, the control action needs to be increased by the same
factor in order to bring about an error-canceling response in the next
time step.

Conversely, if the delay doubles before an input change is visible in the
output, then we must apply only half the correction because we will
be applying it for twice as long (before the effect becomes visible).

Finally, the central term in brackets contains adjustments that are spe‐
cific to each term in the PID controller. We find that the integral term
is reduced by the apparent “delay” τ, which makes sense when one
considers that the cumulative error has a tendency to build up during
the time that a tracking error persists. 
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CHAPTER 10

Implementation Issues

Implementing a feedback loop based on a PID controller involves
some low-level choices in addition to the overall concerns about sta‐
bility and performance.

Actuator Saturation and Integrator Windup
In principle, there is no limit on the magnitude of the controller’s out‐
put: when the controller gain is sufficiently large, the controller output
u can become arbitrarily large. But it’s a whole different question
whether the downstream system (the “plant”) will be able to follow this
signal. It may either not have enough “power” to respond to an arbi‐
trarily large input, or we may run into an even more fundamental
limitation.

Think of a heated room. Given a high enough setting on the dial, the
desired heat output from the central heating system can be very large—
quite possibly larger than the amount of heat the heating system can
actually produce. But even more dramatic is the opposite scenario in
which we select a desired temperature that is lower than the current
room temperature. In this case, the best the controller can do is to
switch the heat off—there is no way for it to actively lower the tem‐
perature in the room (unless it is coupled to an air conditioning unit).

Such limitations always exist. In the case of a pool of compute servers,
the maximum number of servers is limited: once they are all online,
further demands from the controller will have no effect. At the other
extreme, the number of active servers can never fall below zero. And
so on.
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In classical control engineering, the system that translates the con‐
troller output to an actual physical action is called the actuator (such
as the motor that drives a valve). When an actuator is fully engaged
(that is, either fully open or completely closed), it is said to be satura‐
ted. Hence the problem of a controlled system being unable to follow
the controller output is known as actuator saturation.

Actuator saturation is something to be aware of. It places fundamental
limitations on the performance of the entire control system. These
limitations will not show up in an analysis of the transfer function: the
transfer function assumes that all components are linear, and satura‐
tion effects are profoundly nonlinear. Instead, one must estimate the
magnitude of the largest expected control signals separately and eval‐
uate whether the actuator will be capable of following them. In simu‐
lations, too, one must be sure to model accurately the system’s real-
world limitations.

During production, the control system should rarely reach a saturated
state (and it is probably a good idea to trigger an alert when it does).
However, it is not safe to assume that “it won’t happen”—because it
will, and more often than one might suppose.

Preventing Integrator Windup
Actuator saturation can have a peculiar effect when it occurs in a con‐
trol loop involving an integral controller. When the actuator saturates,
an increased control signal no longer results in a correspondingly
larger corrective action. Because the actuator is unable to pass the
appropriate values to the plant, tracking errors will not be corrected
and will therefore persist. The integrator will add them up and may
reach a very large value. This will pose a problem when the plant has
“caught up” with its input and the error changes sign: it will now take
a long time before the integrator has “unwound” itself and can begin
tracking the error again.

To prevent this kind of effect, we simply need to stop adding to the
integral term when the actuator saturates. (This is known as “condi‐
tional integration” or “integrator clamping.”) Like the actuator satura‐
tion that causes it, integrator windup should not happen during pro‐
duction, but it occurs often enough that mechanisms (such as clamp‐
ing) must be in place to prevent its effects.
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Setpoint Changes and Integrator Preloading
The opposite problem occurs when we first switch the system on or
when we make large setpoint changes. Such sudden changes can easily
overload (saturate) the actuators. In such cases, we may want to pre‐
load the integral term in the controller with an appropriate value so
that the system can respond smoothly to the setpoint change. (This is
known as bumpless transfer in control theory lingo.)

As an example, consider the server pool described in Chapter 5. The
entire system is initially offline, and we are about to bring it up. We
may know that we will need approximately 10 active server instances.
(Ultimately, we may need 8 or we may need 12, but we know it’s in that
vicinity.) We also know the value of the coefficient ki of the integral
term in the controller. In the steady state, the tracking error e will be
zero and so the contribution from the proportional term kp e will van‐
ish. Therefore, the entire control output u will be due to the integral
term ki I. Since we know that u should be approximately 10, it follows
that we should preload the integral term I to 10/ki. 

Smoothing the Derivative Term
Whereas the integral term has a tendency to smooth out noise, the
derivative term has a tendency to amplify it. That’s inevitable: the de‐
rivative term responds to change in its input and noise consists of
nothing but rapid change. However, we don’t want to base control
actions on random noise but on the overall trend in the tracking error.
So if we want to make use of the derivative term in a noisy system, we
must get rid of the noise—in other words, we need to smooth or filter
it.

Most often, we will calculate the derivative by a finite-difference ap‐
proximation. In this approximation, the value of the derivative at time
step t is

Dt = de t
dt ≈

et −et−1

δt

where et is the tracking error at time step t and δt is the length of the
time interval between successive steps.
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In a discrete-time implementation, recursive filters are a convenient
way to achieve a smoothing effect. If we apply a first-order recursive
filter (equivalent to “exponential smoothing”) to the derivative term,
the result is the following formula for the smoothed discrete-time ap‐
proximation to the derivative Dt  at time step t:

Dt = α
et −et−1

δt + 1−α Dt−1 α = 0, . . . , 1

The parameter α controls the amount of smoothing: the smaller α is,
the more strongly is high-frequency noise suppressed.

The parameter α introduces a further degree of freedom into the con‐
troller (in addition to the controller gains kp, ki, and kd), which needs
to be configured to obtain optimal performance. This is not easy:
stronger smoothing will allow a greater derivative gain kd but will also
introduce a greater lag (in effect, slowing the controller input down),
thus counteracting the usual reason that made us consider derivative
action in the first place. Nevertheless, a smoothed derivative term can
improve performance even in noisy situations (see Chapter 16 for an
example).

Finally, it makes no difference whether we smooth the error signal
before calculating the derivative (in its discrete-time approximation)
or instead apply the filter to the result (as was done in the preceding
formula). When using a filter like the one employed here, the results
are identical (as a little algebra will show).

Choosing a Sampling Interval
How often should control actions be calculated and applied? In an
analog control system, whether built from pipes and valves or using
electronic circuitry, control is applied continuously: the control system
operates in real time, just as the plant does. But when using a digital
controller, a choice needs to be made regarding the duration of the
sampling interval (the length of time between successive control ac‐
tions).

When controlling fast-moving processes in the physical world, com‐
putational speed may be a limiting factor, but most enterprise systems
evolve slowly enough (on a scale of minutes or longer) that computa‐
tional power is not a constraint. In many cases we find that the process
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itself imposes a limit on the update frequency, as when a downstream
supplier or vendor accepts new prices or orders only once a day.

If we are free to determine the length of the sampling interval, then
there are two guiding principles:
Faster is better...

In general, it is better to make many small control actions quickly
than to make few, large ones. In particular, it is beneficial to re‐
spond to any deviation from the desired behavior before it has a
chance to become large. Doing so not only makes it easier to keep
a process under control, but it also prevents large deviations from
affecting downstream operations.

... unless it’s redundant.
On the other hand, there is not much benefit in manipulating a
process much faster than the process can respond.

An additional problem can occur when using derivative control. If the
derivative is calculated by finite differencing, then a very short interval
will lead to round-off errors, whereas an interval that is too long will
result in finite-differencing errors.

Ultimately, the sampling interval should be shorter (by a factor of at
least 5 to 10) than the fastest process we want to control. If the con‐
trolled process or the environment to which the process must respond
changes on the time scale of minutes, then we should be prepared to
apply control actions every few seconds; if the process changes only
once or twice a day, then applying a control action every few minutes
will be sufficient.

(A separate concern is that the continuous-time theory, as sketched in
Part IV, is valid without modifications only if the sampling interval is
significantly shorter than the plant’s time constant. If this condition is
not fulfilled, then the discreteness of the time evolution must be taken
into account explicitly in the theoretical treatment. See Chapter 26.)

Variants of the PID Controller
In Chapter 4 we saw that a PID controller consists of three terms, which
in the time domain can be written as follows:

K e = kpe t +ki∫
0

t
e τ dτ +kd

de t
dt
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Here e(t) is the tracking error, e(t) = r(t) – y(t). A couple of variants of
this basic idea exist, which can be useful in certain situations.

Incremental Form
It is sometimes useful simply to calculate the change in the control
signal and send it to the controlled system as an incremental update.
In the control theory literature, this is called the “velocity form” or
“velocity algorithm” of the PID controller.

For a digital PID controller, the incremental (or velocity) form is
straightforward. We find that the update at time step t in the control
signal Δut is

Δut = kp et −et−1 +kiet δt +kd
et −2et−1 +et−2

δt

When the derivative term is missing (kd = 0), the equation for the
incremental PID controller takes on an especially simple form.

The incremental form of the controller is the natural choice when the
controlled system itself responds to changes in its control input. For
instance, we can imagine a data center management tool that responds
to commands such as “Spin up five more servers” or “Shut down seven
servers” instead of maintaining a specific number of servers.

In a similar spirit, during the analysis phase it is sometimes more nat‐
ural to think about the changes that should be made to the system in
response to an error rather than about its state. But if the plant expects
the actual desired state as its input (such as: “Maintain 35 server in‐
stances online”), then it will be necessary to insert an aggregator (or
integrator) between the incremental controller and the controlled
plant. This component will add up all the various control changes Δu
to arrive at (and maintain) the currently desired control input u.
(Combining the aggregator with the incremental controller leads us
back to the standard PID controller that we started with.)

Finally, because the incremental controller does not maintain an in‐
tegral term, no special provisions are required to avoid actuator sat‐
uration or to achieve bumpless transfers. Both of these phenomena
arise from a lack of synchronization between the actual state of the
controlled system and the internal state of the controller (as main‐
tained by the integral term). Since an incremental controller does not
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maintain an internal state itself, there is only a single source of memory
in the system (namely, in the aggregator or plant); this naturally pre‐
cludes any possibilities of disagreement. (The control strategy de‐
scribed in Chapter 18 shows this quite clearly. In this case, the aggre‐
gator takes the saturation constraints of the controlled system into
account when updating its internal state—without the controller need‐
ing to know about it.)

Error Feedback Versus Output Feedback
In general, the controller takes the tracking error as input. There is an
alternative form, however, that (partially) ignores the setpoint and
bases the calculation of the control signal only on the plant output. Its
main purpose is to isolate the plant from sudden setpoint changes.

To motivate this surprising idea, consider a PID controller that in‐
cludes a derivative term to control a system, operating in steady state,
at a setpoint that is held constant. Now suppose we suddenly change
the setpoint to a different value. If the controller is working on the
tracking error r(t) – y(t), then this change has a drastic effect on the
derivative terms: although the plant output y(t) may not change much
from one moment to the next, the setpoint r(t) was changed in a dis‐
continuous fashion. Since the derivative of a discontinuous step is an
impulse of infinite magnitude, it follows that the sudden setpoint
change will lead to a huge signal being sent to the plant, its magnitude
limited only by the actuator’s operating range. This undesirable effect
is known as the “derivative kick” or “setpoint kick.”

Now consider the same controller but operating only on the (negative)
plant output –y(t). Since the setpoint r(t) was held constant (except
for the moment of the setpoint change), the effect of the derivative
controller operating only on y(t) is exactly the same as when it was
operating on the tracking error r(t) – y(t), but without the “derivative
kick.”

To summarize: if the setpoint is held constant except for occasional
steplike changes, then the derivative of the output d

dt − y t  is equal
to the derivative of the tracking error d

dt r t − y t  except for the
infinite impulses that occur when the setpoint r(t) undergoes a step
change. So in this situation, basing the derivative action of a PID con‐
troller on only the output y(t) has the same effect as taking the deriv‐
ative of the entire tracking error r(t) – y(t). Furthermore, taking the
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derivative of the output only also avoids the infinite impulse that re‐
sults from the setpoint changes.

Similar logic can be applied to the proportional term. Only the integral
term must work on the true tracking error. The most general form of
this idea is to assign an arbitrary weight to the setpoint in both the
proportional and derivative terms. With this modification, the full
form of the PID controller becomes

K e = kp a r t − y t +ki∫
0

t
r τ − y τ dτ +kd

d
dt b r t − y t

with 0 ≤ a, b ≤ 1. The parameters a and b can be chosen to achieve the
desired response to setpoint changes. The entire process is known as
“setpoint weighting.”

The General Linear Digital Controller
If we use the finite-difference approximations to the integral and the
derivative, then the output ut at time t of a PID controller in discrete
time can be written as

  

where et = rt – yt. If we plug the definition of et into the expression for
ut and then rearrange terms, we find that ut is a linear combination of
rθ and uθ for all possible times θ = 0, ..., t.

In the case of setpoint weighting, we allowed ourselves greater freedom
by introducing additional coefficients (et = a rt – yt in the proportional
term and et = b rt – yt in the derivative term). Nothing in ut changes
structurally, but some of the coefficients are different. (Setting a = b =
1 brings us back to the standard PID controller.)

Generalizing even further, we have the following formula for the most
general, linear controller in discrete time:

ut = at rt + at–1 rt–1 + ⋯ + a0 r0 + bt yt + bt–1yt–1 + ⋯ + b0y0
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All controllers that we have discussed so far—including the standard
PID version, its setpoint-weighted form, the incremental controller,
and the derivative-filtered one—are merely special cases obtained by
particular choices of the coefficients a0, ..., at and b0, ..., bt. Further
variants can be obtained by choosing different coefficients. 

Nonlinear Controllers
All controllers that we have considered so far were linear, which means
that their output was a linear transformation of their input. Linear
controllers follow a simple theory and reliably exhibit predictable be‐
havior (doubling the input will double the output). Nevertheless, there
are situations where a nonlinear controller design is advisable or even
necessary.

Error-Square and Gap Controllers
Occasionally the need arises for a controller that is more “forgiving”
of small errors than the standard PID controller but at the same time
more “aggressive” if the error becomes large. For example, we may
want to control the fill level in an intermediate buffer. In such a case,
we neither need nor want to maintain the fill level accurately at some
specific value. Instead, it is quite acceptable if the level fluctuates to
some degree—after all, the purpose of having a buffer in the first place
is for it to neutralize small fluctuations in flow. However, if the fluc‐
tuations become too large—threatening either to overflow the buffer
or to let it run empty—then we require drastic action to prevent either
of these outcomes from occurring.

A possible modification of the standard PID controller is to multiply
the output of the controller (or possibly just its proportional term) by
the absolute value of the tracking error; this will have the effect of
enhancing control actions for large errors and suppressing them for
small errors. In other words, we modify the controller response to be

K2 e = e t kpe t +ki∫
0

t
e τ dτ +kd

de t
dt

Because it now contains terms such as |e|e, this form of the controller
is known as an error-square controller (in contrast to the linear error
dependence of the standard PID controller). This is a rather ad hoc
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modification; its primary benefit is how easily it can be added to an
existing PID controller.

Another approach to the same problem is to introduce a dead zone or
“gap” into the controller output. Only if (the absolute value of) the
error exceeds this gap is the control signal different from zero.

Both the error-square form of the controller and introduction of a
dead zone are rather ad hoc modifications. The resulting controllers
are nonlinear, so the linear theory based on transfer functions applies
“by analogy” only.

Simulating Floating-Point Output
By construction, the PID controller produces a floating-point number
as output. It is therefore suitable for controlling plants whose input
can also take on any floating-point value. However, we will often be
dealing with plants or processes that permit only a set of discrete input
values. In a server farm, for instance, we must specify the number of
server instances in whole integers.

The naive approach, of course, is simply to round (or just truncate)
the floating-point output to the nearest integer. This method will work
in general, but it might not yield very good performance owing to the
error introduced by rounding (or truncating). A particular problem
are situations that require a fractional control input in the steady state.
For instance, we may find that precisely 6.4 server instances are re‐
quired to handle the load: 6 are not enough, but if we deploy 7 then
they won’t be fully utilized. Using the simple rounding or truncating
strategy in this case will lead to permanent and frequent switching
between 6 and 7 instances; if random disturbances are present in the
loop, then the switching will be driven primarily by random noise.
(We will encounter this problem in the case studies in Chapter 15 and
Chapter 16.)

Given the integer constraints of the system, it won’t be possible to
generate true fractional control signals. However, one can design a
controller that gives the correct output signals “on average” by letting
the controller switch between the two adjacent values in a controlled
manner. Thus, to achieve an output of 6.4 “on average,” the controller
output must equal 6 for 60 percent of the time and 7 for 40 percent of
the time. For this strategy to make sense, the controller output must
remain relatively stable over somewhat extended periods of time. If
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that condition is fulfilled, then such a “split-time” controller can help
to reduce the amount of random control actions.

Categorical Output
Permissible control inputs can be even more constrained than being
limited to whole integers. For instance, it is conceivable that the al‐
lowed values for the process input are restricted to nonnumeric “lev‐
els” designated only by such categorical labels as “low,” “medium,”
“high,” and “very high.”

These labels convey an ordering but no quantitative information.
Hence the controller does not have enough information about the
process (and its levels) to select a particular level. The only decision
the controller can make is whether the current level should be incre‐
mented (or decremented) in response to the current sign and magni‐
tude of the error.

Because it has only a few, discrete control inputs, such a system will
usually not be able to track a setpoint very accurately; however, it may
still be possible to restrict the process output to some predefined range
of values. We will study an example of such a system in Chapter 18. 
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CHAPTER 11

Common Feedback Architectures

Sometimes a simple feedback loop is not enough. There are situations
that require a combination of control elements, or even extensions
beyond closed-loop feedback control. In this chapter, we will discuss
some commonly occurring problems and their standard solutions.

For reference, the most general form of the basic, “textbook” control
loop is shown in Figure 11-1. In addition to the familiar elements (the
controller K, the plant H, and the optional return filter G), this graph
also shows explicitly how disturbances can be included in a block di‐
agram.

Figure 11-1. The standard feedback loop, including the effect of load
disturbances d and measurement noise n.

Also shown are disturbances entering the control loop. Generally, all
effects that tend to drive the system away from its desired operating
point are considered disturbances. Disturbances arising within the
controlled plant or system are called load disturbances (because they
arise within the “load” that is driven by the controller); disturbances
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that result from imperfections in the sensors used to observe the plant
output are called measurement noise.

In the figure, measurement noise is shown as an external signal n being
added to the plant output. The load disturbance d is modeled as af‐
fecting the plant input u, but in a way that is not observable by us. This
is a modeling idealization; the disturbance might actually arise inside
the plant proper, but capturing this behavior would require us to
model a plant H that itself undergoes changes in time. As long as the
disturbance is not observable, we might as well treat it as a component
of the plant input and treat the plant itself as static.

In physical control systems, load disturbances tend to consist of slow
drifts or sudden, steplike changes in the process characteristic or the
dynamic response. Measurement noise arises from imperfections of
the physical sensor device and is usually a high-frequency phenom‐
enon. For computer systems (which, incidentally, often do not even
have separate “sensors”), it is more useful to distinguish disturbances
primarily by their frequency spectrum: high-frequency, uncorrelated
random components in a signal are called “noise” irrespective of their
origin, and all other drifts and changes are viewed as load disturbances.

Changing Operating Conditions:
Gain Scheduling
Sometimes a control loop needs to be operated under a wide range of
different conditions. Different conditions may call for different be‐
haviors of the controlled system and thus for different values of the
controller’s gain parameters. We can accommodate this possibility by
setting up several different sets of values for the gain parameters and,
at runtime, select the most appropriate set for the current conditions.
This is known as gain scheduling. Ever driven a car that allowed you
to choose between a “sport” and a “comfort” mode? That’s gain sched‐
uling.

The signal that indicates which set of values to use can be anything.
The process input u or output y are common, but it can also be a
completely external signal, such as the time of day. Some possible ap‐
plications include the following:

• Using the process input u to select different modes for high and
low system load.
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• Using the time of day to get the system ready for “rush hour.”
• Using the magnitude of the error to switch the controller to more

aggressive behavior when the error has become large—for in‐
stance when controlling a queue.

The cases just described are straightforward: instead of a single set of
gain parameters, we have a few, distinct such sets. At any given time,
exactly one of them is active and supplies the gain parameters to the
controller. We can generalize this idea and let the gain parameters float
freely (see Figure 11-2) based on the value of an appropriate scheduling
signal. In principle, there are no limitations on the algorithm that cal‐
culates the momentary gain values, but the dynamics of the resulting
system will probably be very complex! (Moreover, a control system
with arbitrarily varying gain parameters is neither time invariant nor
linear, which means that standard control-theoretic methods are in‐
sufficient to analyze it.)

Figure 11-2. The loop architecture for a system with gain scheduling.

Gain Scheduling for Mildly Nonlinear Systems
Gain scheduling can be used for processes that have only mildly non‐
linear process characteristics (see Chapter 8). Recall that when a pro‐
cess is linear, the shape of the dynamic response will be the same re‐
gardless of the magnitude of the input—the only difference will be the
magnitude of the final steady-state value. For processes that contain
nonlinearities, however, the dynamic response may be qualitatively
different for different values of the input variable. If this is the case
then it may be desirable or even necessary to have two (or more) sets
of values for the controller gains, depending on the current operating
point, to ensure satisfactory performance over the entire range of pos‐
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sible inputs. Basically, one of the tuning processes from Chapter 9 is
executed several times with different sizes of the step input. Each ex‐
perimental run leads to a different set of controller gains. In closed-
loop operations, values from the appropriate set are used. 

Large Disturbances: Feedforward
When feedback-controlled systems are subject to large, sudden dis‐
turbances, we can sometimes improve their performance by augment‐
ing the “automatic” control of the feedback loop with a direct feedfor‐
ward control strategy. Feedback works by responding to an error (the
difference between the setpoint and the actual process output). This
works great for small but frequent deviations. But if disturbances are
large and sudden, then waiting for the error to propagate through the
loop may be unsatisfactory and so a more direct corrective action is
needed.

When employing feedforward, we instead “plan ahead” what the pro‐
cess input should be and apply this input directly, bypassing the feed‐
back controller. This makes sense in particular if disturbances can be
detected or even predicted. Scheduled setpoint changes are a good
example of a situation that can be improved through feedforward.
Instead of applying the setpoint change and then waiting for the sys‐
tem to eventually settle to a new equilibrium, we can begin to apply
an appropriate change to the process before the setpoint change takes
place, thus reducing the magnitude of the error that will occur. But
feedforward is applicable to more than just changes in setpoint: one
can also think of predictable load changes, such as rush-hour traffic
patterns. In such situations, feedforward can be helpful to prepare the
system for the increased load. (See Figure 11-3, top.)

That being said, feedforward should be used sparingly. The idea of
calculating the control input ahead of time—and then applying it
without regard to the actual output—runs counter to the very concept
of feedback control. Feedforward can be useful to avoid the undesir‐
able effects of sudden changes, but relying on it too much entails dis‐
carding the benefit of employing feedback control in the first place.
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Figure 11-3. Top: The loop architecture for a system involving a feed‐
forward path f. Bottom: A nested or “cascaded” loop architecture. The
outer loop provides the setpoint for the fast inner loop.

Fast and Slow Dynamics:
Nested or “Cascade” Control
At times, we may need to control a process that has naturally “slow”
dynamics and all of the associated challenges. If we are able in such
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situations to identify a subprocess with significantly faster responses,
then we can improve the performance of the overall system by using
a nested or “cascaded” control architecture; this is shown in
Figure 11-3 (bottom).

We will discuss the problem in terms of the “task server” example
introduced in Chapter 5. The process variable that we ultimately want
to control is the average age of requests in the queue. Yet this quantity
will only respond slowly because it is formed as an average over all
items currently waiting. At the same time, it is necessary to control the
queue length in the short term to prevent it from overflowing the
buffer (this is even more of an issue in systems controlling a queue of
physical items).

The solution is to have two nested control loops, as shown in
Figure 11-3 (bottom). The inner, fast loop monitors the queue length
and adjusts the number of active worker units to maintain the desired
queue length. The outer, slow loop tracks the average age of waiting
items and feeds the desired queue length as setpoint to the inner loop.

Nested control loops are suitable whenever two processes with very
different timescales are involved. An inner loop is used to control the
fast dynamics, thereby allowing for more accurate tracking of the out‐
er, slowly responding signals. (A cascaded control system much like
the one sketched here will be discussed in more detail in the case study
of Chapter 16.)

Systems Involving Delays: The Smith Predictor
In systems subject to delays, no response to a control action is visible
in the process output until the duration τ of the delay has passed. This
makes such systems harder to control than lag-dominated systems,
which at least exhibit an immediate (albeit partial) response. The
Smith predictor (after O. J. M. Smith) is a control strategy intended for
situations involving a pure delay.

We can think of the total dynamic response of a system subject to a
delay as consisting of two parts: the delay (or dead time) of duration
τ itself, during which nothing happens; and the actual dynamic re‐
sponse of the plant, which becomes visible in the process output once
the dead time has passed. The Smith predictor assumes that we know
the magnitude of the delay τ and that we also have a reasonably good
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1. The easiest way to see this is to compare the controller inputs while taking into account
that in both figures the plant output is denoted by y, the model output by v, and the
delayed model output by w. In Figure 11-4 (top), the controller input is clearly r – (v
+ (y – w)); in Figure 11-4 (bottom), it is r – y + (w – v), which is the same.

model for the second part—namely, a device (or subroutine) that can
reproduce the behavior of the actual plant but without the delay.

These elements are combined in a control loop as shown in Figure 11-4
(top). Concentrate first on the part of the loop shown with solid lines.
These parts form a closed feedback loop consisting of the controller
K and the model H0. The feedback loop therefore controls the model
instead of the plant, with the effect that the model output v tracks the
setpoint r.

But the control signal u is also sent to the actual plant H. Because the
model reproduces (at least approximately) the plant’s response to con‐
trol inputs, the result is that the output y of the actual plant also tracks
the setpoint—but subject to the delay τ introduced by the plant.

In practice, no model will ever reproduce the plant’s response perfectly.
Furthermore, the real plant is subject to random disturbances whereas
the model is not. To correct for these differences between the model
and the plant, a second feedback loop is incorporated into the overall
control architecture (shown dashed in Figure 11-4, top). The model
output v is delayed by the appropriate amount (to allow the plant to
“catch up”). Then the delayed model output w is compared to the out‐
put y of the plant itself. The difference eM = y – w, which could be called
the “modeling error,” is then simply added to the return path and fed
back to the controller. This modeling error eM is subject to the full
delay, yet because eM is expected to be relatively small, the effect of the
delay on the performance of the control system is less severe.

There is an alternative way to draw the loop architecture of the Smith
predictor (see Figure 11-4, bottom). Although it may not be obvious,
this system is equivalent to the one shown in Figure 11-4 (top).1 Drawn
in this way, we can see that the Smith predictor consists of two nested
control loops. The inner loop is closed around the controller (instead
of being closed around the plant as in the case of cascade control,
discussed earlier). In particular, we can consider the inner loop, which
comprises the actual controller K and all elements depending on the
model H0, as a regular loop element with a single input and a single
output (as indicated by the dashed box in the figure). With this iden‐
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tification, the Smith predictor becomes a standard control loop but
with a special controller that contains a closed loop internally.

The Smith predictor offers an approach for dealing with systems sub‐
ject to delays but at the cost of increased complexity. The quality of the
results depends, of course, on the quality of the model—in particular,
on the accuracy with which we can determine the length of the delay
τ. Finally, the Smith predictor can only be used with a plant H that is
stable by itself. 
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Figure 11-4. The Smith predictor. Top: The primary feedback loop,
based on the model H0 of the process, is shown with solid lines; the
secondary loop, which compares the model to the actual process out‐
put, is shown dashed. Bottom: An alternative representation of the
Smith predictor. Drawn this way, the Smith predictor is seen as an or‐
dinary feedback loop but with a special type of controller (as indicated
by the dashed box).
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PART III

Case Studies





CHAPTER 12

Exploring Control Systems
Through Simulation

The next several chapters describe—in the form of case studies—a
number of control problems and also show how they can be solved
using feedback mechanisms. The case studies are treated via simula‐
tions; the simulation code is available for download from the book’s
website.

The ability to run simulations of control systems is extremely impor‐
tant for several reasons.

• The behavior of control systems, specifically of feedback loops,
can be unfamiliar and unintuitive. Simulations are a great way to
develop intuition that is required to solve the kind of practical
problems that arise in real-world control systems.

• Extensive experimentation on real production systems is often
infeasible for reasons of availability and cost. Even when possible,
experiments on real systems tend to be time-consuming (the time
scale of many processes is measured in hours or even days); if they
involve physical equipment, they can be outright dangerous.

• Implementing controllers, filters, and other components in a fa‐
miliar programming language can bring abstract concepts such
as “transfer functions” to life. In this way, simulations can help to
make some of the theoretical concepts more concrete.
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• The parts of the simulation outside the controlled system—that is,
the components of the actual control loop proper—will carry over
rather directly from the simulation to a “real” implementation.

Finally, it is unlikely that any control system will be deployed into
production unless it has proven itself in a simulated environment.
Simulation, therefore, is not just a surrogate activity but an indispen‐
sable step in the design and commissioning of a control system.

The Case Studies
In the following chapters, we will discuss a variety of case studies in
detail. I think each case study models an interesting and relevant ap‐
plication. In addition, each case study demonstrates some specific
problem or technique.
Cache hit rate:

How large does a cache have to be to maintain a specific hit rate?
This case study is a straightforward application of many “text‐
book” methods. It demonstrates the use of “event time” (as op‐
posed to “wall-clock time”—see the following section in this chap‐
ter).

Ad delivery:
How should ads be priced to achieve a desired delivery plan? We
will find that this system exhibits discontinuous dynamics, which
makes it susceptible to rapid control oscillations.

Server scaling:
How many server instances do we need to achieve a desired re‐
sponse rate? The problem is that the desired response rate is 100
percent. It is therefore not possible for the actual output to straddle
the setpoint, so we need to develop a modified controller to handle
this requirement.

Waiting queue control:
How many server instances do we need to manage a queue of
pending requests? This example appears similar to the preceding
one, but the introduction of a queue changes the nature of the
problem significantly. We will discuss ways to control a quantity
(such as the queue length) that is not fixed to one specific value
but instead must be allowed to float. This example also demon‐
strates the use of nested (or “cascaded”) control loops and the
benefits of derivative control.
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Cooling fan speed:
How fast must CPU cooling fans spin in order to achieve a desired
CPU temperature? This case study shows how to simulate a phys‐
ical process occurring in real time.

Graphics engine resolution:
What graphics resolution should be used to prevent memory
consumption from exceeding some threshold? In this example,
the control input is a nonnumeric quantity that can assume only
five discrete “levels.” Since PID control is not suitable for such
systems, we show how to approach them using an incremental
on/off controller.

Modeling Time
All processes occur over time, and control theory, in particular, is an
attempt to harness the controlled system’s time evolution. Simulations,
too, are all about advancing the state of the simulated system from one
time step to the next.

Control Time
For phenomena occurring in the physical world (mechanical, electri‐
cal, chemical processes, and so on), “time” is an absolute concept: it
just passes, and things happen according to laws of nature. For com‐
puter systems, things are not as clear because computer systems do
not necessarily “evolve” by themselves according to separate and fixed
laws. A software process waiting for an event does not “evolve” at all
while it waits for an event to occur on the expected port! (Anybody
who has ever had to deal with a “hung” computer will recognize this
phenomenon.) So when designing control systems for computer sys‐
tems, we have a degree of freedom that most control engineers do
not—namely, a choice of time.

This is a consequence of using a digital controller. Classical, analog
control systems were built using physical elements (springs and damp‐
ers, pipes and valves, resistors and capacitors). These control systems
were subject to the same laws of nature as the systems they controlled,
and their action progressed continuously in time. Digital controllers
do not act continuously; they advance only in discrete time steps (al‐
most always using time steps of fixed length, although that is not
strictly required). If the controlled system itself is also digital and
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therefore governed by the rules of its application software, then this
introduces an additional level of freedom.

There are basically two ways that time evolution for computer systems
can be designed: real time or control time.
Real or “wall-clock” time:

The system evolves according to its own dynamics, independently
(asynchronously) from control actions. Control actions will usu‐
ally occur periodically with a fixed time interval between actions.

Control or “event” time:
The system does not evolve between control events, so all time
development is synchronous with control actions. In this case, we
may synchronize control actions with “events” occurring in the
physical world. For instance, we take action if and only if a message
arrives on a port; otherwise, the system does not evolve.

When we are trying to control a process in the physical world, only
the first approach is feasible: the system evolves according to its own
laws, and we must make sure that our control actions keep up with it.
But when developing a control strategy for an event-driven system,
the second approach may be more natural. (In Chapter 13 we will see
an example of “event” time; in Chapter 17 we will see how to connect
simulation parameters with “wall-clock” time.)

Simulation Time
In a simulation, time naturally progresses in discrete steps. Therefore,
the (integer) number of simulation steps is the natural way to tell time.
The problem is how to make contact with the physical world that the
simulation is supposed to describe.

In the following, we will assume that each simulation step has exactly
the same duration when measured in wall-clock time. (This precludes
event-driven situations, where the interval between successive events
is a random quantity.) Each step in the simulation corresponds to a
specific duration in the real world. Hence we need a conversion factor
to translate simulation steps into real-world durations.

In the simulation framework, this conversion factor is implemented
as a variable DT, which is global to the feedback package. This variable
gives the duration (in wall-clock time) of a single simulation step and
must be set before a simulation can be run. (For instance, if you want
to measure time in seconds and if each simulation step is supposed to
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describe 1/100 of a second, then you would set DT = 0.01. If you
measure time in days and take one simulation step per day, then DT =
1.)

The factor DT enters calculations in the simulation framework in two
ways. First, the convenience functions for standard loops (see later in
this chapter) write out simulation results at each step for later analysis,
including both the (integer) number of simulation steps and the wall-
clock time since the beginning of the simulation. (The latter is simply
DT multiplied by the number of simulation steps.) The second way that
DT enters the simulation results is in the calculation of integrals and
derivatives, both of which are approximated by finite differences:

  

where fs = [ f0, f1, f2, ... ] is a sequence holding the values
of f(t) for all simulation steps so far.

It is a separate question how long or short (in wall-clock time) you
should choose the duration of each simulation step to be. In general,
you want each simulation step to be shorter by at least a factor of 5 to
10 than the dominant time scale of the system that you are modeling
(see Chapter 10). This is especially important when simulating systems
described by differential equations, since it ensures that the finite-
difference approximation to the derivatives is reasonably accurate. 

The Simulation Framework
The guiding principles for the design of the present simulation frame‐
work were to make it simple and transparent in order to demonstrate
the algorithms as clearly as possible and to encourage experimenta‐
tion. Little emphasis was placed on elegant implementations or run‐
time efficiency. The code presented is intended as a teaching tool, not
as building material for production software!

In contrast to some other existing simulation frameworks for control
systems, components are not specified by their frequency-domain
transfer functions. Instead, algorithms are developed and implement‐
ed “from scratch” based on behavior in the time domain. This allows
us to consider any behavior, whether or not a frequency-domain
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model is readily available. The purpose is to make it easy to develop
one’s own process models, without necessarily having to be comfort‐
able with frequency-domain methods and Laplace transforms.

Components
All components that can occur in a simulation are subclasses of
Component in package feedback. This base class provides two func‐
tions, which subclasses should override. The work() function takes a
single scalar argument and returns a single scalar return value. This
function encapsulates the dynamic function of the component: it is
called once for each time step. Furthermore, a monitoring() function,
which takes no argument, can be overridden to return an arbitrary
string that represents the component’s internal state. This function is
used by some convenience functions (which we’ll discuss later in this
chapter) and allows a uniform approach to logging. Having uniform
facilities for these purposes will prove convenient at times.

The complete implementation of the Component base class looks like
this:

class Component:
    def work( self, u ):
        return u

    def monitoring( self ):
        # Overload, to print addtl monitoring info to stdout
        return ""

Plants and Systems
All implementation of “plants” or systems that we want to control in
simulations should extend the Component base class and override the
work() function (and the monitoring() function, if needed):

class Plant( Component ):
    def work( self, u ):
        # ... implentation goes here

We will see many examples in the chapters that follow.

Controllers
The feedback package provides an implementation of the standard
PID controller as a subclass of the Component abstraction. Its con‐
structor takes values for the three controller gains (kp, ki, and kd; the
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last one defaults to zero). The work() function increments the integral
term, calculates the derivative term as the difference between the pre‐
vious and the current value of the input, and finally returns the sum
of the contributions from all three terms:

class PidController( Component ):
    def __init__( self, kp, ki, kd=0 ):
        self.kp, self.ki, self.kd = kp, ki, kd
        self.i = 0
        self.d = 0
        self.prev = 0

    def work( self, e ):
        self.i += DT*e
        self.d = ( e - self.prev )/DT
        self.prev = e

        return self.kp*e + self.ki*self.i + self.kd*self.d

Observe that the factor DT enters the calculations twice: in the integral
term and when approximating the derivative by the finite difference
between the previous and the current error value.

A more advanced implementation is provided by the class
AdvController. Compared to the PidController, it has two addi‐
tional features: a “clamp” to prevent integrator windup and a filter for
the derivative term. By default, the derivative term is not smoothed;
however, by supplying a positive value less than 1 for the smoothing
parameter, the contribution from the derivative term is smoothed us‐
ing a simple recursive filter (single exponential smoothing).

The clamping mechanism is intended to prevent integrator windup.
If the controller output exceeds limits specified in the constructor, then
the integral term is not updated in the next time step. The limits should
correspond to the limits of the “actuator” following the controller. (For
instance, if the controller were controlling a heating element, then the
lower boundary would be zero, since it is in general impossible for a
heating element to produce negative heat flow.) This clamping mech‐
anism has been chosen for the simplicity of its implementation—many
other schemes can be conceived.

class AdvController( Component ):
    def __init__( self, kp, ki, kd=0,
                  clamp=(-1e10,1e10), smooth=1 ):
        self.kp, self.ki, self.kd = kp, ki, kd
        self.i = 0
        self.d = 0
        self.prev = 0
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        self.unclamped = True
        self.clamp_lo, self.clamp_hi = clamp

        self.alpha = smooth

    def work( self, e ):
        if self.unclamped:
            self.i += DT*e

        self.d = ( self.alpha*(e - self.prev)/DT +
                   (1.0-self.alpha)*self.d )

        u = self.kp*e + self.ki*self.i + self.kd*self.d

        self.unclamped = ( self.clamp_lo < u < self.clamp_hi )
        self.prev = e

        return u

Actuators and Filters
Various other control elements can be conceived and implemented as
subclasses of Component. The Identity element simply reproduces its
input to its output—it is useful mostly as a default argument to several
of the convenience functions:

class Identity( Component ):
    def work( self, x ): return x

More interesting is the Integrator. It maintains a cumulative sum of
all its inputs and returns its current value:

class Integrator( Component ):
    def __init__( self ):
        self.data = 0

    def work( self, u ):
        self.data += u
        return DT*self.data

Because the Integrator class is supposed to calculate the integral of
its inputs, we need to multiply the cumulative term by the wall-clock
time duration DT of each simulation step.

Finally, we have two smoothing filters. The FixedFilter calculates an
unweighted average over its last n inputs:

class FixedFilter( Component ):
    def __init__( self, n ):
        self.n = n
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        self.data = []

    def work( self, x ):
        self.data.append(x)

        if len(self.data) > self.n:
            self.data.pop(0)

        return float(sum(self.data))/len(self.data)

The RecursiveFilter is an implementation of the simple exponential
smoothing algorithm

st = αxt + (1 – α)st – 1

that mixes the current raw value xt and the previous smoothed value
st–1 to obtain the current smoothed value st:

class RecursiveFilter( Component ):
    def __init__( self, alpha ):
        self.alpha = alpha
        self.y = 0

    def work( self, x ):
        self.y = self.alpha*x + (1-self.alpha)*self.y
        return self.y

Because all these elements adhere to the interface protocol defined by
the Component base class, they can be strung together in order to create
simulations of multi-element loops.

Convenience Functions for Standard Loops
In addition to various standard components, the framework also in‐
cludes convenience functions to describe several standard control loop
arrangements in the feedback package. The functions take instances
of the required components as arguments and then perform a specified
number of simulation steps of the entire control system (or control
loop), writing various quantities to standard output for later analysis.
The purpose of these functions is to reduce the amount of repetitive
“boilerplate” code in actual simulation setups.

The closed_loop() function is the most complete of these conve‐
nience functions. It models a control loop such as the one shown in
Figure 12-1. It takes three mandatory arguments: a function to provide
the setpoint, a controller, and a plant instance. Controller and plant
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must be subclasses of Component. The setpoint argument must be a
reference to a function that takes a single argument and returns a nu‐
meric value, which will be used as a setpoint for the loop. The loop
provides the current simulation time step as an integer argument to
the setpoint function—this makes it possible to let the setpoint change
over time. These three arguments are required.

Figure 12-1. The control loop modeled by the closed_loop() func‐
tion.

The remaining arguments have default values. There is the maximum
number of simulation time steps tm and a flag inverted to indicate
whether the tracking error should be inverted (e → –e) before being
passed to the controller. This is necessary in order to deal with pro‐
cesses for which the process output decreases as the process input
increases. (This mechanism allows us to maintain the convention that
controller gains are always positive, as was pointed out in Chapter 4).
Finally, we can insert an arbitrary actuator between the controller and
the plant, or we can introduce a filter into the return path (for instance,
to smooth a noisy signal). The complete implementation of the closed
control loop can then be expressed in just a few lines of code:

def closed_loop( setpoint, controller, plant, tm=5000,
                 inverted=False, actuator=Identity(),
                 returnfilter=Identity() ):
    z = 0
    for t in range( tm ):
        r = setpoint(t)
        e = r - z
        if inverted == True: e = -e
        u = controller.work(e)
        v = actuator.work(u)
        y = plant.work(v)
        z = returnfilter.work(y)

        print t, t*DT, r, e, u, v, y, z, plant.monitoring()

In any case, we must provide an implementation of the plant and of
the function to be used for the setpoint. Once this has been done, a

134 | Chapter 12: Exploring Control Systems Through Simulation



complete simulation run can be expressed completely through the
following code:

class Plant( Component ):
     ...

def setpoint( t ):
    return 100

p = Plant()
c = PidController( 0.5, 0.05 )

closed_loop( setpoint, c, p )

All convenience functions use the same output format. At each time
step, values for all signals in the loop are written to standard output
as white-space separated text. Each line has the following format:

1. The simulation time step
2. The wall-clock time
3. The setpoint value
4. The tracking error
5. The controller output
6. The actuator output (the plant input)
7. The plant output
8. The output of the return filter
9. Plant-specific information as returned by monitoring()

The remaining convenience functions describe a system for conduct‐
ing step-response tests and an open-loop arrangement. There is also
a function that conducts a complete test to determine the static, steady-
state process characteristic.

Generating Graphical Output
The simulation framework itself does not include functionality to
produce graphs—this task is left for specialized tools or libraries. If
you want to include graphing functionality directly into your simula‐
tions, then matplotlib is one possible option.

The alternative is to dump the simulation results into a file and to use
a separate graphing tool to plot them. The graphs for this book were
created using gnuplot, although many other comparable tools exist.
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You should pick the one you are most comfortable with. (As a starting
point, a brief tutorial on gnuplot is included in Appendix B.) 
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CHAPTER 13

Case Study: Cache Hit Rate

Maintaining the “hit rate” for a cache by adjusting its size is a perfect
application of feedback principles. Caches are ubiquitous and impor‐
tant. Their basic function is familiar and so does not distract from the
control architecture, which is our primary concern. This example will
allow us to discuss some design decisions that arise in the application
of control principles to computer systems.

This example also serves as an interesting “metaphor” for the appli‐
cation of feedback principles to any form of statistical process control.
This identification may not be immediately obvious; we will revisit it
after identifying the relevant components.

Defining Components
The controlled system is a cache, such as a web or database cache. We
will assume that the cache can hold a fixed number n of items—this
will be the control or input variable. For the sake of definiteness, we
will consider a cache using a “most recently accessed” protocol: if the
requested document or object is found in the cache then it is returned
to the requestor; if it is not found then the object is fetched from the
backing store and added to the cache. If the number of items held in
the cache exceeds the maximally allowed number n, then the oldest
item is removed from the cache. (The specifics of the caching policy
are not important to the design of the feedback loop.)

During operation, we would like to maintain a specific hit rate or suc‐
cess rate of requests—for instance, we may require that 70 percent of
requests should be fulfilled from items held in the cache. At the same
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1. For an in-depth discussion, see An Introduction to Probability Theory and Its Appli‐
cations, Volume 1 by William Feller (1968).

time, we want to keep the cache as small as possible in order to min‐
imize memory consumption and to free up space for other tasks or
processes.

The input or control variable is clearly the maximum cache size n.
What is the output variable? Each request results in a hit or a miss, so
the output—after each request—can be expressed as a Boolean vari‐
able. In order to arrive at the hit rate, we will need to calculate the
“average” number of successes over the most recent k requests. This
average rate will be the output variable.

This raises the question of how large k needs to be. The answer is
unexpectedly large! Because each request results in either success or
failure, requests can be regarded as Bernoulli trials. The uncertainty
associated with estimating the success rate of Bernoulli trials1 from a
sample of size k is approximately ±0.5 / k. If we want to control the
hit rate to within a few percent, we need to know the actual success
rate to within about ±0.05 or better. Therefore, we need a sample of
size k ≈ 100. This may come as a bit of a surprise—with a desired hit
rate of 0.9, would not a sample of 10 to 20 requests be sufficient? No,
because the variations in the hit rate estimate would be too large to
allow for meaningful control. This requirement on the sample size
constitutes a fundamental limitation of the system: it has nothing to
do with the chosen control architecture but is simply a consequence
of the stochastic nature of the system and the central limit theorem.

We now have a choice between treating the “smoothing filter” (used
to calculate the trailing average) as a separate component within the
control loop, or instead as part of the controlled plant. In the former
case, we would insert the filter into the return path of the control loop;
in the latter case, the filter would be considered part of the cache itself,
completely hiding the Boolean hit/miss signal from our view. (See
Figure 13-1.) We need to remember, however, that this filter—with its
relatively “long” memory— will alter the dynamics of the controlled
system. Precisely for this reason it is convenient to treat the filter as
part of the controlled plant: in that way, all the nontrivial dynamics
are bundled into a single component.
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Figure 13-1. Two possible ways to view the loop architecture: we can
treat the smoothing filter either as a separate component inserted into
the return path (top) or as part of the plant itself (bottom). For our
purposes, the latter architecture is more useful.

Another subtlety concerns the way we treat time. There are two basic
options: we can treat cache requests and control actions as either syn‐
chronous or asynchronous (see Figure 13-2). In the former case, each
request leads to a new output value (either hit or miss, leading to a
new value of the smoothed hit rate). It then makes sense to require
that a new input value (that is, a new maximum cache size) can be
specified only in response to an output value; control actions are
therefore synchronized with cache requests. Alternatively, we can as‐
sume that cache requests occur completely independently from con‐
trol actions, with requests and control inputs each being processed in
their own “thread,” so to speak. Both designs are possible, but each is
based on a different notion of “time.” In the synchronous case, time
progresses not by itself but only in steps defined by the occurrence of
cache requests; we can call this “event time.” In the asynchronous case,
though, time progresses normally as “wall-clock time.” In the example
code at the end of the chapter, we will implement the synchronous,
event-time design (mostly for demonstration purposes, since other
case studies are more naturally expressed in terms of wall-clock time).
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Figure 13-2. Schematic representation of the two ways that control ac‐
tions and cache requests can relate to each other: in the synchronous
case (left), control actions occur only in conjunction with cache re‐
quests; in the asynchronous case (right), the flow of control actions is
completely independent from the stream of cache requests. We will be
using the model on the left.

Finally, a word on the “demand,” by which I mean the stream of cache
requests. This demand is entirely outside our control—it just happens!
But it clearly affects the controlled output variable. For instance, if the
selection of most frequently accessed items changes, then we should
expect a drop in hit rate until the cache has been repopulated. If the
range of selected items changes, the hit rate will suffer until the cache
has been resized. The access pattern is therefore part of the dynamics
of the cache but in a way that is not directly visible to us; we will need
to treat it in a black-box manner. Such disturbances occurring within
the controlled system are referred to as “load disturbances” (because
they arise in the “load,” which is the system that is driven by the con‐
troller). For the caching system, where the setpoint is held constant
over long stretches of time, a controller will be evaluated by how well
it is able to cope with these load disturbances.

Cache Misses as Manufacturing Defects
The entire discussion so far has been in terms of cache hits and misses
and the desire to maintain a specific hit rate. If we think of the cache
as a manufacturing plant, then we can identify cache misses with de‐
fective items leaving the production line. Most of the discussion—in
particular, the need for smoothing (and the size of the required
smoothing filter) as well as the choice between synchronous and asyn‐
chronous modes of operation—carry over to any form of statistical
process control. In a process control situation, we want to maintain
some defect rate among discrete items leaving a manufacturing line.
Whenever there is an input variable that controls the operation of the
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2. The data was collected from a simulated system. We will show and discuss the simu‐
lation code later in this chapter.

production line, then it is possible to use a feedback loop similar to
the cache control loop introduced here. For example, we can imagine
a production line turning out semiconductor components that need
to undergo “high-temperature tempering” as part of their manufac‐
turing process, where higher temperatures result in fewer defects. To
conserve energy, we want to use the lowest possible temperature while
still maintaining an acceptable defect rate. This can be accomplished
with a feedback loop like the one described in this chapter. We can
easily think of further examples. The setting changes, but the concepts
stay the same.

Measuring System Characteristics
To begin with, we gather information about the behavior of our system,
or “plant,” as described in Chapter 8. As a first step we measure the
static “process characteristic.” In the present case, this is the relation
between the cache size and the resulting hit rate. We will assume that
the pattern of requests changes over the course of the day, so the graph
(see Figure 13-3) shows data taken at different times.2 From the figure
we can already get a rough idea for the typical cache size and for the
magnitude of the required changes in size.

Figure 13-3. Measuring the cache’s static process characteristic. The
graph shows the steady-state hit rate, for three different traffic pat‐
terns, as a function of the cache size.
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As a second step, we conduct a step test to measure the dynamic re‐
sponse or “process signature.” Initially, the cache is empty and is limi‐
ted to size 0. We then suddenly increase its size to some value n0 and
wait until the hit rate has stabilized. Now we can estimate the time
constants of the process using one of the methods described in Chap‐
ter 8. From the process characteristic (Figure 13-3) we can see that a
cache size of n0 = 40, ..., 70 is about right if we want to attain a hit rate
of 0.7. (Let’s suppose that rate is our desired operating point and we
mostly expect demand of type B.) After applying an input change of
size n0 = 40, we observe the hit rate. The results are shown in
Figure 13-4 together with a Ziegler–Nichols construction and the “best
fit” of the simple model K (1 – exp(–(t – τ)/T)). The parameter values
obtained with the Ziegler–Nichols method are

λ = 12
90 τ = 12

and

K = 0.71 τ = 9.5 T = 54.1

Figure 13-4. Measuring the cache’s dynamic process reaction curve.
The graph shows the evolution of the hit rate in response to a sudden
change in cache size from n = 0 to n = 40, which occurred at time t =
0. Data from five simulation runs is shown together with a Ziegler–
Nichols construction and an analytical model.
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At this point, we need to take a brief detour. The system in question is
stochastic in nature: we don’t know what items will be requested next,
and if we run the experiment again then a different set of items will be
requested—and in a different order. Hence, each curve shown in
Figure 13-4 is only one specific example from the population of all
possible response curves. We should therefore evaluate the impor‐
tance of fluctuations between different trials. The figure shows results
from five separate runs, and it is clear that the variations between dif‐
ferent trials are comparable to the inaccuracy of the model itself. The
model has been “fitted” using the combination of results from all runs
(after discarding the first 20 events from each run).

Controller Tuning
We can now use the experimental parameter values together with one
of the available tuning methods to determine the controller gains for
a PI controller. Table 13-1 reports results for the three methods dis‐
cussed in Chapter 9: the simple Ziegler–Nichols method, as well as the
Cohen–Coon and the AMIGO methods. Not unexpectedly, all three
methods give results that are roughly comparable but are not identical;
they indicate the range of values over which we should expect to find
acceptable behavior. (When using the formulas, bear in mind that the
observed gain λ or K must be divided by the magnitude of the step
input change, n0 = 40. Thus, the value to use in the Cohen–Coon and
AMIGO formulas is K/40 = 0.018.)

Table 13-1. Values for the gain parameters as suggested by the differ‐
ent tuning methods.

Figure 13-5 through Figure 13-8 show the results of several simulation
runs using a variety of values for the controller gains. The simulation
has been set up in such a way that a steplike load disturbance occurs
twice during each simulation run. At time step t = 3000, the range of
items being requested grows by roughly a factor of 2, at t = 5000, the
range shrinks again but also moves (so that fewer but different items
are being requested, requiring the cache to repopulate itself).
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Figure 13-5. Simulation results for the cache size and cache hit rate
when using the Ziegler–Nichols tuning method. The nature of the re‐
quest traffic changes twice in the course of the observation period (for
t = 3000 and t = 5000).

Figure 13-6. Simulation results for the cache size and cache hit rate
when using the Cohen–Coon tuning method. (See Figure 13-5 for fur‐
ther details.)

Figure 13-5 shows a simulation run using the Ziegler–Nichols values
for the controller gains. For the present system, the Ziegler–Nichols
method results in rather poor behavior: both hit rate and cache (con‐
trol input and process output) exhibit large-amplitude oscillations. In
response to a load change, the system overshoots significantly and
takes some time to settle again.

144 | Chapter 13: Case Study: Cache Hit Rate



Figure 13-6 shows data obtained in a simulation based on the Cohen–
Coon values for the parameter gains. The amplitude of the control
input (cache size) oscillations is reduced, and the response to load
disturbances is better. The hit rate, however, does not track the setpoint
particularly faithfully, oscillating constantly and with an amplitude
that is about 10 percent of the average value.

In Figure 13-7 we see the results obtained using the AMIGO method.
The behavior is now quite good—in particular, the system responds
to load changes quickly and without overshooting. The oscillatory
behavior in the steady state is much reduced; the remaining wiggles
are mostly due to random noise.

Figure 13-7. Simulation results for the cache size and cache hit rate
when using the AMIGO tuning method. (See Figure 13-5 for further
details.)

Finally, in Figure 13-8 we see an attempt to improve on the AMIGO
method by manually adjusting the controller gains. Since both the
Ziegler– Nichols and the Cohen–Coon method lead to much larger
values for the proportional term, we now try increasing kp again while
keeping ki at its AMIGO value. The greater proportional gain leads to
a slightly faster response overall, allowing the system to respond more
quickly to momentary tracking errors. The result is a further reduction
in the amplitude of the output noise, although it leads to larger over‐
shoot in response to load changes.
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Figure 13-8. Simulation results for the cache size and cache hit rate
when using manual tuning based on results of the systematic tuning
methods. (See Figure 13-5 for further details.)

Simulation Code
The code to simulate the cache is listed in this section. A few points
deserve particular attention:

• Do not forget to import the feedback package to gain access to
its PID controller implementation and various other helper func‐
tions.

• The Cache constructor takes a reference to a function modeling
the “demand” of item requests. This function takes the current
time step as its argument (this way, one can model demand that
changes over time), and it should return a value specifying the
requested object (the object key). Since the implementation of the
cache is built as a Python dictionary, the object key must be usable
as a key in a Python dictionary. Typically, the demand function
will wrap some random-number generator to simulate item re‐
quests.

• As discussed earlier in this chapter, in the current implementation,
all control actions are synchronized with object requests: when‐
ever the cache’s work() function is called (signifying a control
action), a new object request is generated by calling the demand
function.

• The bulk of the work() function is an implementation of the actual
cache protocol. When an item needs to be removed from the cache
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to make room for a new one, the item that has not been accessed
for the longest time is removed before the new item is inserted.

import feedback as fb

class Cache( fb.Component ):
    def __init__( self, size, demand ):
        self.t = 0        # internal time counter,
                          #   needed for last access time

        self.size = size  # size limit of cache
        self.cache = {}   # actual cache:
                          #   cache[key] = last_accessed_time

        self.demand = demand # demand function

    def work( self, u ):
        self.t += 1

        self.size = max( 0, int(u) ) # non-negative integer

        i = self.demand( self.t )    # the "requested item"

        if i in self.cache:
            self.cache[i] = self.t   # update last access time
            return 1

        if len(self.cache) >= self.size: # must make room
            # number of elements to delete:
            m = 1 + len(self.cache) - self.size

            tmp = {}
            for k in self.cache.keys():
                # key by last_access_time:
                tmp[ self.cache[k] ] = k

            for t in sorted( tmp.keys() ):
                # delete the oldest elements:
                del self.cache[ tmp[t] ]
                m -= 1
                if m == 0:
                    break

        self.cache[i] = self.t       # insert into cache
        return 0

The work() function in the simple Cache implementation returns 0 or
1 to indicate whether the most recent request resulted in a cache miss
or cache hit, respectively. The SmoothedCache implementation sub‐
classes the simple implementation, but it also contains a filter to turn
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the binary outcomes into a continuous hit rate. Its constructor takes
an additional argument avg that specifies the number of trailing re‐
quests that are averaged to form the hit rate.

class SmoothedCache( Cache ):
    def __init__( self, size, demand, avg ):
        Cache.__init__( self, size,  demand );
        self.f = fb.FixedFilter( avg )

    def work( self, u ):
        y = Cache.work( self, u )
        return self.f.work(y)

We also need to specify the demand function and a function to provide
the current setpoint. Both of these functions take the current simula‐
tion time step as their sole argument.

def demand( t ):
    return int( random.gauss( 0, 15 ) )

def setpoint( t ):
    return 0.7

To model the load changes in the simulation runs for Figure 13-5
through Figure 13-8, I used the following demand() function, which
changes the parameters used by the random-number generator, de‐
pending on the time step:

def demand( t ):
    if t < 3000:
        return int( random.gauss( 0, 15 ) )
    elif t < 5000:
        return int( random.gauss( 0, 35 ) )
    else:
        return int( random.gauss( 100, 15 ) )

With all these provisions in place, we can now instantiate a
SmoothedCache as our “plant” and a PID controller and run them—
for instance in a closed-loop arrangement—using one of the conve‐
nience functions from the feedback package. Since we are using event
time, the width of the time step DT is set to 1 (counting the number of
events that have occurred so far).

fb.DT = 1

p = SmoothedCache( 0, demand, 100 )
c = fb.PidController( 100, 250 )

fb.closed_loop( setpoint, c, p, 10000 )
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CHAPTER 14

Case Study: Ad Delivery

The process of delivering advertisements on the Internet constitutes
a possible application of feedback principles. It exhibits many of the
characteristics that make feedback mechanisms desirable:

• The laws governing the process are either not known or only in‐
completely known; the process itself is opaque.

• The governing laws may change silently over time.
• The process is subject to random changes (because of fluctuations

in web traffic).
• Yet, there is a clear goal; typically, this is the number of ad im‐

pressions to show every day or the amount of money to spend.

What is desired is a reliable mechanism for executing the plan in the
face of uncertainty about the process and subject to the random fluc‐
tuations in web traffic.

The Situation
The specific situation we will consider consists of a publisher or ad‐
vertising network that displays ads—ours as well as those from com‐
peting advertisers. We cannot directly control how often our ads are
shown. Instead, we can name the maximum price that each showing
(or impression) is worth to us, after which the publisher will make a
selection based on this offer. All we know is that a higher offered price
tends to result in a greater number of ad impressions.
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1. The data was collected from a simulated system. We will show and discuss the simu‐
lation code later in this chapter.

The system we want to control is the publisher. The control input is
the price, and the control output is the number of impressions served.
Knowing that a higher price means more impressions provides the
tiny but necessary bit of process knowledge required to set up a feed‐
back scheme.

I assume that we can set our price once every 24 hours and that we
will learn the outcome (that is, the number of impressions truly de‐
livered for this price) by the end of that period. Of course, there is
nothing magical about the 24-hour period—any other fixed time (such
as 6 hours or 48 hours) would work as well. What is relevant is that we
will not learn about the results of the most recent run until the moment
we have to choose a new input. This kind of dynamics is typical of
computer systems but is quite unlike the behavior of items in the
physical world: instead of a gradual response to a control input, we get
a steplike response that is complete but delayed by one time step.

The setpoint for this control problem consists of the number of im‐
pressions we wish to generate every day. Let’s suppose that we already
have a plan that spells this number out.

Measuring System Characteristics
There is very little that we know offhand about the process that we
want to control except for the directionality of the input/output rela‐
tionship (higher prices lead to a greater number of impressions). In
the first step, we measure the static process characteristic (Chapter 8).

For several values of the input (the price), we observe the resulting
output (the number of impressions). Since the number of impressions
will fluctuate from day to day because of the randomness of web traffic,
we should repeat every measurement several times. The results might
look like Figure 14-1.1 There is a minimum price that needs to be
offered to receive any traffic; for higher prices, we see that the number
of delivered impressions grows with the price but not linearly. The
range of outcomes for each fixed price gives us an estimate for the
amplitude of the day-to-day fluctuations. So far, so good.

Figure 14-1 looks simple, but it hides a great deal of practical difficulty.
Recall that we must wait an entire day for each data point in the graph.
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The figure shows 10 trials for each price, and a total of 100 different
prices. If we conduct this experiment sequentially, it will take three
years to collect all the data—by which time most of it will be obsolete.
It is clear that most of the time we will have to content ourselves with
much less complete test coverage—perhaps just two or three data
points to find the order of magnitude of the quantities involved. (The
inability to run exhaustive experiments is a recurrent issue when
working with control systems.)

Figure 14-1. The static process characteristic: if we are willing to pay a
certain price per impression, how many impressions do we obtain?

We do not need to conduct an experiment to find the dynamic re‐
sponse of the system because we already know it: full response, but
one day later. This is enough to set up a basic control loop.

Establishing Control
To establish control, we set up a basic control loop for our system using
a standard PID controller K. The controller converts the difference
between the daily impression goal (the setpoint) and the number of
impressions actually delivered on the previous day into a new price,
which is then passed to the publisher (see Figure 14-2).

In order to make things concrete, we must choose numerical values
for the gain parameters in the PID controller. Unfortunately, none of
the tuning methods discussed in Chapter 9 seem to be of much help.
These methods all assume that there is a measurable delay τ and a time
constant T in order to arrive at numerical values that can be used in a
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control loop implementation. In the present situation, however, the
response is instantaneous. What should we do?

Figure 14-2. Loop architecture for the current case study.

The situation is actually much simpler than it may appear. Near the
end of Chapter 9 we saw that all the tuning formulas could be written
in the form

K s = A a+ b
s +cs Δu

Δy

where Δu is the static change in control input needed to bring about
a change Δy in the steady-state control output. The factor A is an ad‐
justment to the static input/output relation that takes the system dy‐
namics into account.

In the present situation, we are trying to control a system that has no
(nontrivial) dynamics: it responds immediately. In other words, there
is no need for the dynamic adjustment factor in the controller—we
can basically ignore the A factor.

The static factor Δu/Δy can be obtained directly from the process
characteristic: Figure 14-1 tells us that if we start with a price of $5,
then a change by Δu = ±$1 will result in a change in output of roughly
Δy = ± 20 impressions; therefore,

Δu
Δy = 1

20

Finally, we will choose (somewhat arbitrarily)

a = 0.5 b = 0.25 c = 0.0
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as values for the term-specific coefficients (inside the central brackets).
The actual controller gains consist of the combination of this coeffi‐
cient with the static gain:

kp = a Δu
Δy ki = b Δu

Δy kd = c Δu
Δy

The behavior that is found when a controller with these specifications
is placed into the loop is shown in Figure 14-3. As we can see, the
performance is not great but is entirely acceptable.

Figure 14-3. Performance of the closed loop when using the “default”
controller gains.

Improving Performance
Looking at Figure 14-3, we can see that the system does track the set-
point and responds to the setpoint change reasonably quickly (within
four to five days). But the daily fluctuations in process output are large
(as much as ±30 percent). What is worse, the process input also fluc‐
tuates. If there is a fixed fee or administrative cost associated with each
price change that we submit to the publisher, such noisy behavior is
clearly undesirable.

In an attempt to make the system less noisy, we might try to reduce
the proportional term and rely more on the slower-acting integral
term. In fact, we can dispense with the proportional term entirely! As
long as the setpoint does not change for several days at a time, the
changes in the tracking error from one day to the next are due entirely
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to random fluctuations in the web traffic. In the present situation,
fluctuations on consecutive days are statistically independent; hence
there is no way to predict tomorrow’s value from today’s. So the pro‐
portional term, which acts on the current value of the tracking error,
is useless: there is no way that the momentary value of the tracking
error can be used to reduce the tracking error in the future.

Figure 14-4 and Figure 14-5 show the system under strictly integral
control. In Figure 14-4, the integral gain is the same as in Figure 14-3
(ki = 0.25/20) but the proportional gain is now zero (kp = 0). Compared
to the previous situation, the amplitude of the noise has been reduced
and the price (the control input) is much steadier; however, the system
is also more sluggish.

Figure 14-4. Performance of the closed loop under strictly integral
control. For ki = 0.25/20, the behavior is sluggish: it takes more than
10 days to adjust fully to the setpoint change.

Whereas before it reacted to a setpoint change within a few days, now
it takes well over 10 days to fully adjust to a new setpoint value. This
is a problem—advertising campaigns typically only run for weeks or
months, so a delay that exceeds a week is probably not acceptable.

We might try improving the system’s responsiveness by increasing the
integral gain, but any increase in speed comes at the expense of in‐
creased instability: the system begins to oscillate wildly from one time
step to the next (Figure 14-5). This is a common problem in control
systems with discrete time steps and immediate-response dynamics.
Because there is no partial response, the system easily falls into this
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particular type of rapid control oscillation if the corrective actions are
too large. That tendency imposes relatively tight limits on the con‐
troller gains we can use in systems of this kind.

Figure 14-5. Performance of the closed loop under strictly integral
control. Increasing the controller gain to ki = 1.75/20 leads to control
oscillations.

These observations already suggest the solution: we need to introduce
a filter that will slow things down and “round off ” the responses. This
results in a loop architecture like the one shown in Figure 14-6 (bot‐
tom). A recursive filter

zt = ayt + 1−α zt−1 α = 0.125

is introduced into the return path. The filter output lags behind but is
also smooth, so it makes sense to use proportional control again in
order to speed up the response. With kp = 1.0/20 and ki = 0.125/20, the
observed behavior seems to strike a good balance (Figure 14-6, top).
Notice in particular how little the price changes over time—except for
the sudden (and properly sized) jump in response to the setpoint
change.
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Figure 14-6. The effect of including a smoothing filter into the loop.
Now that the signal is smooth, it makes sense to include proportional
control again.

Variations
The solution just presented seems satisfactory, but there are additional
variations and enhancements that we don’t explore in detail in this
case study. Some directions are summarized next.

Cumulative Goal
In the preceding solution, we used the daily impression target as set‐
point. We can slice the problem differently by using the cumulative
impression target as setpoint. From a business perspective, this is ar‐
guably a more meaningful design because the quantity that we ulti‐
mately want to control is usually the number of impressions served
over the entire duration of a campaign—the daily target is merely de‐
rived from that.

In order to use the cumulative target, we must insert an additional
integrator into the return path of the control loop (Figure 14-7, bot‐
tom). The process continues to report the number of impressions
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served per day and the integrator adds them up, reporting the cumu‐
lative impressions served, so that their value can be compared to the
cumulative goal. Of course, the setpoint must now steadily increase in
value. The resulting behavior is shown in Figure 14-7 (top). (For
graphing purposes, the daily setpoint value is shown.) We should keep
in mind, however, that this solution has few (if any) advantages over
the one using a daily goal and a smoothing filter. The integrator just
introduced merely replicates the behavior of the controller’s integral
term in the previous solution.

Figure 14-7. Including an integrator on the return path while using
the cumulative instead of the daily goal. In this scenario, the setpoint
is not constant but instead is a ramp input.

Gain Scheduling
In our discussions so far the target was always in the range of 100–125
impressions per day, requiring a price between $5.50 and $7.00. As can
be seen from the static process characteristic in Figure 14-1, a static
controller gain factor of Δu/Δy = 1/20 is appropriate for this operating
point. Yet if we want to use a very different goal, such as 200–250
impressions per day, then a larger gain factor (closer to Δu/Δy = 1/7.5)
would be required because the system becomes less price sensitive at
higher traffic volumes. If we would build a controller that chooses the
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appropriate gain factor from a lookup table (based on the setpoint
value), that would be an example of gain scheduling (see Chapter 11).

Integrator Preloading
The dynamic response to the setpoint change of the final system
(Figure 14-6) is quite satisfactory. Nevertheless, it may be desirable to
speed up the response to a setpoint change that is known (in advance)
to occur. One way to do so is by integrator preloading. To achieve the
daily delivery goal, the controller must produce a nonzero value for
the price that is fed to the publisher. In the steady state, this constant
offset is produced entirely by the integral term in the controller (see
Chapter 4). When the setpoint changes, the value of the integral term
needs to change as well in order to produce a different price. We can
use this knowledge and adjust the value of the integral term inside the
controller concurrently with the change in setpoint. In particular,
when the system is first started up, this approach can significantly
reduce the time it takes the system to reach its steady state.

Weekend Effects
So far we assumed that all days are equal. In practical applications this
is not likely to be the case—if nothing else, we should expect the system
to behave differently on the weekend than during the week. Given that
it takes even the best-performing closed-loop system a few days to
respond to a setpoint change, it is clear that we cannot simply ignore
weekends. A practical solution would be to have two entirely different
controller instances for weekday and weekend traffic. These instances
would retain their memory (in the form of the value of their integral
terms) between invocations, but signals would be directed to the cor‐
rect instance only at any given moment.

Simulation Code
The model for the publisher that was used in the simulations is given
next. Its primary responsibility is to create a value for the “impressions
delivered,” given a “price.” For the purpose of this simulation, I create
the number of impressions as random numbers drawn from a Gaus‐
sian distribution. The mean of the distribution depends logarithmi‐
cally on the price. (The latter choice is common in decision-theoretic
modeling: the “value” of an item increases only logarithmically with
the price, as when a car that is 10 times more expensive can only drive
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twice as fast.) Please keep in mind that this implementation is only a
model that has been chosen to demonstrate the basic process. Other
choices could (and possibly should) be made.

include math
include random
include feedback as fb

class AdPublisher( fb.Component ):

    def __init__( self, scale, min_price, relative_width=0.1 ):
        self.scale = scale
        self.min = min_price
        self.width = relative_width

    def work( self, u ):
        if u <= self.min:    # Price below min: no impressions
            return 0

        # "demand" is the number of impressions served per day
        # The demand is modeled (!) as Gaussian distribution
        # with a mean that depends logarithmically on the
        # price u.

        mean = self.scale*math.log( u/self.min )
        demand = int( random.gauss( mean, self.width*mean ) )

        return max( 0, demand ) # Impression demand is greater
                                # than zero.

We can use this definition of the AdPublisher to form a control loop,
using a PID controller and one of the convenience functions from the
simulation framework:

def closedloop( kp, ki, f=fb.Identity() ):
    def setpoint( t ):
        if t > 1000:
            return 125
        return 100

    k = 1.0/20.0

    p = AdPublisher( 100, 2 )
    c = fb.PidController( k*kp, k*ki )

    fb.closed_loop( setpoint, c, p, returnfilter=f )

We need to select the length of the time step before we can run the
simulation. We perform one control action per day. If we measure time
in days, then the length of each step is equal to 1.
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Running the closed loop arrangement, including the smoothing filter,
can then be accomplished using the following call:

fb.DT = 1

closedloop( 1.0, 0.125, fb.RecursiveFilter(0.125) )
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CHAPTER 15

Case Study: Scaling Server
Instances

Consider a data center. How many server instances do you need to
spin up? Just enough to handle incoming requests, right? But precisely
how many instances will be “enough”? And what if the traffic intensity
changes? Especially in a “cloud”-like deployment situation—where
resources can come and go and we only pay for the resources actually
committed—it makes sense to exercise control constantly and auto‐
matically.

The Situation
The situation sketched in the paragraph above is common enough,
but it can describe quite a variety of circumstances, depending on the
specifics. Details matter! For now, we will assume the following.

• Control action is applied periodically—say, once every second, on
the second.

• In the interval between successive control actions, requests come
in and are handled by the servers. If there aren’t enough servers,
then some of the requests will not be answered (“failed requests”).

• Requests are not queued. Any request that is not immediately
handled by a server is “dropped.” There is no accumulation of
pending requests.

• The number of incoming and answered requests for each interval
is available and can be obtained.
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1. The data was collected from a simulated system. We will show and discuss the simu‐
lation code later in this chapter.

• The number of requests that arrive during each interval is (of
course) a random quantity, as is the number of requests that a
server does handle. In addition to the second-to-second variation
in the number of incoming requests, we also expect slow “drifts”
of traffic intensity. These drifts typically take place over the course
of minutes or hours.

This set of conditions defines a specific, concrete control problem.
From the control perspective, the absence of any accumulation of
pending requests (no queueing) is particularly important. Recall that
a queue constitutes a form of “memory” and that memory leads to
more complicated dynamics. In this sense, the case described here is
relatively benign.

The description of the available information already implies a choice
of output variable: we will use the “success ratio,” which is the ratio of
answered to incoming requests. And naturally we will want this quan‐
tity to be large (that is, to approach a success rate of 100 percent). The
number of active servers will be the control input variable.

Measuring and Tuning
Obtaining the static process characteristic is straightforward, and the
results are not surprising (see Figure 15-1): the success rate with which
requests are handled is proportional to the number of servers.1 Even‐
tually, it saturates when there are enough servers online to handle all
requests. The slope and the saturation point both depend on the traffic
intensity.

In regards to the dynamic process reaction curve, we find that the
system responds without exhibiting a partial response. If we request
n servers then we will get n servers, possibly after some delay. But we
will not find a partial response (such as n/4 servers at first, n/2 a little
later, and so on). This is in contrast to the behavior of a heated pot: if
we turn on the heat, the temperature begins to increase immediately
yet reaches its final value only gradually. Computer systems are dif‐
ferent.

We can obtain values for the controller parameters using a method
similar to the one used in Chapter 14: the tuning formulas (Chap‐
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ter 9) consist of the static gain factor Δu/Δy multiplied by a term that
depends on the system’s dynamics. Because in the present case the
system has no nontrivial dynamics, we are left with the gain factor.
From the process characteristic (Figure 15-1), we find that

Δu
Δy ≈ 10

1

for intermediate traffic intensity. Taking into account the numerical
coefficients for each term in the PID controller, we may choose

kp = 1 ki = 5

as controller gains. Figure 15-2 shows the resulting behavior for set‐
point values much less than 100 percent. The system responds nicely
to changes in both setpoint and load.

Figure 15-1. The steady-state relationship between the completion
rate and the number of server instances (the static process characteris‐
tic).

The system is very oscillatory, but in this case this is not due to a badly
tuned controller, but to the inability of the system to respond accu‐
rately to its control input. This is especially evident in the middle sec‐
tion of the right-hand graph in Figure 15-2 (between time steps 100
and 200): six server instances are clearly not enough to maintain the
desired completion rate of 0.6, but seven server instances are too many.
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Because we can’t have “half a server,” the system will oscillate between
the two most suitable values.

Figure 15-2. Closed-loop behavior when using a PID controller and
desired completion rates that do not approach 100 percent.

Reaching 100 Percent With
a Nonstandard Controller
A success rate of 80 or even 90 percent is not likely to be considered
sufficient—ultimately, we want to reach a state where there are just
enough servers to handle all requests. This will require a modification
of the usual approach as well as a nonstandard (nonlinear) controller.

We begin by choosing a high setpoint, something on the order of 0.999
or 0.9995. In practice, we will not be able to track this setpoint very
accurately. Instead, we will often observe a 100 percent completion
rate simply because the number of servers sufficient to answer 999 out
of 1,000 requests has enough spare capacity to handle one more. This
is a consequence of the fact that we can add or remove only entire
server instances, and would occur even if there was no noise in the
system.

It is important that the setpoint is not equal to 1.00. The goal of ach‐
ieving 100 percent completion rate is natural, but it undermines the
feedback principle. For feedback to work, it is necessary that the track‐
ing error can be positive and negative. With a setpoint value of 1.00,
the tracking error cannot be negative:
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tracking error e = setpoint r – process output y

and this removes the pressure on the system to adapt. (After all, it is
easy enough to achieve a 100 percent completion rate: just keep adding
servers. But that’s not the behavior we want.)

As long as the setpoint is less than 1.00, an actual completion rate of
100 percent results in a finite, negative tracking error. This error ac‐
cumulates in the integral term of the controller. Over time, the integral
term will be sufficiently negative to make the system reduce the num‐
ber of instances. This forces the system to “try out” what it would be
like to run with fewer instances. If the smaller number of servers is not
sufficient, then the completion rate will fall below the setpoint and the
number of servers will increase again. But if the completion rate can
be maintained even with the lower number of servers (because the
number of incoming requests has shrunk, for instance), then we will
have been able to reduce the number of active servers.

But now we face an unusual asymmetry because the tracking error can
become much more positive than it can become negative. The actual
completion rate can never be larger than 1.0, and with a setpoint of
(say) r = 0.999, this limits the tracking error on the negative side to
0.999 – 1.0 = –0.001. On the positive side, in contrast, the tracking
error can become as large as 0.999, which is more than two orders of
magnitude larger. Since control actions in a PID controller are pro‐
portional to the error, this implies that control actions that tend to
increase the number of servers are usually two orders of magnitude
greater than those that try to decrease it. That’s clearly not desirable.

We can attempt various ad hoc schemes in order to make a PID-style
controller work for this system. For instance, we could use different
gains for positive and negative errors, thus compensating for the dif‐
ferent range in error values (see Figure 15-3). But it is better to make
a clear break and to recognize that this situation calls for a different
control strategy.

Fortunately, the discussion so far already contains all the needed in‐
gredients—we just need to put them together properly. Two crucial
observations are:

• The magnitude of the error is not very important in the present
situation; what matters is its sign.
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• We are not able to adjust the control input continuously; the
number of servers must always be a whole (positive) integer.

These two observations suggest the following simple control strategy:

1. Choose r = 1.0 as setpoint. (100 percent completion rate—this
implies that the tracking error can never be negative.)

2. Whenever the tracking error e = r – y is positive, increase the
number of active servers by 1.

3. Do nothing when the tracking error is zero.
4. Periodically decrease the number of servers by 1 to see whether a

smaller number of servers is sufficient.

Step 4 is crucial: it is only through this periodic reduction in the num‐
ber of servers that the system responds to decreases in request traffic.
We can make the controller even more responsive by scheduling trial
steps more frequently after a decrease in server instances than after an
increase.

Figure 15-3. Choosing a high setpoint (such as r = 0.9995) is a prob‐
lem because the tracking error can become much more positive than it
can become negative. Here we use a controller that uses different
gains for negative and positive tracking errors.

Figure 15-4 shows typical results, including the response to both a
decrease and an increase in incoming traffic. The operation is very
stable and adjusts quickly to changes. Another benefit (compared to
the behavior shown in Figure 15-3) is that the system oscillates far less.
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The number of server instances is constant, except for the periodically
scheduled “tests.”

Figure 15-4. Much better results can be obtained using a special con‐
troller that increases or decreases the number of server instances
based only on the sign, not the magnitude, of the tracking error. (See
main text for details.)

Dealing with Latency
Until now we have assumed that any new server instances would be
available immediately, one time step after the request. In practice, this
is not likely to be the case: spinning up new instances usually takes a
while, maybe a couple of minutes. Because the interval between con‐
trol actions is on the order of seconds, this constitutes a delay of two
orders of magnitude! That is too much time to ignore.

When it comes to latency, textbooks on control theory usually rec‐
ommend that one “redesign the system to avoid the delays.” This may
seem like unhelpful advice, but it is worth taking seriously. It may be
worth spending significant effort on a redesign, because the alterna‐
tives (such as the “Smith predictor”; see Chapter 11) can easily be even
more complicated.

In the present situation, one way to deal with the latency issue is the
introduction of a set of “warm standbys” together with a second feed‐
back loop that controls them (see Figure 15-5). There must already be
a network switch or router present, which serves as a load balancer
and distributes incoming requests to the various server instances. This
switch should be able to add or remove connections to server instances
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very quickly. As long as we always have a sufficient number of spun-
up yet inactive server instances standing by, we can fulfill requests for
additional resources as quickly as the router can open those connec‐
tions (quite possibly within one or two time steps).

Figure 15-5. A possible control architecture to deal with latency in
spinning up additional server instances. A “fast” loop controls the
number of instances currently active, based on the rate at which re‐
quests are completed; a “slow” loop maintains a pool of warm stand‐
bys.

In addition, we will need a second control loop that regulates the num‐
ber of available standbys. We must decide how many standbys we will
need in order to maintain our desired quality of service in the face of
changing traffic patterns: that will be the setpoint. The controller in
this loop simply commissions or decommissions server instances in
order to maintain the desired number of reserves. This second loop
will act more slowly than the first; its primary time scale is the time it
takes to spin up a new instance. In fact, we can even set the sampling
interval for this second loop to be equal to the time it takes to spin up
a new server. With this choice of sampling interval, new instances are
again available “immediately”—the delay has disappeared. (There is
no benefit in sampling faster than the system can respond.)
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Simulation Code
The system that we want to simulate is a server farm responding to
incoming requests. We must decide how we want to model the in‐
coming requests. One way would be to create an event-based simula‐
tion in which individual requests are scheduled to occur at specific,
random moments in time. The simulation then proceeds by always
picking the next scheduled event from the queue and handling it. In
this programming model, control actions need to be scheduled as
events and placed onto the queue in the same way as requests.

We will use a simpler method. Instead of handling individual requests,
we model incoming traffic simply as an aggregate “load” that arrives
between control actions. Each server instance, in turn, does some ran‐
dom amount of “work,” thereby reducing the “load.” If the entire “load”
is consumed in this fashion, then the completion rate is 100 percent;
otherwise, the completion rate is the ratio calculated as the completed
“work” divided by the original “load.”

The implementation is split into two classes, an abstract base class and
the actual ServerPool implementation class. (This design allows us to
reuse the base class in Chapter 16.)

import math
import random
import feedback as fb

class AbstractServerPool( fb.Component ):
    def __init__( self, n, server, load ):
        self.n = n           # number of server instances
        self.queue = 0       # number of items in queue

        self.server = server # server work function
        self.load = load     # queue-loading work function

    def work( self, u ):
        self.n = max(0, int(round(u))) # server count:
                                       # non-negative integer

        completed = 0
        for _ in range(self.n):
            completed += self.server() # each server does some
                                       # amount of work

            if completed >= self.queue:
                completed = self.queue # "trim" to queue length
                break                  # stop if queue is empty
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        self.queue -= completed        # reduce queue by work
                                       # completed

        return completed

    def monitoring( self ):
        return "%d %d" % ( self.n, self.queue )

class ServerPool( AbstractServerPool ):
    def work( self, u ):
        load = self.load()        # additions to the queue
        self.queue = load         # new load replaces old load

        if load == 0: return 1    # no work:
                                  # 100 percent completion rate

        completed = AbstractServerPool.work( self, u )

        return completed/load     # completion rate

When instantiating a ServerPool, we need to specify two functions.
The first is called once per time step to place a “load” onto the queue;
the second function is called once for each server instance to remove
the amount of “work” that this server instance has performed. Both
the load and the work are modeled as random quantities, the load as
a Gaussian, and the work as a Beta variate. (The reason for the latter
choice is that it is guaranteed to be positive yet bounded: every server
does some amount of work, but the amount that each can do is finite.
Of course, other choices—such as a uniform distribution—are entirely
possible.) The default implementations for these functions are:

def load_queue():
    return random.gauss( 1000, 5 )     # default implementation

def consume_queue():
    # For the beta distribution : mean: a/(a+b); var: ~b/a^2
    a, b = 20, 2
    return 100*random.betavariate( a, b )

Figure 15-4 shows the behavior that is obtained using a special con‐
troller. This controller is intended to be used with a setpoint of, so that
the tracking error (which is also the controller input) can never be
negative. When the input to the controller is positive, the controller
returns, thus increasing the number of server instances by 1. When
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the input is zero, the controller periodically returns –1, thereby re‐
ducing the number of server instances.

The controller uses different periods depending on whether the pre‐
vious action was an increase or a decrease in the number of servers.
The reason is that any increase in server instances is always driven by
a positive tracking error and can therefore happen over consecutive
time steps. However, a decrease in servers is possible only through
periodic reductions—using a shorter period after a preceding reduc‐
tion makes it possible to react to large reductions in request traffic
more quickly.

class SpecialController( fb.Component ):
    def __init__( self, period1, period2 ):
        self.period1 = period1
        self.period2 = period2
        self.t = 0

    def work( self, u ):
        if u > 0:
            self.t = self.period1
            return +1

        self.t -= 1        # At this point: u <= 0 guaranteed!

        if self.t == 0:
            self.t = self.period2
            return -1

        return 0

The controller is an incremental controller, which means that it does
not keep track of the number of server instances currently online. As
an incremental controller, it computes and returns only the change in
the number of server instances. We therefore need to place an inte‐
grator between the controller and the actual plant in order to “re‐
member” the current number of server instances and to adjust it based
on the instructions coming from the controller:
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To simulate a closed loop using this controller is now simple:
def setpoint( t ):
    return 1.0

fb.DT = 1

p = ServerPool( 0, consume_queue, load_queue )
c = SpecialController( 100, 10 )
fb.closed_loop( setpoint, c, p, actuator=fb.Integrator() )
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CHAPTER 16

Case Study: Waiting-Queue
Control

Queueing systems are ubiquitous, and they are always somewhat
nerve-racking because they are inherently unstable. If we don’t do
something to handle the work items that are being added all the time,
the queue will “blow up.” Queueing systems require control to function
properly. However, the very nature of queueing systems prevents the
straightforward application of feedback principles.

On the Nature of Queues and Buffers
Why do queues exist? They do not simply occur because resources are
insufficient to handle incoming requests. Insufficient resources are the
reason for exploding queues but not for queues in general.

Queues exist to smooth out variations. If customers arrived at (say) a
bank in regular intervals and if each transaction took the same amount
of time, then there would be no queues: we could schedule tellers to
meet demand exactly. In fact, many automated manufacturing lines
work in precisely this way. But if customers arrive randomly and if
transactions can take up different amounts of time, then there will be
moments when demand can (temporarily) not be met. This happens
even if the tellers’ processing capacity is not less than the average ar‐
rival rate. There are only two ways to avoid such random accumulation
of pending requests: scheduling arrivals periodically (thus reducing
variation) or having an excess capacity of resources to handle requests
(enough tellers to deal with anything). The first of these options is
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often not feasible, and the second is too expensive. Hence the need for
queues and buffers.

What does this mean for queues from a control perspective? The most
important point here is that it makes no sense to fix the queue length
to one particular value: this would defeat the purpose of having a buffer
in the first place! Instead, we usually want to restrict the length of the
queue to some range, taking action (possibly drastic action) only if this
range is violated. Keep in mind that it is often just as desirable to avoid
an underflow of a buffer as it is to avoid an overflow: an empty buffer
always means wasted resources (for example, tellers being idle).

We also need to ask what the overall goal of our control strategy is. In
a physical environment, where a “buffer” is an actual device with a
finite holding capacity (like a tank or an accumulating conveyor), we
will mostly be concerned about avoiding overflows. But in more gen‐
eral situations, our goal will be to meet some quality-of-service ex‐
pectation—and the length of the queue is not necessarily a good meas‐
ure for the quality of service: a long queue that moves fast is more
desirable than a short one that is stuck. In fact, the waiting time (or
response time) will be a far better measure for our customer satisfac‐
tion. But the problem is a practical one: information about the waiting
time may not be available! In order to base a system on waiting times,
we must know the arrival time of each request, and this information
is often not recorded. In contrast, the number of items pending is
almost universally known. For this reason, it is desirable to have a
strategy that works with only the length of the queue and without
recourse to the actual waiting time.

Finally, a general concern when attempting to control queueing sys‐
tems is that queues are slow and have difficult dynamics. If we only
take action once a queue has become too long, it is—quite literally—
too late. Not only has the queue already drifted from its target length,
but we must now also process the accumulated backlog to bring the
system back in line. The backlog requires additional resources to work
through, which need to be decommissioned before the queue reaches
its target length to prevent them from exhausting all the work and
thereby underflowing the buffer. Buffers and queues are mechanisms
for “memory” (in the sense of Chapter 3) and are hard to control.
Therefore, early detection of change is essential. Note that this last
requirement is in direct contradiction to the notion that we started
with—namely, to let the length of a queue float!
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The Architecture
We will solve the challenges posed by the waiting queue problem by
using a nested (or “cascaded”) control loop architecture (see Chap‐
ter 11). A fast-acting inner loop controls the actual plant, but the set‐
point for the inner loop is provided by a controller in an outer loop.

Instead of controlling the length of the queue directly, in the present
case the inner loop manages the rate of change of the length of the
queue, adding or removing resources (servers) in order to keep the
net change at the specified setpoint. The external loop, in contrast, will
hold the overall length of the queue at the desired value without over‐
whelming the constraints of the buffer and without starving the down‐
stream process. (See Figure 16-1.) The external loop provides the de‐
sired rate of change as the inner loop’s setpoint.

The internal loop will act quickly because it is monitoring the rate at
which the queue length grows or shrinks. As soon as the queue begins
to increase, the inner loop will add further servers to consume work
items (and vice versa). The external loop will act more slowly, which
is fine, since the setpoint for the external loop (namely, the desired
length of the queue) will be changed only rarely.

Setup and Tuning
To the external loop, the entire inner loop (shown by the dashed box
in Figure 16-1) appears as a single component with exactly one input
and output—in fact, the inner loop is the “plant,” which is controlled
by the outer loop. Nevertheless, there are two controllers involved,
both of which need to be tuned.

Consider the inner loop first. The actual plant here is quite similar to
the server farm from Chapter 15. Again, the control input is the num‐
ber of server instances that are active and ready to handle incoming
requests. The difference now is that incoming requests that cannot be
handled are queued instead of being discarded.

The inner controller is tuned like other systems with immediate-
response dynamics (see Chapter 9). We know that each server can
handle about 100 requests per time step, so the static gain factor is

Δu
Δy = 1

100
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Figure 16-1. A nested (cascaded) loop architecture. The outer loop
provides the setpoint for the fast-acting inner loop.
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1. The data was collected from a simulated system. We will show and discuss the simu‐
lation code later in this chapter.

Because there are no nontrivial dynamics, we can ignore the dynamic
adjustments to the controller gain; however, we must still choose the
contributions for each of the individual terms in the controller (see
Chapter 14). Let’s use a PI controller with the following gains (includ‐
ing the static gain factor):

kp
inner = 0.5

100 ki
inner = 0.25

100

(The superscripts on the gain factors emphasize that these are the gains
for the controller K2 of the inner loop in Figure 16-1. Gains for the
external controller K1 will not be specially marked.)

From this point on, the inner loop is simply treated as a black box: a
component with a control input and output and with its own dynam‐
ics. As discussed in Chapter 8, we perform a step test on the inner loop
to acquire the information needed to tune the external controller.

The results of the step test are shown in Figure 16-2.1 Since the inner
loop is a queue, we should not be surprised that this is an accumulating
process. Its ultimate rate of change is determined by the input to the
inner loop. The delay can be found from the data: τ = 6.2. (A technical
detail: before the step test, the queue should not be empty; if it is, then
transients from the initial loading of the queue will obscure the steady-
state behavior.)

Results from the step test can now be employed to find parameters for
the controller in the outer loop, using entries for the AMIGO method
for accumulating processes from Table 9-1. The resulting gains are
(approximately)

kp = 0.06 ki = 0.001 kd = 0.2

Typical results when using a two-term (PI) controller are shown in
Figure 16-3. The setpoint is held constant at r = 200, and the intensity
of incoming traffic changes twice over the course of the experiment.
(The final traffic is about 20 percent higher than the original one.) We
see that the external controller is able to maintain the setpoint in the
steady state but that the system does not respond well to changes. As
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the traffic intensity decreases, the number of server instances is not
reduced quickly enough to prevent the queue from running empty for
about 50 time steps. Much worse is the behavior as the traffic intensity
suddenly increases: by the time enough server instances are online to
handle the new load, the queue has overshot the setpoint by a factor
of almost 7!

Figure 16-2. Results of step tests performed on the inner loop.

Figure 16-3. Behavior of the outer loop under PI control with kp =
0.06 and ki = 0.001.
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Derivative Control to the Rescue
The reason for the poor performance is clear: the external controller
does not respond adequately to persistent deviations of the queue
length from the selected setpoint. However, we cannot increase the
integral gain without bringing about violent control oscillations. But
there is another term in the proverbial “three-term” or PID controller
that responds to changes in the tracking error: the derivative term.

We have not used derivative control much (or at all) in this book, given
that the derivative term is susceptible to noise (see Chapter 4) and that
most of the systems we have considered are noisy. In this example the
queue length is also noisy, so why do we believe that derivative control
might be applicable now when it wasn’t before? The reason is that we
have decoupled the time scales. Because fast response to high-
frequency noise is handled by the inner loop, the external loop can
respond more slowly. In particular, we can apply a smoothing filter to
remove most of the noise and then use derivative action to bring about
a quicker response to changes in the queue length.

Figure 16-4 is typical for the best behavior that can be obtained in this
way. The derivative action is filtered using a recursive filter with α =
0.15 (see Chapter 10), and the controller gains are adjusted manually
from the settings suggested by the AMIGO tuning method. The gains
used were

kp = 0.35 ki = 0.0025 kd = 4.5

The performance is much improved over the behavior without deriv‐
ative action. The interval where the queue is running empty as the
traffic intensity decreases has been almost eliminated, and the over‐
shoot in response to the increase in traffic has been reduced by more
than half.

Finally, observe that the number of server instances changes more
frequently than before. This is a consequence of the derivative term,
which tends to enhance high-frequency noise. An excessive amount
of control actions is usually undesirable, so we may want to insert a
smoothing filter between the external controller and the inner loop.
Such a filter will stabilize the setpoint experienced by the inner loop.
Figure 16-5 shows what happens after a recursive filter with α = 0.5
has been added: the number of server instances fluctuates less, yet the
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behavior of the queue length is hardly affected at all. Notice that we
can apply only a moderate amount of smoothing. As soon as we begin
to make α smaller (thereby enhancing the effect of the filter), the queue
length begins to drift.

Figure 16-4. Behavior of the outer loop when a derivative term is in‐
cluded in the K1 controller.

Figure 16-5. Similar to Figure 16-4, but now an additional smoothing
filter has been inserted between the external controller and the inner
loop.
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Controller Alternatives
The nested loop arrangement described here involves two controllers,
one each for the outer and the inner loop. For the present solution, we
have chosen to use controllers of the PID (or PI) type for both. The
resulting performance may be good enough, but it is worth consider‐
ing alternatives.

The inner loop is suffering from the defect—encountered already in
Chapter 15—that you can’t have “half a server.” If the number of servers
required to maintain a particular setpoint is not a whole integer, then
the system will end up oscillating rapidly between the two neighboring
states. To avoid this artifact, we might want to consider a controller,
like the one discussed in Chapter 15, that knows about the integer
constraint and switches the number of server instances less frequently.
Such a controller will typically exhibit some form of hysteresis in that
the number of servers is not changed unless the reasons for a change
become sufficiently strong. Such an arrangement will reduce the num‐
ber of control actions, but it will also decrease the system’s tracking
accuracy because hysteresis will prevent the system from responding
quickly to changes in control input. It will be an engineering decision
to balance these requirements.

The controller in the external loop maintains the overall queue length.
In the current arrangement, the controller attempts to keep the queue
at one specific setpoint value, but it may be more appropriate to keep
the queue within a particular range. This would require a controller
that generates little (or no) control action if the tracking error is small
but that generates a disproportionately large corrective action when‐
ever the tracking error leaves the desired range. One could try an
“error-square” controller (see Chapter 10) or invent a special-purpose
controller for this purpose. Whether a special-purpose controller is
necessary for a particular application is, again, an engineering deci‐
sion. One argument generally favoring PID controllers is their sim‐
plicity and the relatively small number of adjustable parameters they
require.

Simulation Code
The simulation for the queueing system makes use of the Abstract
ServerPool base class that was introduced in Chapter 15. (Code dis‐
cussed previously is not reproduced here.) The main difference be‐
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tween the QueueingServerPool used here and the ServerPool used
in Chapter 15 is that, in the present case, the new load is added to the
existing queue instead of replacing it.

class QueueingServerPool( AbstractServerPool ):
    def work( self, u ):
        load = self.load()      # additions to the queue
        self.queue += load      # new load is added to old load

        completed = AbstractServerPool.work( self, u )

        return load - completed # net change in queue length

Recall that the AbstractServerPool does not model individual re‐
quests. Instead, we specify two functions to place an aggregate “load”
onto the queue and one that simulates the “work” done by the servers.
This implies that no information regarding individual requests (such
as their arrival time or age) is available. Hence the implementation of
the QueueingServerPool just described reports only the net change
in queue length as process output.

The QueueingServerPool, when used in a closed-loop arrangement
with a PI controller, forms the inner loop of the overall architecture
(compare Figure 16-1). As far as the outer loop is concerned, the entire
inner loop is just another component: it has a control input and a
control output. We therefore model the inner loop as a subclass of the
general Component abstraction from the simulation framework:

class InnerLoop( fb.Component ):
    def __init__( self, kp, ki, loader ):
        k = 1/100.

        self.c = fb.PidController( kp*k, ki*k )
        self.p = QueueingServerPool( 0, consume_queue, loader )

        self.y = 0

    def work( self, u ):
        e = u - self.y       # u is setpoint from outer loop
        e = -e               # inverted dynamics
        v = self.c.work( e )
        self.y = self.p.work( v ) # y is net change
        return self.p.queue

    def monitoring( self ):
        return "%s %d" % ( self.p.monitoring(), self.y )

To run the simulations, we need a setpoint that changes over time as
well as a load function that models varying intensity of request traffic.
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(The load_queue() function must use a global variable to keep track
of the current time step.)

def load_queue():
    global global_time
    global_time += 1

    if global_time > 2500:
        return random.gauss( 1200, 5 )

    if global_time > 2200:
        return random.gauss( 800, 5 )

    return random.gauss( 1000, 5 )

def setpoint( t ):
    return 200

    if t < 2000:
        return 100
    elif t < 3000:
        return 125
    else:
        return 25

With all these definitions now in place, we can give the code for the
simulation used to produce the data shown in Figure 16-4. (Notice the
additional filter inserted as “actuator” between the external controller
and the inner loop.)

import feedback as fb

fb.DT = 1

global_time = 0 # To communicate with load_queue functions

p = InnerLoop(0.5, 0.25, load_queue) # "plant" for outer loop
c = fb.AdvController( 0.35, 0.0025, 4.5, smooth=0.15 )

fb.closed_loop( setpoint, c, p,
                actuator=fb.RecursiveFilter(0.5) )
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CHAPTER 17

Case Study: Cooling Fan Speed

A “classic” application of feedback principles is provided by the auto‐
matic adjustment of cooling fan speeds in order to maintain some
equipment at a desirable temperature—for example, the CPU in a
computer or laptop. This system was already introduced in Chap‐
ter 5. In contrast to most of the other examples discussed, in this case
the governing laws are known at the outset. This shifts the focus of our
investigation: rather than trying to obtain a basic, approximate de‐
scription of the dynamics, we need to find numerical values for the
parameters of an existing model.

The Situation
We want to control the speed of cooling fans to maintain a desired
temperature of the cooled component. The control output is the tem‐
perature, the control input is the fan speed, which is adjustable con‐
tinuously so that we can treat it as a floating-point number. The heat
generated by the CPU depends on its “load,” which we will model as
changing by fixed steps at random intervals. We will also assume that
the ambient temperature may undergo slow, random drifts. Besides
these two effects, the system is essentially deterministic.

As mentioned in Chapter 5, the dynamics we wish to control are the
cooling dynamics—that is, the reduction in temperature as the fan
speed is increased. The initial state, where the system is considered to
be “off,” therefore corresponds to the situation with minimal cooling
(with the fan speed reduced to the lowest possible speed that won’t
damage the CPU). This initial state does not correspond to the situa‐
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1. We use the letter Θ for the temperature in order to reserve the letter T for the time
constant of the process.

tion where the CPU is itself switched off, as we are not concerned about
the dynamics of the CPU heating up after first being powered on.

The Model
The temperature of a body losing heat to the environment is described
by Newton’s law of cooling, dΘ

dt + 1
T Θ = cu. Here Θ is the temperature

difference between the body and its environment:1

Θ = Θbody –Θambient

and u describes any heat supplied to the body from outside “sources.”

To understand what this differential equation tells us, it is convenient
to rewrite it in the following form:

d
dt Θ = − 1

T Θ+cu

The change in temperature (per unit of time) dΘ
dt  consists of two con‐

tributions, a loss of temperature − 1
T Θ and a gain of cu. Let’s first con‐

sider the case where no heat is supplied: u = 0. A cup of coffee cooling
on the desk is an example. In this situation, the body loses a certain
fraction of its temperature every moment. The parameter T is the time
scale of the problem: the length of time it takes for the temperature to
drop to about one-third of its original value.

The other term on the right-hand side describes any heat supplied to
the body. In the CPU example, this is the heat generated by the chip
as it is operating. The quantity u is the flow of heat to the body, meas‐
ured in joules per second (or watts). As the load on the processor
changes, so will the amount of heat u generated. The coefficient c
describes by how many degrees the body heats up for each joule of
energy supplied (basically, c is the heat capacity of the body). You can
convince yourself that cu has the dimension of temperature/time.

But where is our fan speed? It is there, hiding inside the quantity T: if
the fan runs faster, then the processor will take less time to shed the
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same amount of heat and so T will be smaller. The way the control
action enters the equation is a bit sneaky: usually, the control action
would be a linear term on the right-hand side, like u. (In fact, the same
equation describes a pot that is heated, in which case the control action
u is the supplied heat.)

We can now collect all the pieces. If initially the body is at temperature
Θ(t), then its temperature a short time δt later is

Θ t +δt = Θ t +δt − 1
T Θ t +cu t

Here we have made use of the fact that the derivative can be approxi‐
mated as a finite difference:

dΘ
dt ≈ Θ t +δt −Θ t

δt

This approximation is good provided that δt is sufficiently small—in
other words, as long as Θ does not change much during an interval of
duration δt. For us, this means that δt must be much smaller than T
(since T is the time scale over which Θ changes significantly).

As long as T and u are held constant, we can find an explicit solution
to the differential equation. Under the stated conditions, the temper‐
ature at time t is given by

Θ t = Θ0e−t/T +cuT

where the constant Θ0 is determined by the initial temperature. For
instance, if the initial temperature is zero (Θ(0) = 0) then Θ0 must be
–cuT. This describes the situation when the computer is initially
switched off and is being turned on at t = 0. (Remember that Θ is the
temperature above the ambient one.)

Finally, we need to find numerical values for the various parameters.
The power consumption of a current processor is about 75 watts, and
I will assume that the power can change in steps of 10 watts as the load
changes. The parameters T and c must, in principle, be measured.
Here, I estimate T = 120 seconds. That is to say: without the fans run‐
ning, the processor will drop from 200 degree Celsius to about 70
degree Celsius within 2 minutes; it will cool down faster with the fans
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2. The data was collected from a simulated system. We will show and discuss the simu‐
lation code later in this chapter.

running. We can then find c from the final, steady-state temperature
that the processor reaches without active cooling. In this limit, Θ(∞)
= cuT. Assuming that the maximum temperature is 200 degrees Cel‐
sius, and plugging in our estimates for u and T, we find c = 1

45  degrees
Celsius per joule.

Tuning and Commissioning
Figure 17-1 shows the kinds of measurements we would perform to
determine the values of the parameters.2 The graph includes curves
for several different types of open-loop measurement. One curve
shows the temperature development for the CPU without any of the
fans running. The temperature tops out somewhere near 200 degrees,
at which point the chip has overheated and serves only as a space heater
but is useless for any other purpose!

Figure 17-1. Time development of the CPU temperature in an open-
loop arrangement. The fan speed is suddenly increased from its mini‐
mal setting to various higher speeds at t = 5 minutes, resulting in
greater cooling action and a decrease in temperature (step test).

Let’s suppose the maximal operating temperature that won’t damage
the chip is 100 degrees. Maintaining this temperature requires the fans
to be running, but at minimum speed. At t = 5 minutes, we increase
the fan speed: that’s basically the kind of “step test” discussed in Chap‐
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ter 8, and from the graph we can read off the decrease in temperature
due to this control action. (Note that the decrease in temperature is
not a linear function of the fan speed.)

The figure shows that the delay τ is negligible and that the time con‐
stant T is approximately 1 minute (60 seconds). At fan speed 4, the
temperature reduction is about 40 degrees and so the static gain factor
Δ u/Δ y is approximately 4/40 = 0.1. Quite satisfactory closed-loop
performance is found with kp = 2.0 and ki = 0.5.

Closed-Loop Performance
In Figure 17-2 we see how this system behaves in production. The set-
point is initially set to 50 degrees and is later reduced to 45 degrees.
The load on the processor keeps changing, and with it the amount of
heat generated. But whenever the amount of heat increases, the fan
speed increases with it to keep the CPU temperature at the setpoint.
The temperature overshoots a little whenever the load level changes,
but it quickly reaches the desired setpoint again.

Figure 17-2. Time development of the CPU temperature under closed-
loop control. The fan is not capable of delivering the required cooling
actions if the CPU is working under maximum load (actuator satura‐
tion, t = 11, ..., 14).

One practical problem exhibited by the system is the occurrence of
actuator saturation. The fans are not capable of keeping the CPU at
45 degrees at the highest load level, with the consequence that the
desired fan speed (as calculated by the controller) is higher than the
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actual speed that the fan can achieve. It is therefore important to use
a “clamping” controller, which stops adding to the integral term once
the actuator is maxed out (see Chapter 10).

Simulation Code
The dynamics of the system in the present case study are described by
a differential equation; simulating it therefore means solving (or “in‐
tegrating”) this differential equation. In the code that follows, this is
done in the simplest possible manner. We take the equation in the form

Θ t +δt = Θ t +δt − 1
T Θ t +cu t

and translate it directly into code. This equation amounts to an up‐
dating algorithm for Θ(t): it uses the temperature at time t to calculate
the temperature at a later time t + δt. The quantity T, which describes
how quickly the CPU cools down, is a combination of the natural heat
loss and the heat loss due to active cooling from the fan. The term u(t),
which describes the heat generated by the CPU, is a combination of
the chip’s idle power and the additional heat if the CPU is running
under increased load. The load itself changes at random times by a
fixed amount.

import random
import feedback as fb

class CpuWithCooler( fb.Component ):
    def __init__( self, jumps=False, drift=False ):
        self.ambient = 20             # temperature: degree C
        self.temp    = self.ambient   # initial temperature

        self.wattage = 75             # CPU heat output: J/sec
        self.specific_heat = 1.0/50.0 # specific heat: degree/J

        self.loss_factor = 1.0/120.0  # per second

        self.load_wattage_factor = 10 # addtl watts due to load
        self.load_change_seconds = 50 # avg sec between changes
        self.current_load = 0

        self.ambient_drift = 1.0/3600 # degrees per second

        self.jumps = jumps            # jumps in CPU load?
        self.drift = drift            # drift in ambient temp?
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    def work( self, u ):
        u = max( 0, min( u, 10 ) )      # actuator saturation

        self._ambient_drift()           # drift in ambient temp
        self._load_changes()            # load changes, if any

        diff = self.temp - self.ambient # temperature diff
        loss = self.loss_factor*(1 + u) # natural heatloss+fan

        flow = self.wattage + self.current_load # CPU heat flow

        self.temp += fb.DT*(self.specific_heat*flow - loss*diff)
        return self.temp

    def _load_changes( self ):
        if self.jumps == False: return

        s = self.load_change_seconds
        if random.randint( 0, 2*s/fb.DT ) == 0:
            r = random.randint( 0, 5 )
            self.current_load = self.load_wattage_factor*r

    def _ambient_drift( self ):
        if self.drift == False: return

        d = self.ambient_drift
        self.ambient += fb.DT*random.gauss( 0, d )
        self.ambient = max( 0, min( self.ambient, 40 ) )

    def monitoring( self ):
        return "%f" % ( self.current_load, )

The units we use in this case study to measure wall-clock time are
seconds, and all other units are compatible with this scale (for example,
watts equal joules per second). As we saw previously, the typical time
scale on which the system’s temperature changes significantly is about
1 minute. We therefore need to take steps that are at least one order of
magnitude smaller than that—about a second or less. In the end, I used
steps of one-hundredth of a second (fb.DT = 0.01) for extra accuracy,
although one-tenth of a second (fb.DT = 0.1) would have been suf‐
ficient.

One important aspect that this example aims to demonstrate is the
effect of actuator saturation: there is a maximum cooling effect the fan
can achieve, because at some point it simply can’t run any faster. The
output of the fan is even more constrained in the opposite direction,
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because the fan output can never become negative (corresponding to
a heating effect).

To model this behavior, a Limiter element has been included in the
position of an actuator between the controller and the plant. This el‐
ement constrains its output to the range that was specified when the
element was first created, and any input that exceeds this range is
trimmed to the most extreme value still within the permitted range.

class Limiter( fb.Component ):
    def __init__( self, lo, hi ):
        self.lo = lo
        self.hi = hi

    def work( self, x ):
        return max( self.lo, min( x, self.hi ) )

Given the effect of this Limiter, it is important to use a clamping
controller. So instead of the simple PidController, we use an AdvCon
troller instance, where the clamping range is set equal to the range
permitted by the actuator.

fb.DT = 0.01

def setpoint(t):
    if t < 40000: return 50
    else: return 45

p = CpuWithCooler( True, True ); p.temp = 50 # Initial temp
c = fb.AdvController( 2, 0.5, 0, clamp=(0,10) )

fb.closed_loop( setpoint, c, p, 100000, inverted=True,
                actuator=fb.Limiter( 0, 10 ) )
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CHAPTER 18

Case Study: Controlling Memory
Consumption in a Game Engine

This final case study allows us to see how a nonproportional controller
can be used in a feedback loop to good effect.

The Situation
Imagine a game engine managing the movements of various game
objects (widgets, sprites, space ships, whatever). During the course of
a game, the number of game objects changes. Our job is to make sure
that the memory consumption of the game engine stays within ac‐
ceptable limits even as the number of game objects grows large.

The way to control memory consumption in the game engine is via
the graphics resolution: high resolution translates into high memory
consumption. To make things concrete, let’s say that we can choose
from five different resolution levels and that each subsequent level
requires twice as much memory per game object. (For instance, the
levels may set aside 100, 200, 400, 800, and 1,600 memory units per
game object.) The problem of choosing the correct resolution there‐
fore appears quite simple: divide the maximum amount of memory
available by the number of game objects to find the greatest number
of memory units available to each object, and then choose the greatest
resolution that respects this limit. We don’t need feedback for that.

Remember that feedback is a method to achieve robust control in the
face of uncertainty. Feedforward works great as long as the system is
totally deterministic and all relevant information is available. So in this
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case, if the amount of memory required can be predicted accurately
from the number of game objects, then there is no need for feedback
control. But memory usage may be more complicated than that. In a
contemporary, managed programming environment that includes a
garbage collector, the amount of memory allocated may change in its
own idiosyncratic ways. There may be other sources of uncertainty,
such as leaks, overhead, sharing, and caching. Thus the actual amount
of memory used can change quite unpredictably. And all of a sudden,
feedback seems like a good idea.

Problem Analysis
The control task in this case differs from those we have discussed be‐
fore. The two most important differences are the following:

• We do not care about tracking a setpoint accurately. Instead, we
want to prevent the process output from leaving a specified in‐
terval.

• The number of input values is extremely limited, and so propor‐
tional control is out of the question: the controller must choose
one of the available levels. (In fact, the levels may not even be
numerical—they might be categorical labels, such as “high,” “me‐
dium,” and “low.”)

Taken together, these two points suggest a controller that exhibits a
central dead zone but produces a steplike response once the output
variable leaves the allowed interval (see Figure 18-1). The dead zone
should be relatively wide so that changes in graphics resolution are
rare.

The only control actions available to us are to increase or decrease the
resolution level. At this point, we must decide how to encode those.
Rather than dealing with actual values of the memory consumption
per game object (which may change from platform to platform and
may not even be known), we will simply indicate the resolution by an
integer between 0 and 4, with the lowest resolution (and the lowest
memory consumption) corresponding to the index 0. The numerical
values carry no significance (they are essentially categorical labels),
but it is important that they exhibit an ordering relation so that there
is a well-defined directionality to the input/output relation. With these
conventions, increasing the control input (the level) leads to an in‐
crease in process output (the memory consumption).
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Figure 18-1. The input/output relationship for a dead-zone controller.
The controller output is zero unless the tracking error is greater than
the width of the dead zone.

We can now interpret the controller output as increments of the res‐
olution level: a positive output will increase the resolution level by 1;
a negative output will decrease the resolution level by the same
amount. To keep track of the current resolution, we introduce an ag‐
gregator (or integrator) into the control loop. This element maintains
the current resolution as its internal state and increases or decreases
it, depending on its input. In addition, the aggregator ensures that the
resolution level is valid: it will neither decrement past 0 nor increment
past 4. (This is an example of “actuator saturation”; see Chapter 10.)

In any case, we assume that the game engine responds immediately to
any request for a change in resolution, so there are no nontrivial dy‐
namics that need to be taken into account.

Architecture Alternatives
There are two different ways to turn these general considerations into
a concrete loop architecture:

• The first alternative forces us to think about feedback architec‐
tures in a different way, because it forgoes many of the usual ele‐
ments of a control loop, including such essentials as the setpoint
and the tracking error.

• The second loop arrangement stays much closer to the familiar
setup, but it requires some mathematical sleight of hand.
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A Nontraditional Loop Arrangement
The first way to think about the loop architecture is shown in
Figure 18-2 (top). The “setpoint” now consists of the allowed range,
which is specified by a pair of numbers (the upper and lower limits of
the range). Since the reference signal is no longer a single value, it does
not make sense to form the difference between the reference and the
process output. Instead, both the allowed range and the process output
are fed to the controller. The controller determines whether or not the
process output falls within the allowed range, and it produces an out‐
put value based on that condition. Because no difference between
output and signal is ever calculated, there is no need to multiply the
output by –1 on the return path.

The controller has no adjustable parameters, so there is no need for
any tuning. The operation of the loop is completely determined by the
range supplied through the reference signal.

A Traditional Loop with Logarithms
The other possible loop architecture (Figure 18-2, bottom) retains the
concept of a scalar setpoint value and the tracking error as the differ‐
ence between the setpoint and the process output. Yet because the
memory allocated per game object changes by a constant factor from
one level to the next, it will be necessary to base the control actions on
the logarithm of the respective signals. To give an example: if we switch
from the lowest resolution to the next one, then the memory con‐
sumption per game object changes from 100 to 200 units—a difference
of 100 units. The next resolution level assigns 400 units per game ob‐
ject, which is a difference of 200. It therefore seems as if not all steps
are equal: the higher the resolution, the further apart the levels are
spaced. However, if we use logarithms of the memory consumption
then the distance between consecutive levels is always the same:

log 200− log 100 = log 200
100 = log 2

log 400− log 200 = log 400
200 = log 2

⋮
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Figure 18-2. Two possible loop architectures for this case study. In the
less traditional arrangement (top), the reference signal consists of a
pair of numbers that specify the allowed range. No tracking error is
calculated; the controller determines whether the process output falls
within the allowed range. In the more classical loop (bottom), the ref‐
erence is a scalar value that is the logarithm of the midpoint in the
allowed range.
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For this reason, we will use the logarithm of the memory consumption
and the setpoint when we calculate the tracking error.

Using this loop architecture, the permissible range is specified as fixed
controller parameters when the controller is first set up. Our require‐
ments are that the controller should produce a nonzero output if
memory consumption exceeds (say) 10,000 units. We will also intro‐
duce a lower threshold: if memory falls below (say) 1,000 units, the
resolution should be increased.

We now choose as “setpoint” the arithmetic middle between the two
threshold values and make the dead zone equal to the distance between
the thresholds. Keep in mind that we are working with logarithms, so
the setpoint should be the mean of the logarithms:

  

To find the width of the dead zone, we perform a similar calculation.
The “tracking error” is a difference between logarithms. At the lower
threshold, this error is

  

At the upper threshold (that is, when the actual memory consumption
equals 10,000), we find a tracking error of − 1

2 log 10. Hence, the dead
zone extends from − 1

2 log 10 to + 1
2 log 10, symmetrically around the

setpoint at 7
2 log 10. To give ourselves some additional margin, we can

choose tighter bounds, of course, such as ± 1
2 log 8, for example.
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1. The data was collected from a simulated system. We will show and discuss the simu‐
lation code later in this chapter.

Results
Typical results are shown in Figure 18-3.1 Memory consumption in‐
creases with the number of game objects. As consumption exceeds the
critical threshold, the resolution level is decremented with the conse‐
quence that the memory required drops sharply (in fact, it is cut in
half). This is especially obvious in the second half of the simulation:
the number of game objects increases steadily; however, whenever the
total memory consumption approaches the upper threshold, the res‐
olution level is reduced and with it the amount of memory consumed.
Similarly, if the number of game objects becomes small, then the res‐
olution level is increased accordingly.

Figure 18-3. Typical closed-loop performance. In general, the amount
of memory consumed grows with the number of game objects. If the
memory consumption approaches the upper threshold, then the reso‐
lution level is reduced, cutting the amount of occupied memory in
half.
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Simulation Code
In the spirit of the simulation framework, the following code uses the
loop architecture based on a scalar setpoint (Figure 18-2, bottom). It
is not difficult, however, to adapt the code to follow the nonstandard
architecture in Figure 18-2 (top).

The simulation code describes a system with deterministic memory
usage, but it is easy to add further sources of randomness. The con‐
trolled system itself is described by the class GameEngine. At each time
step, there is a possibility that the number of game objects will change
by 1 (in either direction). The total number of game objects must fall
between 1 and 50.

import math
import random
import feedback as fb

class GameEngine( fb.Component ):
    def __init__( self ):
        self.n = 0    # Number of game objects
        self.t = 0    # Steps since last change

        # for each level: memory per game obj
        self.resolutions = [ 100, 200, 400, 800, 1600 ]

    def work( self, u ):
        self.t += 1

        # 1 change every 10 steps on avg
        if self.t > random.expovariate( 0.1 ):
            self.t = 0
            self.n += random.choice( [-1,1] )
            self.n = max( 1, min( self.n, 50 ) ) # 1 <= n <= 50

        crr = self.resolutions[u] # current resolution
        return crr*self.n         # current memory consumption

    def monitoring( self ):
        return "%d" % (self.n,)

In addition to the game engine, we need several other components to
complete the control loop: the controller itself, the aggregator or ac‐
tuator (called ConstrainingIntegrator in the code because it also
constrains its output to the range of legal resolution levels), and finally
an element to calculate the logarithm of the output signal.

class DeadzoneController( fb.Component ):
    def __init__( self, deadzone ):
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        self.deadzone = deadzone

    def work( self, u ):
        if abs( u ) < self.deadzone:
            return 0

        if u < 0: return -1
        else:     return 1

class ConstrainingIntegrator( fb.Component ):
    def __init__( self ):
        self.state = 0

    def work( self, u ):
        self.state += u
        self.state = max(0, min( self.state, 4 )) # Allow 0..4
        return self.state

class Logarithm( fb.Component ):
    def work( self, u ):
        if u <= 0: return 0
        return math.log(u)

With all these components in place, we need only define a function to
provide the setpoint; we can then complete the closed-loop operation
in a single call.

fb.DT = 1

def setpoint(t):
    return 3.5*math.log( 10.0 )

c = DeadzoneController( 0.5*math.log(8.0) ) # width of deadzone
p = GameEngine()

fb.closed_loop( setpoint,c,p,actuator=ConstrainingIntegrator(),
                returnfilter=Logarithm() )
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CHAPTER 19

Case Study Wrap-Up

In wrapping up this collection of case studies, I’d like to point out a
few recurrent themes.

Simple Controllers, Simple Loops
The elements of a feedback system are not complicated: the basic loop
structure and a simple controller are all that is required. In fact, all the
case studies were completed with nothing more complicated than the
generic feedback loop as implemented in the closed_loop() conve‐
nience function!

Most controllers, also, were of the generic PID type, although partic‐
ular situations sometimes called for specially designed controllers. But
even those controllers were very simple and did nothing more than
calculate an output based on the input while maintaining only minimal
internal state.

The natural temptation to build more complicated controllers should
probably be resisted in most cases. The feedback principle is not about
clever (and complex) algorithms; rather it works with simple compo‐
nents put together in a straightforward fashion. What makes feedback
work is that corrective actions are calculated and applied constantly.
Because of the iterative nature implied by the feedback scheme, the
components and calculations themselves can (and should) be simple.
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Measuring and Tuning
Given all the details and specific methods to “measure the transfer
function” presented in Chapter 8, it is easy to forget that we are really
after only a few pieces of basic information:

• What is the directionality of the input/output relationship? Does
increasing the control input result in an increase or a decrease of
the process output?

• What is the typical time scale T of the process? How long does it
take the output to settle to a new steady state again after a sudden
change in control input?

• Is there a significant delay τ before a change in input becomes
observable in the output?

• What is the static gain factor Δu/Δy? How much do we need to
change the input to bring about a permanent change in output?

All the methods presented earlier are just ways to obtain those basic
pieces of knowledge about the process in question.

The same can be said for controller tuning. For PID controllers, the
controller gains consist of the static gain factor Δu/Δy, which is modi‐
fied by a factor that takes the dynamic response of the process into
account (increasing the gain for sluggish processes, decreasing the
gain when there is noticeable delay). Given only those bits of process
knowledge, we can find controller gains that will result in a workable
closed-loop operation and that can be improved through trial and er‐
ror in a manual process. The formulas and methods discussed in
Chapter 9 are primarily shortcuts for this process.

Staying in Control
There are a variety of signals flowing around a control loop: the set-
point, the process output, the tracking error, the controller output.
Add some additional elements, like actuators or filters, and we are
talking about half a dozen individual signals for a basic loop alone! In
a nested arrangement, the number of signals multiplies.

It is surprisingly easy to get confused about which signal goes where,
and with which sign (plus or minus). If a newly commissioned loop
does not seem to work at all, it often helps to trace all signals around
the loop and to confirm that the components were indeed wired to‐
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gether correctly. To ensure that the signs are correct it helps to ask, for
each component: if the input goes up, should the output go up or
down—and what does it actually do?

Dealing with Noise
Most of the case studies showed systems that included a stochastic
aspect. In fact, randomness and the uncertainty that it brings about
will often be what makes feedback control an attractive proposition in
the first place.

In all the case studies, I have taken a “naive” approach to noise. In
essence we assumed that we could ignore the randomness, and con‐
centrate only on the deterministic part of the system, on the premise
that the noise would “average itself out” over time. In a similar spirit,
we have usually shown only a single simulation run for each system
with the understanding that the observed behavior is typical and a
representative sample from all possible runs. Performing several sim‐
ulation runs quickly gives one a sense for the magnitude of the varia‐
tions that can be expected. If greater accuracy is required (in simula‐
tions or a production installation), then one can calculate the desired
quantity as the average over several experimental runs.

It is a natural impulse to use filters as elements in a control loop to
obtain smoother signals. Although that often makes sense, it is not
always necessary. Keep in mind that filters slow signals down; there‐
fore what we gain in smoothness via filtering may be lost again because
the system now requires greater controller gains. Filters should be used
only when they have been shown to be necessary. One should not
automatically reach for a filter just because a signal is noisy.

Finally, all the case studies assumed that the noise involved was rela‐
tively harmless: possibly of large amplitude but always of finite var‐
iance. This is not necessarily so: systems exhibiting noise with a power-
law spectrum do exist and always require special treatment.
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PART IV

Theory

The material that follows is not strictly required reading—in partic‐
ular, when you are mostly interested in practical applications of feed‐
back techniques to computer systems.

At the same time, it is not recommended to skip these chapters en‐
tirely. Many operations and concepts will make more sense once their
theoretical underpinnings are understood. And all this material is
simply required if you ever want to dig further into feedback and
control theory.

But feel free to skim along, and to come back to dive deeper as the
need arises.





CHAPTER 20

The Transfer Function

As Chapter 3 demonstrated, understanding a system’s dynamic be‐
havior is important for building a stable and well-performing feedback
loop. In this chapter, we will first describe how to capture information
on a system’s dynamic behavior; we then show how to repackage this
information in a way that is particularly convenient for our purposes.
The tool that we will use is the transfer function.

Differential Equations
The usual way to describe the time evolution of a system is through
differential equations. A differential equation is an expression involv‐
ing the derivative of a quantity, often together with the quantity itself.
Here are some examples of differential equations:

  

Because the derivative is the rate of change of the quantity, differential
equations are the natural way to describe how a system changes over
time: they describe the system’s dynamics. “Solving” a differential
equation means finding a curve y(t) that, for all times t, fulfills the
differential equation. Several analytical and numerical methods exist
to find the solution to a given differential equation.
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1. To pick out one specific trajectory from all possible ones, one also needs to specify its
value for t = 0, the initial condition.

Laplace Transforms
Differential equations provide an especially compact way of describing
the dynamics of a system: all possible trajectories, for all times t, can
be obtained from the differential equation alone.1 We now repackage
this information in a way that makes it easier to manipulate. Rather
than considering the quantities of interest as functions of time, we
transform them to the frequency domain or frequency space.

To begin with, consider an arbitrary well-behaved function f(t). We
can calculate its Laplace transform F(s) as

F s =∫
0

∞
f t e−st dt s∈ℂ

where s is an arbitrary complex number. Note that f(t) is a function of
t whereas F(s) is a function of s. Since t has dimensions of time and
since the exponent of the exponential must be dimensionless, it follows
that s must have dimension of 1/time; for this reason, we will refer to
it as frequency. Functions of t are said to be in the time domain, whereas
their Laplace transforms are in the frequency domain.

As it turns out, the quantity F(s) contains exactly the same information
as f(t). We can regain the original function by means of an inverse
transformation:

f t = 1
2πi∫σ−i∞

σ+i∞
est F s ds σ ∈ℂ

In practice, one rarely finds the Laplace transform of some function
(or its inverse) by explicitly evaluating the respective integrals. Trans‐
form pairs for most commonly used functions can be looked up in
appropriate tables. One can also establish several generally applicable
rules to extend the tabulated results to more general cases. (Some
transform pairs and rules are shown in Table 20-1. All of these relations
are easily verified by performing the transform integral. Every book
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on control theory will contain such tables, often with many more en‐
tries, but Table 20-1 will suffice for our purposes.)

Table 20-1. Some commonly used Laplace transform pairs.

Properties of the Laplace Transform
Given the definition, it is easy to show that the Laplace transform is
linear: if h(t) = a f(t) + b g(t), then its Laplace transform is H(s) = a
F(s) + b G(s) (where a and b are constant scalars). This property allows
us to build up the Laplace transform of a more complicated function
(such as a polynomial) from the Laplace transform of its components.

However, the essential property of the Laplace transform—and the real
reason we care about it to begin with—is the effect it has on derivatives
and integrals.

For example, suppose we want to take the Laplace transform of
d
dt f t , which is the derivative of f(t). From the definition of the Lap‐
lace transform, we have
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where the integration is performed using integration by parts. In other
words, taking the Laplace transform of the derivative of a function
amounts to multiplying the transform of the function itself by s. (We
pick up an additional term for the value of the function at t = 0. In
what follows, we will always assume that the system is initially “at rest,”
so that f (t = 0) = 0 and thus we can ignore this term from now on.)

For higher derivatives, we obtain an additional factor of s for each
order of the derivative. For integrals, however, we pick up a factor of
1/s—this should not be surprising, since taking the derivative is the
inverse operation to performing an integration.

One other operation deserves mention because it occurs frequently in
practical applications: if F(s) is the Laplace transform of f(t), then the
Laplace transform of f(t – T) is e–sTF(s). In other words, shifting the
function in the time domain introduces an exponential factor in the
frequency domain. Such shifts are common in control problems, since
they describe delays. (If a system replicates its input u(t) to its output
y(t) but introduces a delay of duration T, then the output is a shifted
version of the input: y(t) = u(t – T).)

We can summarize our discussion as follows:

• Taking the derivative in the time domain amounts to a multipli‐
cation by s in the frequency domain.

• Taking the integral in the time domain amounts to a multiplica‐
tion by 1/s in the frequency domain.

• Shifting the function in the time domain by T to the right intro‐
duces a factor e–sT in the frequency domain.

Using the Laplace Transform to Solve
Differential Equations
As we have seen, taking the Laplace transform of a derivative replaces
each derivative (in the time domain) by a factor of s (in the frequency
domain). We can use this property of the Laplace transform to turn
differential equations into algebraic equations, provided that the dif‐
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ferential equation is linear and has constant coefficients. (A differential
equation is linear if the unknown function and its derivatives enter
only as linear factors. Of the three differential equations introduced
earlier, the first two are linear but the Riccati equation is not—because
it contains the term a(y(t))2, which includes the unknown function
y(t) raised to the second power.)

A Worked Example
As an example, let’s consider the following simple linear differential
equation:

dy t
dt = − 1

T y t +u t

This equation describes various decay processes. If we initially ignore
the term u(t), then the change in y(t) is proportional to the current
magnitude of y(t). Moreover, as long as the constant T is positive, the
change is negative. This means that y decays at a constant rate given
by 1/T. A radioactive sample undergoing nuclear decay behaves this
way; during each time interval, a specific fraction of the atoms in the
sample decay. The differential equation also describes a heated body
that is cooling down, because the body loses a fraction of its heat per
unit of time.

The term u(t) stands for any type of additional change in y(t) that is
independent of the system’s internal dynamics. For instance, u(t)
might describe heat that is supplied to the body by an external source.
What’s important is that u(t) is independent from the mechanisms that
govern the changes in the system itself: it describes an external influ‐
ence.

It is customary to bring all terms depending directly on the unknown
quantity y(t) on the lefthand side, thus:

dy t
dt + 1

T y t = u t

To “solve” this differential equation, we need to find an explicit ex‐
pression for u(t) that holds for all times t. We will now do so by using
the Laplace transform. First, we transform all functions that depend
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explicitly on time t into functions of frequency s. The differential
equation now becomes

sY s + 1
T Y s = U s

Observe that this equation is simply an algebraic equation—all deriv‐
atives have been replaced by factors of s. Hence we can now factor out
the term Y(s) on the left-hand side:

s+ 1
T Y s = U s

and solve for Y(s):

Y s = 1
s+ 1 / T

U s = T
1+ sT U s

We have now “solved” the differential equation, because we have com‐
pleted our program to obtain an explicit expression for the unknown
quantity. Furthermore, this expression is valid for all possible external
influences! The problem is that we have only obtained an expression
in the frequency domain. To find the behavior in the time domain, we
must transform the expression for Y(s) back; this can be done once
the shape of the external influence has been fixed. 

The Transfer Function
The solution to the differential equation that we found in the previous
section had the following structure:

Y(s) = H(s)U(s)

Here the term H(s) does not depend on the external “forcing” function
U(s) in any way: it is completely determined by the differential equa‐
tion alone. In this way, it encapsulates all the internal dynamics of the
system. All the information that is contained in the differential equa‐
tion about the behavior of the system is now contained in H(s). But
because H(s) is simply a function of s, H(s) is easier to work with than
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using the differential equation directly. The function H(s) is known as
the transfer function of the system.

Using the Laplace transform, any linear differential equation with
constant coefficients can be repackaged into a transfer function. The
transfer function can be used to calculate how the system will respond
to an arbitrary external influence: just multiply H(s) by the Laplace
transform of the influence, and then transform the result back into the
time domain. Because the transfer function does not depend on the
external forcing function, we can find the response of the system to
any external influence in this way.

Moreover, it is often not even necessary to perform the back-
transformation to the time domain. Much information about the dy‐
namic behavior of the system can be obtained merely from the struc‐
ture of the transfer function alone. In particular, the locations where
the transfer function becomes infinite or zero (its poles and zeros) let
us predict how the system will respond to an external disturbance.
This will be the topic of Chapter 23 and Chapter 24.

Worked Example: Step Response
Let’s work out the step response of the system just described. The dif‐
ferential equation d

dt y t + 1
T y t = 0 describes its dynamics, and its

transfer function H(s) is

H s = 1
1+ sT

which has been normalized, so that its steady-state (or zero-frequency,
s = 0) gain is unity.

As input to this system we choose a step function u(t) = 1 for t > 0;
according to Table 20-1 this function the Laplace transform

U s = 1
s

In frequency space, applying an input to a system amounts to multi‐
plying the system’s transfer function by the Laplace transform of the
input
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Y s = H s U s = 1
1+ sT · 1

s

= 1
s − T

1+ sT

In the second step here we have split the expression into partial frac‐
tions. (Just add the two terms together to convince yourself that this
is indeed correct.)

The quantity Y(s) is the step response in the frequency domain. In
order to find the form of the step response in the time domain, we
need to transform this expression back. Using Table 20-1 again, we
find that

y t = 1−T 1
T e−t/T = 1−e−t/T

We can now see why this process is commonly known as “simple lag”:
the output basically follows the step input but is lagging behind. The
response is also simple, without oscillation or other notable behavior.

The simple lag is an extremely important process for practical appli‐
cations, since it provides the simplest description of any “sluggish”
process that basically follows its input. (The process models used in
Chapter 8 and Chapter 9 were for the most part based on this type of
behavior.)

Worked Example: Ramp Input
In the previous section we found the behavior of a system when sub‐
jected to a steplike input. To find the response to a different input, we
need only multiply the transfer function by the appropriate input
function. For example, if we want to know how the system behaves
when we apply a “ramp input” u(t) = t, then we must first find the
Laplace transform of the ramp; according to Table 20-1, this is U(s) =
1/s2. We now multiply this input by the transfer function:
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This expression can be transformed back into the time domain, term
by term. The final result is

y t = T t
T − 1−e−t/T

This example demonstrates how the transfer function makes it (rela‐
tively) easy to find the response to an arbitrary input. Just multiply by
the desired forcing function in the frequency domain, and transform
back into the time domain.

The Harmonic Oscillator
Another example of considerable practical importance is the harmon‐
ic, damped oscillator driven by an external force f(t). It has the fol‐
lowing differential equation:

d2 y t
dt2 +2ζω dy t

dt +ω2 y t = ω2 f t

If we take the Laplace transform of all functions that depend on t while
accounting for the effect the Laplace transform has on derivatives, then
the preceding differential equation becomes

s2Y(s) + 2ζωsY(s) + ω2Y(s) = ω2F(s)

Solving for Y(s) yields

Y s = ω2

s2 +2ζωs+ω2 F s

and so the transfer function for the harmonic oscillator is

H s = ω2

s2 +2ζωs+ω2

This result is of tremendous practical importance because so many
mechanical and electrical systems have a tendency to oscillate. The
harmonic oscillator serves as a description of (or at least an approxi‐
mation to) all such systems.
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What If the Differential Equation
Is Not Known?
The methods developed in this chapter all assume that the differential
equation describing the system dynamics is known explicitly. For
many mechanical or electrical systems, this is true because the gov‐
erning laws are well known. For automation processes, however, this
is often not the case. Not only may the actual dynamic behavior be
entirely unknown, but it may not even be clear what “laws” might
describe it—what would take the equivalent place of Newton’s laws for,
say, a web cache?

Despite these objections, the techniques developed in this chapter (and
in those that follow) are still relevant for two reasons. First, even if the
dynamics of a system are not known a priori, we can still measure its
behavior and build a transfer function based on the experimental ob‐
servations (rather than deriving the transfer function from a differ‐
ential equation; this was the topic of Chapter 8). Furthermore, the
concepts and arguments regarding the dynamic behavior of a system
are the same, regardless of whether a differential equation is known
explicitly or not. 
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1. When working entirely in the frequency domain (in which case there is no need to
have separate designations for quantities in the time domain), it is customary to use
lowercase letters for input and output signals and to reserve uppercase letters for
elements.

CHAPTER 21

Block-Diagram Algebra and
the Feedback Equation

In Chapter 20 we saw that the dynamic behavior of a system is given
as the solution to a differential equation. We also saw how the Laplace
transform could be used to repackage all the dynamic information
contained in a linear, time-invariant differential equation into a simple
function (the transfer function). In this chapter, we will show how the
dynamic behavior of a combination of systems can be found from the
transfer functions of the individual elements.

Composite Systems
In Chapter 20, we saw that, in the frequency domain, a system’s dy‐
namic response y(s) to an external input u(s) is given by the product
of the system’s transfer function H(s) and the input1

y(s) = H(s)u(s)

We can express this equation as a block diagram, where the system
(described by its transfer function H) transforms the input u to the
output y:
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Obviously, we can combine several such systems in series, with the
output of one serving as input to the next:

The output of this composite system is the product of its components:

y(s) = H(s) G(s) u(s)

This follows simply because the output of the first element is x(s) =
G(s) u(s) and because the output of the second component, acting on
the output of the first, is y(s) = H(s) x(s). Therefore, the transfer func‐
tion of the aggregate system consisting of H(s) and G(s) arranged in
series is the product of the components: T(s) = H(s) G(s) = G(s) H(s).
(Because G and H are merely functions, they commute.)

By similar reasoning, one can show that if two components are ar‐
ranged in parallel,

then one can add their respective outputs to find the output of the
overall system:

y(s) = H(s)u(s) + G(s)u(s) = [H(s) + G(s)] u(s)

The transfer function of a composite system, consisting of H(s) and
G(s) arranged in parallel is the sum of the components: T(s) = H(s) +
G(s).

These two simple rules allow us to handle a variety of open-loop sys‐
tems. But we also need a rule for closed-loop arrangements. This will
lead to a central result in the theory of feedback systems.
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The Feedback Equation
Suppose now that we have a desired outcome (a setpoint) for the sys‐
tem. In other words, we want the system outcome y to track a given
reference signal r as closely as possible. To ensure this behavior, we
apply the feedback principle (Chapter 2):

• We compare the actual output y to the reference r.
• We adjust the input to the system to counteract any deviation of

y from r.

In other words, if y exceeds r, then we will adjust the input u in such
a way that y will be reduced, and vice versa.

Toward this end, we “close the loop” so that the output y can be com‐
pared to the setpoint r (see Figure 21-1). All inputs to the circle are
summed, and the result is then passed to the controller K. Because the
system output y has been multiplied by –1 on its return path, the input
to K is the tracking error e = r – y. We wish to minimize the magnitude
of this error (in other words, we want to reduce it to zero). The con‐
troller K transforms the tracking error into a control input u to the
system; when the tracking error is zero, no further changes need to be
made to the input.

Figure 21-1. The standard feedback loop. The controller K acts on the
tracking error e to produce the input u for the plant H. The plant out‐
put y is multiplied by –1 on the return path. At the circle, the negative
output –y is added to the setpoint r to yield the tracking error e = r –
y.

By construction, the system H transforms an input u into an output
y. We may now treat the whole assembly as a single system (pictured
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in Figure 21-1 by the dashed box) that transforms the input r into an
output y. What is the correct expression describing the behavior of
this closed-loop system in terms of its components K and H? It can’t
simply be the open-loop expression y = HK r, which fails to take into
account that the output y is fed back into the system input. Instead,
the combined system H K acts on the tracking error e = r – y to produce
the output y:

y = HK(r –y)

Because H and K are regular functions, we can solve this equation for
y. First multiply out the parentheses on the right-hand side,

y = HK r − y
= HKr −HK y

and then bring the second term to the left-hand side:

y + H Ky = H K r

Now factor out the common factor y on the left:

(1 + H K)y = H K r

and finally divide by (1 + HK) to obtain

y = HK
1+HK r

The transfer function of the closed-loop arrangement shown in
Figure 21-1 is therefore

T s = H s K s
1+H s K s

This result is central to all of feedback control theory.
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An Alternative Derivation of the Feedback Equation
There is an instructive alternative to deriving the feedback equation,
one that makes the iterative aspect of the feedback principle explicit.
We begin once again with the basic input/output relation

y = HK(r – y)

but, instead of solving the equation algebraically, we take an iterative
approach by plugging the expression y = HK (r – y) back into the
equation on the right-hand side:

  

Now we do it again:

  

and so on. Writing it this way shows more clearly how the output y is
being passed through the system HK again and again, and modified
each time by the influence of HK. If HK has the effect of amplifying its
input, then we can see that y will get large very quickly as it goes
through the loop repeatedly.

Finally, summing the geometric series in HK will lead us back to the
feedback formula. (That’s because x – x2 + x3 – ⋯ = –x (1 – x + x2 –
⋯) = x/(1 + x)—provided |x| < 1, for otherwise the sum does not
converge. This condition provides yet another hint at the constraints
that exist for the design of a suitable controller.)

Block-Diagram Algebra
Given the feedback equation that describes a closed-loop arrange‐
ment, we now have a set of “rules” that allows us to manipulate block
diagrams and find the transfer function of a composite system directly
from its block diagram. The rules are summarized in Figure 21-2.
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These rules can be used to simplify complex block diagrams and also
to modify existing ones. For instance, any series of elements H and G
can be replaced by a single element with transfer function HG. Intro‐
ducing an additional element (such as a filter F) into an existing loop
merely amounts to the insertion of an additional factor into the trans‐
fer function for the entire loop, and so on.

One can formulate a wide variety of additional rules, but all can be
reduced to the three basic rules given here. In any case, the rules shown
in Figure 21-2 are sufficient for all block-diagram manipulations in
this book. 

Figure 21-2. The three most important operations of block-diagram
algebra: composition in sequence (top), addition in parallel (center),
and the negative feedback loop (bottom).

Limitations and Importance of
Transfer Function Methods
The transfer function technology described in the last two chapters
may seem like magic: it turns differential equations into simple func‐
tions and allows us to manipulate entire control loops through a simple
algebra of graphical operations! In the following chapters, we will see
how this method allows us also to determine the dynamic response of
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closed-loop systems from the mathematical structure of the transfer
function alone—that is, without actually having to evaluate any time-
domain behavior.

That being said, transfer function methods are based on the Laplace
transform and are applicable only when certain conditions are met:

• The system dynamics are given by a linear differential equation
with constant coefficients.

• Both input and output for all components in the loop are scalars.
(In other words, each component has exactly one input and one
output.)

There are techniques to extend transfer function methods to more
general situations, and there is an alternative formulation of the theory
that is not limited to single-input/single-output systems (see Chap‐
ter 26).

Beyond the direct applicability of Laplace transforms and transfer
functions to performing calculations on specific systems, methods
based on Laplace transforms provide a conceptual framework and—
in many ways—the terminology for control systems. For this reason
alone, it is necessary to gain at least a passing familiarity with them. 
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CHAPTER 22

PID Controllers

We encountered PID controllers already in Chapter 4. Now we take a
closer look at them while using the frequency-space methods intro‐
duced in Chapter 20.

The Transfer Function of the PID Controller
As we saw in Chapter 4, the output uPID(t) of a PID controller in terms
of its input e(t) is given by

uPID t = kpe t +ki∫
0

t
e τ dτ +kd

de t
dt

Notice that uPID(t) is linear in e(t). (Both integration and differentiation
are linear operations.) The linearity of the PID controller is one reason
for its popularity.

We can take the Laplace transform of this expression term by term to
obtain the dynamic response of a PID controller in the frequency do‐
main. Using Table 20-1, we find without difficulty that

uPID s = kp +
ki

s +kds e s

The expression within brackets is the transfer function of the con‐
troller in frequency space. It has a particularly simple form—in fact,
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just the factors s and 1/s are often used to signify the corresponding
terms (see Figure 22-1).

Figure 22-1. The standard form of the three-term or PID controller.

The Canonical Form of the PID Controller
As we have just seen, the transfer function of a PID controller is

K s =kp +
ki

s +kds

= kps+ki +kds2

s

This is the form most convenient for theoretical work. It has the dis‐
advantage that the three constants (kp, ki, and kd) do not all have the
same dimensions, because s has the dimension of frequency, ki has the
dimension of time, and kd has the dimension of 1/time. In application-
oriented contexts, an alternative form of the PID controller transfer
function is often used:

K s = k 1+ 1
sT i

+ sTd

Here k is the controller gain, Ti is the “integral time” (or “reset time”),
and Td is the “derivative time” (or “rate time”). The two forms are
equivalent, and the parameters are related:

k = kp T i =
kp

ki
Td =

kd

kp
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Of course, the numerical values are different! When comparing values
for controller parameters, one must not forget to establish which of
the two forms they refer to.

The General Controller
The discussion so far has concerned only controllers that consist of
strictly proportional, integral, and derivative terms (PID controllers).
This raises the question of what else a controller can be. The answer
is: anything at all, as long as it has one input and one output and de‐
pends only on values that are available at the time that control action
is needed. If we want to use Laplace transforms and transfer function
technology, then the controller behavior must be describable by a lin‐
ear and time-invariant differential equation in the time domain. In
principle, though, the controller action can be any function of its in‐
puts.

If we were to start entirely from scratch, then what would the most
desirable controller look like? Since our intent is for the plant output
to track the setpoint signal as closely as possible, the “ideal” controller
would act in such a way as to cancel the effect of the plant. Under those
conditions, the input to the controller r would be precisely the output
of the plant y (in an open-loop configuration):

y = HK r

Now assume that K exactly “neutralizes” or cancels the effect of H and
so this equation becomes

y = r

Perfect tracking!

In frequency space, this is easy enough to achieve. Let H(s) be an ar‐
bitrary transfer function. Then a controller with the following transfer
function will literally cancel the effect of the plant H:

K ideal s = 1
H s
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1. Provided that the controller gain k and the plant output are both positive, as is usually
the case.

All that remains to do is to transform this transfer function back into
the time domain and then build a physical device that exhibits the
required dynamical behavior. Of course, there is the rub: controller
designs obtained in this way often require arbitrarily large control ac‐
tions—larger than can be achieved using physical devices. This is not
helpful. (But controllers that attempt to cancel the plant approximately
are sometimes used as part of a global control strategy; recall the dis‐
cussion of the Smith predictor in Chapter 11.)

The PID controller, together with a feedback architecture, takes a dif‐
ferent approach: the controller does not attempt to cancel the plant
dynamics exactly. Instead, it relies on frequent and continuous ad‐
justments in order to have the plant output track the setpoint. For
processes with difficult dynamics, however, a controller that is more
complicated than a simple three-term controller may lead to better
performance.

Proportional Droop Revisited
In Chapter 4, we mentioned the inability of a strictly proportional
controller to track a setpoint without incurring a steady-state error.
Now, with the controller’s transfer function and the feedback equation
(Chapter 21) in hand, we can understand this phenomenon more
precisely.

For a simple feedback loop with a plant H and a strictly proportional
controller K = k, the feedback equation is

y = kH
1+kH r

Now consider the steady state that prevails when all transients have
died away. The input r is a constant, and (in the steady state) so is the
output of the plant H itself. But under those circumstances, the frac‐
tion in the equation just displayed is always less than 1,1 so that the
output from the feedback loop y will always be smaller than the ref‐
erence value r! As the controller gain k is increased, the fraction will
approach 1 and so the steady-state error is reduced. But no finite con‐
troller gain will succeed in eliminating it.
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A Worked Example
Near the end of Chapter 3, we simulated a simple system that repro‐
duced its input but delayed by a single time step. With proportional
control, the system could be made to converge to a steady state under
certain conditions but always exhibited a noticeable deviation from
the setpoint value. We can now calculate the final value that the system
converged to.

The system or “plant” H in the example neither increases nor decreases
the value of its input; it merely delays it. So as far as the magnitude of
the output is concerned, H has no influence and we can replace it with
a multiplication by 1. However, the controller K changes the magni‐
tude of its input by a factor of the “controller gain” k. If we again con‐
sider only the change in the magnitude, then the feedback formula
becomes

y = k
1+k r

For the graphs in Figure 3-4, we used values for the controller gain of
k = 0.8 and k = 1.1 while keeping the setpoint constant at r = 1. The
feedback formula now tells us that the magnitude of the steady-state
output should be 0.8

1+0.8 ≈ 0.44 and 1.1
1+1.1 ≈ 0.52, respectively; these val‐

ues are also indicated in the figures. (For the unstable case of k = 1.1,
this result is misleading, of course, because in this scenario the system
never settles down to a steady state.) 
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CHAPTER 23

Poles and Zeros

An important advantage of the “transfer function technology” is that
we do not need to evaluate the entire transfer function to obtain in‐
formation about a system’s dynamics. Instead, it is sufficient to merely
know the locations of the transfer function’s poles and zeros—that is,
the locations where the transfer function diverges or vanishes (re‐
spectively) to gain substantial insight into the dynamic behavior.

Structure of a Transfer Function
By construction, the transfer functions for feedback systems tend to
be proper rational functions—that is fractions of one polynomial in s
over another polynomial in s:

H s = N s
D s

=
bmsm +bm−1sm−1 +⋯+b0

sn +an−1sn−1 +⋯+a0

This fact is a consequence of the way transfer functions arise as solu‐
tions of linear differential equations with constant coefficients via
Laplace transforms. (If the dynamics include time delays, then addi‐
tional factors of the form e–sT occur in the transfer function—more on
this issue later in this chapter.)

The degree of a polynomial is the power of its highest term. In the
preceding formula, the numerator is of degree m, and the denominator
is of degree n. A transfer function is called strictly proper if it tends to
0 for large s, and it is called proper if it tends to a finite value as s
approaches infinity. For transfer functions that are strictly rational
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functions, this means that for a transfer function to be strictly proper,
the degree of the numerator polynomial must be less than the degree
of the denominator polynomial (m < n) and that the degrees must be
equal (m = n) for a transfer function to be proper. The rank R of a
transfer function is the excess of numerator zeros over denominator
zeros: R = m − n. Transfer functions of physical systems are never
improper.

It is always possible to factor a polynomial (in the complex plane). If
we factor both the numerator and the denominator polynomials of
H(s), we obtain the standard or “root locus” form of the transfer func‐
tion:

H s =
k s− z1 s− z2 ⋯ s− zm

sr s− p1 s− p2 ⋯ s− pn−r
with m ≤ n

If s equals any of the zk (for k = 1, ..., m) then the transfer function
vanishes; hence the zk are the locations of the zeros of H(s), or simply
its zeros. Similarly, whenever s becomes equal to any of the pk(for k =
1, ..., n – r), the denominator of H(s) vanishes and so the transfer
function H(s) “blows up” for that value of s. Such positions are called
the poles of H(s). Finally, if r > 0 then H(s) has a pole of order r at the
origin; in that case, one says that H(s) is of type r.

Effect of Poles and Zeros
Knowing only the poles and zeros of a transfer function allows us to
understand a good deal about the dynamic response of the corre‐
sponding system. To see why, we need to understand what poles and
zeros can tell us about dynamic behavior.

The effect that zeros have is easy to see: because y(s) = H(s)u(s), the
output y(s) is zero whenever H(s) is zero irrespective of the input
u(s). Moreover, for values of s near a zero, even though H(s) will not
vanish exactly, it will still be small, so that the y(s) will also be small in
a neighborhood of a transfer function zero. Zeros block the transmis‐
sion of signals.

To understand the effect that poles have, we need to work a little harder.
We begin with the transfer function in its standard, factored form.
Such a rational function can always be split into partial fractions. In
other words, we can find coefficients Ak such that
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H s =
A1

s− p1
+

A2

s− p2
+⋯+

An

s− pn

To understand how the system responds to a disturbance, we must
transform the transfer function back into the time domain. This is now
easy to do because we can perform the inverse transformation term
by term. According to Table 20-1, an expression of the form 1/(s – p)
in the frequency domain leads to ept in the time domain. Each pole pk

contributes an exponential term of the form epkt to the transfer function
in the time domain. The transfer function in the time domain is there‐
fore a linear combination of exponentials, one for each pole:

  

Because the transfer function is a representation of the dynamic re‐
sponse of the system, it follows that the dynamic behavior can be ex‐
pressed as a superposition of “modes.” The behavior of each mode is
given by the exponential epkt, where pk is the position of the corre‐
sponding pole.

The dynamic behavior of each mode in the time domain now depends
on the value of pk. If pk is real and negative, then the dynamic response
epkt will decay exponentially; the more negative pk is, the faster is the
decay. If pk is real and positive, then the mode will grow exponentially
with time.

But pk does not need to be real; it can have an imaginary part. In this
case, the dynamic response is oscillatory. Recall that the exponential
function with a purely imaginary argument can be expressed in terms
of trigonometric functions (also see Appendix C):

  

The greater ω is, the faster the wiggles.

If the pole is purely imaginary (pk = iωk), then the dynamic response
consists of an oscillation with a constant amplitude. If the pole is
complex—that is, if it has both a real and an imaginary part (pk = σk +
iωk)—then the amplitude of the oscillation will either grow or decay
exponentially, depending on the sign of the real part σk:
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The first term describes the development of the amplitude, and the
second term simply wiggles with frequency ωk. The combination de‐
scribes an oscillation with time-varying amplitude.

To summarize: the dynamic response is a linear combination of
modes, one for each pole. The position of the pole determines the
nature of the mode. The most important distinction concerns the sign
of the real part of the pole. If the real part is positive, the amplitude of
the corresponding mode will grow in time: the system blows up; it is
unstable. Only poles with a negative real part describe stable behavior.
In other words, for a system to be stable, all of its poles must be in the
left-hand plane. Furthermore, poles with an imaginary part are asso‐
ciated with an oscillatory dynamic response; and the greater (in ab‐
solute terms) the imaginary part, the faster the oscillation. (See
Figure 23-1.)

Special Cases and Additional Details
The preceding discussion skipped a few details and special cases,
which we still need to mention.
Complex conjugate poles

If you consider the time response of a pole with an imaginary part, it
may appear as if there will be an imaginary time response. After all, if
pk = σk + iωk then the corresponding mode eσkt(cos(ωkt) + i sin(ωkt))
seems to include an imaginary part (namely, the sine term). But this
is not, in fact, the case. By construction, complex poles in the transfer
function for a physical system always occur in complex conjugate
pairs, so that if pk = σk + iωk is a pole, then there will also be a pole pk+1

= σk – iωk. Moreover, the corresponding coefficients Ak and Ak+1 in the
partial fraction expansion will also be complex conjugates of each
other. Both pk and pk+1 lead to oscillatory modes with the same fre‐
quency, but their respective imaginary parts cancel each other out!
The end result is that a complex pole, together with its complex con‐
jugate, contributes a purely real oscillatory mode to the dynamic re‐
sponse in the time domain.
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Figure 23-1. Pole positions in the complex plane and how they deter‐
mine the nature of the dynamic behavior in the time domain.

Multiple poles

It may be that the partial fraction expansion of the transfer function
contains terms with the denominator raised to some power:

H s =⋯+
A j

s− p j
μ +⋯

In this case, the corresponding pole is called a multiple pole of order
μ. According to Table 20-1, the time response for such a term picks up
an additional factor of tμ – 1:

  

Finally, if a term Aj/(s – pj)μ occurs in the partial fraction expansion,
then all terms of lower power (Ak/(s – pj), Aℓ/(s – pj)2, ..., Am/(s –
pj)μ–1) will also occur.

Poles on the imaginary axis

If a pole is purely imaginary (that is, if its real part is zero) then the
pole is located on the imaginary axis. The amplitude of the corre‐
sponding mode neither increases nor decreases with time, and the
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mode is said to be marginally stable. This is not the case if the pole in
question is a multiple pole, because the additional factors of t in the
time response for multiple poles make multiple poles on the imaginary
axis unstable.
Pole/zero cancellations

It is possible for a pole and a zero to occur at the same location: pk =
zj. In that case, the respective factors in the transfer function will can‐
cel. This effect is sometimes introduced intentionally to suppress an
undesired mode, as when additional elements are added to the control
loop in order to create a zero at or near the pole of the undesired mode.
Even if the cancellation is not perfect, the effect of this operation will
be a much reduced amplitude of the mode in question. 

Pole Positions and Response Patterns
Figures showing the positions of poles and zeros in the complex plane
are known as pole-zero diagrams. Poles are indicated using × symbols,
and zeros are indicated with open circles. The nature of the system’s
dynamic behavior can be read off from a pole-zero diagram;
Figure 23-3 shows a selection of pole configurations in the complex
plane together with the associated dynamic response to a short im‐
pulse at t = 0. The basic rules are as follows:

• Poles in the right half-plane correspond to modes with amplitudes
that grow in time—they are unstable. Amplitudes for poles in the
left half-plane diminish in time (they are stable); amplitudes for
poles on the imaginary axis remain constant over time (marginal‐
ly stable). (See panel A in Figure 23-3.)

• Poles on the real axis correspond to modes that are nonoscillatory.
Poles off of the real axis correspond to modes that are oscillatory;
such poles always occur in complex-conjugate pairs. (See panel B
in Figure 23-3.)

• A multiple pole on the imaginary axis is unstable. The amplitude
of the associated mode grows only as a power law (not exponen‐
tially). (See panel C in Figure 23-3; the pole at the origin is a double
pole, indicated by the “2” in the pole-zero diagram, and its dy‐
namic response increases linearly with time.)
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• Moving poles vertically away from the real axis increases the fre‐
quency of the corresponding, oscillatory mode. (See panels B and
C in Figure 23-3.)

• Moving stable poles horizontally away from the imaginary axis
makes the amplitude change faster: moving a stable pole to the
left makes the corresponding mode decay faster, whereas moving
an unstable pole to the right makes the amplitude increase faster.
(See panels B and D in Figure 23-3.)

• A zero near a pole diminishes that pole’s importance by reducing
the amplitude of the corresponding mode.

• Zeros in the right half-plane are indicative of non-minimum
phase systems. The initial response of such systems will be in the
opposite direction of the input.

Dominant Poles
If we are dealing with a transfer function of high order (many poles
and zeros), then we can often simplify the analysis by concentrating
only on the dominant poles and neglecting the other ones. Poles that
can be neglected are those that are far to the left of the dominant poles:
the dynamic response of the neglected poles will decay quickly, so they
will not exert a major influence on system behavior. We can also ne‐
glect poles that are close to a zero; the amplitude of the associated mode
will be very small and, again, ignoring such a pole won’t change the
observed behavior much. (See Figure 23-2.)

Figure 23-2. Dominant poles in red and subdominant poles in green.
In the right-hand graph, the pole on the real axis is subdominant be‐
cause it is nearly canceled by the nearby zero.

Pole Positions and Response Patterns | 239



Figure 23-3. Pole configurations and their corresponding impulse re‐
sponses. In panel B, the green curve decays as fast as the red curve but
wiggles faster (vertical pole movement), whereas the blue curve oscil‐
lates at the same frequency as the red one but decays faster (horizon‐
tal pole movement). In panel C, the blue pole at the origin is a double
pole (indicated by the “2”), and its dynamic response grows linearly
with time. In panel D, the curves correspond to the blue pair of poles
and either the red or the green pole. The green pole is far from the ori‐
gin and hardly affects the dynamic response, but the red pole is close
to the origin and therefore determines the dominant, slow decay of
the red curve.
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1. See for example The Art of Control Engineering by K. Dutton, et al. (1997).

The time response in panel D of Figure 23-3 consists of the contribu‐
tion of the blue poles and either the red or the green pole. The blue
pair of complex conjugate poles describes a damped oscillation. The
green pole, which is farther away from the origin than the blue poles,
describes a mode that decays so quickly that it hardly affects the dy‐
namic response at all. The red pole, however, is closer to the origin
than the blue poles. Its corresponding mode in the time domain decays
more slowly than the oscillations due to the complex conjugate pair.
The red pole is a typical dominant or “slow” pole.

Pole Placement
Knowing how the dynamic response of a system is determined by the
position of the system’s poles, we can attempt to design a system with
the desired behavior by “moving its poles”—a process known as pole
placement. Controller tuning (see Chapter 9) is a simple example of
pole placement: we try to adjust the controller gains in order to “move
the poles” into positions corresponding to the desired performance.
The root locus method (Chapter 24) is a graphical design technique
based on the idea of moving poles in the complex plane.

At the beginning of Chapter 9 we listed several goals for the tuning
process, such as the typical response time of the system, the amount
of overshoot after a disturbance, the damping of oscillations, and so
on. These quantities can be related directly to pole positions.1 Speci‐
fying numerical values for the tuning goals therefore amounts to re‐
stricting the system’s poles to a specific region of the complex plane.
Controller tuning can now be regarded as a process of moving the
dominant poles into the permissible regions.

But we are not limited to adjusting the controller gains. One can insert
additional elements with known transfer functions into the control
loop, a process known as “loop shaping.” For instance, one can intro‐
duce a “lead/lag compensator” with transfer function

G s = 1+as
1+bs

into the control loop. This compensator has a pole at –1/b and a zero
at –1/a. We can now adjust a such that the zero coincides (for example)
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with an undesirable pole and fix b to place the corresponding pole into
favorable position. 

What to Do About Delays
All the preceding considerations assume that the transfer function is,
in fact, a purely rational function: one polynomial in s divided by an‐
other polynomial in s. If the dynamics of the system can be expressed
entirely in terms of a linear differential equation with constant coef‐
ficients, then this assumption will be satisfied. But it will not be satisfied
if the system dynamics include pure time delays.

In physical systems, delays often arise because energy or material is
transported over some distance: if water needs to flow through a hose
or pipe, then there will be a delay from the time the faucet was opened
to the time the water level in the bucket begins to rise. Symbolically,
the output of a system H is delayed by some time τ relative to the input

y(t) = H u(t – τ)

Time delays are not described by linear differential equations with
constant coefficients, and their transfer functions are not purely ra‐
tional functions—instead, time delays introduce exponential factors
of the form e–sτ into the transfer function. This is less of a mathematical
problem (the transfer functions remain well behaved) but it is a major
practical inconvenience. Many analytical methods in control theory
rely on the transfer function being the ratio of two polynomials. (For
instance, the ability to perform a partial fraction expansion—which
was central to our description of the dynamic response in terms of
modes and their associated poles—requires the transfer function to be
a rational function.)

In order to retain the desired structure of the transfer function, one
approximates the exponential factor e–sτ either by a power series or by
a rational function approximation. All of these approximations are
good as long as sτ is small—that is, for time scales that are long com‐
pared to the duration of the delay.

The Taylor expansion of the exponential function is familiar, but it is
not a good approximation unless sτ is quite small:
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e−τs ≈ 1−τs+ τs 2

2 ∓⋯

Much better results can be obtained by approximating the exponential
function through a rational function instead of a power series (Padé
approximation). The following two approximations are often used:

e−τs ≈ 1−τs / 2
1+τs / 2

≈ 2−τs+ τs 2 / 6
2+τs+ τs 2 / 6

Finally, we can make use of the identity lim n ∞ 1+x / n n = ex, and
thereby arrive at an approximation for the exponential function, by
plugging in some “large,” but finite value of n (say, n = 5, ..., 20):

e−τs ≈ 1
1+τs / n n n≫1

This approximation has a nice interpretation as a sequence of n lags,
each with time constant τ/n. The value of n should not be too large,
because otherwise the expression becomes numerically unstable.

Finally, keep in mind that all of these formulas are only approxima‐
tions. Not only do they have a limited range of validity, but using them
does also change the pole structure of the transfer function. The results
should therefore be used with care! 
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1. A note on terminology: I consider a root locus to be the position of a single solution
of the characteristic equation. The root locus curve is the set of all such positions as
the gain is varied.

CHAPTER 24

Root Locus Techniques

As we saw in Chapter 23, the location of the poles and zeros of the
transfer function determines the system’s dynamic behavior. We can
therefore change the dynamics of the system by moving the poles and
zeros to more desirable positions, a method known as “pole place‐
ment.” The easiest way to do this is by adjusting the controller gains—
that is by “tuning” the controller. (See Chapter 9 for more hands-on
techniques of controller tuning.)

As the controller gains are varied, the poles and zeros of the closed-
loop transfer function trace out curves in the complex plane that are
called root locus curves. A root locus diagram is a plot of the complex
plane showing the root locus curves1 as the gain is increased from zero
toward infinity. Given such a diagram, we can choose the gain value
that moves the dominant poles closest to their desired locations.

Because the structure of transfer functions is not arbitrary (they tend
to be rational polynomials), we can make some general statements
about global features of the corresponding root locus diagrams. These
rules are discussed next.
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Construction of Root Locus Diagrams
Root locus diagrams are usually drawn for closed-loop systems, such
as the one depicted in Figure 24-1. This system has the closed-loop
transfer function

T s = KG
1+KGH

This function has a pole when the denominator becomes zero, so the
condition for a pole is

1 + KGH = 0

This equation is also called the “characteristic equation” of the system.
Note that the characteristic equation of the closed-loop system involves
only the open-loop transfer function K G H.

Figure 24-1. A closed-loop arrangement, involving controller K, plant
G, and return filter H.

Now consider the case of purely proportional control. In that case, the
controller becomes K(s) = k, where k is the controller gain. With this
choice of controller, the open-loop transfer function simplifies to kGH.

Transfer functions tend to be rational functions. Let us write out the
numerator and denominator of the open-loop transfer function kGH
explicitly while factoring out the scalar gain k:

kGH = k N
D

where N(s) is the numerator of the open-loop transfer function and
D(s) is the denominator. Multiplying through by D, the characteristic
equation can now be written as
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2. Derivations can be found, for example, in Modern Control Engineering by K. Ogata
(2009).

D(s) + kN (s) = 0

Recall that those values s for which this equation is satisfied are the
poles of the closed-loop transfer function and that all such values of s
make up the root locus curves.

Now consider the two limiting cases of k → 0 and k → ∞. For k = 0,
the characteristic equation reduces to D(s) = 0. In other words, in the
limit of k = 0, the closed-loop transfer functions has poles when the
denominator of the open-loop transfer function is zero: the poles of
the open-loop and the closed-loop transfer functions coincide for k =
0. For the other limit, first divide through by k to obtain D(s)/k + N(s)
= 0 and then let k → ∞; we are left with N(s) = 0. In this limit, the poles
of the closed-loop transfer function coincide with the zeros of the open-
loop transfer function (that is, those values of s for which the numer‐
ator N(s) of the open-loop transfer function vanishes.)

These observations lead to the following conclusion: the root locus
curves begin at the poles of the open-loop transfer function for k = 0
and approach the zeros of the open-loop transfer function for k → ∞.

A more detailed description is given in the next section.

Root Locus or “Evans” Rules
Assume that the complete open-loop transfer function can be factored
in the following way:

K s G s H s = k ·
s− z1 s− z2 ⋯ s− zm

s− p1 s− p2 ⋯ s− pn
with k ≥ 0 and n ≥ m

The transfer function has n poles and m zeros, and the condition n ≥
m ensures that it is proper.

We can now state2 the following rules about the global appearance of
a root locus diagram for nonnegative values of k. (These rules are also
known as “Evans rules”, after W. R. Evans, who first formulated them.)
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3. The general condition for a singular point is that dk/ds = 0, where k = – D(s)/N(s). If
the transfer function factors completely, then this condition yields the formula given
in the text.

1. The root locus diagram is symmetrical with respect to the real
axis.

2. There are n branches in the root locus diagram.
3. Every pole is a starting point (k = 0) of a branch. All branches

begin at a pole.
4. Every zero is an endpoint (k → ∞) of a branch.
5. If there is an excess of poles over zeros, then the remaining R = n

– m branches tend to infinity as k becomes large. (These branches
end at the “zeros at infinity” of the transfer function.)

6. If the transfer function has R more poles than zeros, then the cor‐
responding branches are asymptotic to straight lines as k → ∞.
The asymptotes are at the following angles with the positive real
axis:

  

7. All asymptotes intersect in a point on the real axis. The position
σ0 of this intersection point is given by

  

8. If the transfer function has poles or zeros on the real axis, then
those sections of the real axis that have an odd number of poles
and zeros to their right will be part of one of the branches. Multiple
poles or zeros are counted multiple times. (See examples later in
this chapter!)

9. Different branches may intersect each other. Such points of in‐
tersection are called “singular points.” Singular points are values
of s that satisfy the following equality:3
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This is a necessary condition only—there may be solutions of this
equation that correspond to negative values of k.

10. Branches intersecting on the real axis will depart from (or arrive
on) the real axis at right angles to the real axis.

Employing these rules, a root locus diagram can be sketched by fol‐
lowing this sequence of steps:

1. Plot the positions of the poles and zeros of the open-loop transfer
function in the complex plane.

2. Identify those sections of the real axis that are part of one of the
branches.

3. Plot the position where the asymptotes intersect.
4. Plot the asymptotes.
5. Plot the critical points (intersections of branches).
6. Fill in the missing parts of the branches.

Angle and Magnitude Criteria
We can use the polar representation of complex numbers to derive two
interesting conditions for a point s to lie on a root locus curve. Every
complex number can be written in the polar form z = |z| eiϕ, where ϕ
= arg z is the phase angle of z. Assume that the transfer function splits
into factors as defined previously. We now use the polar representation
of each factor (s – pj) and (s – zj):

to write the transfer function as

The characteristic equation requires that K(s)G(s)H(s) = −1. Using the
polar representation of the transfer function just derived, we can write
the characteristic equation as two separate equations for the magni‐
tude and the phase angle. This leads to two conditions: the magnitude
condition,
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4. They can also be used to obtain further information about the appearance of a root
locus diagram, such as the angles under which root locus curves enter or leave a pole
or zero. For more information, see The Art of Control Engineering by K. Dutton, et al.
(1997).

and the angle condition,

  

Because they must be satisfied simultaneously by any point s on a root
locus curve, these two conditions can be used to determine whether a
point belongs to one of the curves.4

Practical Issues
Root locus diagrams are a great way to develop a sense for the overall
dynamic behavior of a system—although still fairly abstract, the map
of roots and zeros provides more intuition than can a formula for the
transfer function! At the same time, it is worth remembering that it is
the dominant poles (those closest to the origin) that determine the
behavior of the system. The global structure of the diagram is of less
interest than the area near the origin.

The root locus diagram is an analytical technique. It requires an ana‐
lytic expression for the transfer function of the plant or process, and
it becomes more useful as the transfer functions become more com‐
plicated. If there is no good theoretical model of the system and one
must employ a phenomenological descriptions obtained from experi‐
ments (see Chapter 8), then root locus diagrams are less necessary. In
fact, as long as the transfer function is simple enough, one can work
out the optimal positions of its dominant poles and zeros ahead of
time and obtain “plug-in” rules for the controller gains (this is how the
semi-analytical tuning methods in Chapter 9 work).

The root locus diagram is limited to displaying the movements of the
poles and zeros as a single scalar parameter is varied. That is frequently
not enough, since using a PI controller means that there are already
two gain parameters to worry about. Employing a three-term con‐
troller or introducing a smoothing filter adds further adjustable pa‐
rameters. Ultimately, this means creating a sequence of root locus di‐
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5. Matlab, Scilab, and Octave all include routines for creating root locus diagrams.

agrams, one for each value of the secondary parameter. (We’ll see an
example later in this chapter.)

In most cases, root locus diagrams will be drawn with the aid of a
computer. Specialized plotting programs exist5 that take into account
the special structure of the diagram and utilize the Evans rules to gen‐
erate the plot. These programs usually require that the transfer func‐
tion be specified explicitly as a strictly rational function.

Examples
In Chapter 20, we derived the transfer function for a simple lag:

G s = 1
1+ sT

This function describes systems, such as a heated vessel, that exhibit
a particularly simple dynamic. If such a system undergoes a steplike
change of its input, then its output will slowly approach its new steady-
state value without oscillation or overshooting. (The temperature in a
heated vessel increases steadily if the heat is turned on, and it decreases
to the ambient temperature again if the heat is turned off.) Because the
output does not respond immediately to the change in input, such
systems are referred to as “simple lags.” The response to a step input
of magnitude C that occurs at t = 0 is given by an exponential function
in the time domain:

y(s) = C (1 – e–t/T)

We have encountered this formula already as an approximate process
model when looking for a phenomenological description of a system’s
dynamic response (see Chapter 8 and Chapter 9).

Simple Lag with a P Controller
Consider a simple-lag system in combination with a proportional
controller but without a return filter. In this case, we have
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K s = k

G s = 1
1+ sT

H s = 1

The open-loop transfer function is therefore

K s G s H s = k
1+ sT

and the characteristic equation is

k
1+ sT = −1

The open-loop transfer function has one pole (at s0 = –1/T) and no
zeros, so we expect one asymptote at angle π with the positive real axis.
In other words, the asymptote is parallel to the negative real axis.

In order to create a figure, we must assign a numerical value to the
parameter T. Let’s set T = 1, which means that we measure time in
units of T (see Figure 24-2).

The root locus diagram agrees with our expectations: there is only a
single branch, it is aligned with the negative real axis, and it exhibits
no oscillatory behavior. Increasing the controller gain k moves the pole
to the left, starting from the pole at s0 = –1 and moving toward the
“zero at infinity.” The part of the real axis to the left of the pole has “an
odd number of poles (namely one) to its right” and is therefore part
of the root locus curve (compare Rule 8).

A general problem with root locus diagrams is that the controller gain
k is not shown. In Figure 24-2, we indicated several distinct values of
k with symbols in the root locus diagram (top panel) and showed the
corresponding step responses in the bottom panel. It is customary to
use arrows to indicate the direction of increasing controller gain on
each branch of a root locus diagram.
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Figure 24-2. Root locus diagram (top) and step response (bottom) for
a simple lag under strictly proportional control. The pole of the open-
loop transfer function is indicated by a × sign. Also indicated are the
pole positions for various gain values; the corresponding step respon‐
ses are shown in the bottom panel.

Simple Lag with a PI Controller
As discussed in Chapter 4, proportional control is generally insuffi‐
cient to give good tracking performance because it will lead to “pro‐
portional droop.” This is evident in the step responses shown in
Figure 24-2: even though increasing the gain increases the response
time and reduces the tracking error, none of the curves manage to
reach the input value in the steady state.

We therefore include an integral term in the controller, so that its
transfer function now becomes
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K s =kp +
ki

s

=k 1+ 1
sT i

=k
sT i +1

sT i

To construct a root locus diagram, we must use the alternate repre‐
sentation of the controller transfer function that involves the integral
time constant Ti. Only this form of the transfer function allows us to
factor out the variable parameter k, as is required.

For a PI controller and the simple-lag system considered previously,
the characteristic equation is thus

k 1+ 1
sT i

1
1+ sT = −1

This system has one zero (at z0 = –1/Ti) and two poles: one at the origin
(p0 = 0) and the other at p1 = –1/T. Because there are two poles, we
expect two branches; however, because the excess of poles over zeros
is still R = 1, there is only a single asymptote, which is aligned with the
negative real axis. The behavior in the time domain is a combination
of two distinct contributions, one from each branch.

We should expect the diagram to look topologically different when the
zero is between the two poles than when it is to the left of both—in
other words, depending on whether (respectively) Ti > T or Ti < T.
(This is a good example for the kind of consideration one must un‐
dertake when dealing with more than a single varying parameter in a
root locus plot.) Figure 24-3 and Figure 24-4 show both cases.

If Ti > T then the zero lies between the two poles. The root locus curves
are entirely real, and the step-response behavior is monotonic without
oscillations. Observe again how the root locus curves include only
those parts of the real axis with an odd number of poles and zeros to
their right.
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Figure 24-3. Root locus diagram (top) and step response (bottom) for
a simple lag under PI control, in a configuration where the control‐
ler’s integral time Ti is greater than the system’s time constant T: Ti >
T. The poles of the open-loop transfer function are indicated using ×
signs, the zero is marked by a circle. (See also the caption to
Figure 24-2.)

The step response for the lower value of the controller gain (k = 0.5)
is dominated by the “slow” pole at –0.2, but in the step response for
the higher value of the controller gain (k = 2.5) we can nicely see the
effect of both poles. In this case, the amplitude of the slow pole at –0.4
is strongly reduced by its vicinity to the zero at –0.5, and so the initial
response is dominated by the fast pole at –3.1. Only after the fast be‐
havior has decayed does the response of the slow mode become ap‐
parent (and with a small amplitude).

Finally, if Ti < T then the root locus curves are no longer entirely con‐
fined to the real axis. When using values of k for which the poles have
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acquired an imaginary part, we find oscillatory behavior in the time
domain. For this system, we find oscillatory behavior only for an in‐
termediate range of controller gains: further increases in the controller
gain lead again to nonoscillatory behavior, albeit with an initial over‐
shoot. 

Figure 24-4. Root locus diagram (top) and step response (bottom) for
a simple lag under PI control, in a configuration where the control‐
ler’s integral time Ti is smaller than the system’s time constant T: Ti <
T. The poles of the open-loop transfer function are indicated using ×
signs, the zero is marked by a circle. (See also the caption to
Figure 24-2.)
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CHAPTER 25

Frequency Response
and the Bode Plot

In this chapter we study the response of a system subject to an oscil‐
latory input. In particular, we will ask how the output changes when
the frequency of the input signal is varied. We will also introduce the
Bode plot, which is a versatile method of representing a system’s fre‐
quency response graphically.

The topics treated in this chapter are the starting point for many forms
of more advanced analysis. For the most part, they rely on having
detailed knowledge of a system’s transfer function. The Bode plot,
however, is a pretty straightforward technique that is quite generally
useful.

Frequency Response
When trying to understand the dynamic response of a system, it is
often useful to study how the system responds to sinusoidal input sig‐
nals of differing frequency. Such signals are (of course) the natural
description for any form of oscillatory behavior. Furthermore, because
the inverse of the frequency ω = 2 π/T defines a time scale, the response
of a system to a sinusoidal input with frequency ω provides informa‐
tion about the response to a more general disturbance that occurs on
a time scale comparable to T.
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Frequency Response in the Physical World
There is a very general pattern for the dynamic response of objects in
the physical world as a function of the stimulating frequency. At very
low frequencies, the object will follow the input faithfully and with
only a small delay. (That is, small when compared to the period T of
the input signal.) The reason for this behavior is clear: as long as the
input changes sufficiently slowly, the system has enough time to adjust
and can therefore replicate the input signal.

As we go to the opposite limit of very high frequency, systems will have
an increasingly hard time to “keep up” with the input signal; after all,
objects in the physical world can move only so fast. As a result, the
amplitude of the dynamic response shrinks toward zero for very high
frequencies. Moreover, the output will be phase shifted and will lag
behind the input. This is a plausible result: the system was assumed to
be linear, and all a linear system can do is to shift and scale its input.

In this way, the behavior of pretty much any real-world system is fixed
in the two limits of very high and very low frequency inputs. Between
these two extremes lies the entire range of possible behaviors. In par‐
ticular, systems that have a tendency to oscillate at a certain frequency
will easily be excited by inputs whose frequency is close to their natural
(or resonance) frequency. Complex assemblies may have several such
resonance frequencies and exhibit a complicated dynamic response as
the input frequency is varied.

The frequency response is not just a conceptual construct: it can be
observed directly. One applies a sinusoidal input signal, waits until all
transient behavior has disappeared, and then measures the amplitude
and phase of the output (relative to the input). This procedure is re‐
peated over the entire range of frequencies of interest. One can even
buy devices that perform the entire program automatically; such de‐
vices are known as spectrum analyzers.

Frequency Response for Transfer Functions
If a sinusoidal signal of frequency ω is passed to a linear system G(s)
as input, then the resulting output is also a sine wave with the same
frequency ω, but the amplitude M and phase ϕ of the output will be
altered compared to the input. This is a plausible result: the system
was assumed to be linear, and all a linear system can do is to shift and
scale its input.
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1. This is not obvious. One begins with the transfer function acting on the sinusoidal
input: G s ω

s2 +ω2 , where we have used the representation of the sine function in the
frequency domain. To find the output signal, this expression is transformed back into
the time domain using partial fractions. The output signal turns out to be a scaled and
shifted sine. In the course of the partial-fraction expansion, one is led to evaluate the
transfer function in the limit of s → iω.

Possibly more surprising is that both amplitude and phase of the out‐
put signal can be extracted easily from the transfer function G(s) when
it is written in polar coordinates and evaluated for the purely imagi‐
nary frequency iω. Because G(s) is a complex-valued function, we can
write it in polar coordinates as

  

We now evaluate G(s) for the purely imaginary frequency s = iω, where
ω is the frequency of the input signal. In this limit, amplitude and phase
of the system output are given by the magnitude and phase of the
transfer function:1

M ω = G iω Amplitude
ϕ ω = arg G iω Phase shift

Observe that both the amplitude and the phase shift are functions of
the input frequency ω.

A Worked Example
To develop a sense for the type of manipulation involved, let’s consider
the simple lag. It has the straightforward transfer function

G s = 1
1+ sT

which we now evaluate for s → iω:
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G iω = 1
1+iωT

The denominator is a complex number. To make it real, we multiply
both numerator and denominator by the denominator’s complex con‐
jugate (see Appendix C for a refresher on the manipulation of complex
variables):

G iω = 1
1+iωT

1−iωT
1−iωT

=
1−iωT
1+ω2T2

=
1

1+ω2T2 −i ωT
1+ω2T2

We can now easily obtain the phase shift as

ϕ ω =arctan imaginary part
real part

=arctan −ωT
1

=− arctan ωT

To find the magnitude, we can proceed as follows:

M ω = G iω = 1
1+iωT

= 1
1+iωT

=
1

1+iωT 1−iωT

=
1

1+ω2T2

It is clear that the algebra quickly becomes formidable, especially when
we are considering more complicated transfer functions. There are
many labor-saving tricks for hand calculations, but if all we need is a
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2. Gnuplot and the major calculational packages (Matlab, Scilab, Octave, ... ) can operate
with complex quantities directly.

graph (such as a Bode plot) then a plotting program that can handle
complex numbers may be sufficient.2

The Bode Plot
The Bode plot shows both amplitude M(ω) and phase shift ϕ(ω) as
functions of the input frequency ω, using logarithmic scales for the
amplitude and frequency. Both curves can be combined in a single
graph, but it is often more convenient to use different panels for am‐
plitude and phase.

Figure 25-1 shows the step response for two systems (top panel), and
the corresponding Bode plots (bottom panel). The transfer functions
for the two systems are as follows:

  

When examining the Bode plot, we observe first of all that our previous
considerations regarding the frequency response of physical systems
are confirmed. Both systems follow the input faithfully for low fre‐
quencies but lag behind with diminishing amplitude in the high-
frequency limit.

Beyond these general observations, there are some specific details that
stand out. Most notable is the resonant peak in the amplitude of the
oscillator, which occurs when the input frequency equals the oscilla‐
tor’s natural frequency. Whereas the location of the peak is determined
by the resonant frequency, the height of the peak depends on the
amount of damping: the lower the damping, the higher the peak. If
the damping is sufficiently strong, then oscillations are completely
suppressed. In this case, the peak will disappear entirely. (Think of a
mass/spring system in which the mass is embedded in honey.)

The amplitude diminishes for high frequencies in a manner that de‐
pends on the asymptotic behavior of the transfer function in this limit:
the transfer function for the simple lag decays as 1/ω, whereas the
transfer function for the oscillator decays as 1/ω2. This distinction can
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be seen in the different slopes of the amplitude for large ω. Since the
amplitude panel of a Bode plot is simply a double logarithmic plot,
power-law behavior like this shows up as straight lines.

Figure 25-1. Step response (top) and Bode plot (bottom) for both a
simple lag and an oscillator.

Similar considerations apply to the phase shift. In the high-frequency
limit, the phase is determined by the asymptotically dominant term
in the transfer function. For the simple lag, this is
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G iω = 1
1+iωT ≈ 1

iωT for large ω

= −i
ωT multiplying with −i

−i

= 1
ωT e−iπ/2 since −i = e−iπ/2

The last line is in the form of the polar representation of a complex
number: z = r eiϕ. We can therefore identify the phase as ϕ = – π/2 (=
–90 degrees) in the high-frequency limit, which agrees with
Figure 25-1. An analogous consideration for the harmonic oscillator
leads to a phase lag of ϕ = – π (= –180 degrees).

We have explained the appearance of the Bode plot in terms of the
transfer function’s form, but one commonly argues the other way
around. From features of the Bode plot (such as asymptotic behavior
or the presence and location of resonant peaks) one can determine
what terms must be present in the transfer function. A numerical fit
can then serve to fix the outstanding numerical parameters (like T, ζ,
or ω0 in our examples).

One can even go a step further and ask what additional elements with
known transfer function (such as lags or filters) should be added into
the control loop to change the Bode plot—and, by implication, the
system behavior—in some desirable fashion. This process is known as
loop shaping and is an important topic in the design of electronic cir‐
cuits.

A Criterion for Marginal Stability
We learned in Chapter 23 that a closed-loop system as shown in
Figure 25-2 is marginally stable if its transfer function

T s = G s
1+G s

has poles on the imaginary axis. The closed-loop transfer function has
a pole when its denominator vanishes. The condition for marginal
stability therefore becomes

1+G iω = 0 or G iω = −1
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where ω is a real-valued frequency (so that iω is a point on the imag‐
inary axis).

In this chapter we have seen that the frequency response of the system
G(s) is given by its transfer function evaluated along the imaginary
axis.

Figure 25-2. A closed-loop arrangement.

We can combine these two observations and express the criterion for
marginal stability of the closed-loop system in terms of the frequency
response of the open-loop system: a closed-loop system is marginally
stable if the frequency response G(iω) of the open-loop system equals –1
for any frequency ω.

For any fixed s, we know that G(s) is simply a complex number that
can be written in polar form. Hence the closed-loop system is
marginally stable when

G(iω) = r(ω) eiϕ(ω) = –1

or, equivalently, when

r ω = 1
ϕ ω = −π

In other words, the closed-loop system is marginally stable when the
open-loop system introduces a phase lag of half a period (ϕ = –π) while
at the same time maintaining the amplitude of the input signal.

This makes imminent sense. The phase lag of half a period means that
the return signal is perfectly out of phase with the input, but the mul‐
tiplication by –1 on the return paths means that the return signal ends
up being in phase with the input signal.
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Under the conditions just derived, the closed-loop system is unstable
when supplied with a nonzero input. It is amusing to note that if the
input is zero (r = 0 in Figure 25-2) then the system will exhibit self-
sustained oscillations: since there is perfect constructive feedback but
no damping, any oscillation in the loop will persist forever.

For a stable system, in contrast, either one of the following two con‐
ditions must hold.

• At the gain crossover frequency, where the open-loop gain is 1, the
open-loop phase shift must be less than –π (= –180 degrees).

• At the phase crossover frequency, where the open-loop phase shift
is –π (= –180 degrees), the open-loop gain must be less than 1.

These conditions simply give an upper bound on gain and phase. To
ensure safe operations, we want the system to be far enough away from
the upper bounds. This can be expressed through the concept of a
stability margin:

• Phase margin is the angle by which the phase shift is smaller than
–π at the gain crossover frequency.

• Gain margin is the factor by which the gain is smaller than 1 at
the phase crossover frequency.

As a rule of thumb, the gain margin should be between 2.0 and 2.5 and
the phase margin should be between π/4 and π/3.

Other Graphical Techniques
In addition to the Bode plot (and the root locus diagram; see Chap‐
ter 24) other graphical techniques have been developed to visualize
the frequency response for feedback systems. The two most important
of them are the Nyquist plot and the Nichols chart.

The frequency response consists of two quantities: amplitude and
phase. In the Bode plot, both of them are plotted separately as func‐
tions of the input frequency. This representation brings out the de‐
pendency on ω, but it requires two separate panels. In the Nyquist plot,
the two quantities M and ϕ are plotted in a single, two-dimensional
plot, using polar coordinates: the amplitude M is plotted as the radius
of the angle ϕ, while ω assumes all positive values. The Nyquist plot
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3. For a first introduction, see Schaum’s Outline of Feedback and Control Systems by J.
DiStefano et al. (2011).

shows both quantities in a single graph, but the explicit dependence
on the input frequency is lost.

The Nichols chart is also a two-dimensional graph, but it uses rectan‐
gular coordinates rather than polar coordinates. In the Nichols chart,
the amplitude is plotted as a function of the phase shift while ω again
runs through all positive values.

Various rules exist to identify properties of the system from these
graphs by examining the position and shape of the curve describing
the system relative to various special locations on the graph. The Ny‐
quist plot specifically is also a starting point for deeper analytical stud‐
ies that bring the machinery of complex function theory to bear on
these problems.

These techniques tend to become quite specific to problems arising
for systems that must operate over a wide range of frequencies—for
example, electrical amplifiers used in telecommunications. Because
they seem less applicable to the types of questions of greatest concern
to us, we won’t pursue the topic here.3 
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CHAPTER 26

Topics Beyond This Book

The last few chapters have offered a fairly comprehensivse sketch of
what could be called basic or elementary feedback theory. Of course,
there is much more that could be said.

Discrete-Time Modeling and the z-Transform
The theory presented here assumes that time is a continuous variable.
This is not true for digital systems, where time progresses in discrete
steps. When applying the continuous-time theory to such processes,
care must be taken that the step size is smaller (by at least a factor of
5–10) than the shortest time scale describing the dynamics of the sys‐
tem. If this condition is not satisfied, then the continuous-time theory
can no longer be safely regarded as a good description of the discrete-
time system.

There is an alternate version of the theory that is based directly on a
discrete-time model and that is generally useful if one desires to treat
discrete time evolution explicitly. In discrete time, system dynamics
are expressed as difference equations (instead of differential equations)
and one employs the z-transform (instead of the Laplace transform)
to make the transition to the frequency domain.

Structurally, the resulting theory is very similar to the continuous-time
version. One still calculates transfer functions and examines their
poles and zeros, but of course many of the details are different. For
instance, for a system to be stable, all of its poles must now lie inside
the unit circle around the origin in the (complex) z-plane, rather than
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1. This section presumes that the reader is familiar with linear algebra.

on the left-hand side of the plane. And the entries in a table of trans‐
form pairs are different from those in Table 20-1, of course.

This discussion assumes that one is actually in possession of a good
analytical model of the controlled system and intends to use the theory
for calculating quantitative results! Rembember that (with the excep‐
tion of the continuous-time cooling fan speed example) for none of
the case studies in Part III did we have an analytical model of the
system’s time evolution at all, and theoretical results were meaningful
only “by analogy.” However, in cases where the controlled system ex‐
hibits nontrivial dynamics and there is a reasonably good analytical
model, z-transform methods should be used if the sampling interval
is not significantly shorter than the shortest relevant time scale of the
controlled system.

State-Space Methods
All the theoretical methods discussed in preceding chapters were
based on the transformation from the time domain into the frequency
domain. In addition to these “classical” frequency-domain methods,
there exists a completely different set of mathematical methods for the
design of feedback control systems that is known as time-domain,
state-space, or simply “modern” control theory. (These methods were
developed in the 1960s.)

Whereas classical control theory relies on transforms to the frequency
domain, state-space methods are based on linear algebra.1 The theo‐
retical development begins with the realization that any linear differ‐
ential equation, regardless of its order, can be written as a linear system
of first-order equations by introducing additional variables. As an ex‐
ample, consider the familiar second-order equation that describes a
harmonic oscillator:

d2

dt2 y t +2ζω d
dt y t +ω2 y t = u t

If we introduce the new variable
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z = dy
dt

then the original second-order equation can be written as a system of
two coupled first-order equations:

d
dt y = z

d
dt z = −2ζωz −ω2 y +u

Clearly, the process can be extended to equations of higher order if we
introduce more variables. It is easy to treat vector-valued equations or
systems of equations this way by turning each component of the orig‐
inal vector into a separate first-order equation.

These equations can be written in matrix form (where a dot over a
symbol indicates the time derivative) as follows:

  

In general, any system of linear, first-order equations can be written
in matrix form as

ẋ = Ax +Bu

where x and u are vectors and where A and B are matrices. Because
there are always as many equations as variables, the matrix A is square;
however, depending on the dimension of input u, the matrix B may
be rectangular.

Such a system of linear first-order differential equations always has a
solution in terms of the matrix exponential:

x(t) = eAt x0

Here x0 is a vector specifying the initial conditions, and the matrix
exponential is defined via its Taylor expansion:
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eAt = 1+ At + 1
2 A2t2 + 1

3! A3t3 +⋯

Now consider the following feedback system:

In contrast to what we have seen in the preceding chapters, the infor‐
mation about the system’s dynamic behavior is not provided through
its transfer function in the frequency domain. Instead, that informa‐
tion is specified explicitly through the system of differential equations.

The controller K is a matrix, yet to be determined, that acts on (is
multiplied by) the system’s output x. Given the setpoint r, we can
therefore express the system’s control input u as follows:

u = –K x + r

Plugging this expression into the differential equation ẋ = Ax +Bu that
describes the system yields

ẋ = Ax +B −Kx + r
= A−BK x +Br

This equation is the equivalent of the “feedback equation” (Chap‐
ter 21) for the state-space representation.

The matrix (A – BK) determines the dynamics of the closed-loop sys‐
tem; specifically, the eigenvalues ωj of this matrix correspond to the
individual modes of the dynamical system (as discussed in Chap‐
ter 23). As mentioned earlier, the solution to the differential equation
is given by the matrix exponential. Inserting the matrix (in diagonal‐
ized form) into the matrix exponential leads to terms of the form eωjt,
so that ultimately the time evolution of the dynamical system is again
represented as a linear superposition of harmonic terms.
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So in order to design a closed-loop system that has the desired behav‐
ior, we must “assign the system’s eigenvalues” to the appropriate values.
(This is equivalent to “placing the system’s poles” when working in the
frequency domain.) Recall that A and B are determined by the system
itself but that the controller K is still completely undetermined. It turns
out that under certain conditions it is possible to move the eigenvalues
of the closed-loop transfer matrix (A – BK) to arbitrary locations by
adjusting the entries of K. Moreover, it is possible to write down ex‐
plicit expressions that yield the entries of K directly in terms of the
desired eigenvalues.

This is a considerable achievement. By following the program just
outlined, it is possible to design a closed-loop system having any de‐
sired dynamic behavior. Once the desired behavior has been specified
(in terms of the eigenvalue positions), the controller can be calculated
in a completely deterministic way.

It is instructive to compare this approach with frequency-domain
methods. There, the form of the controller was fixed to be of the PID-
type; the only means to adapt it to the particular situation was to find
the best values for its two (or three) gain parameters. Now, the form
of the controller is much less constrained (it is only required to be
linear), and its entries are determined completely in terms of the de‐
sired behavior. Whereas frequency methods required the “tuning” of
a predetermined controller, state-space methods amount to “design‐
ing” or “synthesizing” the controller from scratch.

Beyond their immediate application to controller design, state-space
methods also allow for new ways to reason about control systems. In
particular for systems involving multiple input and output signals,
state-space methods enable new insights by bringing methods from
linear algebra and matrix analysis to bear on the problem.

For systems involving multiple input and output channels, the ques‐
tion arises under what conditions the inputs are sufficient to establish
control over all the outputs simultaneously. It is intuitively plausible
that, if a system has fewer inputs than outputs, then in general it won’t
be possible to control the values of all the outputs simultaneously.
State-space methods help to make this intuition more precise by re‐
lating it to questions about the rank of certain matrices that are derived
from the matrices A and B determining the controlled system.

To summarize, state-space methods have several advantages over the
classical theory:
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• They facilitate total controller synthesis (as opposed to mere tun‐
ing).

• They are easily extendable to systems involving multiple input and
output channels.

• They enable additional analytical insights based on operations
from linear algebra.

At the same time, however, state-space methods also have some serious
drawbacks:

• They require a good process model in the form of linear differ‐
ential equations.

• They are quite abstract and easily lead to purely formal manipu‐
lations with little intuitive insight.

• Their results may not be robust.

The last point brings up the issue of robustness, which is the topic of
the next section.

Robust Control
The controller-design program outlined in the previous section
seemed foolproof: once the desired behavior has been specified in
terms of a set of eigenvalue positions, the required controller is com‐
pletely determined by a set of explicit, algebraic equations. What could
possibly go wrong?

Two things, in fact. First of all, it is not clear whether a controller
“designed” in this way is feasible from a technical point of view: the
control actions required may be larger than what can be built with
realistic equipment. But beyond these technical issues, there is a deeper
theoretical problem: the controller that was found as solution to the
algebraic design problem may be suitable only for precisely that par‐
ticular problem as expressed in the differential equations describing
the dynamical system. In reality, there will always be a certain amount
of “model uncertainty.” The physical laws governing the system may
not be known exactly or some behavior was not included in the equa‐
tions used to set up the calculation; in any case, the parameters used
to “fit” the model to the actual apparatus are known only to finite
precision. State-space methods can lead to controllers that work well
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for the system as specified yet perform poorly for another system—
even if it differs only minimally from the original one.

The methods known as robust control address this issue by providing
means to quantify the differences between different systems. They
then extend the original controller design program to yield controllers
that work well for all systems that are within a certain “distance” of the
original system and to provide guarantees concerning the maximum
deviation from the desired behavior.

This topic can quickly become quite involved.

Optimal Control
In addition to the momentary performance requirement (in terms of
minimum rise time, maximum overshoot, and so on), it may be de‐
sirable to optimize the overall cost of operating the control system,
typically over an extended period of time. We encountered this con‐
sideration in several of the case studies in Part III: if there is a fixed
cost with each control action, then naturally we will want to reduce
the number of distinct control actions. At the same time, there may
also be a cost associated with the existence of a persistent tracking
error, so that there is a need to balance these two opposing factors.
This is the purview of optimal control.

In some ways, optimal control is yet another controller design or tun‐
ing method, whereby instead of (or in addition to) the usual perfor‐
mance requirements the system is also expected to extremize an ar‐
bitrary performance index or cost function. The performance index is
typically a function that is calculated over an extended time period.
For instance, we may want to minimize, over a certain time interval,
the average tracking error or the number of control actions.

Optimal control leads naturally to the solution of optimization prob‐
lems, usually in the presence of constraints (such as limits on the
magnitude of the control actions, and so forth). These are difficult
problems that typically require specialized methods. Finally, it is ob‐
viously critical to ensure that the performance index chosen is indeed
a good representation of the cost to be minimized and that all relevant
constraints are taken into account.
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Mathematical Control Theory
As the last few sections suggest, the mathematical methods used to
study feedback and control systems can become rather involved and
sophisticated. The classical (frequency-space) theory uses methods
from complex function theory to prove the existence of certain limits
on the achievable performance of feedback systems. For example, the
“Bode integral formula” states that systems cannot exhibit ideal be‐
havior over the entire frequency range: an improvement in behavior
for some frequencies will lead to worse behavior at other frequencies.

The endpoint of this line of study is mathematical control theory,
which regards control systems as purely mathematical constructs and
tries to establish their properties in a mathematically rigorous way.
The starting point is usually the dynamical system ẋ = Ax +Bu (or,
more generally, ẏ = f y,u , and strict conditions are established under
which, for example, all solutions of this system are bounded and thus
indicate stability. The direct application of these results to engineering
installations is not the primary concern; instead, one tries to under‐
stand the properties of a mathematical construct in its own right.
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PART V

Appendices





APPENDIX A

Glossary

Actuator
A device to convert a control signal (as produced by the controller)
into a physical action that directly affects the plant. A heating el‐
ement is an actuator, as is a stepper motor. Actuators are trans‐
ducers.

Actuator saturation
Because they are physical devices, actuators have limits in the ac‐
tion they can bring about. (A heating element has a maximum
amount of heat it can generate per second, a motor has a maxi‐
mum velocity, and so on. Notice in particular that a heating ele‐
ment is completely unable to generate any cooling action or neg‐
ative heat flow.) At the same time, control signals can be arbitrarily
large. Whenever an actuator is unable to follow the demands of
the control signal, it is “saturated.” Actuator saturation means that
the intended control actions are no longer applied and that the
control loop is therefore broken. (See also Integrator clamping.)

Bang-bang controller
A colloquial term for an on/off controller (as opposed to a con‐
troller that is capable of varying the magnitude in response to its
input).

Bumpless transfer
A smooth transition when switching between different controllers
—for instance between manual control and closed-loop control
or between different control strategies in a gain-scheduling sce‐
nario. When using a PID controller, a bumpless transfer requires
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that the value of the integral terms be synchronized before the
transfer. (See also Integral preloading.)

Control problem
Given a system with an input and output, the control problem for
this system amounts to finding the input setting (or sequence of
input settings) that will produce a desired output value (or se‐
quence of output values).

DC gain
Also known as “zero-frequency gain.” This is the ratio of an ele‐
ment’s output to a constant (zero-frequency) input while in the
steady state (that is, after all transient behavior has disappeared).

Delay
Also known as “dead time.” This is the time interval during which
no response to an input change is visible in a system’s output. (See
also Lag.)

Derivative control
A controller whose output is proportional to the derivative of its
input.

Derivative kick
When using a derivative controller, a sudden setpoint change will
lead to a response from the derivative term that can—in principle
—be infinitely large. This “kick” is usually not desirable.

Digital control
Any control strategy or implementation that uses digital control‐
lers (as opposed to analog controllers made from physical devi‐
ces). In a narrower sense, this term refers to control loops oper‐
ating in discrete time steps.

Distributed parameter model
A model of a plant or process that requires an infinite set of pa‐
rameters to describe the momentary state of the plant. (See also
Lumped parameter model.)

Disturbance
Influences to the controlled system that cannot be controlled di‐
rectly. (See also Load disturbance, Measurement noise.)

Disturbance rejection
The ability of the controller to maintain the output at the desired
value, even in the presence of disturbances.
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Dynamics
The dynamics of a system consist of the system’s time evolution
and its response to inputs.

Error feedback
A closed-loop control strategy in which the tracking error e = r –
y is used as input signal to the controller. Error feedback is subject
to large control actions when the setpoint undergoes sudden
changes. (See also Output feedback.)

Error-squared control
A controller in which the output is proportional to the square of
its input (usually the error). The square must be calculated as e · |e|
in order to retain information about the sign of the error. (See also
Linear controller.)

Feedback control
Also known as “closed-loop control.” This is a strategy for solving
a control problem that is based on continuously comparing the
actual process output against the reference value and then apply‐
ing corrective actions to the input, in order to reduce the differ‐
ence between the actual and the desired output. Because the actual
process output is used in determining the new control input,
feedback control “closes the loop” or introduces a “feedback path.”
(See also Feedforward control.)

Feedforward control
Any control strategy that does not take the actual process output
into account when determining the new control input. Feedfor‐
ward control requires relatively detailed knowledge about the be‐
havior of the controlled system and cannot guarantee robustness
to random, unforeseen disturbances. (See also Feedback control.)

Frequency domain
The time evolution of a system is described by functions of time
t. The information contained in these functions can also be ex‐
pressed by functions of complex frequency s. Switching between
both representations is accomplished through transformations
such as the Laplace transform. When considering only functions
of complex frequency, one is working in the frequency domain.
(See also Time domain.)

Gain scheduling
Sometimes different circumstances require different controller
gains (for example, there may be a “heavy traffic” and a “light
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traffic” regime). A gain schedule is a table that contains appro‐
priate values for the gain factors applicable to each separate re‐
gime.

Incremental controller
Also known as “velocity algorithm.” This is a controller that cal‐
culates only the change in control signal. Incremental controllers
can be used with plants that maintain their own state and respond
to updates of their control input.

Input
Also known as “control input” or “manipulated variable.” This is
a quantity that influences the behavior of the controlled system
and that can be manipulated directly.

Integral control
A controller whose output is proportional to the time integral of
its past inputs.

Integrator clamping
Also known as “conditional integration.” Integrator clamping
means that the integral term inside a PI or PID controller is not
updated when the actuator is saturated. In the case of actuator
saturation, tracking errors may persist for a long time (since the
actuator is unable to apply the control action required to eliminate
the error and the system is therefore running in an open-loop
configuration). Integrator clamping prevents the controller’s in‐
tegral term from becoming very large under these irregular (open-
loop) conditions. (See also Integrator windup.)

Integrator preloading
The process of initializing or otherwise adjusting the cumulative
or integral term in a PID controller outside of regular, closed-loop
operations. (See also Bumpless transfer.)

Integrator windup
When the actuator has saturated, tracking errors may persist for
a long time because the actuator is then unable to apply the control
action required to eliminate the error. These persistent tracking
errors will be added to the integral term inside the controller (un‐
less the integrator is “clamped”). When the actuator is no longer
saturated and the system is therefore operating in a closed-loop
configuration again, the value of the integral term will neverthe‐
less persist until it has been “unwound,” resulting in inappropriate
control actions. (Compare: Integrator clamping.)
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Internal model controller
A controller that contains a model of the process (so that the
model is “internal” to the controller) and uses the output from this
model when computing control actions.

Lag
A system that initially responds with a partial response to an input
change shows a lag. The term also refers to the duration until the
system’s output does replicate the input. (See also Delay.)

Level control
Control scenarios in which the system output is to be kept within
a range of values rather than tracking a given reference value (set‐
point) exactly. (Example: the fluid level in a storage tank is allowed
to fluctuate as long as the tank neither overflows nor runs empty.)

Linear controller
A controller in which the output is a linear function of its input
(which is typically the error): doubling the input results in a dou‐
bling of the output. The PID controller is a linear controller.

Load disturbance
A disturbance, such as noise, that affects the controlled system
(that is, the plant or process). Since the controller provides the
input to the plant, the plant constitutes the “load” that the con‐
troller must drive.

Loop shaping
The introduction of additional elements (such as filters or com‐
pensators) into a control loop with the intent of changing the
loop’s dynamic response.

Loop transfer function
Also known as “open-loop transfer function.” If several elements
(such as a controller and a plant) are arranged in a closed loop,
then the transfer function of the corresponding open loop may be
simply referred to as the loop transfer function.

Lumped parameter model
A model of a plant or process that describes the entire momentary
state of the plant in a finite set of parameters. (See also Distributed
parameter model.)

Manipulated variable
See Input.
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Measurement noise
Noise generated in the sensor that is used to monitor the plant’s
output signal.

Model
A mathematical description (typically in the form of a differential
equation) of the behavior of a plant or system, including the plant’s
dynamic behavior and its response to control inputs. (Before the
advent of digital controllers, a “model” was a physical model of the
plant, built to reproduce the actual plant’s response to inputs.)

Model identification
See System identification.

Model reduction
The procedure by which a complicated mathematical model is
replaced by a simpler one that nevertheless describes the observed
behavior nearly as well. Basing a model on the theoretical knowl‐
edge about often results in models that are overly detailed. If ex‐
perimental observations suggest that a simpler model will do as
well, then one may attempt to simplify matters through model
reduction.

Model uncertainty
As mathematical idealizations of a real system, models rarely de‐
scribe the system perfectly. That imperfection introduces a certain
amount of error into results, which is referred to as “model un‐
certainty.” To an outside observer, it is impossible to tell whether
the errors are due to inaccuracies in the description of the plant
(model uncertainty) or to changing environmental factors (load
disturbances).

Non-minimum phase system
Also known as “inverse response system.” This is a system whose
initial, transient response to an input is in the opposite direction
to the input.

Open-loop transfer function
See Loop transfer function.

Output
Also known as “process output” or “process variable.” This is the
property of the controlled system that is to be influenced. Because
it cannot be manipulated directly, the only way to influence it is
by manipulating the controlled system instead.
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Output feedback
A closed-loop control strategy in which the output y is used as
input signal to the controller instead of the full tracking error e =
r – y. Output feedback is less susceptible to spurious control ac‐
tions in the case of sudden setpoint changes, but it gives equivalent
results—in particular when the setpoint is held constant for ex‐
tended periods of time. (See also Error feedback and Setpoint
weighting.)

PI controller
Also known as “two-term controller.” This is a linear controller
that consists of a proportional and an integral term acting in par‐
allel. The relative strength of each term is given by that term’s
controller gain factor.

PID controller
Also known as “three-term controller.” This is a linear controller
that consists of a proportional, an integral, and a derivative term
acting in parallel. The relative strength of each term is given by
that term’s controller gain factor. The term “PID controller” is
used even when one of the terms is absent (in particular, the de‐
rivative term is often not used).

Plant
Also known as “process.” This is the system that needs to be con‐
trolled. The system’s input is manipulated in order to achieve a
particular behavior of the system’s output.

Plant signature
See Process reaction curve.

Pole
A location at which a transfer function approaches infinity. Since
transfer functions are typically rational functions in the complex
frequency s, a pole is a value of s such that the denominator of the
transfer function vanishes. A pole s in the frequency domain cor‐
responds to a mode exp(st) in the time domain. Knowledge about
the system’s poles therefore amounts to knowledge about the sys‐
tem’s modes in the time domain.

Pole placement
A process of manipulating the loop’s transfer function in order to
move its poles into positions that yield desirable dynamic behav‐
ior.

Glossary | 283



Process
See Plant.

Process characteristic
Also known as “static process characteristic.” This is a curve show‐
ing the steady-state output of a process as function of the magni‐
tude of the (constant) input.

Process control
The application of methods from control theory and engineering
to processes and installations in the chemical and manufacturing
industry.

Process knowledge
Knowledge about the static (steady-state) input/output relation‐
ship for a plant or process and about its dynamic response to ar‐
bitrary inputs. Process knowledge can be gained either analyti‐
cally (if the laws governing the process are known) or empirically.
Process knowledge is captured in the process model. (See also
Process model, Model uncertainty, and System identification.)

Process model
A theoretical description of a plant or process—in particular of
its dynamic response to control inputs. Process models can de‐
scribe a specific installation in detail; however, the term is also
used in an abstract sense to refer to broad categories of behaviors
(such as “self-regulating process,” “accumulating process,” “oscil‐
latory process,” and so on). (See also Model uncertainty.)

Process reaction curve
Also known as “plant signature.” This is a curve showing the dy‐
namic development of a process’s output in response to a step
input.

Process variable
See Output.

Proportional control
A controller whose output is proportional to its input.

Proportional droop
Under strictly proportional control, the system’s steady-state out‐
put will always be smaller than the setpoint. The higher the con‐
troller gain, the smaller the droop. In general, it is necessary to
employ integral control to entirely eliminate a steady-state track‐
ing error.
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Rate feedback
See Velocity feedback.

Regulator
Regulators are controllers that seek to maintain the system at its
steady state and to reject disturbances. Regulators are used in sit‐
uations where the setpoint is constant for extended periods at a
time. (See also Tracker.)

Sensor
A device that transforms a physical quantity into a control signal.
A thermocouple is a sensor that transforms temperature into
voltage.

Servo-mechanism
Also known as a “servo.” See Tracker.

Setpoint
Also known as “reference,” “reference value,” or “target.” This is
the desired value that the output of the controlled system is sup‐
posed to replicate.

Setpoint following
The ability of a control system to track the setpoint accurately—
especially in situations where the setpoint itself is undergoing
changes.

Setpoint response
Dynamic response of a controlled, closed-loop system to changes
in the setpoint—in particular to sudden, steplike changes.

Setpoint weighting
When calculating the tracking error e = αr – y that is to be used
as controller input, the weight α of the setpoint r can be changed
relative to the process output y. Choosing α = 1 amounts to error
feedback; choosing α = 0 amounts to output feedback. (See also
Error feedback and Output feedback.)

Smith predictor
A control strategy to handle systems whose dynamic behavior
exhibits a significant delay.

Steady state
The behavior of the system after the disappearance of all transient
responses. The steady-state output is usually dominated by the
control inputs of the system. (See also Transient response.)
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Step input
An input that undergoes a sudden change in magnitude at a spe‐
cific point in time (usually taken to be the beginning of the ob‐
servation period, t = 0).

System identification
The process of measuring a plant’s behavior for the purpose of
identifying and fitting a mathematical model.

Time domain
The time evolution of a system is described by functions of time
t. When considering the actual dynamic behavior of a system, one
is working in the time domain. (See also Frequency domain.)

Tracker
A controller designed to follow a setpoint that is changing over
time. (See also Regulator.)

Transducer
Any device that converts between physical actions or quantities
and control signals. Actuators and sensors are transducers. Con‐
trol signals are often, but not always, electrical signals.

Transfer function
The frequency-space representation of the laws governing an el‐
ement’s dynamics. Transfer functions are usually obtained
through the Laplace transformation of the differential equation
describing the element. To obtain the response of the element to
an arbitrary input, the transfer function is multiplied by the Lap‐
lace transform of the input signal; the resulting product is then
transformed back into the time domain to obtain the dynamic
response.

Transient response
Also known as “transients” or “transient behavior”. This is that
part of the dynamic response to an input change that decays and
disappears over time. Transients are usually due to the internal
dynamics of the controlled system, not to its control inputs. (See
also Steady state.)

Velocity algorithm
See Incremental controller.
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Velocity feedback
Also known as “rate feedback.” This is a closed-loop control strat‐
egy in which the rate of change of the plant’s output (that is, its
derivative) is fed back and used to calculate the new control input.
(Not to be confused with “Velocity algorithm.”)
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APPENDIX B

Creating Graphs with Gnuplot

Gnuplot is an open source program for plotting data and functions. It
is intended primarily for Unix/Linux systems, although versions for
Windows and the Mac exist as well.

Basic Plotting
When started, gnuplot provides a shell-like interactive command
prompt. All plotting is done using the plot command, which has a
simple syntax. To plot a function, you would type (at the gnuplot
prompt):

plot sin(x)

By default, gnuplot assumes that data is stored in white-space separa‐
ted text files, with one line per data point. To plot data from a file
(residing in the current directory and named data), you would use the
following:

plot "data" using 1:2 with lines

This assumes that the values used for the horizontal position (the x
values) are in the first column, and the values for the vertical position
(the y values) are in the second column. Of course, any column can be
used for either x or y values.

Gnuplot makes it easy to combine multiple curves on one plot. Assume
that the data file looks like the one shown in Figure B-1 (left). Then
the following command would plot the values of both the second and
the third column, together with a function, in a single graph
(Figure B-1, right):
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plot "data" u 1:2 w lp, "data" u 1:3 w lp, 5*exp(-5*x)

Here we have made use of the fact that many directives can be abbre‐
viated (u for using and w for with) and have also introduced a new
plotting style, linespoints (abbreviated lp), which plots values as
symbols connected by lines. The other two most important styles are
lines, or l, which connects data points with straight lines but does
not plot symbols, and points, or p, which plots only symbols but no
lines.

Figure B-1. A data file (left) and the resulting plot (right).

Plot Ranges
It is possible to modify the ranges of values included in a plot (“zoom‐
ing”) by using range specifiers as follows.

plot [0:0.5] plot "data" using 1:2 w p
plot [0:0.5][0:7] plot "data" using 1:2 w lp
plot [][0:7] plot "data" using 1:2 w l

The first line would limit the x range, the second line would limit both
the x range and the y range, and the third line would limit only the y
range.

Inline Transformations
Gnuplot is, by design, only a plotting utility; it is not a general-purpose
computational workbench (like Matlab, Octave, R, and many others).
Nevertheless, it is possible and often useful to apply a transformation
to data points as they are being plotted.
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1. Gnuplot in Action: Understanding Data with Graphs by Philipp K. Janert (2009)

The following code will plot the square root of the second column:
plot "data" using 1:(sqrt($2)) with lines

Whenever the column specification in the using directive is enclosed
in parentheses, the contents of the parentheses are evaluated as a
mathematical expression. When inside parentheses, you can access
column values by preceding the column number with a dollar sign ($).
The basic arithmetic operations are supported, as are all standard (and
some not-so-standard) mathematical functions.

Plotting Simulation Results
The simulation framework introduced in Chapter 12 writes results out
(to standard output) in a format that is suitable for gnuplot. Assuming
that standard output has been redirected to a file called results, the
setpoint (column 3) and the actual plant output (column 7) can be
plotted as a function of the wall-clock time (column 2) with a com‐
mand like this:

plot "results" using 2:3 with lines, "" u 2:7 w l

Notice how the filename has been left blank the second time, in which
case gnuplot reuses the most recently given filename.

Summary
These instructions should be sufficient to allow you to make basic
plots. Extensive documentation is available within a gnuplot session
using the help command:

help plot

The same information can also be found as a PDF on the gnuplot
website.

In addition to the basic plot command, gnuplot provides myriad of
options to change the appearance of a plot or to add annotations to it.
A systematic introduction can be found, for instance, in my book on
gnuplot.1
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APPENDIX C

Complex Numbers

Each complex number z is a point in the complex plane, which is
spanned by the real axis and the imaginary axes:

Two coordinate systems are commonly used for a (two-dimensional)
plane: Cartesian and polar coordinates. For every complex number
there exist two equivalent representations:

z = x +iy Cartesian
z = r eiϕ Polar

Here

i = −1 ⟺ i2 = −1
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is the “imaginary unit.”

We can transform between those representations as follows:

  x = r cos ϕ     Real part
  y = r sin ϕ     Imaginary part

  r = x2 + y2     Magnitude

  ϕ = arctan y
x

    Phase

Basic Operations
Complex numbers are added and multiplied component by compo‐
nent while taking into account that i2 = –1. If z1 = x1 + iy1 and z2 = x2

+ iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = (x1x2 – y1y2) + i(x1y2 + x2y1)

Each complex number z has a “complex conjugate,” denoted z★, which
is the same as z except that the sign of the imaginary part has been
reversed. Thus,

z = x +iy ⟺ z★ = x −iy

The product of a complex number and its conjugate is always real. The
square root of this product is also real. It is called the magnitude of z
and is denoted by |z|.

zz★ = x +iy x −iy = x2 + y2

z = zz★ = x2 + y2

The following identities hold:

  

We can use the complex conjugate to assign meaning to the reciprocal
of a complex number:
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1
z = z★

zz★
= z★

z 2

Polar Coordinates
Every complex number z can also be expressed in polar coordinates:

z = r eiϕ

where

r = z

ϕ = arg z = arctan imag
real

The radius r can be included in the argument of the exponential:

r eiϕ = elog r eiϕ = eσ+iϕ where σ = log r

In polar coordinates, multiplication of two complex numbers amounts
to multiplying the magnitudes and adding the phases:

z1 · z2 = r1eiϕ1 · r2eiϕ2 = r1r2ei ϕ1+ϕ2

Taking the complex conjugate of a complex number is equivalent to
changing the sign of its phase:

z = reiϕ ⟺ z★ = re−iϕ

When multiplying z and z★, the exponential terms cancel and so leave
the purely real number r2.

The Complex Exponential
If a complex number z is expressed in polar coordinates,

z = r eiϕ
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then all information about the magnitude of the number is contained
in the radius r. The exponential term eiϕ provides information about
the number’s angular orientation as a point in the complex plane. For
this reason, the exponential term is also known as the phase factor.

A phase factor is an exponential term with a purely imaginary expo‐
nent. Its magnitude is always 1:

|eiϕ| = 1

Geometrically, the phase factor describes a point on the unit circle. A
straightforward geometric construction allows us to express it in terms
of trigonometric functions:

eiϕ = cos(ϕ) + i sin(ϕ)

For multiples of π/2 = 90 degrees, the phase factor takes on special
values:

ei·0 = 1 eiπ/2 = i eiπ = −1 ei3π/2 = −i

Of particular importance is the case when the phase angle grows
steadily with time: ϕ = ωt, where ω is a real constant (the “angular
frequency”).

In this case, the phase factor describes a purely oscillatory behavior at
constant amplitude. The two trigonometric functions simply “wiggle”
and exhibit no growth or decay. The greater is ω, the faster are the
wiggles:

eiωt = cos(ωt) + i sin(ωt )
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APPENDIX D

Further Reading

It can be difficult and frustrating for the practitioner to find back‐
ground information about control theory that is relevant to one’s
problems. Most textbooks on control theory are intended mostly to
prepare students to perform calculations using Laplace transform
methods (or state-space techniques), while conceptual development
and practical matters are given rather short shrift. On the other hand,
practice-oriented titles are often little more than field guides that offer
only heuristic rules of thumb for specific, well-known applications.
Books or articles concentrating on feedback concepts are rare.

Recommended Reading
• The Art of Control Engineering by Ken Dutton, Steve Thompson,

and Bill Barraclough (1997). This comprehensive volume pro‐
vides an excellent introduction to control theory that balances
theory and practical aspects. Be aware that the arrangement of
topics within the book can make it difficult to follow the concep‐
tual development. (If you have difficulties finding this book in the
U.S., then look for it in the UK.)

• Advanced PID Control by Karl Johan Åström and Tore Hägglund
(2005). Despite its seemingly narrow title, this is an extremely
comprehensive and accessible book on the practical problems that
one is likely to encounter when developing real-world feedback
systems. Although the text is very “hands on” and geared toward
field work (mostly in the chemical industry), it provides much
more than just heuristic rules of thumb. This book is not an in‐
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troduction, but it should possibly be everyone’s second book on
feedback systems. (The previous edition, entitled PID Controllers:
Theory, Design, and Tuning, remains in print and is in some ways
a more practical book.)

Additional References
• Essentials of Control by J. Schwarzenbach (1996). This mercifully

short volume (only 140 pages) provides an easy-to-read intro‐
duction to feedback control. It covers similar material as the
present book, but from a more scholarly perspective. Lots of
worked math examples. (If you have difficulties finding this book
in the U.S., look for it in the UK.)

• Feedback Systems: An Introduction for Scientists and Engineers by
Karl Johan Åström and Richard M. Murray (2008). This book is
intended as a modern, comprehensive introduction to all things
feedback, but the result is rather strange. The authors spend an
inexplicable amount of space pursuing various preliminaries and
obscure side topics even as fundamental material receives short
shrift or is omitted altogether. An oversupply of disparate exam‐
ples, and the attempt to treat frequency and state-space methods
simultaneously, end up confusing the reader. There is a lot of val‐
uable material here, but it can be difficult to pick out. (An unfor‐
tunate number of production glitches has slipped into the printed
book, but a PDF of the complete text, including fixes to known
errata, is freely available from the website of one of the authors.)

• Feedback for Physicists: A Tutorial Essay on Control by John Bech‐
hoefer (Reviews of Modern Physics, volume 77 (2005), pages 783–
836). This is a review article for physicists, by a physicist. It takes
a long view, emphasizing concepts rather than technical or math‐
ematical detail. It is difficult reading but covers some topics not
found elsewhere. Most valuable for its outsider’s point of view.

• Schaum’s Outline of Feedback and Control Systems by Joseph
DiStefano, Allen Stubberud, and Ivan Williams (2nd edition,
2011). Not a bad, if terse, introduction, with many worked prob‐
lems. Covers classical (frequency) methods only, but it does so in
detail.

• Modern Control Engineering by Katsuhiko Ogata (5th edition,
2009). A standard, college-level textbook on control theory.
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• Control System Design: An Introduction to State-Space Methods
by Bernard Friedland (2005). A compact and affordable intro‐
duction to state-space methods.

• Feedback Control of Computing Systems by Joseph L. Hellerstein,
Yixin Diao, Sujay Parekh, and Dawn M. Tilbury (2004). Applica‐
tions of feedback methods to computer systems. Not for begin‐
ners.

• Feedback Control Theory by John C. Doyle, Bruce A. Francis, and
Allen R. Tannenbaum (1990). This book is not an introduction to
feedback methods. Rather, it is a mathematical research mono‐
graph in which the authors summarize some of their results. A
PDF of the complete book is available at no cost.

Mathematical Prerequisites
• Complex Variables and Applications by James Ward Brown and

Ruel V. Churchill (8th edition, 2008). There are many good books
on complex analysis. This (relatively) short volume provides a
concise yet accessible introduction. The treatment seems espe‐
cially suitable for an application-minded audience.

• Fourier Analysis and Its Applications by Gerald B. Folland (2009).
This book is an outstanding introduction to transform methods
(Fourier and Laplace transforms) and their application to differ‐
ential equations. The presentation is very accessible and hands-
on. (This book does require solid knowledge of complex num‐
bers.)

• An Introduction to Probability Theory and Its Applications, Vol‐
ume 1 by William Feller (3rd edition, 1968). A classic treatment
of basic probability theory.
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We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.
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optimal, 273
proportional, 42–43, 251–252
proportional-integral, 253–256
robust, 272–273
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D
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queue control simulation and,

179–180
derivative kick, 47
derivative term, smoothing, 103–104
derivatives, calculating, 103
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of control inputs, 64
of input/output signals, 52–53

discrete-time approximation, 104
disturbances, 113, 234, 235

distinguishing, 114
dominant poles, 239–241
downstream systems, controllers vs.,

12
dynamic behavior, 270
dynamic response systems, 149–160

case-based, 158
control loops for, 151–153
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151
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and, 24
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247–249
Evans, W. R., 247

F
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flow control and, 10–13
performance, improving, 153–155
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basic idea, 52
goal of, 10
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alternative derivations of, 223–224
block-diagram algebra and, 221–

224
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feedback package, 128, 133
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discrete-time modeling, 267–268
enterprise systems and, 24
feedforward systems vs., 23–24
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analyzing requirements for, 194–

195
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flow, 3–13
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framework (simulation), 129–136
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components, 130–130
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standard loops, 133–135

frequency response, 257–266
Bode plot and, 261–263
for transfer functions, 258
in physical world, 258
stability criterion for, 263–265
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functional outputs, controls vs., 57

G
gain controller, 91, 94
gain crossover frequency, 265
gain margin, 265
gain scheduling, 114–116

applications, 114
dynamic pricing and, 157–158
nonlinear systems and, 115–116

gap nonlinear controllers, 109–110
global structure, 250
granularity, of control inputs, 64

H
harmonic oscillators, 217–218
hit rates, 32

maintaining, 137

I
identifying properties, rules for, 266
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implementations, 101–111
actuator saturation, 101–103
derivative term, smoothing, 103–

104
integrator windup, 101–103
nonlinear controllers, 109–111
PID controllers, 105–109
sampling intervals, choosing, 104–

105
incremental controllers, 171
input variables, 138
input/output signals, 51–66

caches, 56–58
controlling, 51–53
delay, 204
directionality of, 52–53, 204
dynamic pricing with, 60–62
in physical world, 54–56
processes and, 62–63
scalar vs. independent, 65
selection criteria for, 64–65
server scaling with, 58–60

inputs
adjusting, 51
functional, 51

instability, 236
extreme cases of, 68
of systems, 68

integral controllers, 45
integral controls, 43–46

dynamics of, 45
generating constant offsets, 45–46

integral term, derivative vs., 103
integrals, calculating, 132
integrator windup, 101–103

preventing, 102
setpoint changes and, 103

integrators, 132
clamping, 102
dynamic pricing and, 158
preloading, 103

internal dynamics, 28
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L
lags
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importance of, 34
reason for, 31
simple, 251–256
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differential equations and, 212–

214
integrals and, 211
properties of, 211–212

limitations, 101
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on transfer functions, 224
virtual system dynamics and, 31
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limiting cases, 247
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on frequency inputs, 258

linear controllers, 109
load_queue () function, 182
logarithms, loop architecture using,

196
loop shaping, 241

M
magnitude

condition, 249
errors, 165
of points on root locus diagrams,

249–250
marginal stability, of closed loop sys‐

tems, 263–265
mathematical control theory, 274
matplotlib, 135
measuring transfer functions, 79–90

process characteristic, 80–82
process reaction curve, 82–83
system identification methods, 90–

90
memory consumption simulation,

193–201
analyzing requirements for, 194–

195
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architecture options for, 195–198
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193
momentary tracking errors, 43
monitoring () function, 135

N
nested control loops, 175
nested controls, 117–118

queue controls as, 175
setup for, 175–178
tuning, 175–178
using, 118

network protocols, 32
noise, 93, 205

measurement of, 113
non-minimum phase systems, 89
nonlinear controllers, 109–111

categorical output of, 111
error-square, 109–110, 181
floating-point output, simulating,

110–111
gap, 109–110
simulating PID controllers with,

110–111
Nyquist plot, 265

O
on/off controllers, 41
open-loop systems configuration, 39
optimal controllers, 273
optimization, 69
ordering relations, 194
oscillations, 31

control, 10
damped, 88

oscillators, harmonic, 217–218
oscillatory behavior, 92
oscillatory dynamic response, 235
outflow, average rate of, 7
output derivatives, 108
outputs

controller, 110
decreasing, 53
deviation of, 34
relationship between inputs and,

45

P
performance

derivative controls and, 179–180
of closed-loops, 189–190

performance index, 273
permissible control inputs, 111
phase crossover frequency, 265
phase margin, 265
phase systems, non-minimum, 28
physical laws, 272
PID controllers, 47–49, 227–231

canonical form of, 228–229
defined, 47
error vs. output feedback, 107–108
feedback architecture and, 230
generalizing, 229–230
incremental forms of, 106–107
linear digital controllers, 108–109
linearity of, 227
proportional droop and, 230–231
queue controllers and, 181–181
simulating, with nonlinear con‐

trollers, 110–111
transfer functions for, 75, 227–228

PID tuning, 91–100
controller parameters, 94–95
formulas, 99–100
objectives of, 92–94
semi-analytical methods, 96–98
Ziegler-Nicols rules, 95

PidController
AdvController vs., 131
instance of, 192

plants, canceling effects of, 229
pole-zero diagrams, 238
poles, 233–243

cancellation of, with zeros, 238
complex conjugate, 236
dominant, 239–241
effect of, 234–238
location of, 76
moving, horizontally, 239
moving, vertically, 239
multiple, 237
on imaginary axis, 237–238
position of, 76, 241–242
response patterns and, 238–242
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transfer function, structure of,
233–234

with imaginary parts, 76
process characteristics, 80–82
process control problem, 51
process gain, 80, 82

changes in, 80
magnitude of, 80
sign of, 82

process input, fluctuations in, 153
process knowledge, 68
process models

accumulating, 86–88
non-minimum phase systems, 89
phenomenological, 77
self-regulating, 83–86
self-regulating, with oscillation,

88–89
transfer functions and, 77–78, 83–

90
process reaction curve, 82–83
process responses, dynamic, 79
process signature, 142
process variables, 52
processes

decay, 213
input/output signals and, 62–63
integrating, 86
occasionally stable, 95

proportional controllers, 42–43
simple lag and, 251–252

proportional droop, 43, 45, 253
PID controllers and, 230–231
reduce, 43

proportional-integral controllers, 44
simple lag and, 253–256

proportional-integral type, 47
pure time delays, 242

Q
queue control simulation, 173–183

cascaded control loops, 175
derivative controls and, 179–180
nested control loops and, 175
PID controllers and, 181–181
setup/tuning, 175–178

R
ramped response to transfer func‐

tions, 216–217
rational functions, 246
RecursiveFilter, 133
reference values, 69
relevance, of control outputs, 65
requests, on caches, 140
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238–242
response time, 27

input changes, 92
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forced, 28–29
free, 28–29
internal, 28
round out, 32
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transient, 29–30
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of control inputs, 64
of control outputs, 65

Riccati equation, 209, 213
robust controllers, 272–273

issues with, 273
root locus diagrams, 245–256

angle/magnitude criteria of points
on, 249–250

construct, 254
construction of, 246–247
“Evans” Rules for, 247–249
global appearance, 247
limits, 250
poles and, 250–251
simple lag and, 251–256
sketching, 249

rounded behavior, 27
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S
sampling intervals, choosing, 104–105
saturation, 56, 102

actuator, 56, 101–103, 195
scaling server instances simulation,

161–172
self-regulating process model, 83–86
set-point weighting, 108
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for feedback equation, 221
integrator preloading and, 103
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settling time, 93
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signals, 54

decouple, 66
format, 135

simple lag, 216, 251–256
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and, 253–256
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252
simplifying analysis, 239
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framework for, 129–136
time, modeling, 127–129

sinusoidal input signals, 257
applying, 90

slow dynamics, 117
Smith predictor, 118–120

nested control loops and, 119
smoothing, 35, 47
smoothing filters, 132

treating, 138
smoothness, of control outputs, 65
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of feedback systems, 36
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204
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static process characteristic, 79, 161–

172
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measuring, 162–164
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167

tuning, 162–164
static scale, 68
statistical process control, 137
stepped response to transfer func‐

tions, 215–216
strictly proper transfer function, 233
synchronization, 106
system dynamics, 27–38

delays, avoiding, 34–35
fast/slow, controls for, 117–118
involving delays, 118–120
lags/delays and, 27–30
measuring, 150–151
memory and, 33
physical, 31–33
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Smith predictor, 118–120
theory vs. practice, 35–36
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systems
inputs and, 74
instability of, 68
queuing, 173
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Taylor expansion, 242
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three-term controllers, 40, 47–49
time
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virtual system dynamics, 31
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