Pageiii

POSIX Programmer's Guide
Writing Portable UNIX Programswith the POSI X.1 Standard

Donald A. Lewine
Data General Corporation

O'Rellly & Associates, Inc
103 Morris Street, Suite A
Sebastopol, CA 95472

Pageiv

POS X Programmer's Guide
by Donald A. Lewine

Editor: Dale Dougherty

Copyright © 1991 O'Reilly & Associates, Inc.
All rights reserved

Printed in the United States of America
Printing History

April 1991: First edition

December 1991 Minor corrections. Appendix G added.
July 1992 Minor corrections.

November 1992: Minor corrections.

March 1994 Minor corrections and updates.

NOTICE

Portions of this text have been reprinted from |EEE Std 1003.1-1988, |EEE Standard Portable
Operating System for Computer Environments, copyright © 1988 by the Institute of Electrical
and Electronics Engineers, Inc., and |EEE Std 1003.1-1990, Informration
Technology—Portable Operating System Interface (POSIX)—Part 1. System Application
Program Interface (API) [C Language], copyright © 1990 by the Ingtitute of Electrical and
Electronics Engineers, Inc., with the permission of the |IEEE Standards Department.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks of O'Rellly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
O'Rellly and Associates, Inc. was aware of atrademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

P ease address comments and questions in care of the publisher:

O'Reilly & Associates, Inc. INTERNET: |etters@ora.com
103 Morris Street, Suite A

Sebastopol, CA 9547

(800) 998-9938

[8/98] ISBN: 0-937175-73-0

Pagev

To all my students

To my wife, Susan,

who convinced me to do this
book and who put up with
all the time this effort took

Pagevi

Acknowledgments

| would like to thank all of my students who put up with al of the beta test quality revisions.
They provided many useful suggestions.

| would like to thank some people who provided very complete technical reviews and
provided useful comments. Hal Jespersen (Posix Software Group), Chuck Karish (Mindcraft,
Inc.), Thomas Mitas (HBO & Company), Neil Todd (European UNIX Systems User Group),
Andy Huber (Data General Corporation), Richard Eckhouse (University of Massachusetts),
Andy Silverman (88open Consortium), Henry Spencer (University of Toronto), Jeffrey S.
Haemer (Interactive Systems Corporation), Paul Rabin, Dave Kirschen, and Michagl Meissner
(Open Software Foundation), and John S. Quarterman (Texas Internet Consulting).

Thanks go to the following readers of previous printings who pointed out errors and typos.
Eric Boweles, Eric Hanchrow, Milt Ratcliff, Stephen J. Friedl, Ed Myer, Chedey Reyburn.
Derek M. Jones, Todd Stevenson, Bob Burchfield, Anthony Scian, and Wayne Pallock

Thanksto Allen Gray for his help with the reference material. Thanksto Mike Sierraand Ellie
Cutler of O'Rellly & Associates for doing the production work and for writing the index.
Specia thanks to Dale Dougherty for agreat job of editing. His many useful suggestions were
worth the months they took to implement.

Thanks to the POSIX standards committees for making this book possible.

Page vii

Table of Contents
Preface XXiii
The POSIX Standard Documents XXIV
Guide to POSIX for Programmers XXV
Programming Guide XXV
Reference Guide and Appendixes XXVI
Assumptions XXVi
Conventions XXVil
Chapter 1 Introduction to POSIX and Portability 1
Who is Backing POSIX? 2
The POSIX Family of Standards 3
The POSIX.1 Standard Document 5
The Design of POSIX 7

POSIX and UNIX

I~

POSIX and Non-UNIX Operating Systems 8

POSIX, C, ANSI C, and Standard C 8

Why Standard C? 9

Working Outside the Standards 10

Finding The POSIX Libraries 11

Converting Existing Programs 11
Page viii

Chapter 2 Developing POSIX Applications 13

The POSIX Development Environment 13

The Standard C Compiler 13

POSIX and C Libraries 14

Converting Existing Programs 15

A Porting Example 16

An Alternate Approach 19

Standard Header Files 20

Template for a POSIX Application 24

[* Feature test switches */ 25

[* System headers*/ 25

/* Local headers*/ 25

[* Macros*/ 25

/* File scope variables */ 25

[* External variables*/ 26

* Externd functions*/ 26

[* Structures and unions */ 26

[* Signal catching functions */ 26

I* Functions */
[* Main */
Sample Program
Portability Lab
Chapter 3 Standard Fileand Terminal 1/0
Libraries and System Calls
Standard Files
Formatted Output
Examples
Pitfalls
The vfprintf(), vprintf(), and vsprintf() Functions
Character Output Functions
The fputs() and puts() Functions
The fputc(), putc(), and putchar() Functions
Reading Lines of Input
Pitfalls

Additional Pitfall

Other Character Input Functions
The fgetc(), getc() and getchar() Functions
The fgets() Function
The gets() Function
The ungetc() Function
Opening and Closing Files

Direct Input/Output functions

XK G EEE B R BB

Pageix

1%

a7

& 1B & & I

The fwrite() and fread() Functions
File Positioning Functions
The fgetpos() and fsetpos() Functions
The ftell() and fseek() Function
The rewind() Function
Managing Buffers
Sample Program
Portability Lab
Chapter 4 Files and Directories
Portable Filenames
Directory Tree
Current Working Directory
Making and Removing Directories
The rmdir() Function
Simulating the mkdir() and rmdir() Functions
Directory Structure
Manipulating Directories
Linking to aFile
Removing aFile
Renaming aFile
File Characteristics
Retrieving a File's Characteristics
Changing File Accessibility
Changing the Owner of aFile

Setting File Access and Modification Times

B BB E BB IS

Page x

Reading Directories 75
The opendir() Function 76
The readdir() Function 76
The closedir() Function 76
The rewinddir() Function 76
General Comments 76
Complete Example a4

Pitfall: Symbolic Links 83

Portability Lab 34

Chapter 5 Advanced File Operations 85

Primitive File Operations 86
File Descriptors 87
Opening afile 87
Reading from aFile 89
Writing to aFile 89
Fast File Copy Example 0
Control Operationson aFile 92

F GETFD/F_SETFD 92
F GETFL/F_SETFL 93
F SETLK/F_SETLKW/F_GETLK A
F DUPFD 95
Setting the File Position 95
The dup() and dup2() Functions 96
Closing aFile 96

FIFOs and Pipes 96

File Creation Mask
The umask() Function
Mixing the Levels
The fdopen() Function
The fileno() Function
Pitfalls

Portability Lab

Chapter 6 Working with Processes
Process Creation
Thefork() Function
The exec() Family of Function
Example: Piping Output Through more
Portability Note
Process Termination
The wait() and waitpid() Functions
Terminating the Current Process
Returning from main()
Calling exit()
Calling _exit()
Calling abort()
Terminating Another Process
Signals
Signal Actions

Signal-Catching Functions

101
101
101
102
103
105
106
106
108
108
109
109
110
110
110
112
112

Page Xi

Examine and Change Signal Action 113

Standard C Signals 113
POSIX Signas 114
Example: Timing a System Function 116
Signal Sets 117
The sigemptyset() Function 118
The sigfillset() Function 118
The sigaddset() Function 118
The sigdel set() Function 118
Using the sigset Functions 118
The sigismember() Function 119
The sigprocmask() Function 119
The sigpending() Function 119
Wait for a Signal 120
Sending aSignal 121
Portability Lab 122
Page xii
Chapter 7 Obtaining Information at Run-time 123
Process I dentification 123
User Identification 123
User IDs 125
Group IDs 126
System Identification 132
Date and Time 133

The time() Function 133

The localtime() and gmtime() Functions
The mktime() Function
The strftime() Function
The asctime() and ctime() Functions
The difftime() Function
The clock() and times() Functions
Environment Variables
The getenv() Function
The sysconf() Function
The pathconf() and fpathconf() Functions
Portability Lab
Chapter 8 Terminal 1/0
Termina Concepts
Setting Termina Parameters
The tcsetattr() and tcgetattr() Functions
The termios Structure
System V termio and POSIX termios Structures
Example: Reading a Passwcrd
Input Processing
Output Processing
Modem Control
Non-Canonical 1/C
Input Modes
Output Modes
Control Modes

Loca Modes

133
135
135
137
137
137
138
139
140
142
143
145
146
147
147
148
149
150
152
152
153
153
153
154
155
155

Control Characters

Speed Storing Functions

Line Control Functions
The tcsendbreak() Function
The tedrain() Function
The tcflush(Function
The tcflow() Function

Avoiding Pitfalls

Example: Computer-to-Computer Communications

Process Groups and Job Control
Process Groups
Foreground Process
Background Process
Session
Controlling Termind
Get/Set Process Group
The setsid() Function
The setpgid() Function
The tcsetpgrp() Function
Portability Lab
Chapter 9 POSIX and Standard C
Common Usage C
Standard C

Getting Standard C

156
158

Page xiii

160
160
160
160
161
161
162
166
167
167
167
167
168
168
168
168
169
169
171
171
171
171

The Standard C Preprocessor
Trangdlation Phases
Macro Replacement
Conversion of Macro Arguments to Strings
Token Pasting
New Directives

Namespace | ssues
Names Reserved by the C Language
Names Reserved by Header Files
C Library Functions
POSIX Library Functions

Avoiding Pitfalls

Function Prototypes
Avoiding Pitfalls
Writing New Programs
Maintaining Old Programs
Mixing Old and New

Using const and volatile

String Constants

Data Type Conversions

Character Sets

Using Floating-point Data

Using Data Structures

Alignment

172
172
172
1/3
1/3
174
174
174
175
176
177
177

Page xiv

178
179
180
180
180
181
182
183
184
185
187
187

Data Segment Layout
Big-endian vs. Little-endian
| nternationalization
Portability Lab
Chapter 10 Porting to Far-off Lands
Some Definitions
| nternationalization
Localization
Locale
Locale Control
Character and Codeset
Messages
Rep esentation of Numbers
Currency
Dates
Setting the Current Locae
Character-handling Functions
Theisalpha(), idower(), and isupper() Functions
The toupper() and tolower() Functions
The isspace() Function
The strcoll() Function
The strxfrm() Function
The strerror() and perror() Functions

The strftime() Function

188
189
190
190
193
193
193
193
193
194
194
194
194
195
195
195
196
197
197
197
197
197
198
198

Page xv

Native Language M essages
Message Catalogs
The catopen() Function
The catgets() Function
The catclose() Function
Loca Numeric Formatting
Asian Languages
Multi-byte Characters
Wide Characters
Working with Multi-byte and Wide Characters
The mbtowc() Function
The mbstowcs() Function
The wctomb() Function
The westombs() Function
The mblen() Function
Portability Lab
Library Functions
abort()— Causes abnormal process termination
abs()—Computes the absolute value of an integer
access()—Testsfor file accessibility
acos()—Computes the principal value of arc cosine
aarm()—Schedules an alarm
asctime()—Converts atime structure to a string
asin()—Computes the principal value of the arc sine
assert()—Aborts the program if assertion isfalse

atan()—Computes the principal value of the arc tangent

198
199
199
200
200
200
203
203
203
204
204
204
205
205
205
206
209

211
212
213
215
216
217
218
219
221

atan2()—Computes the principal value of the arc tangent of y/x

atexit()—Registers afunction to be called at normal program
termination

atof ()—Converts atext string to double

atoi()—Converts atext string to integer

atol ()—Converts atext string to long integer
bsearch()—Searches a sorted array

calloc()—Allocates and zeroes memory

cell()—Computes the smallest integer greater than or equal to x
cfgetispeed()—Reads terminal input baud rate

cfgetospeed()—Reads terminal output baud rate

cf setispeed()—Sets terminal input baud rate

cf setospeed()—Sets terminal output baud rate
chdir()—Changes the current working directory
chmod()—Changes file mode

chown()—Changes the owner and/or group of afile

clearerr()}—Clears end—of-file and error indicators for a stream

clock()—Determines processor time used
close()—Closes afile

closedir()—Ends directory read operation
cos()—Computes the cosine function
cosh()—Computes the hyperbolic cosine function
creat()—Creates anew file or rewrites an existing one

ctermid()—Generates termina pathname

222
223

224
225
226
227
229
230
231
232

Page xvi

233
234
235
236
238
240
241
242
243
244
245
246
247

ctime()—Formats a calendar time

cuserid()—Gets user name

difftime()—Computes the difference between two times

div()—Computes the quotient and remainder of an integer division

dup()—Duplicates an open file descriptor
dup2()——Duplicates an open file descriptor
execl()—Executes afile

execle()—Executes afile

execlp()—Executes afile

execv()—Executes afile

execve()—Executes afile
execvp()—Executes afile

exit()—Causes normal program termination
_exit()—Terminates a process
exp()—Computes the exponential function
fabs()—Computes the absolute-value function
fclose()—Closes an open stream

fentl ()—Manipul ates an open file descriptor
fdopen()—Opens a stream on afile descriptor
feoff()—Tests the end-of-file indicator for a stream
ferror()—Tests the error indicator for a stream
fflush()—Updates stream

fgetc()—Reads a character from a stream
fgetpos()—Gets the current file position
fgets()—Reads n characters from a stream

fileno()—Maps a stream pointer to afile descriptor

249
250
251
252
253
24
256
258
260
262
264
266
267
268
269
2/0
271
274
275
276
277
278
279
280
281

floor()—Computes the largest integer not greater than x
fmod()—Computes the remainder of x/y
fopen()—Opens a stream

fork()—Creates a process

fpathconf()—Gets configuration variable for an open file
fprintf()—Writes formatted text to a strear

fputc()—Writes a character to a stream

fputs()—Writes a string to a stream

fread()—Reads an array from a stream

free()—Deall ocates dynamic memory

freopen()—Closes and then opens a stream

frexp()—Breaks a floating-point number into a fraction and integer

fscanf()—Reads formatted input from a stream
fseek()—Setsfile position

fsetpos()—Sets the file position for a stream
fstat()—Gets file status

ftell ()—Gets the position indicator for a stream
fwrite()—Writes an array to a stream
getc()—Reads a character from a stream
getchar()—Reads a character from standard input
getcwd()—Gets current working directory
getegid()—Gets effective group 1D
getenv()—Gets the environment variable

geteuid()—Gets effective user ID

Page xvii

282
283
284
285
287
289
293
294
295
296
297
298
299
302
303
304
305
306
307
308
309
310
311
313

getgid()—Gets real group ID

getgrgid()—Reads groups database based on group 1D
getgrnam)—Reads group database based on group name
getgroups()—Gets supplementary group 1Ds
getlogin()—Gets user name

getpgrp()—Gets process group 1D

getpid()—Gets process ID

getppid()—Gets parent process |ID
getpwnam()—Reads user database based on user name
getpwuid()—Reads user database based on user 1D
gets()—Reads a string from standard input
getuid()—Getsreal user ID

gmtime()—Breaks down atimer value into atime structure in
Coordinated Universal Time (UTC)

isalnum()—Tests for aphabetic or numeric character

isalpha()—Tests for alphabetic character

isatty()—Determinesif afile descriptor is associated with aterminal
iscntrl()—Tests for control character

isdigit()—Tests for decimal-digit character

isgraph()—Tests for printing character

islower()—Tests for lowercase character

isprint()—Tests for printing character

ispunct()—Tests for punctuation

isspace()—T ests for white-space character

314
315
316
317
319
320
321
322
323
324
325
326
327

328

Page xviii

329

B8R E B

335
336
337

isupper()—Tests for uppercase alphabetic character
isxdigit()—Tests for hexadecimal-digit character

kill()—Sends asignal to a process

labs()—Computes the absol ute value of along integer
Idexp()—M uultiplies a floating-point number by a power of 2
Idiv()—Computes the quotient and remainder of integer division
link()—Createsalink to afile

localeconv()—Gets rules to format numeric quantities for the current
locale

localtime()—Breaks down atimer value into atime structure in local
time

log()—Computes the natural log function

logl O()—Computes the base-ten logarithm function
longjmp()—Restores the calling environment
|seek()—Repositions read/write file of fset
malloc()—Allocates dynamic memory

mblen()—Determines the number of bytesin a character
mbstowcs()—Converts a multibyte string to a wide-character string
mbtowc()—Converts a multibyte character to awide character
memchr()—Scans memory for a byte

memcmp()—Compares two memory objects
memcpy()—Copies non-overlapping memory objects
memmove()—Copies (possibly overlapping) memory objects
memset()—Fills memory with a constant byte
mkdir()—Makes a directory

mkfifo()—Makes a FIFO specid file

mktime()—Converts time formats

EEBEEREEEER

5

EEEBEBERERIEEEM

W
o))
o

w
o
=

W
()]
N

363

w

modf()—Breaks avalueinto integral and fractional parts
open()—Opens afile
opendir()—Opens a directory

pathconf()—Gets configuration variables for a path

pause()—Suspends process execution

perror()—Prints an error message

pipe()—Creates an interprocess channel
pow()—Computes x raised to the power y
printff()—Writes formatted text to the standard output stream
putc()—Writes a character to a stream

putchar()—Writes a character to standard output

puts()—Writes a string to standard output

gsort()—Sorts an array

raise()—Sends asignal

rand()—Retums a random number

read()—Reads from afile

readdir()—Reads a directory

realloc()—Changes the size of a memory object
remove()—Removes afile from adirectory
rename()—Renames afile

rewind()—Sets the file position to the beginning of the file
rewinddir()—Resets the readdir() pointer
rmdir()—Removes a directory

scanf()—Reads formatted text from standard input stream

365
367
363

Page Xix
370
371
372
373
374
378
379
380
381
383
334
385
387
389
390
391
393
3A
395
396

setbuf ()—Determines how a stream will be buffered
setgid()—Sets group ID

setjmp()—Saves the calling environment for use by longjmp()
setlocale()—Sets or queries a program's locale
setpgid()—Sets process group ID for job control
setsid()—Creates a session and sets the process group ID
setuid()—Sets the user ID

setvbuf()—Determines buffering for a stream
sigaction()—Examines and changes signal action
sigaddset()—Adds asignal to asignal set
sigdelset()—Removes asignal from asignal set
sigemptyset()—Creates an empty signal set
sigfillset()—Creates afull set of signals
sigismember()—Tests asignal set for a selected member
siglongjmp()—Goes to and restores signal mask

signal ()—Specifies signal handling
sigpending()—Examines pending signals
sigprocmask()—Examines and changes blocked signals

sigsetjmp()—Saves state for siglongjmp()

sigsuspend()—Waits for asignal
sin()—Computes the sine function
sinh()—Computes the hyperbolic sine of x
sleep()—Delays process execution

sprintf()—Formats a string

&8 EB

407

418
419
420
422
423
425

Page xx
427
428
429
430
431

sgrt()—Computes the square root function
srand()—Sets a seed for the rand() function
sscanf()—Parses a string

stat()—Gets information about afile
strcat()—Concatenates two strings

strchr()—Scans a string for a character
stremp()—Compares two strings

strcoll()—Compares two strings using the current locale
strepy()—Copies a string

strcspn()—Searches a string for characters which are not in the
second string

strerror()—Converts an error number to a string
strftime()—Formats date/time

strlen()—Computes the length of a string
strcat()—Concatenates two counted strings
strncmp()—Compares two counted strings
strncpy()—Copies a counted string

strpbrk()—Searches a string for any of a set of characters
strrchr()—L ocates the last occurrence of a character in a string
strspn()—Searches a string for any of a set of characters
strstr()—L ocates a substring

strtod()—Converts a string to double

strtok()—Breaks a string into tokens

strtol ()—Converts a string to long int

strtoul ()—Converts a string to unsigned long int

strxfrm()—Transforms strings using rules for locale

EEHFEEBRERIER

EREEEEEERRBRERB

sysconf()—Gets system configuration information
system()—Executes a command

tan()—Computes the tangent of x

tanh()—Computes the hyperbolic tangent of x
tcdrain()—Waits for al output to be transmitted to the terminal
tcflow()—Suspends/restarts terminal output
tcflush()—Discards terminal data

tcgetattr()—Gets terminal attributes

tcgetpgrp()—Gets foreground process group 1D
tcsendbreak()—Sends a break to aterminal
tcsetattr()—Sets terminal attributes

tcsetpgrp()—Sets foreground process group 1D
time()—Determines the current calendar time
times()—Gets process times

tmpfile()—Creates atemporary file
tmpnam()—Generates a string that is a valid non-existing file name
tolower()—Converts uppercase to lowercase
toupper()—Converts lowercase to uppercase
ttyname()—Determines aterminal pathname
tzset()—Sets the timezone from environment variables
umask()—Sets afile creation mask

uname()—Gets system name

ungetc()—Pushes a character back onto a stream

unlink()—Removes a directory entry

4/0
471
472
473
474
476
477

utime()—Sets file access and modification times

va arg()—Gets the next argument

va_end()—Ends variable argument list

va_start()—Starts a variable argument list

viprintf()—Writes formatted text with a variable argument list

vprintf()—Write formatted text to standard output with a variable
argument list

vsprintf()—Write formatted text to a string with a variable argument
list

wait()—Waits for process termination
waitpid()—Waits for process termination

wcstombs()—Converts awide character string to a multibyte
character string

wctomb()—Converts awide character to a multibyte character

write()—Writesto afile

Appendix A Header Files

Description of Tables

Appendix B Data Structures

Appendix C Error Codes
Appendix D Porting from BSD and System V

BSD Functions

System V Functions

Appendix E Changes and Additionsin Standard C

Preprocessor

Character Set

497
49

Page xxii
559
565
566
568
569
569
569

|dentifiers 569

Keywords 570
Operators 570
Strings 570
Congtants 570
Structures, Unions, and Arrays 570
switch Statements 571
Headers 571
Pointers 571
Functions 571
Arithmetic 571
Appendix F Federal Information Processing Standard 151-1 573
Appendix G Answers to Selected Exercises 575
Related Publications 585
The Standards 585
Other Documents of Interest 586
Index 587
Page xxiii
Preface

In 1988, IEEE Std 1003.1-1988, commonly known as POSI X or the |EEE Portable Operating
System Interface for Computing Environments, was published as an American National
Standard. In 1990, IEEE Std 1003.1-1990 was published as an International Standard. POSIX
defines a standard way for an application program to obtain basic services from the operating
system. More specifically, POSIX describes a set of functions derived from a combination of
AT&T UNIX System V and Berkeley Standard Distribution UNIX. All POSIX-conforming
systems must implement these functions, and programs that follow the POSIX standard use only
these functions to obtain services from the operating system and the underlying hardware. When

applications follow POSIX rules, it is easier to move programs from one POSI X -conforming
operating system to another.

Most programmers, and the companies that employ them, understand the benefits of developing
programs that are highly portable across a variety of computer architectures and operating
systems. To write portable programs you want to make use of only those features on a
particular system that are also found on other systems. Writing POSI X-compliant programs
does, in fact, result in more portable programs. However, writing these programs is not so easy
if you rely solely upon the manufacturer's documentation.

A programming reference manual typically combines POSI X -compliant functions with
non-compliant functions. A function might comply with the POSIX requirements but also add
several new features peculiar to that computer system or operating system variant. A
manufacturer may not always point out what features represent added value and are supported
only on that make or model. Even though the computer system you use might conform to the
POSIX standard, you can still write non-conforming applications by making use of the
system-specific features added by the manufacturer.

This book is aguide to the operating system interface as guaranteed by the POSIX standard.

Y ou can write complete, conforming applications by using the information in this book. The
POSIX library of functionsis complete enough to write many useful and sophisticated
applications. However, there are many areas that the POSIX standard does not yet address.
Thus, programmers must implement strategies that i solate nonportable code from
portable-code, such that even hardware-dependent features are easily identified. The object of
this book is to help the programmers resolve portability issues at the design stage of
development, and not after the program has been fully implemented on a particular system.

Page xxiv

The POSI X Standard Documents

Not many people actually read a standard, nor are they expected to. It ismore like reading an
insurance policy. When a standards organization such as ANSI or |EEE publishes a standards
document, they view it as aforma document in which the primary aim is to be unambiguous.

The language is very technical and precise. The statements "Applications should not set

O _XYZ" and "Applications shall not set O _XYZ" mean very different (almost opposite) things.
"Should" means that something is recommended but is not required. "Shall" signifiesa
requirement.

The primary aim of this book isto interpret the POSIX standard for the application programmer
and explain it in language that he or she can understand. Y ou can read this book without
remembering the technical meaning of words like may, should, or shall.

The POSIX standard contains alot of information that was written by and for system
implementers. The standard describes how to write an operating system that conforms to the
POSIX standard. A typical passageis.

All of the described members shall appear in the stat structure. The structure membersst_mode,
st_ino, st_dev, stuid, st_gid, st_atime, st_ctime, and st_mtime shall have meaningful valuesfor all

file types defined in this part of 1SO/IEC9945.*

If you are an application programmer, you don't want to know how to construct an operating
system. Y ou need to know how to write programs using the POSIX library to obtain the
services that an operating system provides. What this passage means to an application
programmey is.

Thefile sizereturned by thest at () functionisonly valid for regular files. It may not contain
meaningful information for special files, suchas/ dev/tty.

Finally, the POSIX standard is difficult to use; that is, it is not organized for a programmer who
wants to consult it while writing programs. It follows the conventions of a standards document.
This book is organized for use as a programmer's guide to POSIX and areference guide to
POSIX. The organization of this book is described in more detail in the next section.

In the POSIX standard, there are functions that are defined in relation to the ANSI C standard.
Given the additional requirements placed on C standard functions by POSI X, the programmer
has the chore of reading both the C standard and the POSIX standard to get complete
information. In this book, standard C functions are described in full in one place.

* |EEE Std 1003.1-1990 Section 5.6.1.

Page xxv

Thisbook is a clearly written, complete guide to writing POSIX-compliant programs. In fact,
you may not need to own a copy of the POSIX standard. Or, if you do have it, we believe that
you will come to rely on the information in this book and find that it is more accessible.

Guideto POSIX for Programmers

There are two separate guides that make up this book. Thefirst is a programmer's guide to
writing POSI X-compliant programs. It begins with an overview of what the POSIX standard
actually defines. Then it covers the basic ingredients of a POSIX-compliant program. There are
a set of chapters devoted to explaining the functional areas addressed by the standard. Each
chapter covers a group of related functions. For example, all of the information on terminal 1/0
isin Chapter 8. In this part of the book, we discussin more detail the relation between POSIX
and Standard C, a set of issues regarding internationalization and portability, and finally, how
to design programs that isolate system dependencies from POSI X -compliant code.

The second is areference guide for everyday use. The library functions are listed in al phabetic
order and there are sections covering error message codes, data structures and the standard
header files.

Hereis an outline of the book:
Programming Guide

Chapter 1, Introduction to POS X and Portability, answers anumber of questions anyone
might have concerning POSI X. It addresses such basic questions as: Why is the POSI X
standard important? What does the POSI X standard cover? What is the relationship between
POSIX and UNIX?

Chapter 2, Developing POS X Applications, covers the basics of writing a POSIX-compliant

program. It describes how to make sure your program accesses the POSIX libraries and looks
at the required elements of a conforming program. It also presents a complete sample program
that uses many POSIX features. After reading this chapter you can read the following chapters
in any order. If your main interest is POSIX terminal 1/0, you can skip right to Chapter 8.

Chapter 3, Sandard File and Terminal 1/O, covers the Input/Output facilities of the Standard
C library. These are highly portable functions that perform general-purpose file operations.

Chapter 4, Files and Directories, deals with the file system as defined by POSIX. It covers
directory structures, filenaming conventions and the library functions to manipulate files and
directories.

Chapter 5, Advanced File Operations, addresses the basic operations of the POSIX
Input/Output system as well as some advanced concepts like pipes and FIFOs.

Page xxvi

Chapter 6, Working with Processes, covers working with processes. It covers creating and
terminating processes and signals.

Chapter 7, Obtaining Information at Run-time, describes how to obtain information about the
environment, such as the user's name or the current time.

Chapter 8, Terminal 1/O, covers Input/Output to terminals.

Chapter 9, POS X and Standard C, covers POSIX and Standard C. This covers some
portability pitfalls and other features of the Standard C language.

Chapter 10, Porting to Far-off Lands, is dedicated to internationalization. That isissues
having to do with porting a program from one culture to another.

Reference Guide and Appendixes

Library Functionsis, by far, isthe largest chapter in the book. It isacomplete list of library
functions in alphabetic order. Every function is defined in its correct place. For example, the
i sspace() functionisnot listed under ct ype asitisin traditiona UNIX manuals. This
makes this information much easier to find.

Appendix A, Header Files, liststhe standard headers and the information that they define.
Appendix B, Data Structures, isacomplete list of data structures and their members.
Appendix C, Error Codes, coversall of the error codes.

Appendix D, Porting from BSD and System V, provides information on porting applications
fromBSD and AT& T System V systemsto POSIX.

Appendix E, Changes and Additions in Standard C, describes the changes and additions to the
C language made by Standard (ANSI) C.

Appendix F, Federal Information Processing Standard 151-1, describes the Federal
Information Processing Standard used by the U.S. Government to purchase systems with
POSI X-like interfaces.

Related Publications lists related publications.

Assumptions

In this book, | assume that you understand the C language and have some experience
programming in C for the UNIX operating system. | also assume knowledge of ANSI C syntax.
By and large, | assume you are an intermediate to expert programmer who isinterested in the
substance of POSIX but has little or no interest in reading the standards document to find it out.

Page xxvii

Conventions

Italic isused for:

- New terms where they are defined.
- Titles of publications.
Typewiter Font isusedfor:

- Anything that would be typed verbatim into code, such as examples of source code and text
on the screen.

- POSIX functions and headers.

- UNIX pathnames, filenames, program names, user command names, and options for user
commands.

Sample Programs Available on I nter net

The examplesin thisbook are availableon f t p. uu. net inthe directory
[publ i shed/oreilly/ m sc/posix_prgui de

Pagel

Chapter 1
Introduction to POSI X and Portability

This chapter offers a basic introduction to the POS X standard and the efforts that led to its
development; it also explains the relationship between POS X and UNIX and the ANS C
standard.

Early computers each had a unique program architecture and a unique operating system. When
an application needed to be moved from one generation of hardware to the next, it had to be
rewritten. In 1964, IBM introduced the System/360. This was the first farrily of compatible
computers. They used one operating system, OS/360, and programs could easily be moved to
more powerful models. A single vendor implementing a single hardware architecture across

multiple machines was afirst step in achieving portability.

In 1968, AT& T's Bell Labs began work on the UNIX operating system. It allowed asingle
operating system to run on multiple hardware platforms from multiple vendors. UNIX,
however, developed along severa different lines: AT& T System V, Berkeley Software
Distributions, Xenix, and so on. None of the flavors works identically and the precise behavior
of each flavor is not well defined. It can be difficult to move applications from one flavor to
another.

Today thereisamajor battle of operating systems. Unix Systems Lab's System V, the Open
Software Foundation's OSF/1, Digital Equipment's VAX/VMS, and Microsoft's OS2 are al
trying to set the standard. Y et, they all agree to support the POSIX standards.”

POSIX isan international standard with an exact definition and a set of assertions which can be
used to verify compliance. A conforming POSIX application can move from system to system
with avery high confidence of low maintenance and correct operation. If you want software to
run on the largest possible set of hardware and operating systems, POSIX isthe way to go.

POSIX isbased on UNIX System V and Berkeley UNIX, but it is not itself an operating system.
POSIX describes the contract between the application and the operating system. POSIX does
not say how to write applications programs or how to write the operating system. Instead,
POSIX defines the interface between applications and their libraries. POSIX does not talk
about "system calls' or make any distinction between the kernel and the user.

* AT&T Unix System V release 4.0 and OSF/1 release 1.0 are both POSI X -conforming. Digital
Equipment Corporation and Microsoft have both publicly committed to making their operating
systems POSIX conforming.

Page 2

POSIX completes the generalization started by IBM with the System/360. POSIX is a standard
independent of vendor, operating system, and architecture.

The formal name for the POSIX standard is |EEE Standard 1003.1-1988 Portable Operating
System Interface for Computer Environments.” We call it POSIX (pronounced pahz-icks,
similar to positive). In fact, IEEE Std 1003.1-1988 is the first of a group of proposed standards
collectively known as POSIX.

In 1990 POSIX became International Standard 1SO/IEC 9945-1: 1990. The International
Standard is dightly different from IEEE Std 1003.1-1988. The | EEE reaffirmed the standard as
|EEE Std 1003.1-1990. The changes are mainly clarifications with no technical impact. We
will point out the few significant differences as we go aong.

Who is Backing POSI X?

The United States Government has adopted the POSI X standard as a Federal Information
Processing Standard (FIPS 151) for use in computer systems procurement. The European
Community is getting ready to do the same thing. This has inspired the following System
vendors™* to announce support for POSIX:

AEG Modcomp Harris Computer Systems Division

Alliant Computer Corp.
Amdahl Corp.

Apple Computer

AT&T

Bull

Charles River Data Systems
Concurrent Corrputer
Control Data Corporation
Convergent Technology
Cray Research Inc.

Data General Corporation
Digital Equipment Corp

Fujitsu Limited

Hewlett-Packard

Hitachi

Intel

Intergraph Corp.

International Business Machines
Kendall Square Research Corp.
Motorola

NeXT, Inc.

Stratus Computer

Sun Microsystems

Tandem Computer

Texas Instruments

Unisys

Gould Computer Systems Division Xerox

Grumman Data Systems

Of course, alist of hardware vendors like that will get lots of software vendors signed up to
help. Some of the major software vendors are The Open Software Foundation, AT& T Unix
System L aboratories, and Microsoft.

Now, if al these players agree on something, it must be important!

* The name POSIX comes from Portable Operating System interface for unl X. The name was
suggested by Richard Stallman.

** By the time you read this there will be even more!

Page 3

The POSIX Family of Standards

POSIX, in time, will be arich family of standards. The project names for the various POSIX
projects was revised in 1993. The current list” of POSIX projectsis:

1003.1
defines the interface between portable application programs and the operating system, based on
historical UNIX system models. This consists of alibrary of functions that are frequently

implemented as system calls. This project is now complete and is |EEE Std 1003.1-1990.

P1003.1a
Miscellaneous interpretations, clarifications and extensions (including symbolic links) to the
1990 standard. Look for an expanded POSIX. 1 standard by the end of 1994.

P1003.1b
(formerly POSIX.4) Real-time extensions approved as |EE Std 1003.1b1993 and covers:

Binary Semaphores

Process memory locking

Memory-mapped files and shared memory
Priority scheduling

Real-time signal extensions

Timers

| nterprocess communication
Synchronized I/0O

Asynchronous 1/0

P1003.1c

(formerly POSIX.4a) add functions to support threads (light weight processes) to POSIX. This
will allow multiple flows of control within a POSIX process, arequirement for tightly coupled
real-time (as well as transaction processing) applications.

P1003.1d
(formerly POSIX.4b) further real-time extensions

P1003.1e

formerly POSIX.6) isaset of security enhancements meeting the criteria published by the
United States Department of Defense in Trusted Computer System Evaluation Criteria
(TCSEC). This coversfour areas:

Access control lists on POSIX objects.

* Thislist was correct in February 1994. POSI X is very active and thisinformation will be out of date
by the timeyou read it. Late breaking information is posted to the USENET conp. st d. uni x
newsgroup. The USENIX Association publishes a quarterly update of standards activities.
Membership information is available from USENIX association, 2560 Ninth Street, Suite 215,
Berkeley CA 94710 or office@usenix org

Page 4

Support for labeling of subjects and objects, and for mandatory access control rulesto
avoid lesking information.

Defining auditable events for POSIX. 1 interfaces, and standard audit trail record formats
and functions.

Defining interfaces for altering process privileges.

P1003.1e
is currently balloting the required extension to P1003.1.

P1003.1f
(formerly POSIX.8) isworking on Transparent File Access over a network. Transparent File
Accessisthe ahility to access remote files asif they were local.

P1003.1g
(formerly POSIX.12) covers Protocol Independent Interfaces to network services.

P1003.Ih
(new) real-time distributed systems.

P1003.2

specifies a shell command language based on the System V shell with some features from the C
Shell and the Korn Shell. It provides afew services to access shell services from applications.
POSIX.2 provides over 70 utilities to be called from shell scripts or from applications
directly.

POSIX.2 was originally intended to allow shell scriptsto be portable. Later, it was decided to
add a User Portability Extension (now called POSIX.24) to allow users to move from one
system to another without retraining. The POSIX.2a covers about 35 additional utilities like the
vi editor, nor e, man, nmai | X, etc.

POSI X.2/.2a has passed all of the steps in the standardization process and is now approved as
|SO/IEC 9945-2:1993 and |EE Std 1003.2-1992.

P1003.2b
miscellaneous extensions (including symbolic links) to the P1003.2 standard.

P1003.2c
security extensions. These are the command and utilities that go aong with P1003.1e

P1003.2d
(formerly POSIX. 15) batch queueing extensions

P1003.3

provides the detailed testing and verification requirements for the POSIX family. The standard
(IEEE Std 1003.3-1991) consists of general requirements for how test suites should be written
and administered.

The National Institute for Standards and Technology (NIST), part of the United States
Government, produced the POSIX FIPS Conformance Test Suite (PCTS). The ability to test
that an implementation meets the standard allows programmers and users to get the full
portability that they expect. The specific tests for aPOSIX component are numbered 2003 so
the tests for IEEE Std 1003.1-1990 are called | EE Std 2003.1-1992.

Page 5

P1003.5
isaset of ADA bindings to the basic system services defined in POSIX. 1 (IEEE Std
1003.5-1992).

P1387

(formerly POSIX.7) is going to provide standard system administration. System administration
isone of the least standard areasin UNIX. There are several subprojects:

P1387.1 Framework for system administration

P1387.2 Software management

P1387.3 User management

P1387.4 Printer management

P1003.9
isaset of FORTRAN-77 bindings to the basic system services defined in POSIX.1 (IEEE Std
1003.9-1992)

P1003.10

is a supercomputing Application Environment Profile (AEP). Theideais to specify the
requirements that supercomputer users have for the other POSIX groups. For example, batch
processing and checkpoint/restart facilities.

P1003.11
was the Transaction Processing AEP currently inactive.

P1003.13
isthe Real-Time AEP. Thereis no POSIX. 13 committee. The work is done by POSIX.4

P1003.14
isthe Multiprocessor AEP.

P1003.16
isaset of C language bindings to the basic system services defined in POSIX.1 (inactive)

P1224.2
(formerly POSIX. 17) covers programming interfaces to network directory services (IEEE Std
1224.2-1993).

POSIX.18
isthe POSIX Platform Environment Profile. It will cover what options are required to support
POSIX applications.

POSIX. 19
isaset of Fortran 90 bindings to the basic system services defined in POSIX.1 (inactive)

POSIX.20
isaset of Adabindingsto the real time services defined in POSIX.4

POSIX.0
isaGuideto POSIX Open Systems Environment. Thisis not a standard in the same sense as

POSIX.1 or POSIX.2. It ismore of an introduction to the other standards.

Most of these projects have not yet produced a standard. 1003.1, .2, .3, .5, .9 and 1224.2 are
official standards. Therest arein balot or still in the hands of their respective committees.

Page 6

The POSI X.1 Standard Document

The POSIX. 1 Standard Document is dedicated to POSIX. 1 which produced an |IEEE standard
in 1988 and an international standard in 1990. The full legal nameis: IEEE Std. 1003.1-1990
Standard for Information Technology—Portable Operating System Interface
(POSX)—PART 1. System Application Programming Interface (API) [C Language]. The
Publications section in the Reference Manual at the back of this book gives the ordering
information for this and other standards.

For the rest of this book, we will use the word POSI X to mean POSI X .1.
POSIX covers the basic operating system interface. Thisincludes:

1. ThePOSIX standard starts out with a set of definitions and genera requirements. | have
distributed this information throughout this book so that you are not hit with 89 definitions
all a once.

2. POSIX next coversthe Process Primitives. | cover thisinformation in Chapter 6, Working
with Processes.

3. Next comes Process Environment, which | cover in Chapter 7, Obtaining Information at
Run-time.

4. ThePOSIX sectionson Files and Directories and Input and Output Primitives are
covered in Chapter 3, Sandard File and Terminal 1/0O, Chapter 4, Files and Directories
and Chapter 5, Advanced File Operations.

5. Device- and Class-Specific Functions are covered in Chapter 8, Terminal 1/0. Terminas
are the only device that POSIX standardizes.

6. The POSIX chapter Language-specific Services for the C Programming Languageis
covered in Chapter 9, POS X and Standard C. The POSIX standard assumes that you have
complete knowledge of ANS Std X3.159-1989—American National Standard for
Information Systems—Programming Language—C. | have brought the relevant
information from that standard into Chapter 9 (as well as other places in this book).

7. Theearly drafts of POSIX had a chapter on System Databases covering the
[et c/ passwd and/ et c/ gr oups files. Thesefiles are no longer part of POSIX The
system database is accessed with library functions such asget pwnan{) . The POSIX
chapter remained System Databases. | cover the related functions in Chapter 7, Obtaining
Information at Run-time.

8. ThePOSIX standard definesthet ar andcpi o - c fileformats. | do not cover these
because they do not affect application programs. What you do need to know is that you can
write an archive on one POSIX systemusing t ar or cpi 0 - ¢ and read it on another

POSIX system.

POSIX provides the facilities you will need to write most ordinary character-based
application programs. However, POSIX.1 does not address some significant areas such as

Page 7

networking and graphics. Networking is being addressed by POSIX.8. Thisis alarge complex
area and will require several standards that will take until the mid-90s to complete. Graphics,
graphic user interfaces, and windowing systems standards are all under development.

POSIX aso ignores system administration. How do you add users? How do you back up the
file system? How do you install a package? These are not considered issues for portable
applications.

The same force that made POSIX.1 a successis delaying these other areas. alarge body of
existing practice and a consensus on the best solution. Most of the features of POSIX and
Standard C had been built and tested by several vendors before being included in an
international standard. Is OSF/Motif the correct user interface? Should it be an international
standard? It is too early to have a broad consensus.

The Design of POSI X
The committee that worked on POSIX had several "grand principles’ to guide their work:

POSIX isamed at application portability across many systems. These include not only
UNIX systems but non-UNIX systems such as VAX/VMS and OS/2. Unisys Corp. has
developed a POSIX front end for the CTOS operating system.

POSIX describes the contract between the application and the operating system. POSI X
does not say how to write applications programs or how to write operating systems.

The standard has been defined exclusively at the source code level. A strictly conforming
source program can be compiled to execute on any conforming system. The standard does
not guarantee that the object or binary code will execute under a different conforming
implementation, even if the underlying hardware isidentical. This applies even to two
identical computers with the same operating system.

The standard is written in terms of Standard C. The standard does not require that an
implementation support Standard C. FORTRAN and ADA interfaces to POSIX are being
devel oped.

There was no intention to specify al aspects of an operating system. Only functions used by
ordinary applications are included. There are no system administration functions.

The standard is as small as possible.
The POSIX interface is suitable for the broadest possible range of systems.

While no known UNIX system was 100% POSIX compatible, the changes required to meet
the standard were kept as small as possible.

Page 8

POSIX isdesigned to make less work for developers, not more. However, because no
UNIX system prior to POSIX was POSIX conforming, some existing applications had to
change to become strictly portable.

POSIX and UNIX

POSIX isbased on UNIX System V and Berkeley UNIX, but it is not itself an operating system.
Instead, POSIX defines the interface between applications and their libraries. POSIX does not
talk about "system calls' or make any distinction between the kernel and the user.

Vendors can adapt any UNIX variant, or even another operating system, to provide POSIX
interfaces. Applications can be moved from one system to another because they see only the
POSIX interface and have no idea what system is under the interface.

An implementation consists of both a set of libraries and an operating system. The POSIX
standard defines only the interface between the application and the library. Consider Figure
1-1.

Applicalion

Applications
Interface

.

- Operating
System
[nterface

Operating System :

Figure 1-1. Software layers

POSIX defines how the application talks to the library and how the library and underlying
operating system behave in response. Each implementation can have its own way of dividing
the work between the library and the operating system.

Page 9

POSI X and Non-UNIX Operating Systems

Because the POSIX standard is the contract between the application and the library, POSIX
allows applications to be ported between operating systems by using a different library to
"glue" the application to the operating system.

For example, thereisafunction called get cwd() which returns the current working
directory. Some systems may have an operating system trap that returns this information. Other

systems may have a much larger chore of reading directories and computing the current
working directory. The applications programmer does not care. All systems must provide a
get cwd() which works exactly as described in this book.

POSI X, C, ANSI C, and Standard C

This book covers POSIX and Standard C. It is possible to write a book about POSIX without
getting involved in programming languages. The standards committees are moving in that
direction: onetopic per standard.

However, programmers must program in a programming language. Divorcing the operating
system interface from the way a programmer accesses that interface may be good for the
standards lawyers, but it is bad for the programmer. We are going to talk about POSIX and
Standard C together.

The IEEE POSIX.5 committee is defining the ADA interface to POSIX and the IEEE POSIX.9
committee is defining the FORTRAN interface to POSIX. In early 1991 those standards are in
thefirst round of balloting. At some point, it will be possible to write POSIX programsin
ADA or FORTRAN. At the moment, C isthe only red choice.

The POSIX standard is written in terms of the C programming language. POSIX supports two
programming environments. One is based on the traditional C language. The other is based on
the Standard C language defined by American National Standard for Information
Systems—Programming Language—C, X3.159-1989. Standard C defines the C language in a
more precise way and allows for more portability than traditional C.

Since Standard C was devel oped by the American National Standards Institute (ANSI), some
people call it ANSI C. The International Organization for Standards has adopted ANS
X3.158-1989 as | SO/IEC 9899: Information Processing Systems—Programming
Language—C. | will use theterm Standard C instead of ANSI C to reflect its status as an
international standard.

Since POSIX was being developed in parale with Standard C, the POSIX committee did not
want to require its use. Today, there are many Standard C compilers on the market and most
platforms support one or more of them. Writing a new application in traditional C exposes you
to additional portability risks. Standard C aso allows better compile-time checking. This
makes your programs easier to debug. Thereis no need to use traditional C if Standard C is
available.

Page 10

Why Standard C?

We could look for asubset of C that works on all computers. Let's call that Least Common
Denominator (LCD) C. The problem isthat LCD C is hard to define. There are two major
reasons for this:

1. Documentation prior to the publication of American National Standard for Information
Systems—Programming Language—C was unclear at times.

2. Even where the books were clear, implementations got it wrong and there were no test

suites to validate the implementation.

As aresult, finding a common subset of C requires alarge amount of trial and error. Severa
books have been written on C-compiler compatibility. Harbison and Steele's C. A Reference
Manual does agood job of pointing out the fuzzy edge of C and how to avoid it. In the 1990s,
avoiding the fuzzy edge is unnecessary. POSIX became a standard in 1988 and C in 1989.
Systems that implement those standards are just coming to market in 1991. It is unlikely that you
will find a system that conforms to the POSIX standard and does not also supply a Standard C
compiler and libraries.

The Standard C libraries are important. POSIX supplies only one part of the programming
toolkit. We need the libraries provided as part of Standard C in order to write interesting
programs. It is not worth wasting brain cells remembering which tools are in the Standard C
box and which arein the POSIX box. It is better to remember our tools by function. Thisislike
sorting our tools into screwdrivers and wrenches instead of Craftsman tools and Stanley tools.
In this book, | have attempted to integrate the two standards and present them as a complete
toolkit.

Working Outside the Standards

Most programs have only afew areas which need to go outside of the standards. Keep those
areaisolated to afew modules. Kegp most of the code POSIX conforming.

For example, | have an amateur radio application which | share with many friends. The
program'’s structure is shown in Figure 1-2.

Modules in the Program Core do not have any knowledge of the user interface. If | need, for
example, to get adecimal number from the user, | call get _deci mal _wi th_pronpt ().
That isone of the routines | wrote in the user interface module. On a system with a graphic user
interface, thereisadialog box. On an ordinary terminal there is a question and a pause for the
user to type a number.

Most of the program remains unchanged over several operating systems and user interfaces. |
can build aversion for different operating systems and user interfaces by changing that module.

Page 11

| POSIX
0S Interface | MS/DOS |

Macinigsh

Program Core

{23 Modulas)
Tecmingi

User Interlace | Macintosh

Figure 1-2. Example of a portable application

Finding The POSI X Libraries

The POSIX libraries are part of the standard system libraries. Y ou can indicate that you want
all vendor extensions hidden from you by defining the symbol _ POSI X _SOURCE with the
statement:

#defi ne _POSI X_SOURCE 1

According to the rules of Standard C, only those symbols that are in the base standard or are
enabled by a specific #def i ne featuretest are alowed to be visible. However, many
vendors require a special command to get the Standard C behavior. They include their added
value by default. By defining _ POSI X_ SOURCE you should protect yoursalf from this added
value.

Every conforming POSIX system must provide a "conformance document” that describesiits
implementation. This document will tell you if there is any magic you need to perform to get
standard behavior. We will talk more about the POSIX devel opment environmert in the next
chapter.

Converting Existing Programs

Since POSIX is based on existing practice, thisis often very easy. It does require checking the
library functions that you use and verifying that you are using them as defined in the standard.

The Functions section in the Reference Manual in the back of this book lists every library
function. For each function thereis a section labeled CONVERSION. Thisis adescription of
the changes you have to make from the various releases of AT& T System V and Berkeley
Software Distribution (BSD) to make your application POSI X-conforming.

Page 12
One easy test isto add the statement:
#define POSI X SOURCE 1

to the front of each module, compile and test your application. While thiswill not verify
complete POSIX conformance, it isaquick way to get close.

Several companies make C portability verifiers. A good oneis Flex Lint available from
Gimpel Software, 3207 Hogarth Lane, Collegeville, PA 19426. The phone number is
(215)584-4261 and the FAX is (215)584-4266

Page 13

CHAPTER 2
Developing POSI X Applications

In this chapter, we discuss how to access the C language bindings as well as the POSI X

libraries. We look at what a system vendor must provide for a systemto be

POS X-compliant. We demonstrate two different program devel opment problems—porting
an existing programto a POS X-conforming system, and developing a programthat is
designed to be POS X-compliant.

The POSIX Development Environment

POSIX provides portability at the source level. This means that you transport your source
program to the target machine, compile it with the Standard C compiler using conforming
headers, and link it with the standard libraries. The system vendor provides the compiler, the
libraries, and headers. Strictly speaking, these are al black boxes and you do not need to know
how they work. However, it isinstructive to look into some of these black boxes, and we will
do that in this chapter.

The Standard C Compiler

Each POSI X -conforming system must provide a POS| X -conformance document. This document
describes the behavior of the system for all implementation-defined features identified in the
standard. For maximum portability, applications should not depend upon any particular
behavior that isimplementation-specific. The conformance document is dull reading, but it is
valuable because it contains information on how to access the standard C language bindings.

For AT&T UNIX System V Release 4, the Standard C language bindings are accessed by
gpecifying - Xc onthe cc command line. The command:

cc -Xc subs.c main.c -0 prog

will compilesubs. ¢ and mai n. ¢ and link them together to form pr og.

Page 14

The Open Software Foundation's OSF/1 operating system comes with the GNU C compiler.”
The Standard C bindings are accessed by specifying - ansi on the cc command line. A
command there looks like:

cC -ansi subs.c main.c -0 prog

For other systems, you will have to buy (or at least ook at) the conformance document, ook
for on-line manual pages, or ask someone.

On most systems, the default is not Standard C but a C compiler that is compatible with the
historic behavior of that system. In many cases, your program will not notice the difference.
The historic behavior probably includes defining symbols that are not part of Standard C and
POSIX. It iseasier to specify strict conformance and clean up small problems as you go than to
deal with alarge mess at the end of the project.

Strict ANSI conformance is a good answer to the question: "What can | do to make my
programs more portable?’

POSIX and C Libraries

POSIX definesalibrary of functions for conforming programsto use. Many of these functions

are also defined in the Standard C library.

Each function in the library requires you to include at least one header. Thisis done with a
statement like:

#i ncl ude <stdi o. h>

The header provides a prototype for the function, plus any necessary types and additional
macros to facilitate using the function.

The POSIX and C standards do not require headers to be source files. They may be some sort
of magic command to the compiler. The standards specify only the net effect of including a
header. On most systems (and al UNIX systems) the headers are files that live in the directory
[usr/include.

Many systems support multiple development environments. How do you get the POSIX
headers? Y ou must define the symbol _ POSI X _SOURCE before including any of the standard

headers. The best way to do thisis to place the statement.™*
#define _PCSI X_SOURCE 1

at the start of each file.

* The Open Software Foundation ships GNU C to resellers as part of the reference implementation.
The reseller might ship a different compiler with his or her product.

** The standard merely requires that the symbol _PCSI X_SCOURCE be defined. There is no regquired
value. | prefer to define symbols with values.

Page 15

Y ou could aso place the option - D_POSI X SOURCE on the cc command-line; however, this
iserror prone. It is better to put the #def i ne into your source file aong with the rest of your
program. As arule of thumb, restrict command-line macro definitions to things that change from
one compile to the next. For example, - DNDEBUC turns off thedebug testin assert () . Use
#def i ne statements for symbols that must aways be defined, such as_ POSI X SOURCE.

On some systems the header files you include do not do much. They merely select one of
severa possible other headers based on the symbols that you have defined. This might ook
like:

#i ncl ude <common/stdi o. h>
#i fdef SYSVSOURCE

#i ncl ude <sysV/ stdi o. h>
#endi f

#i fdef _BSD SOURCE

#i ncl ude <BSDY stdi 0. h>
#endi f

#i f def _POSI X _SOURCE

#i ncl ude <PGCsI| X/ st di 0. h>
#endi f

Under most circumstances, you do not need to know how the system defines the correct
symbols. The Header Files section in this book details every POSIX and Standard C header
file. If you follow the rulesin this section, the standards guarantee the following:

1. Every symbol required by the standards will be defined with a meaningful value.

2. No symbol not permitted by the standards will be defined. This protects your application
from namespace pollution. Of course, if you include a header not specified by the standard,
all bets are off.

Converting Existing Programs

Porting an existing application to run on anew system requires two major steps. These tasks
can range from very easy to amost impossible. First, you have to transport the program to the
target computer. Second, you have to modify the program to run in the new environment. The
POSIX standard (and this book) can help you in both steps.

The POSIX standard defines the format of both the cpi 0 andt ar archives. Y ou can create an
archive with the command:

Is files | cpio -oc >archive
or.

tar -cf archive files

* For example, if the header <st di 0. h> defined the symbol count, there could be a conflict with
the symbol count in your program.

Page 16
and load it onto the target with the command:
cpio -ic <archive
or.
tar -xvf archive

See your system documentation for the exact details. Y ou will still need some form of
compatible disk, tape, or network to move the archive file to the target.

Once the files are moved, you will have to convert system-specific function callsto calls
defined by the POSIX standard. There are several aids in the reference guide in this book that
are designed to make conversion easier. For every function defined by either POSIX or
Standard C, thereis a conversion entry in the Functions section. This entry points out the
changes that may be required to convert the function from older UNIX systems to ones that
conform to the POSI X standard. The Porting section covers functionsin BSD and System V that
are not in POSIX and suggests ways to build equivalent functions using POSIX calls.

A Porting Example

One day, the boss walks in the door and says, "Here is a program that needs to be ported from
Berkeley UNIX to a Data General AViiON 310. Get it done quickly!"

Now, you could try to find the correct Data General manuals and port the program to the
AVIiiON, but the next day the boss will want it ported to some other machine. Since you are

clever, you decide to port the program to POSIX. It will then run on any POSIX system.
Let'slook at the program:

#i ncl ude <stdi o. h>
#i ncl ude <sys/tinme. h>

nmai n(argc, argv)
int argc;
char **argv;

{

struct tineval tv;
struct timezone tz;

getti neof day(&tv, & z);
printf("The current tine is:\n%",
ctime(&v.tv_sec));
if (tz.tz _dsttine)
printf("Daylight savings tinme\n");
el se
printf("Standard tine\n");
exit(0);
}

Page 17
This program prints out the current time in the following format:

The current tine is:
Sun Nov 11 18:44:00 1990
Standard tine

Now, in the real world you would not be confronted by a program thistiny. It might be easier
to throw the whole thing away and write a new program from scratch.” However, we will 1ook
at the process of porting this program.

Asafirst test, we can compile the program and seeif it works. We may have avery portable
program. At least, we will get ahint at what must be fixed.

This program will not compile because thereisno <sys/ ti me. h>header . Thiscan be
solved by deleting the #i ncl ude statement. Thiswill get us past that compiler error and
point out any remaining compatibility problems.”*

Next the compiler points out that thereis no definition for st ruct ti nmeval orstruct

ti mezone. These seemto be used by theget t i meof day() function. A quick check of the
Functions section of this book revealsthat thereisno get t i meof day() functionin POSIX.
However, it looks like get t i meof day() returns something that can be used as an argument
tocti me() . It also seemsto return a daylight savings indication.

If welook upcti me() intheFunctions section, it tellsus:

1. The#i ncl ude<sys/ ti nme. h> must be changed to#i ncl ude<ti ne. h>. (We
already knew that therewasno <sys/ ti ne. h>I)

2.ctinme() isequivdlenttoascti me(l ocal ti nme(timer)).

This gives agood indication of what must be done to convert the program. The description of

| ocal time() intheFunctions section states:

Thel ocal ti me() functionconvertsati me_t pointedtobyti mer intoyear, month, day, hours,
minutes, seconds, etc., and storestheinformationinast ruct tn. A pointer tothestruct tmis

returned. The current time can be obtained with thet i me() function.

* The option of throwing the existing program away and starting from scratch should not be ignored

even in much larger projects.

** |n fact, many systems provide a BSD compatibility package. If wetried to run this program thereis
agoaod chance it would work correctly without any changes. For the purposes of illustration, we will

ignore that possibility.

Page 18

Wecanreplaceget t i meof day() with| ocal ti me() . A quick check of thet n structure
in the Data Structures section revealsthat it containsaflag, t m i sdst , toindicate daylight

savingstime. Our program now looks like:

#defi ne _POSI XSOURCE 1

#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

mai n(argc, argv)
int argc;

char **argv;

{

struct tm*tnptr;
time_ t tiner;

timer time(NULL);
tmpt r local tinme(&iner);

printf("The current tine is:\n%",
ctinme(&inmer));

if (tnptr -> tm.isdst)
printf("Daylight savings tinme\n");

el se

printf("Standard tine\n");
exit(0);
}

This program will work and can be considered "ported.” There are a couple of things that we
should do to make sure that the program is 100% standards-conforming. First, we should check
that we have included all of the required headers. Theexi t () function requires that we
includethe<st dl i b. h>header . Whilewe arelooking at exi t () we should change the O
to EXI T_SUCCESS. This change is not required for correct operation on POSIX systems. As
an act of kindness to those who will ook at the program after we are done with it, we will add

some comments (ensuring portability from one programmer to another!).

The final maximally portable program is shown in Example 2-1.

EXAMPLE 2-1. daytime.c

/* Define POSI XSOURCE to indicate
* that this is a POSI X program

*/

#define POSI X SOURCE 1

/* System Headers */
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

main (argc, argv)
int argc; /* Argument count -- unused */
char **argv; /* Argunment list -- unused */

{

struct tm*tnptr; /* Pointer to date and tine
* broken down by conponent.
* The only menber used is

* tdst
*/
time_t tiner; /* Nunber of seconds since
* January 1, 1970.
*/
timer = time(NULL); /* Get current time */
tnptr = localtinme(&iner); /* Break it down */

printf("The current tinme is:\n%",
ctime(&inmer));

if (tnptr -> tmsdst) /* tm.isdst is non-zero
* | f daylight savings

* is in effect

*/
printf("Daylight savings tine\n");
el se
printf("Standard tine\n");
exi t (EXI T_SUCCESS) ; /* Return to system */

}

Page 19

We can now tell the boss, "l ported the program to AViiON, and to ULTRIX, and to System

V.4. | even ported it to VAX/VMS. About that raise.. . ."

An Alternate Approach

The previous example ported a program from an old system to one that supports the POSIX and
C standards. The new program is conforming but may no longer run on the old system. Of
course, we still have the old version for that system. If we are going to continue to fix bugs and
enhance the old version, we will have two source bases to deal with. We can try to get around

that problem by using #i f def s asin:

#i f def BSD

struct tineval tv;
struct tinmezone tz;
#endi f

#i f ndef BSD

struct tm*tnptr; /* Pointer to date and tine
* broken down by conponent.
* The only nenber used is

* tmdst
*/
tinmet tiner; /* Nunber of seconds since
* January 1, 1970.
*/

#endi f
After afew ports this gets very ugly and hard to read.

Another schemeisto build BSD compatible functions out of POSIX functions. For programs
like this, the emulation does not have to be perfect or complete. Y ou need to supply only the
specific things required by the application you are porting.

Page 20

Of course, after awhile you may have alarge set of compatibility functions to support. User
frustration with the complexity of supporting alarge number of ports was amgjor driving force
behind POSIX.

Standard Header Files

To write a POSIX program you must specify in your source code that you want it to be
POSIX-compliant (using #def i ne _POSI X SOURCE) and then use the library functions
that are defined by POSIX. Y ou can become familiar with them by reading the remaining
chapters and using the reference section. The Header File section lists al of the standard
headers and the symbols that they define. Thislist merely hits the highlights so that you will
know what headers are available:

Header File Function

<assert. h> Definestheassert () macro. Thisisused to check for bugs.

<ctype. h> Defines the character-testing functions such asi sdi gi t () andi supper ().
<dirent. h> Defines the contents of directory entries and the functionsthatr ead t hem
<errno. h> Defines al of the error codes.

<fcntl. h> Defines symbols used by the file control functionscr eat (), open(),and fcnt
<float .h> Defines a set of symbols used for floating-point processing.

<grp. h> Defines the functions that read the group database.

<limts. h> Defines a set of implementation limits. Thisincludes both hardware limits like

| NT_MAX and software limits like NGROUPS _ MAX.
<l ocal e. h> Defines symbols for use in multi-national applications.

<mat h. h> Defines standard math functions such assi n() andsqrt ().

<pwd. h>

<setj np. h>

<si gnal . h>

Defines the functions that read the user database. Thisiscalled <pwd. h> because!
user database file has historically been called / et ¢/ passwd.

DefinestheCset j np() /| ongj np() macros. The POSIX extensions
sigsetjnmp() andsi gl ongj np() areaso defined here.

Defines the symbols and functions used by signals.

<stdarg. h> Defines macros to support functions with a variable number of parameters.
Page 21
Header File Function
<st ddef. h> DefinesNULL, si ze_t, and afew other popular symbols.
<stdi o. h> Definesthe standard 1/O library.
<stdlib. h> Defines functionsthat historically did not require a header. These includeexi t ()

<string. h>
<sys/stat.h>
<sys/times. h>

<sys/types. h>

<sys/ ut snane. h>

<sys/wait.h>
<t erm os. h>
<tinme. h>

<uni std. h>

<utine. h>

mal | oc(), free(),andmany others.

Defines the string functionsstrcat (), strlen(), strspn(), etc.
Definesthest at structure and file manipulation functions such aschnod()
Definesthet i mes() function and the structure it uses.

Definesthe POSIX datatypesdev_t, gid_t, ino_t, etc.
Definestheunane() function and the structure it uses.

Definesthewai t () andwai t pi d() functions.

Defines many symbols used to manipulate terminals.

Defines the time-of -day functions.

Defines alarge number of POSIX symbols. This header also defines all of the UNI.
functions which historically have not required a header. Theseincludechdi r (),
close(),fork(), pipe(),andsoon.

Definestheut i ne() function and the structure it uses.

Section 4.1.2 of the C Standard states, "A header is not necessarily a source file, nor are the <
and > delimited sequences in header names necessarily valid source file names.” That is, the
compiler isfree to define the symbols using any method that it wants. A POSIX system may not
have any headers that you can look at. Having said that, let's look at atypical header file. A
sample<ut i me. h>isgivenin Example 2-2:

EXAMPLE 2-2. utime.h header file

#i f ndef _UTI ME_
#define _UTIME_

struct uti nmbuf

{

timet actinme; /* access tine */

ti met nodti ne; /* nodification tinme */
}s

#ifdef _ STDC
int utine(const char *path,
const struct utinbuf *tines);

Page 22

#el se

extern int utine();
#endif /* _ STDC__ */
#endi f /* _UTIME_ */

Thisisavery smple header file but it still has many interesting points.

The header iswrapped with an #i f ndef _UTI ME_. This means that the header can be
included any number of times without causing any errors. The symbol _UTI VE_ is reserved
for the people who write system header files. All symbols that begin with an underscore
followed by either another underscore or an upper-case letter are for system headers. You
should not use them in your code.

The header then declaresst r uct ut i mebuf , whichisthe main job of the header.

Lastly, if the header is being used by a Standard C compiler, theut i me() functionis
declared. If acompiler supports Standard C, the symbol _ STDC ___ isdefined by the
compiler to have the value 1. Some compilers definethe symbol _ STDC __ to have avalue
other than 1 to indicate "sort of standards-conforming.”

Now let'slook at <sys/ t ypes. h> whichisdightly more complex:

EXAMPLE 2-3. sys'types.h header file

#i f ndef _TYPES_
#define _TYPES_

#if (__STDC__ !'= 1) | defined(_I N KERNEL)
/*

* Machi ne specific systemtypes

*/

typedef struct{int r[1];} *physadr;

t ypedef unsigned short iord_t;
typedef int | abel t[13];
t ypedef unsigned short pgadr t;
typedef char swek_t;
t ypedef unsigned char use_t;
#define MAXSUSE 255

/*

* Machi ne i ndependent system paraneters

*/

typedef |ong

typedef char

t ypedef unsigned char
t ypedef unsigned char
t ypedef unsigned short
typedef unsigned int

t ypedef unsigned | ong
t ypedef unsigned char
typedef unsigned int

t ypedef unsigned short
typedef unsigned | ong
typedef ul ong

typedef short

typedef ong
#endif [* (__STDC__!=
#if (_STDC__ = 1) (

def i ned(_SYSV_SOURCE)

t ypedef unsigned | ong
typedef unsigned | ong
typedef unsigned | ong
typedef unsigned | ong
typedef unsigned | ong
typedef unsigned | ong
typedef |ong

typedef |ong

typedef unsigned | ong
typedef |ong

typedef unsigned | ong
#endif /* (__STDC__ != 1)
#if (_STDC__ !'=1) ||
t ypedef unsigned char
t ypedef unsigned short
typedef unsigned int
typedef unsigned | ong
typedef char *

typedef char *

typedef |ong

typedef short

typedef ulong_t
typedef short

typedef short

typedef short

typedef |ong

typedef short

t ypedef unsigned short
t ypedef unsigned short
t ypedef unsigned short
typedef short

t ypedef

short

daddr t;
*caddr _t;
uchar t;
u_char;
u_short;
u_int;
u_l ong;
unchar ;
ui nt;
ushort;
ul ong;
ino tl;
cnt _t;
ubadr t;

Page 23
defined(_I N KERNEL) */

def i ned(_PCSI X_SOURCE) | |

clock _t;
dev _t;
gidt;
ino_t;
node_t;
nlink t;
of f _t;
pidt;
size t;
ssi ze t;
uidt;

def i ned(_PCSI X_SOURCE) */

def i ned(_SYSV_SOURCE)

uchar t;
ushort t;
uint_t;

ul ong t;

addr _t;
caddr _t;
daddr _t;
cnt _t;
paddr t;
sysid_ t;
i ndex_t;
| ock_t;
idt;
o_devt;
o gidt;
o_ino_t;
o_node_t;

t ypedef unsigned short o uidt;

t ypedef unsigned char uchar t;

t ypedef unsigned char u_char;

t ypedef unsigned short u_short;

typedef unsigned int u_int;

t ypedef unsigned | ong u_l ong;

t ypedef unsigned char unchar

typedef unsigned int ui nt;

t ypedef unsigned short ushort;

t ypedef unsigned | ong ul ong;

#endif [/* (__STDC__ !=1) || defined(_SYSV_SQURCE) */

#endif [/* TYPES */

Here we see a header that usesthree featuretests: | N KERNEL, _POSI X SOURCE, and
__SYSV_SQOURCE. Unless the header is being compiled with Standard C, every name in the
header is defined. Most of these are symbolsthat endi n_t and are reserved anyway. Some of
them are symbols that could conflict with our application: physadr , unchar , etc. Using
Standard C, these symbols are hidden until we expose them with a feature-test macro.

Page 24

Templatefor a POSIX Application

There are many ways to structure programs. Many are legal and will work, but some formats
seem to work better. The programs are easier to write, have fewer bugs, and are easier to
maintain. If you are developing new programs, you have the opportunity to establish atemplate
that assistsin producing code with consistent format. Aswe said earlier, awell-structured
program is portable among the different programmers who may maintain it. Placing program
elementsin a consistent order makes finding things easier. We look at a template for writing
POSIX programs.

Before we look at the template, we should say afew words about breaking a program into
severd files (or modules). Breaking alarge program into several files has some good points
and some bad points. First, the benefits:

1. Compiletimes can be reduced because only those modules that change need to be
recompiled. This can make a big difference during debugging. The make utility makesthis

very easy.

2. Multiple people can work on the program at one time.

3. Weéll-designed modules can be reused in future projects, a major advantage.

Now the drawbacks:

1. Compiletimes are larger when everything has to be recompiled. Link times are aso longer.
2. Itismoredifficult to keep track of alarge number of files than a small number of files.

3. There can be more global variables.

As arule-of-thumb, modules should contain between 300 and 1500 lines of codes. We should
alwaystry to design reusable modules. Even though you might not know how the module can be
reused, you can design it in such away that reuse is easier. We do not write the module with

explicit knowledge of where it will be reused. Our template tries to make it easier to write and
document modules that can be reused.

Let'slook at the template and then discuss each part.

/* Feature test sw tches */
#define PCSI X SOURCE 1

/* System headers */

/* Local headers */

/* Macros */

/* File scope variables */

/* External variables */

Page 25
/* External functions */
/* Structures and unions */
/* Signal catching functions */
/* Functions */
/[* Main */

Y ou can place thistemplate in afile, for exampleenpt y. ¢, and edit it each time you need to
create amodule. Thisfileisaso handy if your company uses disclaimers and copyright
statements. They can all be placed into enpt y. ¢ and used as a starter for new programs.

/* Featuretest switches*/

This section should define the POSI X SOURCE macro to enable the POSIX symbols and
disable all unspecified symbols.

[* System headers*/

Each Standard C or POSIX function has one or more headers that must be included to define
the symbols used by that function. Y ou should use an #i ncl ude statement for each required
header. | try to keep these headers in alphabetic order. It isthen easy to check to seeif agiven
header isincluded.

If you havean enpt y. ¢ templatefile, you can put in an #i ncl ude statement for every
header. Then, after your module is written, you can del ete the headers that are not needed. It is
easer to delete things with atext editor than to add them.

/*Local headers*/

Most projects have at |east one project header. These define common data structures and
symbolsthat are used in many files.

Y ou may also have things that are part of your personal programming style. These are macros
and functions that you seem to use all of the time. These may be placed in a personal header
and included here.

/*Macros*/

Define all of your macros here. Make sure there is acomment to describe any macros that are
not obvious. It is handy to have all macros defined in one place.

[* File scopevariables*/

These are variable that are shared by several functions in the same file. Again, use comments to
describe how the variables are used. Keeping the variablesin one place near the front of the
file makes them easy to find.

Page 26
[* External variables*/
Thisisthelist of variables defined in other modules and used in this module.
[* External functions*/

There should be a prototype for each user-written external function that you use. An dternative
isto have a header with a prototype for every function in the project. | prefer to list explicitly
the external functions that each module uses.

/* Structuresand unions*/

Define al of the structuresthat are used only in thisfile. Any structure that is used in multiple
files should bein alocal header file. In fact, any structure that may be used in multiple files
should be in aheader file. Placing definitions in header files makesiit easier to expand and
enhance your program.

[* Signal catching functions*/

Place signal catching functionsin one place. Signals are an unusual calling mechanism and
often hard to debug. Unless you point it out clearly in your source code, it may not be obvious
that something isasigna catching function.

/* Functions*/

| like to define each function beforeit isused. That way | do not have to declare any of the
functions that are local to thisfile. | aso find it easier to read source files where the functions
are defined before they are used. That is merely a matter of personal preference.

*Main */
If thereisamai n() functioninthisfile | put it last.

Sample Program
Let'slook at a complete program that uses many POSIX facilities. At this point, it is not

important that you understand the compl ete program. We will cover each function in detail in
the following chapters.

One easy way to write a program is to start with a program that does one thing and modify it to
do something else. The program that follows uses many POSIX features and can be used as a
starting point for other programs.

The sampleisasimple directory listing program. It lists all of the filesin the current directory
along with their sizein bytes.

Page 27

| have added afew special features. If the user's terminal is running at 2400 baud or higher, the
program will pause every 24 lines to give the user a chance to read the screen. If the user
interrupts the program with Control-C (or whatever key is assigned for interrupt), the program
prints apartial total and exits.

The output from the program looks like this:

Directory /usr/don/ PGSl X/ ¢
Speci al
Speci al
175 addcr.c
1406 commc
855 dirhack. c
463 i.c
529 include.c
1662 ldirs.c
2162 | st user.
172 mal | ocO.
247 mal | ocl .
342 mal | oc2.
449 mal | oc3
179 panic.c
1758 pat hconf. c
5344 sanple.c
17984 BSD. h
18180 PCsI X. h
41 panic. h
Total of 51948 bytes in 19 files

OO0 o000

If a Control-C is used to interrupt the program, the output would look like:

Directory /usr/bin:
Speci al
Speci al
118264 acctcom
117672 admi n
29080 asa
754 assi st
754 ast gen
148656 awk
27912 banner
1206 basenane
49432 bc
39288 bdiff

68264 berk_diff

634 berk_diff3
53320 bfs
38520 ca

1280 cal endar
70920 captoinfo
34536 cat
43912 cb

2114 cfl ow
78184 chgrp
34632 chgtinfo
29128 chnod
88424 chown

Interrupted after 25 files and 1076886 bytes

Page 28

At thispoint it is auseful exerciseto stop reading and write a program that matches this
specification. Do not concern yourself with portability. Just write the program so that it works
on your system. How do you read the directory? How do you handle getting interrupted? How
do you find out the speed of the termina? What assumptions do you make about the operating
system interface? Even if you don't write the program, stop and think about how you might go
about it.

Welcome back. Let'slook at how POSIX solves these problems. Basically, what POSIX
definesis astandard interface between an application and the services it depends on from the
operating system. The POSIX interfaces have several attributes that make them portable:

1. Theinterfaces are symbolic. They use symbols and the C compiler to map those symbols
onto a given system. For example, the file modeword in BSD 4.2 isan unsi gned
short ;inAT&T SysemV.3itisani nt . POSIX definesanew type, node_t . The
<sys/ types. h> header definesnode _t for each specific system.

2. POSIX defines functions to mask system differences. Ther eaddi r () function isused to
read adirectory. Theinformation isreturnedinast ruct di r ent where the actual
format of the directory can be hidden from the application. Compare that to System V
where programs "know" that filenames are 14 characters long and are preceded by a
two-byte i-node number.

3. Multi-purpose functionslikei oct | () have been replaced by alarge number of
specia-purpose functions. These functions are easier to describe and easier to test.

4. POSIX aso provides methods to test the interfaces and make sure that they work as
described. This does not show up as anything you see while programming. However, it
does help assure that the people who wrote the POSIX library got it right. That increases
the chance that your program will be portable.

Now, what services will this sample program require from the system?

We need to interact with the user's terminal. We will use the Standard C library described
in Chapter 3, Sandard File and Terminal 1/0, to read and write formatted data. We will
usetcgetattr() andcf get ospeed() todeterminethetermina speed. These are
described in Chapter 8, Terminal 1/0.

We will need to read directories and get information about files. Theopendi r (),
readdir(),andst at () functionswill do thisfor us. They are described in detail in
Chapter 4, Files and Directories.

We will use POSIX signalsand thesi gact i on() function described in Chapter 6,
Working with Processes, to intercept the Control-C.

Page 29

We aso make good use of the Standard C library for much of our work. For example, the
di v() functionisused to test to see if we have printed a multiple of 24 lines. These
functions are not covered in the tutoria part of this book. However, they are all described
in the Library Functions section in the reference part.

Using the interfaces defined by standards helps us achieve portability. What other portability
concerns might we have? For this program, the maximum length of filenames and pathnamesis
the only remaining concern. | have written the program so that it will work correctly” even if
the paths or filenames are huge.

As alast step before looking at the code, we should consider how we are going to structure the
program. What are the mgjor blocks? Figure 2-1 shows aflow chart that will do everything we
need.

Thiswill becomethe mai n() function. Now, some of those blocks are a bit complex. They
will become functions. The block that says "Print the directory entry” will become the
print _dir_entry() function. Theflow for that function is shown in Figure 2-2.

The other routines are not very complex. The cwdnamne() routine returns a pointer to the
name of the current working directory. Thebaud() routine returns the terminal output speed
in baud. Both of these routines are fully described in the example.

Thei ntr _key() routineisasignal catching function; it is called when the user types the
interrupt key (usually Control-C). Thei ntr _key() functioniscalled by the syslem asif a
function call were magically inserted between two statements. Because we don't know exactly
what our program (or the library) might have been doing whenthei nt r _key() functionis
called, the function is careful not to disturb any "work-inprogress." The only thing that

i ntr_key() doesissetthevariablei ntr_f| ag to TRUE.

Here is the complete program. The program is divided into two files: dsksub. ¢ and
dskuse. c. Thefirst file contains the mgor subroutines for this program. These functions are
written with the hope that they will be useful in future projects. The second file contains the
main function and subroutines that are not reusable.

If you wrote your own version of this program, compare what you wrote to this sample. What
system-specific things did you do?

“The program might truncate the filename if it islonger than the terminal width.

Page 30

Qpen the current working
direstary lor raadgirf)

01 3 diractory entry

Prnt todal and exit

ave 2400
Baud?

Wait for the usar 1o
fype NL

Tirme 1o
pausa? r

Figure 2-1. Flowchart for mai n()

Hereisthefirst file, dsksub. c:

EXAMPLE 2-4. dsksub. ¢

O©CoO~NOOOTA WNPEF

/*

* Functions for programto print file names and sizes
*/

/* Feature test switches */

#defi ne _POSI X_SOURCE 1

/* System Headers */
#i ncl ude <assert. h>
#i nclude <dirent. h>

Page 31

(et file status

Print
YT
B e TS E LI B

Prinksloadn "““_]ﬁ
ra
s . —mm e =

T

Print filerame

T

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/* Local
#i ncl ude

Figure 2-2. Flowchart forprint _dir_entry()

<errno. h>
<stdi o. h>
<stdlib. h>
<sys/stat.h>
<sys/types. h>
<term os. h>
<uni std. h>

Headers */

"panic. h" /* Defines the PANI C macro.
* PANIC prints an error
* message when a library
* function fails
*/

/* Macros */

#def i ne TRUE 1

#defi ne FALSE 0

#define Sl ZE 256 /* Arbitrary size */

/* File scope variables */
| ong nbytes = 0; /* Nunber of bytes */
long nfiles = 0; /* Nunber of files */

Page 32

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

/* External Variables */

/* NONE */

/* External Functions */

/* NONE */

[* Structures and Uni ons */

/* NONE */

/* Signal Catching Functions */

/*

/* NONE */

* Function to process one directory entry

*/

void print _dir_entry(struct dirent *p)

{
/

f

L

*/

print question nmarks.
* may not have a valid size

ile name. |If the stat() function fails,

struct stat statbuf;

}
/*

i f(stat(p->d_nane, &tatbuf) !=
(void)printf (22?22?22 ");
el se

if (S_| SREQE statbuf.st_node)
{

For speci al
print speci al

0)

)

files,

Prints the file size in bytes followed by the

whi ch

(void)printf("%1ld ", (| ong)stat buf.st_size);

nbytes += statbuf.st_siz
}
el se
(void)printf("Special
}

(void)printf("%\n", p->d_nane);
nfiles++;
return;

€,

")

* Function to return a pointer to the nane

*
*/
char

{
I nt
char

of the current working directory
*cwdnane(voi d)

size = Sl ZE;
*ptr;

whi | e(TRUE)

{

ptr = (char *)malloc(size);

88
89
90
91
92
93
94
95
96
97

buffer */

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Page 33

if (ptr == NULL) PANC /[* Gve up if we run out
* of menory
*/
if (getcwd(ptr,size-1) != NULL) return(ptr);
if (errno !'= ERANGE) PANIC, /* Any error other than a
* path name too long for the
* puffer is bad news.
*/
free(ptr); /* Return the storage */
size += Sl ZE; /* Try again with a bigger
}
}
/*
* Function to return speed of termnal in baud
*/
| ong baud(voi d)
{
struct termios t;
speed_t baud_code;
if(tcgetattr(fileno(stdout), &) == -1)
{
/* |f standard output is not a termna
* return 0. Any other error is bad news
*/
if (errno == ENOTTY) return(0);
PANI C,
baud code = cfgetospeed(é&t);
/*
* W& nust decode the baud rate by hand because the Bxxxx
* synbol s mght not be in order
*/
swi t ch(baud_code)
{
case BO
return(0);
case B50:
return(50);
case B75:
return(75);
case B110:
return(110);
case B134:
return(134);
case B150:
return(150);
case B200:
return(200);
case B300:
return(300);
case B600:
return(600);

143 case B1200:
144 return(1200);
145 case B1800:
146 return(1800);
147 case B2400:
148 return(2400);
Page 34
149 case B4800
150 return(4800);
151 case B9600:
152 return(9600);
153 case B19200:
154 return(19200);
155 case B38400:
156 ret urn(38400);
157 defaul t:
158 (void)fprintf(stderr
159 "WARNI NG Unknown term nal speed\n");
160 return(0);
161 }
162 }

Notesfor dsksub:

These headers are required by the various library functions. Each library function has one
more required header. The Functions Section lists the headers for each function.

The PANI C macro is defined in the sample program at the end of Chapter 3. It is used

Thedi r ent structure hasamember called d_nane which isthe name of afilein the

The(voi d) beforethecall topri nt () tellsthereader (and programslikel i nt) that v
know that pri nt f () returnsa value and we are explicitly ignoring it.

If thest at () function failsfor some reason, question marks are printed instead of the file

Thistestsfor aregular file. On most UNIX systems, thest at () function will return avali
sizefor directories. The POSI X standard does not guarantee that thissizeisvalid for direc
so this program will print Speci al and ignore the size.

Also we are using the POSI X defined macro S_| SREC instead of looking at the system-de

Line Note
8
19
throughout the book.
53
directory.
62
62
65
bit patternin st _node.
67

Theformat of %/ d and the cast of (I ong) cause the file size to be printed correctly if
st _sizeisal ongorashort.

81

103

107
109
117

158

This function gets around a problem with the POSI X standard. Thereis no way for an
application to determine the maximum path length it might encounter. The string returned by
get cwd() may be huge. This function alocates space for the name of the current working
directory in 256 byte increments. In ailmost all cases 256 bytes will be enough and the funct
will return after only one call to get cwd() . In rare cases where more space is required, t
program will still work correctly. It isimportant to write programs that work in the rare ca
as well as common cases.

Page 35

If we were not trying to write portable code, we could know the longest path that a given sy
might return. Thisis another case where we have to go the extramile for portability.

Thisis acase where portability has acost, at least in development effort. For any specific
system, the documentation would tell you how to determine the line speed. Thetest for alin
over 2400 baud would be rather simple using a system specifici oct | () . Using
tcgetattr () andmaking no assumptions about the values of the Bxxxx symbols makes
routine more complex.

It is possible to determine if the terminal is over 2400 baud with dightly less code than | us
here to determine the actual baud rate. This routine seems more useful and should be no slo
than aless general case.

Thisisastructure that can hold information about a terminal.
Get the terminal information for the file associated with st dout and storeit into structure

Thecf get ospeed() function extracts a code for the output speed of the termina from
structuret .

Normal output goesto st dout , errorsand warningsgo to st derr .

Hereisthe main functionin dskuse. c. It calls the routines that we defined above.

EXAMPLE 2-5. dskuse. ¢

O©CO~NOOTA~WNPE

/*

*

Mai n function

*/

/*

Feature test switches */

#defi ne _POSI X_SOURCE 1

/*

Syst em Headers */

#i ncl ude <dirent. h>
#i ncl ude <errno. h>
#i ncl ude <signal . h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

#i ncl ude <uni std. h>

/* Local Headers */
#i ncl ude "panic. h"

/* Macros */

#define TRUE 1

#define FALSE O

#define SIZE 256

/* File scope variables */
volatile sig_atomic_t intr_f

/* External variables */
extern | ong nbytes;
extern long nfiles;

/* External functions */
void print_dir_entry(struct
char *cwdnane(voi d);

| ong baud(void);

/*
* Signal catching functions
*/

/* Interrupt key */

void intr_key(int signo)

{

intr_flag = TRUE
return;

/*
* Main function
*/

int main(int argc, char *arg

{
i nt fast = FALSE

struct sigaction sa;

D R *dirptr;
struct dirent *entry;

/* Defines the PANIC nmacro */

|l ag = FALSE

/* Later, set to TRUE if user

* types Control-C
*/

/* Nunber of bytes */
/* Nunber of files */

dirent *p);

/* Cet working directory nane */

/[* CGet termnal baud rate */

/* Set flag for main |oop */

vil)

/* Set to TRUE if term nal
* 2400 baud or faster
*/
/* Used to establish
* signal handler for
* interrupt key
*/
/* for readdir() */
/* Returned by readdir() */

is

68 char *di r nane; /* CQurrent working directory */

69 char j unk[SI ZE] ; /* Used to read <NL>. Extra size
70 * allows user to type junk.
71 */
72 di rnamre = cwdnane();
73 (void)printf("\nDirectory %:\n",dirnane);
74 di rptr = opendir(dirnane);
75 if (dirptr == NULL)
76 {
77 (void)fprintf(stderr,"Can not read directory\n");
78 perror("opendir error");
79 exi t (EXI T_FAI LURE) ;
80 }
81 free(dirnane); /* cwdnane() allocated space */
82 i f (baud() >= 2400) fast = TRUE
83 /* Cause interrupt key to call intr_key() */
84 sa.sa_handler = intr_key;
85 if (sigenptyset(&sa.sa mask) != 0) PANIC
86 sa.sa_flags = 0;
87 if (sigaction(SIGNT, &a, NULL) != 0) PANIC
88
89
Page 37
90 /*
91 * Here is the main | oop
92 */
93 while((entry = readdir(dirptr)) !'= NULL)
94 {
95 print_dir_entry(entry);
96 if (intr_flag)
97 {
98 (void)printf("\ninterrupted after % files"
99 " and % bytes\n",nfiles, nbytes);
100 exi t (EXI TSUCCESS)
101 }
102 if(fast & (div(nfiles,24).rem == 0))
103 {
104 /* Termnal is over 2400 baud and we printed
105 *anmltiple of 24 lines. Allow the user to
106 * read the screen
107 */
108 (void)fprintf(stderr,"Type <NL> to continue");
109 (voi d)fgets(junk, Sl ZE, stdin);
110 }
111 }
112 /* End of directory */
113 (void)printf("Total of %l bytes in % files\n",
114 nbytes, nfiles);
115 exi t (EXI T_SUCCESS)
116 }

Notesfor mai n:

Line Note

24 Thekeyword vol at i | e tellsthe compiler that this variable may changein ways} that car
be predicted by therulesof C. Inthiscase, i nt r _f | ag ischanged by asignal catching
function.

Thetypesi g_at om c_t isdefined by Standard C for asigna catching function. The
variablei ntr _f | ag will al change at one time.

44 Thei ntr _key function merely setsi nt r _f | ag to be TRUE. If it attempted to print the
message and exit directly, it would be subject to many race conditions. Also, thepr i nt f (
family of functionsis not usable in asignal catching function.

It isbest to do aslittle as possible in signal catching functions. Y our programs will be muc
easier to debug.

81 In this program there would be no problems caused by not calling f r ee() . In generdl, it i¢
good practice to return storage allocated by mal | oc() assoon asit isno longer needed.

83 We are using the POSIX signa routines instead of system-specific signals. The POSIX sigr
mechanism solves a number of problemswiththe AT&T SystemV si gnal () function. Tt
advantages include:

Support for greater than 32 signals.

Freedom from many race conditions.

Page 38

Enhanced portability. The format of sa_nask can change wildly from system to systerr
but functionslikesi genpt yset () alow this program to keep working without change.

87 Thethird argument to si gact i on() isapointer to aplace to store the previous action fol
thissignal. In thiscase, | don't care.

102 Thedi v() function returns astructure with 2 members. The notation di v() . r en selects
remainder element of that structure.

Thisteststo seeif theremainder of nf i | es divided by 24 isequal to zero.

109 Thisjust reads the new line to cause the program to continue. It would be possible for junk t
only 2 byteslong (one for the new line and one for the null). Making it longer causes the
program to eat anything that may have been types before the new line. If 400 spaces werety)
before the new line, the program would not pause on the next call tof get s() . Thisismor
auser error than a program bug.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. What information isin the POSIX conformance document? Why would you read one?

2. Why isit better to port an application to POSIX instead of to a specific system?

w

What is the difference between exi t (0) and exi t (EXI TSUCCESS) ? When would it
make a difference?

What symbol must you define to tell the system that you want to use the POSIX symbols?
Can you include header files multiple times? Why would you want to?
What doesit mean if thesymbol _ STDC _ hasavaue other than 1?

What is an advantage of breaking a program into several files? What is a disadvantage?

© N o o &

Why should youwrite (voi d) printf (" Hell o, worl d\n");instead of
printf("Hello, world\n") ;?What doesthe(voi d) do?

9. What isthe maximum buffer size required for get cwd() ? Isthere a symbol you can use
for this?

10. What types of messages should goto st derr ?
11. What isthevaueof di v(17, 3) . ren?

Page 39

Chapter 3
Standard Fileand Terminal 1/0

The standard I/O library is one of the first things a programmer learns about. In this
chapter, we assume that you are familiar with pri ntf (), scanf (), and friends. We will
concentrate on the portability aspects of these functions and consider how common
practices may have portability problems. We will also ook at functions and features that
have been added by Standard C and POS X.

Librariesand System Calls

Since we are concerned with source portability, it does not make much difference what goes on
"under the covers' when we call alibrary function suchaspri nt f () . Onthe other hand, itis
useful to have some understanding of what the system is doing.

Some library functions can do al of their work without ever calling the operating system. In
amogt dl systems, the math functionslikesi n() and exp() fal into this category. Many
functions do call the operating system. A single library function might make several operating
system calls. In other cases, you may call alibrary function many times before it makes a
system call. There are also library functions that map directly onto a system call.

The point is that you, as an author of portable software, should not care how the library doesits
work. On most systems, themal | oc() function uses a much more primitive system service

and does most of the work in the library, while the open() function maps directly to a system
service. Your programs should not depend on this division of |abor.

Standard Files

Every program starts out with three open files with which you are probably familiar. The files
are:

st dout

isthe standard output file. st dout isnormally write-only.” It is most often the user's terminal.
Many simple programs can be written that send all of their output to st dout .

"This statement is not strictly true. It may be possible to read st dout and st der r or write to
st di n. For example, the more program sends its output to st dout , but usesst der r for both the
- - MORE- - prompt and reading commands. Most programs do not need to do this sort of thing.

Page 40

stdin

isthe standard input file. st di n isnormally read-only. It is also often the user's terminal.
Many UNIX commands take all of their input from st di n and send their output to st dout .
Thisisuseful for pipelines. The UNIX text processing programs, for example, use standard
input and standard output to alow pipelineslike:

pic file | tbl | egn | troff | Ip

stderr
isafilefor messages and is normally write-only. In some cases, it isimportant to have error
messages go to someplace different from stdout.

Each of thevariablesst di n, st dout, andst derr pointsto an object of type Fl LE. The
information in this object is for use by the system. A portable application should never directly
reference the members of the structures pointed to by these variables.

POSIX does not make any statements about the members of the FI LE structure. Any program
that makes assumptions about the internals of standard /O is not portable.

For matted Output
One of the most portable programs you can write is the famous example:
printf("hello, world\n");

Why? Because al it does iswrite to standard output, and pr i nt f () ispart of the Standard C
library.”

You still need to be careful using thepri nt f () function. There are portability pitfalls
related to the various conversion directives. The list of conversion directives defined by
Standard Cis:

Directive Meaning

0

%
Y%e
e =
%

% or
%5

%

Convert thei nt argument tounsi gned char and write the resulting byte in the ot
file.

Convert thei nt argument to adecimal string of theform [-] ddddd.

Convert the double argument to scientific notation in the style[-] d. ddd edd.
Convert the double argument to scientific notation inthe style[-] d. ddd Edd.
Convert the double argument to astring in the style [-] ddd. dddd.

Sameas% for small numbersand %& (or %) for large numbers.

Same as %.

"Thereis one portability problem. What happensif the person using the program understands only
French or Japanese? Chapter 10 will cover that issue in detail.

Page 41
Directive Meaning
% n The argument is a pointer to an integer into which is written the number of characters
output so far. Nothing is written to the output stream by the % directive.
%0 Convert theunsi gned i nt argument to octal.
% Convert the argument (assumed to be a pointer) to characters.
% s Write the argument (assumed to be a pointer to a null-terminated character string) to tf
output stream.
% Convert theunsigned i nt argument to decimal.
% or Convert theunsignedi nt argument to hex. % uses the lettersabcdef while %X us
% the letters ABCDEF.

%

Outputs a %.

Y ou will notice that most of these directives are found even on non-conforming systems. The
%, %, %0, ¥%s, %, and % options work amost everywhere. The % , %g, and %e
directiveswork on al systems that support floating point. The %&, %-, and %€, directives are
derived from System V and are not supported by BSD. The % , %, and %p directives were
added by Standard C and are not found on older systems.

Even on systems that conform to the C Standard, some of the directives produce different
results depending on whether ani nt is 16- or 32-hits.

The full details of the format conversion specifiers are described in the Functions section of the
Reference Manual (seepri ntf()).

Examples

Here are some examples of various formats. The first column is the format specification, the
second column is the output. (The single quotation marks (*) are included in the output column
to make it clear where spaces are produced: they are not actually generated by thepri nt f ()

function.)

For avalue of zero:

%

%

=

%

% 20e
2%925. 20e

For avaue of Pi:

%

%e

% 15. 2f
%910. 1f
9%4010. 1f
%109
%-10e

% 20e
%25e
%25. 20e

. 000000'
. 000000e- 001’
. 000000E- 001'

. 000000e- 001
. 00000000000000000000e- 001"

Page 42

' 3. 141593'

' 3. 141593e+000
'3.14

' 00000003. 1

' 00000003. 1

+3. 141593'

' +3. 141593e+000

' 3. 141593e+000

' 0000000000003. 141593e+000

' 3. 14159265358979300000e+000'

For avalue of ULONG MAX on amachinewherei nt is 16 bits:

%l
%
%
o
"X
% o
% u
%4 X
%4.0d
940X
X
%3d
UBx
%4.0hX

p
L177777
' 65535’
CEEEE

' FFFF

' 3777TTTTTTT
' 4294967295'
' FFFFFFFF

-1
FFFF

O

-1

"fEEE

FFFF

For avalue of ULONG_MAX on amachinewherei nt is 32 bits:

%l
%
%

o
" 3TTTTTTITTT
' 4294967295

9 CEEEFEEFE"
9 ' FFFFFFFF

Pitfalls
Whenusing pri nt f (), beaware of the following:

The exact information printed is not tightly specified. Various implementations may
produce dightly different results. For example, the %& format must have at least twa digits
of exponent, but may contain more.

The%l, % , Y0, Y, %, and %X specifiers assume that the value they are converting has
the size of anint. Thisis machine-specific. If the argument is short, use
ohd, %i , Yo, %hx, or %X, if theargumentislong, use% d, % i, % o, % x, or %X.

The implementation is free to do something reasonable for cases such as minus zero,
not-a-number, and infinity. The results will vary from system to system.

On some systems, pri nt f () islimited to producing 509 characters on asingle call. On
other systems, the limit is much larger. In order to avoid hitting the limit, break up large
blocks of output into severa calstoprintf ().

Page 43

Asfar asthe compiler isconcerned, pri nt f isan ordinary function with avariable
number of parameters of indeterminate type. Most compilers will not flag errors such as:

doubl e d;
printf("This answer is %", d);

Therun-timepri nt f function may have no way of knowing it was given adouble instead of
thechar ™ expected by the %s directive.

Some UNIX systems support a utility called pr i nt f ck, which will check for exactly thistype
of error. If your development system supports the utility, consult the manua entry for
printfck.

Givepri ntf only format strings that are safe to print. The correct way to print out a data
string is:

printf("%",string);
and not:
printf(string);

which would fail if st ri ng contained a%.”

The vfprintf(), vprintf(), and vsprintf() Functions

Suppose you wanted to write afunction that worked just likepri nt f () except that it wrote
to two files: How would you do it? Thisis an important problem. For example, if you want to
write a message both to the user'sterminal and to alog file, what do you do?

Before Standard C, there were several solutions that have various problems. None of the
solutions is very good. Some of the possibilities are:

1. Avoidtheproblem. Usespri ntf () toformat astring and pass the string to the function.

2. Pick some maximum number of parameters and write the function like this:

errmsg(fnt, al, a2, a3, a4, ab)

char *fnt;

int al, a2, a3, a4, ab;

}
printf(fnt,al, a2, a3, a4, a5);
fprintf (log,fm, al, a2, a3, a4, a5);
return;

}

If errmeg() iscalledwith fewer than five arguments, thiswill work and isfairly
portable. It will not work if the caller needs to write more than five values.

* The command "!a%888888f will crash many versions of csh when it triesto print out an error
message.
Page 44

We aso have a problem with some modem compilers. They will optimize the generated
code for the number of parameters expected. If we write:

errnmsg("hello, world\n");
it might not work becauseal to a5 are missing.

3. Wecanlook at the FI LE structure and copy the data to another file. Thisis not portable.
As an example of non-portable programming, look at this program fragment that runs under
4.2BSD onaVAX:

#i ncl ude <stdi o. h>

i:I I._E. f ake;
char buf fer[132];

fake.flag = | OART + | OSTRG
fake.ptr = buffer;
fake.cnt = 32767,

_doprnt(format, & args, & ake);

This code knows the internals of thepri nt f () function. It createsast ruct FI LE and
fillsitin. It aso calls the documented, but highly non-portable, BSD _dopr nt ()
function.

Standard C solves this problem with three new functions: the functionsvf pri nt f (),
vprintf(),andvsprintf() areidentica tofprintf(), printf(),and
sprintf () exceptthat they use apointer to an argument list. Thisis best seen with an
example:

#i ncl ude <stdarg. h>

#i ncl ude <stdi o. h>

/*
* Wite a nessage to stderr and to a log file
*/
void errnmsg(char *fnt, ...)
{
va_|i st ap;
va_start(ap, fnt); /* Set ap to point to
* the argunment |ist.
*/
viprintf(stderr, fnt, ap); /* Wite the nmessage to
* stderr.
*/
va_end(ap); /* Done */
/* Now, do the sane thing except wite the nessage
* to logfile.
*/
va_start(ap, fnt);
viprintf(logfile, fn, ap);
va_end(ap);
return; /* Al done. */
}

Page 45

This code declares afunction called er r nsg() with avariable number of arguments. The
viprintf() functionworksjust likepri ntf () exceptitwritesitsdatato both st derr
and| ogfi | e instead of stdout. Thecall tova_start () setsap to point to al of the
arguments that follow f nt . Thevf pri nt f () functionthentakesf nt and the variable
number of arguments that follow it and prints them.

This gives you a portable solution to a common problem. It lets you write functions that are
called thesameway pri nt f () iscaled but do something extra.

Character Output Functions

In addition to the powerful f pri nt f () function, there are five lighter-duty character output
functions.

The fputs() and puts() Functions
fputs(str,strean);
does exactly the samething as:
fprintf(stream"%",str);
That is, writes the string pointed to by the pointer st r into the output stream.

Thefunction put s(str) writesst r followed by a newline to the standard output stream
andisthesameasf printf (stdout, "%\n", str).

These functions are extremely portable.

The fputc(), putc(), and putchar() Functions

Thef put c() function writes asingle character to astream. The put char () function
writes a character to the standard output file. Thus, put char (ch) isthesameas
fputc(ch, stdout).

Thefunction put c() isthesameasf put c() . In some systems, put c() isamacro while
f put c() isared function. The macro may evauate its arguments severa times. This means
that put c(i, fil e++) may not work as desired.

If you avoid caseslikeput c(i, fil e++), thesefunctions are also extremely portable.

Reading Lines of I nput

Heref scanf () readsinput from st r eamn and analyzesit accordingto f or mat using
subsequent arguments as pointers to objects to receive the converted input. Thef scanf ()
functionisvery smilartof pri nt f (), however, not nearly as widely used.

Page 46

Likepri ntf (), somedirectives are more portable than others. Hereis the list defined by
Standard C:

Directive Meaning

% Reads a byte—argument should bechar *.

% Reads a sequence of decimal digits—argument should bei nt *.

%e Reads a floating point number—argument should bef | oat *.

% Same as %e.

% Same as %e.

% Reads a sequence of decimal digits—argument should bei nt *.

% Store the number of characters read so far into the argument. The argument should bei

* . This does not read anything from the input stream.

%0 Reads a sequence of octal digits—argument should beunsi gned i nt *.
% Reads a pointer—argument should bevoi d *.

%8 Reads a string of non-white-space characters—argument should beachar *.
% Reads a sequence of decimal digits—argument should be unsignedi nt * .

U Reads a sequence of hex digits—argument should be unsigned i nt *.

[Reads a set of expected characters—argument should bechar *.

% Matchesasingle .

The[, %, %, %0, %, and %, directiveswork everywhere. The % and % work on all
systems that support floating point. The %g directive is not supported on BSD.

The % , % and % directives are new to Standard C. They will work on all systems
supporting the standard, but not on many older systems.

The full details for format directives are given in the Functions Section under scanf () .

Page 47
Pitfalls
There are afew things to be careful about when you usef scanf () . Theimportant ones are:

A size should aways be given on the s specifier. If there is no size specified, bad input
could overflow available storage and destroy data. The size should include the NULL,

which is stored automatically.”

The popular pattern of " [A- Za- z] " will match a string of |etters on many systems but is
not provided on all systems. Even on systemswhere it is supported, it may fail on strings
like" ALBE" .

Additional Pitfall

Remember that scanf () storesvaluesinto locations specified by pointers. To place a
valueinto thevariablevar , use &ar inthescanf () call. Forgetting the & isacommon
mistake that can be very difficult to find.

Other Character Input Functions

There are afew input functions which are less complex than f scanf () . In many cases, these
functions give better control than f scanf () .

The fgetc(), getc() and getchar() Functiong

Thecal f get c(st rean) returnsthe next character from st r ean. If st reanmisat
end-of-file, EOF isreturned.

Theget c() functionisthesameasf get c() except it may be implemented as a macro.
Theget char () function returnsthe next character from st di n. It requires no arguments.

These functions are very portable. Thereis only one pitfall: the data must be read into a
variable of typei nt and not of typechar . EOF isnot achar value.

* Unchecked f scanf () andget s() callshave been exploited to break computer security. For
detailsread: D. Seeley, "A Tour of the Worm," Proc. of the 1989 Winter USENIX Technical
Conference, pp. 287-304 (January 1989).

Page 48
Thefgets() Function
The call:

char *fgets(char *s, int n, FILE *strean)

reads up to n- 1 charactersfrom st r earr into the array pointed to by s. A null character is
written immediately after the last byte. Reading stops when a newline or end-of-fileis
encountered. If reading stops because a newline character isread, the newline is stored in the

array.
Thiscall isvery portable.

The gets() Function
The call:

char *gets(char *s);
reads charactersfrom st di n into the array pointedto by s.

Unlikef get s(), theget s() function does no limit checking. If theinput lineistoo long for
the buffer pointed to by s, the results may be disastrous and are certainly not portable. For this
reason, do not useget s() . Thescanf () function may be used instead, asin:

char inbuf[82];
int status;

status = scanf ("%82s", i nbuf);
/* Check status for ECF */
[* If (strlen(inbuf) == 81) the input |ine may
* have been truncated.
*/

=" The POSIX.2 standard (Shell and Utilities) allows for lines of 2048 bytes. Y ou should k
that such long lines may exist.

The ungetc() Function
The call:
int ungetc(int c, FILE *stream;

pushes one character back onto stream. The pushed back characters will be returned by
subsequent reads on that stream in the reverse order of their pushing.

Unfortunately, the maximum number of characters we can push back portably is one.

The unget c() function returnsc on success and EOF on failure.

Page 49

Opening and Closing Files

We have been looking at using the files that the system aready opened for us. Almost all
interesting programs need to use other files. Thef open() function isused to connect afile
with a stream:

FI LE *fopen(const char *path, const char *node);

The argument pat h pointsto the file we want to open. For example,
"/ 'usr/ don/ book/ ch3" isthe name of the file with thistext in it. The next several chapters
discuss portable pathnames and files in greater detail.

The argument mode points to a string beginning with one of the following:

r Open file for reading.

W Create new file for writing. If afile with this name aready exists, its contents are lost.

a Append to existing file or create fileif it does not exist.

r+ Open file for update (reading and writing). All existing datais preserved.

WH Open new file for update (reading and writing). If the file already exists, it is truncated to
zexo length.

a+ Open or create text file for update. If the file already exists, the first write will add new d

after the current end-of-file.

Some systems make a distinction between text files and binary files. While there is no such
digtinctionin POSIX, a' b' may be appended to the mode string to indicate binary. The b
does not do anything but may be useful for compatibility with non-POSIX systems. If you are
creating abinary file, include the b to make your program more portable. Most systems that do
not support the b option will just ignoreit.

Upon success, thef open() function returns a pointer to afile descriptor. This pointer is used
only as an argument to other functions. Do not attempt to manipulate the object it points at. If the
open fails, f open() returnsanull pointer.

When you are finished with afile, you should closeit. Thecal f cl ose(st ream will
complete any pending processing, release system resources, and end access to the file. If there
areno errors, f cl ose() returns zero. It returns ECF if any errors are detected.

If you fail to close afile, it will be closed automatically when your program completes. There
arefour reasons for closing the file explicitly:

1. If thereisother processing to be done, you will free up system resources and are less likely
to hit some implementation limit.

2. Buffersare written out in atimely fashion.

Page 50

3. Closing the file yourself lets you check for errors. It is good practice to report any errors
that take place.

4. |f your program endswith acall to _exi t (), buffers may not be written out.

Direct Input/Output functions
The fwrite() and fread() Functiong

Often, you do not need to format your data for human consumption; you need only to save some
information in afile and get it back later. Thef wri t () function lets you dump data
structuresto afile, and thef r ead() function letsyou get them back. The definition of
fwite() is

size t fwite(const void *ptr,
size t size,
size t nmenb,
FI LE *strean);

Thisisnot as complex asit looks. Thef wri t e() function writes, from the array pointed to
by pt r, up to nmenb elements whose size is specified by si ze, to the stream pointed to by
st r ean. It returns the number of elements written. Thiswill equal nmenb unless awrite
error Occurs.

For example:
fwite(tbl,sizeof(int), (size t)100,outfile);
will write 1001 nt elementsfromthearray t bl intooutfil e.

To get the data back, we usethef r ead() function. Theargumentstof r ead() areexactly
thesameasfwri t e() . Theonly difference isthe direction of transfer.

Programsthat usef wi t e() andfread() canbecompletely portable. The datathat i

=3 written will not always be portable.

Insome systems, f read() andfwr it e() arevery fast. On others, these functions result in
repeated callstoget ¢() andput c() ;inthiscaseprintf () isfasterthatfwite().In
general, usefread()/fwite() forbinary filesandprintf(),fputs(),and
f get s() for text. Thiswill give you maximum performance and program portability.

File Positioning Functions

So far, we have done al our reading and writing in order. Often, you need to select the place
where you are going to read or write. There are several functions that et you select your
position.

Page 51

The fgetpos() and fsetpos() Functions
The call:
int fgetpos(FILE *stream fpos_t *pos);

stores the current file position of st r earr in the variable pointed to by pos. The value stored
isused only by f set pos() . Your program should respect its privacy.

Thef set pos() function has the same argumentsasf get pos() and is used to restore the
file position. This function was introduced by Standard C and is not available on older
systems.

The ftell() and fseek() Function

Thefunctionft el | (stream returnsal ong i nt which isthe number of characters from
the beginning of thefile. In case of error, it returns- 1L.

int fseek(FILE *stream long off, int whence);

The previous example sets the position of thefile st r ean. The new position is determined by
adding of f set to the position specified by whence. The valuesfor whence are:

SEEK_SET Indicates the beginning of thefile. This can be used with the value returned by
ftell () torestorearemembered position.

SEEK_END Indicates the end of thefile.

SEEK_CUR Indicates the current position.

Thef seek() function returns nonzero if arequest cannot be satisfied.

At this point you may be wondering why we have both thef get pos/ f set pos pair and the
ftell/fseek par. Can't wedo everythingweneed withft el | / f seek?

The answer isyes; however, f get pos/ f set pos have two potential advantages:
1. Possihility of higher performance on some systems.
2. Ability to support files that have more than LONG_MAX bytes.

If thereis no need to do anything other than remember a saved file position,
f get pos/ f set pos are agood bet.

Therewind() Function

The function rewind(stream) isthe same as:
(void)fseek(stream OL, SEEK SET);

except the error indication for the stream is cleared and no errors are reported.

Page 52

Managing Buffers

If each call tof get c() were required to read a byte off the disk, programs would run very
dowly. Disks are mechanical devices and may take 100,000 times longer to access than main
memory. To avoid this penalty, datais transferred from disk to main memory in large hunks.
These hunks of data are stored in areas of memory called buffers and functionslikef get c()
andf scanf () get their data from the buffer, accessing the disk only when the buffer is empty.

Functionslikef put c() andf pri ntf () perform an anaogous operation on output.

While the system's defaults for buffering usually work well, theset vbuf () functionis
provided to give the programmer some control over buffering.

Thecal to set vbuf () must be made after thefileis opened and before any other operation
is performed. The definition of set vbuf () is:

int setvbuf (FILE *stream char *buf, int node,
si zet size);

stream Identifiesthel/O stream.

buf Isapointer to an array to be used asabuffer. If buf isthe null pointer, set vbuf ()
alocate a buffer.

node Must be one of the following macros:
_| OFBF Causes input/output to be fully buffered. Data will be transmitted only

when abuffer isfull.

_|I OLBF Causes input/output to be line-buffered. Datawill be transferred when
newline character is encountered. Thisis useful for 1/0 to terminals.

_ | ONBF Causes input/output to be unbuffered. Thisisuseful for terminal and ot
communications devices where we want something to happen on chare
sequences that are shorter than afull line.

si ze Isthe size of the buffer.

Theset vbuf () function advises the system of your program's needs, but does not obligate
the system.

Thefunction set buf (FI LE *stream char *buf) isequivaent to

(voi d) set vbuf (stream buf, | OFBF, BUFSI Z) . Theset buf () call isnew with
Standard C. Of course, the most portable thing to do isto stick to the default buffering provided
by the system.

Thefunctionf f | ush(FI LE *stream causesany buffered output datafor st r ear to be
written. Thecall f f | ush(NULL) causesthis action for all open streams.

Page 53

Sample Program

We will now write a complete example. While the example we have chosen might seem a bit
simple-minded, the ideais to show off some of the input/output functions and the logistics of
building an application without getting bogged down in complex computation. Here is a brief
specification for our program:

3. Accept afilename for an output file from the user.
4. Accept two integers from the user: alower limit and an upper limit.

5. For each integer between the lower limit and the upper limit, write the integer and its
sguare root to the output file. The output should be nicely formatted text.

Thefirst design questionis: How am | going to split the program into reusable modules? One
model that many programs can follow is three modules: one module accepts the input, another
that does the work, and athird that creates the output.

The basic design becomes:

1. A moduleto ask the user for afilename aswell as a starting and an ending value. These
tasks can be performed in mai n() .

2. A module, conput e_squar e_r oot ,* to calculate the square roots.
3. A module, f or mat _out put , to take the square roots and print them.

Now that we know what the program should do, we can consider how to make portability an
element of its basic design. We begin by listing those tasks that require our program to depend
upon services provided by the system libraries. Here's a sequential list of those tasks.™*

1. Prompt the user for afilename.

2. Accept the filename from the user.

* | have astrong preference for descriptive function names. | find the name

conput e_squar e_r oot much nicer thansay csqrt for instance. On some systems, longer
names may produce a portability problem. The linker may support only six-character external names.
Instead of making my code more obscure for all machinesin order to support a brain-damaged linker,
| use #define to work around the problem. In this case, | need an include file which contains:

#defi ne conpute_square root CSO1
#defi ne format _out put FQO1

to map my names into something short and portable. This makes debugging harder, so | do my
development on amore friendly system.

** Some of the services are provided by the Standard C library, some by the math library, some by the
POSIX library, and some by the kernel of the operating system. From a programmer's point of view,
there is no need to make a distinction among the various providers of a service. Application modules
are written by the programmer and everything elseis provided by the system. The C and POSIX
standards call the part not provided by the programmer the implementation.

Page 54

. Create the output file.

3

4. Writeto the output file.
5. Compute square roots.
6

Report and process errors.
7. Return control to the system.

If we use the POSI X-defined functions, we are assured that these functions are portable among
POSIX-compliant systems.

What other portability issues might affect the design of this program?

A target machine may have a16-bit i nt . Since that would limit us to numbers less than
65,535, we use long for integer variables.

We need to know the maximum length filename that a user might type. Unfortunately,
POSIX does not give us this information. We can determine the maximum length of a
filename that we are guaranteed to be able to create, but that is not what we need. We
define the macro MAX_NAME to be the longest path name a user may type. In this example,
we set the value to 255, which should cover most cases. An aternate technique is to define
ahuge limit (e.g., 5000). That change can be made by modifying asingle line.

The program needs to know the language the user understands. Our example assumes that
the user understands English. Chapter 10, Porting to Far-off Lands, describes methods to
allow an application to be portable from culture to culture.

We can now start to write some code. First, accept afilename from the user:

(void)printf("Wiat is the name of the output file: ");
(void)fgets(fil ename, MAX NAME+1, stdin);
filename[strlen(filename) - 1]= "\0";

outfile = fopen(filenane,"wW');

Thepri ntf () function promptsthe user for afilename. Theuse of (voi d) infront of the
caltoprintf () tellsthereader that we areignoring the value returned by the function.
There is not much we can do if messagesto the user's terminal fail. Casting the value to be void
also preventswarningsfrom | i nt .

Thef get s() function reads up to MAX_NANME+1 charactersintothearray f i | enane from
the user's keyboard (st di n) . The newline character is aso stored in the array. The next
statement discards the newline character. Thef open() function opensthefile for output and
setsout f i | e to the resulting file descriptor. Our program does not place any restrictions
(other than total length) on the filename.

Page 55

We need to prompt the user to supply starting and ending values. Because we do the same thing
to get each value, afunction can be defined to do this task. We can call the function with:

from= getlong("Starting val ue");

to = get | ong("Endi ng val ue");
We definetheget _| ong() function later.

Next, we write the values and the series of square roots into afile. Again, we will definea
function and write the code for it later.

conpute_square_root(outfile, from to);
Last, we return to the operating system and report our success with:
return(EXI T_SUCCESS) ;

The (amost) complete mai n() program looks like:

mai n()

{

FI LE *outfile; /* The output file */

char fil ename[MAX_NAME]; /* Name of the output file */

| ong fromto; /[* The limts for the output table */

(void)printf("What is the name of the output file: ");
(void)fgets(filename, MAXNAME, st di n) ;
filenane[strlen(filenane) - 1]= "\0";

outfile = fopen(fil enane,"W');

from= get_long("Starting val ue");
to = get_l| ong("Endi ng val ue");

conpute_square_root(outfile, from to);

return(EXI T_SUCCESS) ;
}

Not bad; however, it would be a good idea to make sure that thef open() worked correctly,
and to report the error if it did not.

if (outfile == NULL)
{

perror (" Cannot open output file");
exit (EXI T_FAI LURE) ;
}

after the call tof open(We should also add:

if (fclose(outfile) 1= 0)
perror("Error on close");

to close the output file and check for errors before returning to the operating system. The
perror () function convertsthe error number stored in er r no to an error message. The
string given asthe argument iswrittento st der r , followed by a colon

Page 56

and aspace. Then, the error message is written followed by a newline. If the system has some
non-standard error codes, per r or () should correctly convert them to text. Using per r or ()
is more portable than trying to decode the error number in our program.

We left three functions—get _| ong() , conput e_squar e_r oot (), and
f or mat _out put to bedefined later. Theget _| ong() function has an argument that is the
prompt message. The prompt can be displayed as follows:

(void)printf("%: ", pronpt);
We can read in the number with asimple call toscanf () :
scanf (" %l", &val ue);

It would be nice , however, to do more error checking and keep asking the question until we get
avalid response.

while (1)
{
(void)printf("%: ", pronpt);
if (fgets(line, BUFF_MAX, stdin) == NULL)
exit (EXIT FAI LURE);
if (sscanf(line, "%", &alue) == 1) return(val ue);
(void)printf("Please input an integer\n");

}

Thescanf () function scans characters from the user'sterminal (st di n) . Thesscanf ()
function isvery similar except it scans characters from a string; in this case, line. The return
value of 1 tellsusthat exactly one specifier (%) was matched. By usingf get s() toread the
dataand sscanf () to parseit, we can tell the difference between 1/0 errors and format
errors. The symbol BUFF_MAX is the maximum number of digits the user may type. We define
BUFF_MAX after the #include statements at the start of the program.

After adding afew declarations, our function is complete:

| ong get _| ong(char *pronpt)
{

| ong val ue;
char 1ine[BUFF_MAX] ;

while (1)
{
(void)printf("%: ", pronpt);
if (fgets(line, BUFFMAX, stdin) == NULL)
exit (EXI T_FAI LURE)
if (sscanf(line,"%d", &alue) == 1) return(val ue);
(void)printf("Please input an integer\n");

}
}

Theconput e_squar e_r oot function must calculate a series of square roots using the
sqgrt () functioninthe mathlibrary. Thesqrt () function returns the square root of

Page 57

its argument. It would be ssmple enough to write your own sguare root function. However,
using alibrary function, we get maximum performance without knowing any of the details of the
hardware. We construct asimplef or | oop to do the main work of the function:

voi d conput e_square_root (FILE *fileid,long start,|ong stop)

{
long i;
doubl e f;
for (i=start; i <= stop; i++)
{
f = (float)i;
fprintf(fileid, "9%0.Of 240. 6f\ n",
f,sqrt(f));
}
}
We should check for errors when writing to afile, so we revise the for loop as follows:
for (i=start; i <= stop; i++)
{
f = (float)i;
if (fprintf(fileid, "90. Of 24.0. 6f\ n",
f,sqgrt(f)) < 0)
{

perror("Error witing output file");
exit (EXI T_FAI LURE)
}

}

We can write a heading into the file with:
fprintf(fileid," N SQRT(N)\n");

We don't actualy need thef or mat _out put function, after dl. Thef pri ntf () functionis
powerful enough to do the job. A separate function to format the output would not make the
program any clearer or more reusable. We modify our initial idea about how to do the job and
as the program takes shape.

It is aproblem that we never check for errors when printing the header to the file. Instead of
adding more per r or () statements, we add anew macro, PANI C. The PANI C macro prints
an error message and stops. Thefirst pri nt f () becomes:

if (fprintf(fileid," N SQRT(N)\n") < 0)
PANI C,

We use the PANI C macro when an error is possible but very unlikely.

The PANI C macro deserves afew comments. It is defined to call an external panic() function
with two arguments:

__FILE__ Defined by the C compiler as a character string literal containing the name of the
program being compiled.

Page 58
__LINE__ A decima constant for the current source line number.

Thepani c() functionisdefinedin pani c. c:

#define POSI X SOURCE 1
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

voi d pani c(char *filenane,int |ine)

{
(void)fprintf(stderr,"\n?Panic inline % of file %\n"
,Iine filenane);
(void)perror("Unexpected library error");
abort();
}

and atypical error messageis:

?Panic in line 27 of file exanple.c
Unexpected library error: disk ful

The message helps the programmer locate the place where the error was detected. It also may
give the user some idea of how to get around the problem.

Theabort () function causes abnorma program termination. On some systems it may
generate information that is useful for debugging, such asacor e file. POSIX does not specify
any debugging facilities, but provides the hooks for vendors to add rich debug environments.
Theabort () function will stop the application on all POSIX systems

The last step isto include the required headers. Each library function requires at least one
header. The only way to know which headersto include isto look up each function in the
Function section of the Reference Manual at the end of this book. After a while, you will learn
which headers are required for each function. In this case, we need only two headers:

<stdi 0. h>and<mat h. h>.

Example 3-1 isa dtrictly conforming C program and does not need the #def i ne

PCOSI X_SOURCE. | am in the habit of including the#def i ne. If you want to have as many
modul es as possible depend only on standard C, it would be agood ideato usethe #def i ne
POSI X _SOURCE statement only on modules that depend on POSIX calls. The Functions
section in the Reference Manual tells you which functions arein al standard C
implementations and which are only in POSIX systems.

Our complete source is shown in Example 3-1:
EXAMPLE 3-1.sqgrt.c

#defi ne _POSI X_SOURCE 1
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#def i ne BUFFMAX 10
#def i ne MAXNAMVE 255

Page 59

#define PANIC (panic(__FILE _, LINE))
extern void panic();

voi d conmpute_square _root (FILE *fileid,long start,|ong stop)

{

long i;
doubl e f;
if (fprintf(fileid," N SQRT(N)\n") < 0)
PANI C,
for (i=start; i <= stop; iI++)
{
f = (float)i;
if (fprintf(fileid, "%0.0f 24.0. 6f\ n",
f,sqrt(f)) < 0)
{
perror("Error witing output file");
exi t (EXI T_FAI LURE) ;
}
}
}
| ong get _| ong(char *pronpt)
{
| ong val ue;

char |ine[BUFF_MAX] ;

while (1)
{
(void)printf("%: ", pronpt);
if (fgets(line, BUFF_MAX, stdin) == NULL)
exi t (EXI TFAI LURE)

if (sscanf(line,"%d", &alue) == 1) return(val ue);
(void)printf("Please input an integer\n");
}

}

mai n()

{

FI LE *outfil e; /* The output file */

char filename[MAX_NAVE+H];/* Nanme of the output file */

| ong fromto; /[* The limts for the output table */

(void)printf("Wiat is the name of the output file: ");
(void)fgets(fil ename, MAX_ NAME+ , stdin);
filename[strlen(filename) - 1]= "\0";
outfile = fopen(filenane,"wW');
if (outfile == NULL)

{

perror (" Cannot open output file");

exi t (EXI T_FAI LURE) ;

}

from= get_long("Starting val ue");
to = get | ong("Endi ng val ue");

conpute_square_root(outfile, from to)

if (fclose(outfile) !'=0)

Page 60

perror("Error on close");
ret ur n(EXI T_SUCCESS) ;

}
Portability Lab

To review the contents of this chapter, try to do the following exercises:
1. What will the following program fragment print?

short d=17;

printf("%®7d\n", d);
printf("%d\n",d);
printf("% 7d\n",d);

It isnot considered cheating to try it!

2. When should one use a %hd format specifier? How about % d? What are the portability
problems, if any, with plain %al?

3. If we need to transfer some floating-point data from one machine to another and write it to
an ASCII fileusing the % format specifier, what are some of the machine-specific things
that may show up?

4. What isthe difference between f put s() and put s() ? What about the difference
betweenf put c() andputc() ?

5. What doesthef scanf () pattern™[A- Z] " do? Doesit work on all computers?
6. What is one of the problemsin using the %s specifier inf scanf () 7

7. Thefunction get s(buf f er) isthesameasf get s(buf fer, | NT_MAX, stdin)
with one exception. What is that exception?

8. Theget s() function has aweakness that was exploited to invade a major computer
network. What is that weakness? When can get s() be safely used?

9. What is the difference between a stream opened with:
fopen("foo", "w');
and one opened with:
f open("foo", "wh");
10. Why isit agood ideato usethef cl ose() function?
11. What does:
fwite(array, 2,100, outfile);

do? Assumethat arr ay isanarray of short int andoutfil e isastream openfor

writing.
12. Improvethef wri t e() function call in Exercise 11 to make it more portable.

13. What isa possible advantage of f set pos() overf seek() ?

Page 61
14. What is the difference between:
(void)printf ("Help!");
and:
printf("Help ");
Would you expect one to be faster than the other? Why or why not?

15. Modify the square root program given at the end of this chapter to make more use of the
PANI C macro. What advantages and disadvantages does the new program have compared
to the old one?

Page 63

Chapter 4
Filesand Directories

This chapter discusses the portable use of files and directories. We describe the POS X file
system, covering the many things that can be done portably as well as the traps and pitfalls
that may be hidden in these operations. The functions described in this chapter performthe
operating system services that deal with the creation and removal of files and directories
and with the detection and modification of their characteristics. They allow applications to
gain access to files for the 1/0O operations described in the next chapter.

The POSIX file system is based on existing UNIX systems. POSIX defines a common portable
interface to files. Applications do not need to know if they areusing an AT& T or aBSD file
system.

The UNIX "lessis better” philosophy imposed afew simple rules on files:

All input and output is done using files. Disks, tapes, displays, and scientific instruments
are all manipulated using the same function calls.

A fileisan ordered sequence of bytes. All meaning is provided by the program that reads
or writes the data.

Onetypeof fileisalist of other files; thistype of fileis called a directory.

While these rules may seem obvious, each one represents a breakthrough. Many systems before
and after UNIX have required one set of callsto write to a user's terminal, another set to write
to adisk, and yet another set to write to a printer. Other systerrs distinguish between various

types of files and the system getsinvolved in the job of managing the contents of thefile. There
are systems with many formats of files and records. While more complex systems may provide
"more services' for the programmer, UNIX has a powerful advantage: Thereislessto learn.

Portable Filenames

For afilename to be portable across systems, it must consist of only the following characters:

LMNOPQRSTUVWXYZ

ABCDEFGHI JK
j kIl mnopgrstuvwxyz
0

abcdef ghi
0123456789 _
That is, uppercase and lowercase letters, numerals, period, underscore, and hyphen. The
hyphen must not be used as the first character of a portable filename. Uppercase and lowercase

letters retain their unique identities. For example, makefi | e,

Page 64

Makef i | e, and MAKEFI LE name three unique files. Fully portable filenames have 14 or
fewer characters.

If the world were simple, all files would be named using portable filenames. In practice, UNIX
filenames may contain any character except dash (/) and null. Users may have good reasons for
using these characters. If an application isto handle any filenare and yet be portable, here are

afew guidelines:

If aprogram accepts a filename from the user, assume that the filename may contain any
combination of characters and may be hundreds of characterslong.

If aprogram has built-in filenames, use only portable filenames with 14 or fewer
characters. Include the name of your program or some other unique text to avoid conflicts.
For example, di rl st.rc orscal c. save.

Usethet npnan{() ort npfil e() functionsfor temporary files.

POSIX does not reserve any filenames. However, some filenames are used by various
systems and should be avoided. Theseinclude: a. out, core, . profile,. history,
and . cshr c. Do not read or write any fileinthe/ et c directory.

Directory Tree

The file system starts with a master file directory called root. The root directory issimply a
list of files, some of which may be directories. Each directory, inturn, issimply alist of files,
some of which may be directories.

This structure istypically represented as atree, as shown in Figure 4-1.

Theroot directory iscaled /. In this case, / containsthefilesusr, | i b, et ¢, bi n, and
t est . Thedirectory usr intheroot directory contains two other files, don and sue.

In order to locate afile, we can start at root and name all of the directories until we get to the
target file. Thisis called the absolute pathname of the file. Given the tree above,
[usr/ don/ book/ chapt er s/ 4 isthe path to thefile caled 4 at the bottorr of the tree.

This contains the text for this chapter. The string / usr / don/ book/ chapt er s/ isthe
path prefix and the string 4 is the filename. The/ character is the delimiter used between
filenames. The/ character may not be used in afilename and no other character may be used in
its place.

Current Working Directory

Most of the time, an application works with asmall set of files that have a common path prefix.
For example, it is convenient to be able to specify 4 as a filename rather than the pathname

[usr/ don/ book/ chapt er s/ 4. We can supply a default path prefix to apply whenever a
pathname does not begin with aslash. Thisis called the current working directory or
sometimes the working directory. A relative pathname specifies afile or directory in the
current working directory.

Page 65

= EE——

EX KN N EN N
= T | -] [Ty sl

den Q§ SLE

i | include payrall fadgar E new
[home [| letiers |! payrall | I

Figure 4-1. Directory tree

The pathname of the current working directory can be obtained with the get cwd() function. It
is defined as:

char *getcwd(char *buf, size_t size);

Theargument buf isthe address of a character array in which to place the absolute pathname
of the current working directory. The si ze argument is the maximum number of bytesto be
stored in buf . If successful, the buf argument isreturned. If an error occurs, NULL is

returned.

There is one portability issue: buf may need to be huge. There is no way for an application to
know how much storage to allocate. A declaration of:

char buf[256];

Page 66
or even:
char buf[256000];

may not be enough. Seethecwdnane() function in Example 2-5 for away to avoid this
problem.

We can select anew working directory with thechdi r () system service. Thisis defined by:
int chdir(const char *path);

where pat h points to the pathname of adirectory. The named directory becomes the current
working directory. Upon successful completion, this function returns zero. If thechdi r ()
function fails, - 1 isreturned; er r no is set to indicate the error, and the current working
directory is unchanged.

Making and Removing Directories

Y ou can create anew directory using the mkdi r () function or remove adirectory with the
rmdi r () function. For example, if you specify:

int nkdir(const char *path, node_t node);

adirectory with name pat h iscreated. The file permission bits for the new directory are set
from mode with the bitwise inclusive OR of one or more of the following flags:

S RUSR Thedirectory owner has read permission.

S IWUSR Thedirectory owner may create new filesin the directory.

S I XUSR Thedirectory may be searched by the owner.

S IRGRP Members of the directory owner's group have read permission.

S IWGRP Membersof the directory owner's group may create new filesin the
directory.

S | XGRP Members of the owner's group may search the directory.
S IROTH Theworld has read permission.
S IWOTH Anyone can create new filesin the directory.

S | XOTH Anyone can search the directory.

For example:
mkdir("test", SIRUSR| S_IWISR | S |IXUSR;

will create the directory t est , allowing the owner read, write, and search access and granting
no other permissions.

Do not set any other bits of the nbde argument.

Page 67
Thermdir() Function
You may delete adirectory using ther ndi r () function. It is defined as:
int rndir(const char *path);

The directory must be empty and must not be either the current working directory of any
process or the root directory.

Simulating the mkdir() and rmdir() Function,

Thenkdi r () andrndi r () functions are very portable across POSI X systems but are not
availablein System V.3. These functions can be smulated on those systems by using the
nkdi r andr ndi r commands. For example:

int nkdir(char *dirnanme, node_t node)

{
i nt st at us;
pid_t pi d;
pid = fork(); /* Create a new process */
if (pid <0) return(-1);
/* Now have the child execute the nkdir
* conmand
*/
if (pid == 0) execl("/bin/nkdir", dirnane);
wai t (&st at us); /* Wit for the child */
if (status !'=0) return(-1);
return(chnmod(di rnanme, node));
}

Although this code may be much dower than the nrkdi r () function on POSIX systems, the
speed of creating or removing a directory is generally not an issue.

Directory Structure

Before looking at additional directory operations, we need to understand more about how
directories work.

Each file in the file system has a unique file serial number.* A directory maps character strings
into file seria numbers. Many directory entries can point at the samefile. Thisis shownin

Figure 4-2.

There are three data files shown here. They have serial numbers 100, 101, and 102. File 100
hasthreelinkstoit(file.a, file.b,andfil e.c).All three namesrefer to the same
file and the same data. File 101 has two names (dat a. 1 and dat a. 2). File 102 has only one
name (pr og. ¢), which isthe most common case.

* "File serial number" isaPOSIX term. UNIX systems use the term i-node number. The POSIX
committee felt that file serial number is a more portabl e phrase because i-nodes do not need to be
used in aconforming file system.

Page 68

file 100 =
Tilee E File = =
. Info — =
. {l-nade) =
data.2 L : E
e 101
i File g
! I I Inig
{l-node)
file.a I %
= .
|
P& | ==
- — ! file 102 =
fite.b I g
! —]
Direclories | File Datz

e

Figure 4-2. Directory structure

Manipulating Directories

When we create afile, for example with thef open() function, anew file serial number is
assigned and a directory entry is created.” The pointer from the directory to the i-nodeis called
alink. In this case, there will be exactly one link to the i-node.

* The POSIX standard deals only with the application's view of the system. Thisis only one of many
possible ways to implement the underlying system. For example, VAX/VMS does not have i-nodes.
This does not have any consequences for a POSIX application.

Page 69
Linkingto a File

Additiona linksto afile may be created with thel i nk() function. Thisfunctionis defined
as:

int Iink(const char *pathl, const char *path2);

where pat h1 pointsto a pathname naming an existing file and pat h2 pointsto a pathname
naming the new directory entry to be created. Thel i nk() function isvery portable.

Removing a File
Theunl i nk() function removes directory entries. It is defined as:
int unlink(const char *path);

where pat h points to a pathname to be deleted. When al links to the file have been removed,
and no process has the file open, the file is deleted and is no longer accessible.

Standard C definesther enove() function to perform the same functionasunl i nk() . The
ANSl C Committee felt the name remove was less system-specific than unlink.

Renaming a File
A file's path may be changed with ther enane() function. Thisis defined as:
i nt renane(const char *ol dpath, const char *newpath);

The effect of r enane() isto create anew link to an existing file and then delete the existing
link. If both ol dpat h and newpat h refer to the samefile, r enanme() does not change the
file system.

It is very safe and portable to rename afile. For example, r ename(" Jul i e", "Jenny")
orrename("/usr/don/old", "/usr/don/new").Renamingadirectory isalso
portable: r ename("/ usr/ phred”, "/usr/fred").However, renaming afile across
directoriesis not.

Thecal rename("/usr/don/file", "/usr/sue/file") maynotwork under all
conditions. Y ou cannot rename a file from one file system to another. If your application must
be able to move afile from one directory to another, it should be prepared to copy thefileif
ther enane() function fails.

File Characteristics

The file system maintains useful information about each file. For example, it maintains the time
and date the file was last written and the size of the file in bytes.

Page 70

The system also maintains the file's file mode, as shown in Figure 4-3.

a0l Group 10 oo Execulion - Ownar Permissions
So User [D on Exgcution

Type of File | directory
| prdinary. elc ..

Group Permessions

— Other Permissions
]

C 2] v o s

Figure 4-3. File mode

Each of the permission fieldsis a three-bit group that defines execute, read, and write
permissions, as shown in Figure 4-4.

Expcute Permission |

Write Parmission

Fead Parmission

Figure 4-4. Read, write, and execute permission bits

Of course, POSIX does not specify that the bitswill bein this order. Instead, there are symbols
defined for the bits and fields. These symbols are:

S | RWKU
S | RWKC
S_| RIWKC
S ISUD
S ISE@D

Read, Write, and Execute bits for the file owner.
Read, Write, and Execute bits for the file owner's group.
Read, Write, and Execute bits for others.

Set user ID on execution. When this program is run, the effective user ID will be tt
same as the owner of thefile.

Set group 1D on execution. When this program is run, the effective group 1D will b
same as the owner of thefile.

Page 71

There are symbolsfor al nine of the permission bits. The symbols use this pattern:

S IRk
X/|OTH

Therefore, the symbol for the Read permission for the group classwould be S _| RGRP and the
Execute permission for the owner isS_| XUSR.

POSIX does not define the file-type bits. Instead, it defines macros to test for a specific type of
file. These macros are:

SISDR(mM Test for directory.

S | SCHR(m Test for character-special file.
S | SBLK(m Test for block-special file.

S | SREG(mM Test for aregular file.

S | SFI FOQ(m Test for aFIFO.

The argument to the macro, m, is the file mode. The macro evaluates to non-zero if the test is
true and to zero if the test is false. These macros are POSIX inventions. Traditional UNIX
systems have defined the absolute octal values for the mode word. For example, System V.2
defines:

0170000 File type

0010000 FIFO

0020000 Character-special file
0040000 Directory

0060000 Block-special file
0100000 Ordinary file
0000000 Ordinary file

Y our program will be most portable if you use the POSIX macros. If you need to, you can
define them for older systems.

Page 72
Retrieving a File's Characteristics

A file's characteristics may beretrieved using the st at () function. Thisfunctionfillsin a
struct knownasthest at structure. Thest at structure contains the following members:

Member Name Member Type Description

st _node nod_t File mode, as described above.

st _ino i no_t File seria number.

st _dev dev _t ID of device containing thisfile. Thest dev/ st _inog
uniquely identify afile.

st_nlink nlink t Number of links.

st _uid uid t User ID of file's owner.

st _gid gid_t Group ID of file's group.

st _size of f t File size in bytes. Thisis defined only for regular files.
st_atine tinme_t Time of last access.

st_ctine time_t Time of status last change, for example, changing the

permission bits.

st_nmtine tinme_t Time of last data modification of thefile.

Thest at structure is defined in the header file<sys/ st at . h>.

Thevarious datatypes(dev_t,ino_t, ui d_t, etc.) aredefined in the header file

<sys/ types. h>. Thesetypes are defined because the POSI X committee decided to provide
maximum flexibility instead of selecting acommon datatype.* This means that the size of

i no_t orui d_t changesfrom system to system. Do not assume that they are of agiven size
or that they are small. But you can assume they are arithmetic (including floating point).

Thest at () function itself is defined as:
int stat(const char *path, struct stat *buf);

The first argument is a pointer to a pathname. The second argument is a pointer to a buffer in
which to store the status information.

Thest at () function isvery portable. Most of the information returned is also portable. The
st _dev and st _i no members should be used with care. It is portable to compare

* |n fairness to the POSIX committee, they worked hard to increase consensus. The goal was not to
make a selection by narrow majority but instead to build a broad coalition. These types are defined to
increase portability and compatibility with existing programs.

Page 73

these fields to see if two names refer to the same file. Do not make any other assumptions about
these numbers.

Changing File Accessibility

It is possible to change afile's permission bits using the chnod() function. Thisis defined as:

i nt chrmod(const char *path, node_t node);

The pat h argument points at the name of afile and the nbde argument contains the new
permission bits. Do not set bits other than the permission bits, S | SG Cor S | SUI D.* In
some implementations, setting additional bits changes the entire meaning of the call.

Thechnod() function isvery portable. Y ou can make your code portable to older UNIX
systems by defining the permission bits you need with something like:

#i ncl ude <sys/stat. h>

#i f ndef S I RUSR
#defi ne S I RUSR 0400
#endi f

#i f ndef S | WUSR
#defi ne S I WJSR 0200
#endi f

#i f ndef S I XUSR
#defi ne S | XUSR 0100
#endi f

chrmod (myfile, S IRUSR S IWISR S | XUSR);

Thei f ndef s will prevent you from changing any values defined in a POSIX header while
providing portability to pre-POSIX systems.

Changing the Owner of a File
The owner of afile may be changed with the chown() function. Thisis defined as:
int chown(const char *path,uid t owner,gid t group);

where the pat h argument points at the pathname of an existing file. The user ID and group ID
are set to the valuesin owner and gr oup.

Thereisanhistorical problem with thechown(') function. UNIX System V alows a user to
give away files; that is, the owner of afile may change the user 1D to anything. This presentsa
security problem in some environments. Berkeley UNIX restrictschown() to the superuser.

* Attempt to modify S_| SA C or S_| SUI C only for ordinary files. In particular, never use
chnod() inaway that would affect theS | SA C bit on adirectory.

Page 74

The POSIX committee |eft the actual operation of chown(') as an implementation option
indicated by the symbolic constant _ POSI X CHOWN_RESTRI CTED. If chown() is
restricted for a particular file:

The owner may be changed only by a privileged process (most likely not yours).

The group may be changed, if and only if owner isequal to thefile'suser ID and group is
equal to either the calling processss effective ID or one of its supplementary group IDs.

A program may determineif chown() isrestricted by looking at the variable
_POSI X_CHOMWN_RESTRI CTED in the header file<uni st d. h>. It hasthree possible

states:
Defined to havethe value - 1. In this case, no files have chown() restricted.
Defined to have avalue other than - 1. In this case, al fileshave chown() restricted.

Not defined in <uni st d. h>. Inthiscase, thepat hconf () or f pat hconf () function
must be used because chown() restrictions may depend on the directory. See Chapter 7,
Obtaining Information at Run-time, for details.

Of course, you can ignore al of therulesabout POSI X CHOAN_RESTRI CTED and just try
it. If if works, you can do it. If it failswith er r no set to EPERIV, you can't. For example:

if (chown("file", newuser, newgroup) != 0)

{
if (errno == EPERM

printf("Sorry, chown is restricted\n");
el se

{

perror ("unexpected chown failure");
exit(EXI T_FAI LURE);
}

}

The only completely portable use for chown(') isto change the group of afile to the effective
group ID of the caller or to a member of its group set.

Asasecurity precaution, theS_| SUl Dand S_| SA L hits of the file mode are cleared upon
successful return from chown() . If thiswere not done, a user could give away afile and
assume the identity of the new owner.

Setting File Access and Modification Times

Theut i me() function isused to update the access time and modification time of afile. This
is defined as:

int utine(const char *path, const struct utinbuf *tn);

Page 75

Here, pat h pointsto a pathname for an existing file. Thet m argument is either NULL or a
pointer toaut i mbuf structure. If the t i argument is NULL, the access and modification
times are set to the current time.

If thet margument isnot NULL, it isassumed to be apointer to aut i mbuf structure. This
contains the following members:

actinme Accesstime

nmodt i me Modification time

Both members havetypetine_t.

System V did not providea<ut i me. h>. Instead, it said that ut i mbuf must be defined as:

struct uti nbuf
{

tinme_t actineg;
time_t nodtine;

}

Y ou may haveto supply a<ut i me. h> with that definition if you port your POSIX code to
older System V systems.

Reading Directories

A traditiona portability problem in UNIX has been knowledge of the format of directories. A
program would open a directory and read the information directly. Thereisagreat deal of
UNIX software that "knows" that a directory contains a 2-byte i-node number followed by a
14-byte filename. While truefor AT& T System V.2, it isfar from universal.

To solve this problem, POSIX adapted from BSD severa functions for performing operations
on directories. These functions allow a program to obtain directory entries without defining the
format of the directory file. In fact, theinternal format of directoriesis completely unspecified.

The header file <di r ent . h> defines a structure that is used to obtain filenames from a
directory, thestruct dir ent, that includes one member d_nane, an array of char that
may be up to NAME_MAX bytes long. All other information in thedi r ent structure should be
ignored for portability.

Page 76
The opendir() Function
Theopendi r () function isdefined as:
DI R *opendi r (const char *dirnane)

and returns adirectory stream that hastype DI R. Thedi r nane argument is the name of the
directory file to open and it must be a directory.

If theopendi r () function fails, NULL isreturned and er r no is set to indicate the error.
Thereaddir() Function
Ther eaddi r () functionisdefined as:

struct dirent *readdir(DIR *dirp);

and returnsapointer to adi r ent structure. The only argument isdi r p, the pointer returned
by opendi r ().

In case of an error, r eaddi r () returnsNULL and er r no is set to indicate the error. When
the end of the directory is encountered, r eaddi r () also returns NULL; however, errno is
unchanged.

The closedir() Function

Thecl osedi r () functionisdefined as:
int closedir(DR *dirp)

and is used to indicate that we are done reading a directory. Upon successful completion,
cl osedi r () returnsavalue of zero. On error, avalue of - 1 isreturned and er r no is set to
indicate the error.

Therewinddir() Function

Ther ewi nddi r () functionisdefined as:
void rewinddir (DR *dirp);

and resets the position of the directory stream indicated by di r p to the beginning of the
directory. No valueis returned.

General Comments

Files may be added to or removed from a directory at any time. Ther eaddi r () function may
or may not see changes to a directory made after the opendi r () (orrewi nddi r())
functioniscalled.

Page 77

POSIX is also vague on the interaction between opendi r () andf or k() . For best results,
do not perform af or k() while reading adirectory.

Complete Example

To demonstrate the use of the functions for reading directories, let's write a program to print
out adirectory tree. Here is a brief specification for the program:

1. Prompt the user and accept the name of a starting directory.

2. Print the name of the starting directory.

3. Read the directory and ignore everything except directories.

4. Print the names of any directories encountered along with any directories that they contain.
5

Indent each level of directory two spaces. Thiswill make it easy to see what is contained
in each directory. The output should look something like this:

Starting directory: /etc

| og

zonei nfo
Australia
Canada
M deast
SystenV
Us

YP

master.d

boot . d

init.d
startup. d
fwdi cp.d
install.d
boot . d
init.d
master. d
startup.d
fwdi cp.d
uninstall.d
eschat ol ogy
bi nd
nmast er
tool s
doc
BOG

Where/ et ¢ was given as the starting directory and / et ¢/ bi nd/ doc/ BOC anested
subdirectory.

An obvious structure suggests itself: one routine to process one directory and another routine to
call it for each directory encountered. The flowchart for the main program is shown in Figure
4-5.

Page 78

Asx user for a
starting dissetary

Print arror message o
and exit 3

Call anedirf) to
| protess direslony f

Figure 4-5. Flowchart for mai n()

Theonedi r () functionisrecursive. Each time it encounters adirectory, onedi r () calls
itself. The flowchart for theonedi r () function is shown in Figure 4-6.

Let's start by writing the function to process a single directory, as shown in Example 4-1.

EXAMPLE 4-1. onedi r ()

1/*

©CoOoO~NOOOTh~WN

10

12
13
14
15
16
17
18
19
20

* This function will process 1 directory. It is called with
* two argunents
* indent -- The nunber of colums to indent this directory
* nane -- The file nanme of the directory to process. This
* is nost often a relative directory
*
* The onedir function calls itself to process nested
* directories
*/
voi d onedir(short indent,char *nane)
{
DR *current _directory; /* pointer for readdir */
struct dirent *this _entry; /* current directory entry */
struct stat status; /* for the stat() function */
char cwd[MAX _PATH+1] ; /* save current working
* directory
*/
int i; /* tenmp */

Print aut the teading :
£naces ind direciory name :

—

Open the directoy
and make 11 the
workmp direciony

rr——

g an entry

Return o caller

Print sutiotal amd gt

——

FIGURE 4-6. Flowchart for onedi r ()

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

/*
* Print out the name of the current directory with
* | eadi ng spaces.
*/
for (i=l; i <= indent; i++) (void)printf(" ");
(void)printf("%\n", nane);

/* Now open the directory for reading */
current _directory = opendir(nane);
if (currentdirectory == NULL)

{

(void)perror("Can not open directory");
return;
}
/* Remenber the current working directory and connect to
* newdirectory. W will then be able to stat() the
* files without building a prefix.
*/
i f (getcwd(cwd, MAX_PATH+1) == NULL) PAN C
if (chdir(name) !'= 0) PAN G

/* Now, |ook at every entry in the directory */
while ((this_entry = readdir(current_directory))

I'= NULL)
{
/[* Ignore "." and ".." or we will get confused */
if ((strcnp(this_entry->d_nane,".") !=0) &&
(strcmp(this_entry->d_nane,"..") 1= 0))
{
if (stat(this_entry->d_name, &tatus) 1= 0)
PANI C;
/* lgnore anything that is not a directory */
if (S_ISDR(status.st_node))
{
/* If this is a nested directory,
* process it */
onedi r (i ndent +2,thi s_entry->d_nane);
}
}
/* Al done. Cose the directory */
if (closedir(current_directory) != 0) PANIC

/* change back to the "previous" directory */
if (chdir(cwd) !'= 0) PANIC
return;

74 }

Notesfor onedi r :

Line Note

51 This block will be executed for each file in the directory.

54 Programs must not assumethat . " and". . " exist or arefirst. This example workscorrect
A program that discards the first two directories returned by r eaddi r () isnot portable.

59 It would be nice to provide some error recovery here. We could print a message and contin

65 Thisisthe recursive call. Each level will indent by an additional two spaces.

Page 81

There is only one strange thing here. We want to read a string from the user that may be up to
MAX PATH characterslong. We cannot just writeacall toscanf () usng MAX_ PATH. That

IS

(voi d) scanf (" %&<MAXPATH>s", r oot)

will not work. We have to build the correct string at run time. We could also use
f get s(root, MAX PATH, st di n) to read the filename, but then we would need to
remove the newline from the end of the buffer.

The complete program with all the required headersis shown in Example 4-2.

EXAMPLE4-2direct.c

*/

/ *
* Include all of the required headers
*/
#defi ne POSI X SOURCE 1
#i ncl ude <stdi o. h>
#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>
#i ncl ude <sys/stat. h>
#include <linmts. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude "panic. h" /* Defines the PANI C macro */
/* See Page 58 for a description of PANIC

#def i ne MAX_PATH 256

/*
* This function will process 1 directory. It is called with
* two argunents:
* indent -- The nunber of colums to indent this directory
* nane -- The file nanme of the directory to process. This
* is nost often a relative directory
*

* The onedir function calls itself to process nested
* directories

*/
voi d onedir(short indent, char *nane)
{
DR *current _directory; /* pointer for readdir */
struct dirent *this _entry; /* current directory entry */
struct stat status; /* for the stat() function */
char cwd[MAX _PATH+1] ; /* save current working
* directory
*/
int i; [* temp */

/*
* Print out the nanme of the current directory with
* | eadi ng spaces.
*/
for (i=l; i <=indent; i++) (void)printf(" ");
(void)printf("%\n", nane);

/* Now open the directory for reading */
current _directory = opendir(nane);
if (current_directory == NULL)

Page 82
{

(void)perror("Can not open directory");
return,
}
/* Renenber the current working directory and connect to
* new directory. W will then be able to stat() the
* files without building a prefix.
*/
if (getcwd(cwd, MAX_PATH+1) == NULL) PAN C
if (chdir(nane) !'= 0) PANIC

/* Now, |ook at every entry in the directory */
while ((this_entry = readdir(current_directory))

I'= NULL)

{
/* Ignore "." and ".." or we will get confused */
if ((strcnp(this_entry->d nane,".") !'= 0) &&

(strcmp(this_entry->d nane,"..") 1= 0))

{

if (stat(this_entry->d_nane, &tatus) != 0)

PANI C,

/* lgnore anything that is not a directory */
if (S_ISDR(status.st _node))

{

[* If this is a nested directory,

* process it */

onedi r (i ndent +2,thi s_entry->d_nane) ;

}
}

/* Al done. Close the directory */

if (closedir(current _directory) != 0) PAN G
/* change back to the "previous" directory */
if (chdir(cwd) !'= 0) PAN C

return;
}
int main()
{
char root[MAX PATH+1]; /* array to store the pathnane of
* the starting directory
*/
char scanf_string[20]; /* used to hold a format string
* for scanf
*/
struct stat root_status; /* stat structure for starting
* directory
*/
/* Build a format string for scanf that |ooks |ike
* U<MAXPATH>S.
*/
(void)sprintf(scanf_string, " %%ls", MAX PATH);
(void)printf("Starting directory: ");
/* Read the nanme of the starting directory which
* may be up to MAX PATH bytes | ong
*/
(voi d) scanf (scanf _string, root);
Page 83
/* Verify that it is an existing directory file */
if (stat(root, & oot _status) != 0)
{
(void)perror("Can not access starting directory");
(void)exit(EXI T_FAI LURE);
}
if (S_ISDR(root_status.st_node) == 0)
{
(void)fprintf(stderr,"% is not a directory\n",root);
(void) exit (EXI T_FAI LURE);
}
/* If all is well, list the directory */
onedi r (0, root);
return(0);
}

Pitfall: Symbolic Links

Thereis afeature of some UNIX systems called symbolic links. A symbolic link is a special
type of file that pointsto another file. For example, alink fromfi | e to
[usr/opt/lib/X1l1l/realfilelinksthenamefi | e tothe
filelusr/opt/lib/Xll/realfile. Whenweopenfile,wewillgetreal file
instead. That iswhat the user usually wants.

Although symbolic links originated in BSD, many vendors have now included them in AT& T

ports. POSIX does not support symbolic links and you should not have to concern yourself with
them. Unfortunately, symbolic links may confound your program.

There are several operations which can cause problems. For example, deleting f i | e will
delete the link but will leave/ usr/ opt/ | i b/ X11/real fil| e unaffected, which may or
may not be OK.

The real problem comes when the symbolic link isto adirectory. If thereisasymbolic link in
thedirectory / usr/ don/ t est of theform:

| oop -> /usr/don
the program in Example 4-2 will crash and burn.

Eachtimer eaddi r () returns| oop, theonedi r () routinewill try to processit. The loop
will continue until some system limit is encountered.

Thereis no good way to defend against symbolic links. Thereis no portable way for a

POSI X-conforming program to test for symbolic links. The POSIX.1 committee is adding
symbolic links to afuture version of the standard; these changes may be approved in 1992.
About the only thing we can do in the mean time isto warn users of our software that if they use
(abuse?) symbolic links, they may cause applications to fail.

Of course, the fact that no POSI X -conforming application will ever create a symbolic link does
not help much.

Page 84

Portability Lab
To review the contents of this chapter, try to do the following exercises:

1. Write afunction to accept the name of a directory and to make it the current working
directory. Print the full pathname of both the old and the new working directories.

2. Write aprogram that keeps creating directories called dir until some error occurs. The
result shouldbe/ dir/dir/dir/dir/dir/dir/dir/dir... asfarasyour system
will let you go.

NOTE: Some systems may fail in unfortunate ways. Use caution when attempting this.

3. Write aprogram to delete the directories created in exercise 2.

4. Why would a program need to know afil€'si-node number (ST_I NC)?

5. Why would it be useful to have multiple directory entries (links) for the same file?

6. When doestheunl i nk() function delete afile? Isthere any portable way to know that
thefileisredly gone?

7. Name one piece of information contained in afile's mode word.

8. What doesthe symbol S_| XUSR mean?

9. Why do you think that POSIX defined S_| SDI R as amacro instead of avalue?

10. Issi zeof (i no_t) awayslessthan or equal tosi zeof (i nt) ?Is
si zeof (i no_t) awayslessthan or equal tosi zeof (| ong) ?

11. How can chown() be used to break system security? What is the only completely
portable use for the chown(') function?

12. Why might aprogram usetheut i ne() function?

13. Write a program to display afile without changing its access time. Is there any way to
detect that the file has been read?

14. Doesthedi r ent structure contain any members other than d_nane? If so, what are they?

15. Modify theonedi r () function given at the end of this chapter to print the file serial
number of each directory.

16. Theonedi r () functionignoresthefiles". " and". . ". Why does it do this? What would
happen if that check were removed?

17. Modify themai n() functionin Example4-2tousef get s() instead of scanf () .Is
this an improvement?

18. Invent a scheme to allow symbolic links to be transparent to strictly conforming POSIX
1003.1-1988 applications. Mail your solution to the author for a cash reward.

Page 85

Chapter 5
Advanced File Operations

This chapter coversthe basic POS X systemscallssuchasread(),wite(), open(),
and cl ose() . You might think that since these calls are some of the most basic building
blocks of the system, and since there is so much existing practice to look at, that there would
be few portability issues. Surprise! These routines have many more pitfalls than the
higher-level routines that use them.

When the C programming language was invented, it was designed to work with the UNIX
operating system. The original scheme had a C language library that made calls on the
operating system using system calls. The scheme is represented in Figure 5-1.

Application Coda :
Application Layer F

S . ——— POSIX
........................... Inferiace

Boundary

C Library Layer |

System Calls Layer

Figure 5-1. Traditional UNIX software layers

The "high-level” routinessuchasprint f () andfread() would cal more primitive
"low-level" system calls.

In atraditional implementation, the system calls were more efficient than the library, so some
programmers avoided using high-level calls. Today, thereis no reason for this

Page 86

practice because many systems provide very high-performance libraries. For maximum
portability, the high-level routines are your best bet.

The Standard C and POSIX interfaces do not require alayered implementation. It is quite
possible to provide an alternate implementation, as shown in Figure 5-2.

Application Code

e et e e e — POSIX
Pl I _________________ girsrrgna
UNOar]
‘ a - . r
i}

‘ -
| frea ' read() '

Figure 5-2. Possible POSIX software layers

There is no reason to assume that the low-level routines provide any better performance than
the high-level ones. Thisis especially true when the application programmer does the work of

the high-level routines in the application.

There are times when you do need to use the primitive routines in your applications. they often
provide functions that are not available in the C library as well as more precise control over
the behavior of your program.

CAUTION

Since many of the systems you will use have the traditional layering of library functions and
system calls, mixing high-level functions (f pri ntf (), fgets(), f puts(), etc.) and the
low-level functions(read() wite(), | seek(), etc.) requirescare. The section called
"Mixing the Levels' later in this chapter talks about the rules for mixing low- and high-level
functions.

Primitive File Operations

The primitive (or low-level) file operations can be thought of as the building blocks for more
complex functions, suchasf pri ntf () andf scanf ().

Page 87
File Descriptors

The primitive file operations al operate on file descriptors. A file descriptor isasmall,
non-negative integer used to identify an open file. File descriptors are assigned in order (0, 1,
2, 3, ...) on aper-process basis. The number of open file descriptorsis limited; however, the
limitis 16 or larger. The exact number is given by the symbol OPEN_MAX in the header file
<limts. h>.

Opening afile

The connection between afile descriptor and afileis established by the open() and
creat () functions. Theopen() functionisused to assign afile descriptor for anew or
existing file. The function is defined as:

int open(const char *path, int oflag, ...);

The. . . indicates an unspecified number of additional arguments. It allows for an optional
third argument, anode_t called node that can be used to set the file permission bits when a
fileiscreated.

The pat h argument is a string that names the file to be opened. It can be either an absolute
path (starting with a/) or arelative path.

The of | ag argument is the bitwise inclusive OR of the values of symbolic constants. The
programmer must specify exactly one of the following three symbols:

O_RDONLY Open for reading only.
O _V\RONLY Open for writing only.
O_RDWR Open for reading and writing.

Any combination of the following symbols can also be used:

O _APPEND
O_CREAT

O EXCL

O _NOCTTY

O_NONBLOCK

O_TRUNC

Set the file offset to the end-of-file prior to each write.

If the file does not exist, alow it to be created. This flag indicates that the mc
argument is present in the call toopen() .

Thisflag may be used only if O CREAT is also set. It causesthe call to opet
to fail if thefile already exists.

If pat h identifiesaterminal, this flag prevents that terminal from becoming t
controlling terminal for this process. It prevents an application from

unintentionally acquiring a controlling terminal as a side-effect of open() . |
always safe to set thisflag for datafiles. O NOCTTY has no effect if the file
being opened is not aterminal. See Chapter 8 for a description of terminal 1/(

Page 88

Do not wait for the device or file to be ready or available. After thefileisop
theread() andwri t e() callsawaysreturnimmediately. If the process
would be delayed in the read or write operation, - 1 isreturned and er r no i
set to EAGAI Ninstead of blocking the caller.

System V provides aflag caled O _NDELAY that issimilar to C_NONBL OCK
The C_NDELAY flag causesr ead() orwri t e() toreturn zero instead of
blocking. Sincer ead() also returns zero on end-of-file, it is difficult to
distinguish the two cases. BSD also hasan C_NDELAY flag that causesthe e
EVWOUL DBL OCK to be returned if the process would block. POSIX resolved:
incompat ibility by inventing the C_NONBL OCK flag. Port with care!

This flag should be used only on ordinary files opened for writing. It causest
file to be truncated to zero length.

Traditional UNIX systems used the values 0, 1, and 2 for O RDONLY, O WRONLY, and
O_RDWR. These values should be changed to macros. To alow your code to continue to work
on old systems, include the following:

#i f ndef 0 _RDONLY
#define O RDONLY O

#endi f

#i fndef 0 _WRONLY
#define 0 WRONLY 1

#endi f

#i f ndef 0_RDWR
#define O RDWR 2

#endi f

The call:
cr eat (pat h, node)
is equivalent to:
open(path, O WRONLY | O CREAT | O TRUNC, node);

and has the same portability issues.

Page 89
Reading from a File

The only low-level function for reading from afileisther ead() function. It is defined as*
ssize_t read(int fildes, void *buf, size t nbyte);

and reads nbyt e bytesfrom thefileopenonf i | des into buffer buf . Ther ead() function
returns the number of bytes placed in the buffer. Thisvalue will never be greater than nbyt e.
The vauewill be smaller than nbyt e if thefile has fewer bytesimmediately available for
reading. If thereisan error, avalue of - 1 isreturned and er r no is set.

That seems easy enough. What portability problems can it have? Here are afew:

The standard does not specify exactly what happens on an error. It is almost impossible to
do portable error recovery if r ead() returnsEl C.

Section 6.4.1.2 of POSIX dates, "If ar ead() isinterrupted by asigna after it has
successfully read some data, either it shall return - 1 with er r no set to ElI NTR, or it shall
return the number of bytesread.” Therefore, applications must treat EI NTR as afatal error
because they cannot tell if any data were lost.

The U.S. Government (in FIPS 151-1) requiresthat r ead() return the number of bytes
read. Since the Federal Government is the world's largest buyer of POSIX systems, itisa
good bet that most POSIX systems will return the number of bytes read.

Thenbyt e argument hastypesi ze_t inIEEE Std 1003.1-1990, but has type

unsi gned i nt inthe 1988 standard and in most UNIX systems. It was changed because
the largest block that can beread in asingle call isUl NT_MAX bytes (65,535 on 16-bit
systems). Programs that need to operate using both the 1988 and 1990 standard should limit
reads to 65,535 or fewer bytes.

Writing to a File
Thewri t e() functionwritesto afile. Thisisdefined as:
ssize t wite(int fildes, const void *buf, size t nbyte);

and attempts to write nbyt e bytes from the buffer pointed to by buf to the file open on
fildes.Thewite() functionreturnsthe number of byteswritten to thefile. This may be
lessthan nbyt e if an error occurred during the write operation. If an error

* The definition of r ead() usestwo POSIX types.ssi ze t andsi ze_t . Therearet ypdef s for

thesein<sys/types. h> Asi ze_t

isatypethat can hold a number of bytes, for example,

unsi gned | ong.Assi ze_t isasignedsi ze_t andisused becauser ead() returns- 1 if there
isan error. Unfortunately, thisis one of the conflicts between |EEE Std 1003.1-1990 and | EEE Std
1003.1-1988. The 1988 standard definesread() as:

int read(int fildes,

char *buf, unsigned int nbyte);

Page 90

condition prevented any bytes from being written, - 1 isreturned and er r no is set to indicate

the error.

Thewri t e() function hasthe same portability issuesasr ead() .

Fast File Copy Example

At thispoint, it is helpful to look at a simple example showing theuse of r ead() and
write().Thefollowing smplefile copy program asks for an input path and an output path
and then copies the input to the output. We assume that both input and output files are ordinary
files. To make our copy program fast, the fileis read in one large hunk and then written out.

The program that fills the bill is shown in Example 5-1.

EXAMPLE5-1ff copy. c

#defi ne _POSI X_SOURCE 1

#i ncl ude <uni std. h>

#i ncl ude <stdio. h>
#include <limts. h>

#i ncl ude <sys/types. h>
#i ncl ude <stdlib. h>

#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

#i ncl ude "panic. h'

#def i ne HUNK_MAX | NT_MAX
#defi ne MAX_PATH 2048

int main()

{

char ifpat h[MAX_PATH+1] ;
char of pat h[MAX_PATH+1] ;
char scanf_string[10];

struct stat ifstat;
char *bi gbuf;
int ifdes, of des;

/* Defines the PANIC nmacro */

It would be nice if PCSIX
provi ded some way to determ ne
the | ongest path nane a user
nmay need to type. Since there
is no way to get that nunber,

| am pi cki ng somet hing | arge

L R

*/

/* name of input file */

/* name of output file */

/* argument string for
scanf () */

/* result of stat() call */

/* pointer to buffer */

/* input/output file

descriptors */

si ze_t hunk; /* nunmber of bytes to
transfer in one piece */
size_t left; /* nunmber of bytes left to

transfer */

/* Build the string "%2048s" */
(void)sprintf(scanf_string, " %8ds", MAX PATH);
/* CGet the input path */

(void)printf("Input file: ");

if (scanf(scanf_string,ifpath) != 1) PANC
/* See if the file exists and how big it is */

Page 91

if (stat(ifpath,& fstat) != 0)
{
(void)perror("? Can not stat file");
exi t (EXI T_FAI LURE) ;

left = hunk = ifstat.stsize; /* left is the anount |eft
* to copy. Start it out
* with the size of the
* whole file.
*/
if (hunk > HUNK_MAX) hunk = HUNK_MAX;
/* Get a buffer for the whole file (or 1 hunk if the file
* is too big.

*/

i f((bigbuf = (char *)malloc(hunk)) == NULL)
{
(void)fprintf(stderr,

"? File is too big for fast copy\n");

exi t (EXI TFAI LURE)
}

/* Qpen the input file */

if ((ifdes = open(ifpath, O RDONLY)) == -1) PANC

/* Now that we have the input file open, ask for the
* path for the output file
*/
(void)printf("Qutput file: ");
if (scanf(scanf_string,ofpath) != 1) PANC
/* Qpen the output file */
if ((ofdes = open(ofpath, O WRONLY| O CREAT| O TRUNC, S | RUSR| S | WUSR))
== -1) PANIC
while (left > 0)
{
/* Read the file in one big bite */
i f (read(ifdes, bigbuf, hunk) != hunk)
{
(void)fprintf(stderr,
"? Error reading file 9%\n",ifpath);
exi t (EXI T_FAI LURE) ;
}
/* Wite out the copy */
i f(wite(of des, bi gbuf, hunk) != hunk)
{

(void)fprintf(stderr, " Error witing file %\n", of path);
exi t (EXI T_FAI LURE) ;

| eft -= hunk;
if (left < hunk) hunk = left;

/* Cose the files */
if (close(ifdes) !'= 0) PANIC
if (close(ofdes) !'= 0) PANIC

/* Print out a status nessage */
(void)printf("% copied to % (% bytes)\n",

i fpath,of path,ifstat.st_size);
return(0);

}

Thereis an interesting portability sidelight here. On systemswherean i nt is 32-hits, thefile
will be copied using asinglecall tor ead() andasinglecall towrite().ltis

Page 92

possible that a system has a 16-bit int and a 32-bit st _si ze. Ther ead() andw i t e()
functionsuseasi ze_t * for the number of bytesto transfer. It is possible that there are
systems that cannot read alarge filewith asingler ead() call. On these systerrs, large files
are broken up into multiple hunks.

Control Operationson a File

One of the reasons for using the low-level 1/0 functionsis to get better control. The file control
functionf cnt | () isamulti-purpose function that performs various operations on open file
descriptors. The definition is:

int fentl(int fildes, int cnd, ...);

The exact arguments depend on the command, crd, given. The commands are;

cnd Vdue Description

F_DUPFD Duplicate afile descriptor.
F_CGETFD Get file descriptor flags.
F_GETLK Get record locking information.
F_SETFD Set file descriptor flags.

F _GETFL Get file status flags.

F_SETFL Set file status flags.

F_SETLK Set record locking information.

F_SETLKW Set record locking information; wait if blocked.

F_GETFD/F_SETFD

Every file descriptor has a close-on-exec flag. In the default case, thef or k() andexec() **
function calls allow one process to inherit the open files from the parent process that created it.
That is how the shell passesst di n, st dout,andst derr to programsit runs.

Sometimes you do not want to pass an open file. If thefileis not useful to the new program, it
not only uses up valuable open file dots, but aso allows the child to interfere with the parent.
One way to prevent thisis to set the close-on-exec flag for afile descriptor. Theexec()
function will close that descriptor prior to starting the new program.

* The 1990 revision of 1003.1 quietly changed the type of thisargument from unsi gned i nt to
size t

** These are described in detail in the next chapter.

Page 93

Theremay bef cnt | () flagsthat are specific to a system but are not defined by POSIX. If we
want our code to be portable, we need to preserve those implementation-defined bits. Y ou
set/unset only what you want and avoid the rest. The sequence:

flags = fentl (fil des, F_GETFD);
fentl (fildes, F SETFD, flags | FD CLOEXEC);

will set the close-on-exec bit. The sequence:

flags = fentl (fil des, F_GETFD);
fcecntl (fildes, F_ SETFD, fl ags & - FD CLOEXEQ) ;

will clear the close-on-exec bit. All other bits are preserved.
F GETFL/F_SETFL

Two of the flags that can be set intheopen() call may be modified by thef cnt | ()
function. The O_APPEND and O_NONBL OCK flags may be changed while thefileis open. The
most portable way to modify them isfirst to read the flags with:

flags = fentl (fil des, F_GETFD);
Then set any desired bits with a statement such as:
flags | = O_NONBLOCK;
Next, clear any flags no longer desired:
flags & - (O _APPEND);
Finaly, reset the flags with:
fentl (fil des, F_SETFD, fl ags);

This preserves any implementation-defined flags. The normal open flags, such as O _CREAT,
are aso preserved by this technique. The POSIX standard does not specify what happensiif you
attempt to modify theseflagswith f cnt | () , and it isbest not to try it.

Y ou may wonder why POSIX definesboth F_SETFD and F_SETFL. Can't we get away with
only one? Well, F_SETFD applies only to asingle file descriptor. F_SETFL appliesto all
file descriptors that share a common open file description, either by inheritance through
fork() orastheresult of an F_DUPFD operation withf cnt | () ; for example:

fdl = open(path, of | ags);
fd2 = dup(fdl);
fd3 = open(path, of | ags);

AnF_SETFDonf dl appliesonlytof d1. AnF_SETFL onf d1 appliestof d1 andf d2
but nottof d3.

Page 94
F SETLK/F_SETLKW/FGETLK

POSIX supports aform of interprocess communication called "advisory record locking.” This
featureisfound in POSIX and System V Release 3 and later, but not in BSD. Record locking
lets one process indicate its intent to read or write part of afile. Other processes may observe
these intents. Thisis called advisory locking because the system does not supervise programs
that read or write locked files. The scheme depends on the good will and proper coding of
each application program.

Record locking is controlled by the f | ock structure. The flock structure contains the
following members:

Member Member
Type Type Description

short | _type One of the symbolic constants:
F_RDLCK: toindicate aread (shared) lock
F_WRLCK: to indicate awrite (exclusive) lock
F_UNLCK: to remove alock

short | _whence Oneof the symbolic constants: SEEK_SET, SEEK CUR, or SEEK _El
toindicatethat | _st art ismeasured from the start of the file, the cur
position, or the end of the file.

of f t | _start Relative offset in bytes.

of f t | len The number of bytesto lock. This value should not be negative. If it is
zero, it indicates "until EOF."

pid_t | _pid Process | D of the process holding the lock; used only by the F_GETLK
function.

The F_SETLKW function sets and clears locks for arecord. A call looks like:

fentl (fildes, F_SETLKW fl ock_ptr);

wherefi | des isthefiletolock andf | ock_ptr pointstoastruct fl ock. Thiscall
can establish or remove shared or exclusive locks. If the lock is not available, the F_ SETLKW
call will wait for some other process to unlock the lock.

TheF_SETLK call isidentical to the F_SETLKW call except when the lock is not available.
Instead of waiting, F_SETLK returns- 1 and setser r no to EAGAI N.

TheF_GETLK function is called with:
fentl (fildes, F_ GETLKW Tl ock_ptr);

and searches for alock that would block theoneinthestruct fl ock pointed to by

fl ock_ptr.If nolock isfound that would prevent thislock from being created, the lock type
isset to F_UNLCK. Otherwise, the structure is overwritten with lock information for an
arbitrarily chosen lock.

Page 95

Y ou can build a simple semaphore system using advisory record locking. A file can be used as
an array of locks. You do not need to read or write the file to use record locking.

F DUPFD
Thefinal usefor f cnt | () isto duplicate an open file descriptor. The call:
fentl (fil des, F_DUPFD, m nf d)

returns a new file descriptor which is associated with the same open fileasf i | des and is
greater than or equal tom nf d. If m nf d isunused then that is the file descriptor that will be
used. Otherwise, the lowest numbered unused file descriptor greater than m nf d is returned.

The new file descriptor shares any locks with the origina file. The close-on-exec flag for the
new descriptor isclear.

Setting the File Position

| covered thef seek() functionin Chapter 3, Sandard File and Terminal 1/0. The
| seek() function does exactly the same thing (sets the position of the file), except that it
operates on file descriptors instead of on streams. The function is defined as:

off _t Iseek(int fildes, off_t offset, int whence);

Thewhence argument is either:

Argument Meaning

SEEK_SET Toset thefile positionto of f set .
SEEK_CUR To set thefile position to be the current position plus of f set .

SEEK_EOF To set the file position to be the end-of-file plus of f set .

Thefile position may be set beyond the current end-of-file. If dataiis written at this point, the
gap isfilled with zeros.*

Thel seek() function returns the resulting offset measured as the number of bytes from the
beginning of thefile. In case of error, it returns((of f _t) - 1) and setserr no toindicate
the error.

Seeking is portable only for disk files. The effect of | seek() on pipes, FIFOs, terminals, and
other non-disk devicesis undefined. In SystemV and BSD, an | seek() onadevice
incapable of seeking has no effect. Y ou should not count on al systems providing such benign
results.

* The standard does not actually specify that zeros are written into the file, only that an attempt to
read the gap shall return zeros. It is possible to implement a system with "sparse” files where no disk
space is used for the holes.

Page 96

In historical UNIX implementations, seek () used an offset of typei nt and | seek()
(which was added later) used an offset of typel ong. Today, seek() isobsolete. POSIX
defined the offset for | seek() asan of f _t . All useful POSIX systemswill define of f _t
asalong or larger. You can safely assumethat | seek() will work on filesof abillion bytes.

The dup() and dup2() Functions
Thefunctiondup(fi | des) isequivalent to:
fcntl (fil des, F_DUPFD, 0)
and saves some typing.
Thefunction dup2(fil des, fil des2) ismoreor lessequivalent to:

close(fildes2);
fentl (fildes, F_DUPFD, fildes2);

but dup2() isconsdered outdated and should not be used in new programs. Use the
close()/fcntl () combination instead because it does a better job of error reporting.

Closng aFile

When you are done with afile, thecl ose() function should be used to deallocate the file
descriptor and clean up the file. When our program terminates, al of the open files are closed.
There are still good reasons for explicitly calling cl ose() for each file:

Open files are alimited resource. It isagood idea to give them back as soon as possible.

It isalways agood ideato check for errors. If you let exi t () close your open files,
errorswill be ignored.

Thecl ose() function isabout as portable as you can get.

FIFOs and Pipes

One of the original ideas of the UNIX system was to build complex programs out of simple
ones. A pipeline alows you to use the output of one program as the input to the next program.

A pipeisatype of file where one process writes to one end and another process reads from the
other end. Pipes are created by the pi pe() function, which is defined as:

int pipe(int fildes[2]);

Page 97

It places an open file descriptor intof i | des[0] andfi | des[1] . Thefile descriptor in
fil des[0] istheread end of the pipe and the file descriptor inf i | des[1] isthewrite
end of the pipe.

Pipes are quite portable. POSIX defines a number of properties for pipes. Y ou can count on al
POSIX systems supporting these features. Older UNIX systems may or may not support these
properties and your program will be more portable if you do not depend on these properties.

Thereisno file offset associated with a pipe. Each write appends to the end of the pipe.

A write of fewer than PI PE_BUF bytesis atomic; the data will not be interleaved with
data from other processes writing to the same pipe. A write of more than Pl PE_BUF may
have data interleaved in arbitrary ways.

For example, if PI PE_BUF is5120,* awrite of 5000 bytes will be contiguous. A write of
6000 bytes may be broken into 60 100-byte chunks.

If O_NONBLOCK isnot set, awrite will return after writing all the requested data.

If O_NONBLOCK is set, awrite of fewer than Pl PE_BUF bytes will either write the entire
buffer or write nothing. A write of more than Pl PE_BUF bytes will write what it can.

Y ou can aso create a"named pipe"’ or FIFO using thenkf i f o() function. Thisis defined as:

int nkfifo(const char *path, node_t node);

and creates anew FIFO special file named by the string pointed to by pat h. Thefile
permission hits of the new FIFO are set from mode. Permission bits and the mode argument
were described in Chapter 4, Files and Directories.

Because pipes are used for interprocess communication, | will leave the discussion for the next
chapter.

File Creation M ask

Thereis one file operation that does not fit into any other category: set file creation mask. Each
process has afile creation mask. Theopen(),creat (), nkdi r(),andnkfi fo() cals
use the file creation mask to turn off permission bits when they create files. For example,
setting the S _ | RWKC hitsin the mask would turn off read, write, and execute permission bits
for the "other" class.

* Thevalue of PI PE_BUF isusually 4096 or 5120. POSI X requiresthat it must be 512 or greater.

Page 98
The umask() Function

Theumask() functionisdefined as:
node_t unask(node_t cmask);
It sets the file creation mask to cnmask and returns the previous value. No errors are detected.

Theumask(') function itself isvery portable. Programs developed where the umask value of
000 (no protection) is used may not work in a high security environment where the umask
vauemay be077. Itisagood ideato test your applicationswith aumask valueof 077. You
can avoid this problem by executing aumask(0) at the start of your program; however, that
may not be what the end-user of your software wants.

Mixing the L evels

Sometimes you need to perform alow-level call on afileyou are using at a high level. For
example, you may want to set the close-on-exec flag for a stream. In other cases, you may need
to convert afile descriptor to a stream; for example, to write apipeusingf pri ntf () calls.
There are some handy functions to perform this mapping.

The fdopen() Function
Thef dopen() function associates a stream with afile descriptor. The function is defined as:
FI LE *fdopen(int fildes, const char *type);

Thef i | des argument isthe file descriptor you want to convert. Thet ype argument is
exactly the same as described in Chapter 3, Sandard File and Terminal 1/0, for f open()
except thefileis never truncated.

In genera, the functions described in Chapter 3 are more portable than the ones described in
this chapter. Thef dopen() call isahandy way to avoid using the low-level routines when
you are given afile descriptor.

Thefileno() Function
Thefil eno() function returnsthe file descriptor associated with a stream. It is defined as:
int fileno(FILE *stream;

A return value of - 1 indicates an error; however, f i | eno() isnot required to detect an
invalid argument and | am sure that some systems do not.

The file number returned by f i | eno() can be used by the functions described in this chapter.
For example, f cnt | () can be used to lock and unlock records.

Page 99
Pitfalls

Accessing asingle open file description using both streams and file descriptors can cause
problems. Attempting to write afileusing both f pri ntf () andwri t e() , for example, can
cause data to be written out of order and may work differently from system to system.

There are safe operations. For example, f cnt | () can be used to perform record locking
whilefread() andfwrit e() areused to update thefile.

If al of the operations that could affect the file offset (for exampler ead() ,wite(),

| seek(),scanf(),printf(),andsoon)aredoneexclusively through streams,
everything will work correctly. If al of the operations that could affect the file offset are done
exclusively through file descriptor calls, everything will work correctly.

If you have been exclusively using file descriptor functions (r ead(), write(),
| seek()) to accessthefile, you can switch to using stream functions exclusively
(fgets(), fputs(), etc.) a any point.

To switch from using stream functions exclusively to using file descriptor functions, special
care must be used. If the stream is unbuffered and theunget ¢ () function has not been used,
you can switch to using file descriptor functions.

In most other cases™ the interaction is not defined and the functions should not be mixed.

Portability Lab
To review the contents of this chapter, try to do the following exercises:

1. If you were to write aroutine to smulate the library function pri nt f () and cal the
wri t e() function directly from your code, would it be faster or lower than the library
routine. Why?

2. What isthe effect of setting the O_CREAT flag when opening an existing file?

3. Thefast file copy example program in this chapter claimsto be fast because it uses only
one read and one write to copy the entire file. When might this be sower than using several
reads and writes?

* There are anumber of obscure cases which are still defined. For example, if afileisopen for read
and positioned at the end of the file, we can freely switch between f r ead() andr ead() .

If there is an overwhelming reason to mix stream-based and descriptor-based 1/0, read section 8.2.3
of the POSIX standard several times.

Page 100
4. Why isthe sequence:

flags = fentl (fil des, F_GETFD);
fentl (fildes, F_ SETFD, flags | O NONBLOCK) ;

a better way to set the O_NONBLOCK flag for afile than the following?
fentl (fil des, F_SETFD, O NONBLOCK) ;

5. Assume an application opens afile and sets some exclusive record locks. While thefileis

open, you attempt to copy it using the fast file copy example program given in this chapter.
What would happen? Why?

6. Why would oneusel seek() instead of f seek() ?

7. Why would an application call umask() ? Why not just set the permission bits correctly in
thecall toopen() ?

8. What practical reason isthere for the use of thef i | eno() function? What about
f dopen() 7

9. What problems might occur if printf () andw it e() areintermixed writing afile?
How can these problems be eliminated?

Page 101

Chapter 6
Working with Processes

This chapter covers process creation, process termination, and signals. Process creation
involvesthef or k() and exec() calls, that are familiar to a UNIX programmer. Process
termination involvesthewai t () andwai t pi d() calls. POSX.1 adds some new ideas
here: signals are different in POSX. Although based on Berkeley signals, the POS X library
defines different functions that have somewnhat different behavior than what you may be
familiar with fromusing BSD.

Process Creation

Thef or k() andexec() functionsare present in al UNIX systems, and POSIX documented
the common existing practice. In this section, we look at the process creation features that
POSIX guarantees to be portable.

Thefork() Function

A processis created with thef or k() system call. It takes no arguments and creates a new
process called achild. If it fals, it returns - 1.

The original processis called the parent, the child is an exact copy of the parent except for the
following:

The child process has a unique process ID.
The child's parent process ID is set to the process ID of the process executing thef or k() .

The child has its own copy of the parent's file descriptors. The child has access to al of the
parent's open files.

Thechild'sruntimeis set to zero.

Pending alarms are cleared for the child.

The set of pending signalsis set to the empty set.
File locks are not inherited.

The child starts out life right after thef or k() call that created it. Thef or k() call returns
zero to the child and returns the process ID of the newly created child to the parent. A program
that callsf or k() typically teststhe return value and does one thing in the parent and
something different in the child.

Page 102

Thef or k() call isvery portable. BSD has a special flavor of f or k() calledvfork().
Thevf or k() call isaspecial case designed to speed up thef or k() / exec() operation.
You may replaceaBSD vf or k() operationwith f or k() to make your program more
portable. You can also do the following:

#i f def BSD

pid = vfork();
#el se

pid = fork();
#endi f

to retain the performance boost on BSD systems while being POSIX-conforming.”
The exec() Family of Function

A child process can run another program. For example, most commands cause the shell to
f or k anew process and then exec aprogram.

Thereisno function named exec () : instead, thereisafamily of similar cals, each of which
have dightly different arguments. The family is:

i nt execl (const char *path, const char *arg, ...);

i nt execv(const char *path, char * const argv[]);

i nt execle(const char *path, const char *arg, ...);

i nt execve(const char *path, char * const argv[],
char * const *envp);

i nt execl p(const char *file, const char *arg, ...);

i nt execvp(const char *file, char * const argv[();

Theexec family of calls replaces the current process image with a new program. The new
program is read from an ordinary executable file. There isno return from a successful exec;
instead, the new program is started.

Themai n() function in the new program iscalled as:
int main(int argc, char *argv[]);

where ar gc isthe argument count and ar gv isan array of character pointers to the arguments
themselves. In addition, the variable:

extern char **environ

isinitialized as a pointer to an array of character pointers to the environment strings. The

ar gv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the ar gv array isnot counted in ar gc.

Theargument f i | e should contain just the filename of the new program. The path prefix for
thisfileis obtained by a search of the directories passed as the environment variable PATH.
Thecall execl p(" nore","nore", (char*) 0) ; looksfor nor e in each directory inthe
search path.

" TheBSD vf or k() function must be followed by an exec.

Page 103

The argument pat h points to a pathname that identifies the file to be executed. No searching
takes place on callswith apat h argument.

Theconst char *ar g and subsequent elipsesintheexecl (), execl p(),and
execl e() functions can be thought of asalist of one or more pointers to null-terminated
character strings that represent the argument list available to the new program. The first
argument should point to a file containing the program to be started, and the last argument
should be aNULL pointer. For theexecl e() function, the environment pointer follows the
NULL pointer that terminates the argument list.

Theargument envp toexecve(), and thefinal argument to execl e() , name an array of
character pointers to null-terminated strings. These strings congtitute the environment for the
new process. The environment array isterminated by a NULL pointer. For

execl (), execv(), execl p(),andexecvp() , theenvironment for the new program is
inherited from the caller.

When you terminate the list with NUL L, make sure that you cast it to a pointer with (char *).
On some 80x86 or 680x0 systems, an i nt is 16 bits but a pointer is 32 bits. A naked zero will
not work on those systems.

The POSIX standard does not say exactly what isalegal "executable file." Thisisintentional.
Systems based on BSD allow shell scripts as executable files, while AT& T systems do not.*
Some systems allow shell scriptsfor theexecl p() andexecvp() functionsbut for no
others. If the file you are trying to execute is not executable, the call will return - 1 with

er r no set to ENOEXEC.

The requirements for an application state that the value passed as the first argument must be a
filename associated with the process being started. When you exec() aprogram, you should
pass the filename (not the full path) asar gv[0] . The most common usage of ar gv[O] isin
printing error messages. The' standard does not say that ar gv[0] must be the actud filename
of the executable file. For example, the login utility may prefix the filename with a hyphen to
indicate to the command interpreter being invoked that it isa"login shell.”

Example: Piping Output Through more

Theactionsof f or k() and exec can be made much clearer by using an example. Consider
the sample program at the end of Chapter 3, Sandard File and Terminal 1/0O. This program
writes square roots to afile. Let's modify the program to display the square roots on the screen.

To allow the user to control the output, we will use the nor e program to display the results.

* Thisapplies only to theexec() functions.

Page 104

All weneedto doisreplacethewr i t e_fi | e function with a new function to send the output
to the display. Here iswhat that new function looks like:

voi d di splay(long start,|ong stop)
{

FILE *fileid;

int fildes[2];

long i;

doubl e f;

i nt status;

/* The first thing we do is create a pipe. The array fil des
* contains a file descriptor for each end of the pipe,
* where fildes[0] is the "read" side and fildes[1] is
* the "wite" side.
*/
if (pipe(fildes) !'=0) PANIC

/* Next we attenpt to create a child using the fork()
* function. This has three possible returns: failure,
* normal return to child, and normal return to the parent.

* The switch statenment covers the first two cases. Failure
* s detected and a PANI C nessage is issued. Otherw se, we
* get things set for the child.

*/
switch (fork())
{
case -1:
PANI C,
br eak;
case 0:
/*
* This is the child.
* The first step here is to change the child's
* standard input to be the pipe we just created.
* Doing this uses an old UNIX trick. W close
* the existing STDIN file and then cal
* dup() to create a new descriptor. This
* will use the | owest available file descriptor
* Since we just closed STDIN, dup() will reuse it
* and standard input will be connected to the
* pi pe.
*
* It is nowrequired to close the child' s side of
* both fildes[0] and fildes[1]. The child wll
* see EOF, when all witers of the pipe close
* their side. If we forgot to close the side
*

inherited fromthe parent, the program woul d

* never termninate.
*/
if (close(STDIN FILENO != 0) PANIC,
if (dup(fildes[0]) ! STDIN FILENO PAN C
/* Close left over file descriptors */
if (close(fildes[0]) !'= 0) PANIC
if (close(fildes[I]) !'=0) PANIC
/* The final step for the child is to repl ace
* jtself with the nore program The execl p()
* function does that for us.
*/

execl p("nore", "nore", (char *)0);
PANI C, /* Should never return */

}
/*
* This is the parent
*/

/* In the nmeantine, the parent will skip both cases of the
* switch statement and hit the call to fdopen(). The
* fdopen() function converts a file descriptor to a stream

* This allows the use of standard I/O functions, |ike
* fprintf() to do our output.
*/

fileid = fdopen(fildes[I],"wW');

if (close(fildes[0]) !'= 0) PANIC

if (fprintf(fileid," N SQRT(N)\n") < 0)
PANI C,

/* Next, we do all our conputing. The output will flow
* through the pipe to the nore programwhich will display
it
*/

for (i=start; i <= stop; i++)
{
f = (float)i;
if (fprintf(fileid, "90. Of 24.0. 6f\ n",
f,sqrt(f)) < 0)
{

perror("Error witing output file");
abort();
}

}

/* When we have conputed all of our results, we close fileid.
* This causes nore to see EOF and exit. Note: the fclose()
* function will performa close() on fildes[1l] as part of
* jts work. W do not have to (can't) close it again.

*/
if (fclose(fileid) !'=0) PANC

/* The last step is the wait(). This waits for nore to exit.*/

(voi d)wai t (&st at us) ;
}

Page 105

Portability Note

The first argument to execl p() is"nor e". Thiswill causetheexecl p() functionto
search the path specified by the PATH environment variable. This may not get us the syster
utility more. Y ou may instead find some other program called more. Thisis a security hole (or
at least areliability hole).

Ancther choiceisto build in the absolute pathname for the more utility. Something like
/ bi n/ mor e will work on many UNIX systems but is not guaranteed to work on all POSIX
systems.

A third choiceisto have some sort of installation procedure which asks for a path name for
more and includesit as part of building this application. Thisis one of the more common
techniques used today.

Page 106

When POSIX.2 is an approved (and implemented) standard, it will specify functions to find the
system utilities. Until then you will have to use one of the ideas given above.

Process Ter mination

Y ou sometimes need to wait for children processes to complete their work. Y ou also need to
terminate the current program and other programs. Let's look at some of the ways of doing this.

The wait() and waitpid() Functions

In the previous example we used thewai t () function to make sure that more was done. Let's
now look at wai t () in some more detail. The function is defined as:

pidt wait(int *stat_|oc);

and waits for status to become available for a child process. A call towai t () withani nt
* parameter is very portable and works on all UNIX systems.

Thewai t () function returnsthe process ID of aterminated child. If the argument st at _| oc
isnot NULL, information is stored in the location pointed to by st at _| oc. If the child
returned avalue of zero from mai n() or passed avalue of zeroto exi t () , the value stored
in the location pointed to by st at _| oc will be zero. The status value can interpreted using
the following macros.

W FEXI TED(st at _val ue))
Evaluates to a non-zero value if status was returned for

child that terminated normally.

VEEXI TSTATUS(st at _val ue) _ .
Evaluates to the low-order eight bits of the st at us

argument that the child passedtoexi t () , or the value
child processreturned from mai n() . Thismacro can |
used only if W FEXI TED returned a non-zero vaue.

W FSI GNALED(st at _val ue))
Evaluates to a non-zero value if status was returned for

child that terminated due to asignal that was not caught

WIERMSI 3 st at _val ue) _
Evaluates to the number of the signd that caused the

termination of the process. This macro can be used only

W FSI GNALED returned a non-zero vaue.
W FSTOPPED(st at _val ue)

Evaluates to a non-zero value if the status was returned

achild that is currently stopped. Thewai t pi d() fun
with the WUNTRACED option is the only way this value

be returned.

* Signals are covered in detail later in this chapter.

Page 107

WETOPSI G st at _val ue) Evauates to the number of the signal that caused the ch

process to stop. This macro can be used only if
W FSTOPPED returned a non-zero value.

Here is how you might use these macros:

pid = wait(&s); /* s gets termnation status
* of child
*/

if (pid==-1) PANC
if ((WFEXITED(s) '= 0) && ((VEXI TSTATUS(s) != 0))
fprintf(stderr,"Child exited with code %\ n",
VEEXI TSTATUS(S)) ;
if (WFSIGNALED(S))
fprintf(stderr,"Child died with signal %\ n",
WERMSI Q(s)) ;

These macros are POSI X inventions so they will not work on older systems. The following
definitions will work on most BSD and System V systems:

#define LQ's) ((int)((s)&0377))
#define Hi(s) ((int)(((s)>>8)&0377))

#define W FEX TED(s) (LQ(s)==0

#define WEXI TSTATUS(s) HI(s)

#define WFSI GNALED(s) ((LQ(s)>0)&&(H (s)==0))
#define WERVSI s) (LQ(s) &0177)

#define WFSTOPPED(s) ((LQ(s)==0177)&& H (s)!=0))
#define WSTOPSI (s) H (s)

Traditional UNIX systems provided only thewai t () function. The POSIX working group felt
the need for better control and added thewai t pi d() function. It isdefined as:

pidt waitpid(pid t pid, int *stat loc, int options);
The pi d argument is one of the following:

-1 To wait for any child process. Thisisthesameaswai t () .

positive To wait for the specific child whose process ID is equal to pi d.

zero To wait for any child process whose process group ID isequal to that of the calling
process.

lessthan-1 Towait for any child process whose process group ID is equal to the absolute val ue
pi d.

Process groups are normally used only by shells supporting job control and not by ordinary
applications. This book does not discuss process groups.

Theopt i ons argument is constructed from the bitwise OR of zero or more of the following
flags, defined in the header <sys/ wai t . h>:

Page 108

VNOHANC Causesthewai t pi d() function not to suspend execution of the calling proce:
statusis not immediately available for any of the child processes specified by p

WUNTRACED Causes the status of any child processes specified by pi d that are stopped, and
whose status has not yet been reported since they stopped, to be reported to the
calling process. Thisis normally used only by the shell program to support job
control.

By the way, the name WUNTRACED comes from BSD. BSD supports severa otl
functions that are not part of POSI X, so the name made sensein the BSD contex

Thewai t () andwai t pi d() functions release any resources that the child was using. If you
do not care about the final status of the child, it is not good enough to Smply omit thewai t ()
orwai t pi d() cal. A common way to produce a child that does not need to be waited for is
tof or k() achildandwai t () on the child. The child performs another f or k() to produce
agrandchild. The child then exits and the parent's wait returns. The grandchild is thus
disinherited by the grandparent. The spawned grandchild will release all its resources when it
terminates because there is no process left to wait for it. Thistechnique is much more portable
than the alternative:

systen("comand &");
which depends on features that are outside the scope of POSIX.1.
Terminating the Current Process
There are four ways to terminate the current process:
Returning from mai n() .

Calingexit ().

Cadling_exit().
Cdlingabort ().
Let'slook at them in detail.

Retur ning from main()

The normal way for a program to terminate isto execute areturn (EXI T_SUCCESS) statement
fromthermai n() function. The action of returning avaue from mai n() isexactly the same
ascaling exi t () withthat vaue.

Executing ar et ur n with no valueis not portable.

Page 109

Calling exit()

Theexi t () function causes normal program termination. The EXI T_SUCCESS macro can
be used to indicate successful termination. Since the POSIX standard requires that

EXI T_SUCCESS be defined as zero, it is safe to write exi t (0) , keeping with historical
practice. Thecall exi t (0) isextremely portable.

Theexi t () function performs the following functions:

1. All functions registered by the Standard C at exi t () function are called in the reverse
order of registration. If any of these functions callsexi t () , the results are not portable.

2. All open output streams are flushed (data written out) and the streams are closed.
3. Allfilescreated by t npfi | e() are deleted.

4. The_exi t () functioniscalled.

Calling _exit()

The _exi t () function performs operating system-specific program termination functions.
These include:

1. All open file descriptors and directory streams are closed.

2. |f the parent processisexecutinga wai t () orwai t pi d() , the parent wakes up and
status is made available.

3. Iftheparentisnot executinga wai t () orwai t pi d(), the statusis saved for return to
the parent on a subsequent wai t () orwai t pi d().

4. Children of the terminated process are assigned a new parent process ID. Note: the
termination of a parent does not directly terminate its children.

5. If the implementation supportsthe SI GCHLD signal, a SI GCHLD is sent to the parent.

6. Several job control signals are sent.

7. All of the resources used by the process are returned.

Portable programs should useexi t () instead of _exi t (). The_exit () functionexists
mainly because of the structure of traditional implementations and also the structure of
standards committees. Theexi t () function is defined by the C standard with some features
that are beyond the scope of POSIX. The only reason for an applicationto call _exi t () isto
defeat the flushing of streams and the calling of functionsregistered by at exi t () .

Page 110
Calling abort()

Theabort () function causes abnormal program termination. Exactly what that meansis not
well-defined.

Portable applications should avoid using abor t () except in the case of fatal errors. On some
systems, it may provide useful debugging information, such asacor e file.

Terminating Another Process

Theki I | () function can be used to terminate another process. For example:
kill(pid, SIGKILL);
will kill the processidentified by pi d. It returns zero on successand - 1 on failure.

In generd, it issafe and legal to kill your children and their children. It may be legal to kill
other processes in the system; however, ordinary applications should not kill any process that
they did not create (or cause to be created).

Theki 'l () function can be used for other functions unrelated to terminating a process.
ki || () isdiscussed in greater detail later in this chapter.

Signals

Signalsinform a process of the occurrence of an event. There are two general types of events:

Errors For example, division by zero, illega instruction, or an invalid memory
reference.

Asynchronousevents For example, termination of achild or parent process.

The general concept of signalsisasold as UNIX. Early versions of UNIX had a number of
design flaws in the signal mechanism. The BSD system fixed many of these problems, and the
signals standardized by POSIX are very similar to BSD signals with afew improvements.

Each process has an action to be taken in response to each signal defined by the system. A
signal is delivered to a process when the appropriate action is taken.

During the time between the generation of asignal and the delivery of that signal, the signd is
pending. In most cases, thisinterval cannot be detected by an application. However, asignd

can be blocked.

Each process has a signal mask that defines the set of signals currently blocked from delivery
to it. The signal mask from a processis inherited from its parent. The si gacti on(),

si gprocmask(),andsi gsuspend() functionscontrol the manipulation of the signal
mask.

Page 111

One of several actionsis taken when asignal is delivered:

The processis terminated.

The signal isignored.

The processis stopped.

The process is continued.

The signal is caught by a signal-handling function in the application.
Thereisaset of standard signals which a process can use. These signals are:

SI GABRT Abnormal termination signal caused by theabor t () function. A portable prograr
should avoid catching SI GABRT.

S| GALRV Thetimer set by theal ar n() function has timed-out.
SI GFPE Arithmetic exception, such as overflow or division by zero.
S| GHUP Hangup detected on controlling terminal or death of a controlling process.

SIALL [llegal instruction indicating a program error. Applications may wish to catch thissi
and attempt to recover from bugs. A portable program should not intentionally gener
illegal instructions.”

After aSI G LL iscaught, the only portable thingto doistosi gl ongj np() bacl
aknown placein your program (or call exi t ()).

SI G NT Interrupt special character typed on controlling keyboard.
SI &I LL Termination signal. Thissignal cannot be caught or ignored.
SI GPI PE Write to a pipe with no readers.

SIGUI T Quit special character typed on controlling keyboard.

SI GSEGV Invalid memory reference. Like SI G LL, portable programs should not intentionall
generate invalid memory references.

SI GTERV Termination signal.
SI GUSR1 Application-defined signal 1.

S| GUSR2 Application-defined signal 2.

Unless the application changes the action, any of the above signals cause the abnormal
termination of the process.

* Even non-portable programs should avoid intentionally generating illegal instructions. What
happens if anew model defines the instruction to do something?
Page 112

Thereisaso aset of job control signals. They are:
SI GCHLD Child process terminated or stopped. By default, this signal isignored.
SI GCONT Continue the processiif it is currently stopped; otherwise, ignore the signal.
SI GSTOP Stop signal. Thissigna cannot be caught or ignored.
SI GISTP Stop special character typed on the controlling keyboard.

SI GTTI N Read from the controlling termina attempted by a member of a background process
group.

SI GTTOU Write to controlling termina attempted by a member of a background process groug

Most systems will have signals in addition to those listed here. The POSIX interface allows an
application to manipulate the signals it knows about without disturbing the signals it does not
know abouit.

Signal Actions

There are three types of actions that can be associated with asignal: SI G DFL, SI G_| GN, or
a pointer to a function. The actions for these values are:

S| G_DFL Signal-specific default action.
SIG I GN Ignore the signal.

Itispossibleto ignore SI GFPE, SI A LL, and SI GSEGV; however, programs w
illegal instructions, erroneous arithmetic operations, and invalid memory references
are not portable.

The default for SI GCHLD isto ignore the signal. Applications that wish to ignore
S| GCHLD should set the actiontobe SI G_DFL, notto SI G _| GN.*

Pointer to afunction to catch signal

On delivery of the signal, the receiving process executes the signal-catching functior

After returning from the signal-catching function, the process resumes execution.

Signal-Catching Functions

A signal-catching function receives control when asignal isdelivered. A signal is somewhat
like an unseen hand placing acall statement in the middle of our program—the signal-catching
function gets control and is able to do things. When the signal catcher returns, the interrupted
program continues without a trace.

* |f aprocess sets the action for the SI GCHLD signal to SI C_I G\, the behavior is unspecified.

Page 113

There are some cautions that a signal-catching function must observe:

While a portable program can catch errors such asillega instructions; it should not assume
that it can continue froma Sl GFPE, SI G LL, or SI GSEGV signa. Thus a portable

program can establish signal catchers to be more robust, but it should not depend on illegal
instructions or invalid memory references.

The program may be in the middle of some function when the signal is delivered. It is not
safeto call arbitrary functions from asignal-catching function. The following library
functions are defined by the standard as safe;

_exit()
access()
alarm()
cfgeti speed()
cf get ospeed()
cfseti speed()
cf set ospeed()
chdir()
chnod()
chown()

cl ose()
creat ()
dup2()

dup()

execl e()
execve()
fentl ()
fork()
fstat()

get egi d()
get eui d()

getgi d()

get groups()

get pgr p()
get pi d()
get ppi d()
getui d()
kill()

i nk()

I seek()
mkdi r ()
nkfifo()
open()
pat hconf ()
pause()
pi pe()
read()

renane()
rodir()
set gi d()

set pgi d()
setsid()
set ui d()
sigaction()
si gaddset ()
si gdel set ()
si genpt yset ()
sigfillset()
si gi smenber ()
si gpendi ng()
si gprocmask()
si gsuspend()
sl eep()
stat ()
sysconf ()

tcdrain()
tcflow)
tcflush()
tcgetattr()
tcget pgrp()
t csendbr eak()
tcsetattr()
tcset pgrp()
time()
times()
umask()
unane()
unl i nk()
ust at ()
utine()
wait()
wai t pi d()
wite()

All other library functions (including pr i nt f () and friends) are unsafe and should not be
called from signal-catching functions.

Examine and Change Signal Action

Both Standard C and the POSI X standard define a set of signal-handling functions. The
Standard C functions are limited. They may be useful for programs that need to operate on
non-POSIX systems, such asMS/DOS or System V.3

Standard C Signals
Firgt, the C Standard defines only a subset of the POSIX signas. These signals are:

S| GABRT Abnormal termination signal. Thisis caused by theabor t () function. Standard C
suggests that other events may cause SI GABRT; however, it does not say what thos
events might be.

SI GFPE Arithmetic exception, such as overflow or division by zero.

* |EEE Std 1003.1-1988 definesust at () assafeto call from signal-catching function. The POSIX
standard never definesust at () , and it was deleted from the 1990 revision.
Page 114
SIG LL [llegal instruction.
SI G NT Interrupt special character typed on controlling keyboard.
SI GSEGV Invalid memory reference.

SI GTERV Termination signal.

Standard C does not require that any of these signals be generated. Anillegal memory
reference may, or may not, generate a SI GSEGV.

The Standard C function used to specify signal handling iscalled si gnal () and isdefined
by:

void (*signal (int sig, void(*func)(int)))(int);

wheresi g isasigna number. Thef unc argument is a pointer to a signa-catching function or
to one of the following macros:

SI G_DFL Set the signal to the default action.
SIG I GN Ignore the signal.

For example:
signal (SIANT,SIG IQN;
will cause the interrupt key (usually Control-C) to be ignored, and:
si gnal (SI GSEGV, oops) ;
will cause the function oops(SI GSEGV) to be called on illegal memory references.
Standard C also definesther ai se() function as.
int raise(int sig);

to send signal si g to the executing program. Ther ai se() function returns zero if successful
and non-zero if unsuccessful. Ther ai se() function should be used only in programs that
need to meet the C standard and do not use any POSIX features. Ther ai se() functionis
more portablethan ki | | () for non-POSIX systems that conform to the C standard. The

ki |l () functionismuch more portableto older UNIX systems.

POSIX Signals
The Standard C si gnal () function has several problems:

Thereis no way to determine the current action for asignal. This means that a called
function cannot usethe si gnal () function without disturbing the caller. Thereis no way
to save and restore signal state.

When a signal occurs, there is no way to block other signals to keep the signal handler fron
being interrupted.
Page 115
Thereis no way for an implementation to cleanly extend the signal mechanism.
The POSIX-defined signal functions correct these problems.

The main function for manipulating signalsissi gact i on() . Itisdefined as:

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact);

Thesi gact i on structure isdefined in the header <si gnal . h> to include the following
members:

Member Type Member Name Description

voi d(*) () sa_handl er S| C_DFL for the default action.
or:
Sl C_I GNtoignorethissignal.
or:
pointer to the signal-catching function.

si gset _t sa_mask Additional signalsto be blocked during the execution of the
signal-catching function. (si gset _t and blocked signalsw
be defined soon.)

i nt sa_fl ags This member is used only for the SI GCHLD signdl. If theval

SA NOCLDSTOR isused, then SI GCHLD will not be genere
when children stop.

There may be other flags defined by a particular implementat

A portable program should not use them. It should not be
disturbed by them either.

Thesi gacti on() function setsthe structure pointed to by oact to the old action for signal
sig and then takes the action indicated by the structure pointed to by act.

There may be additional membersin agiven implementation'sst r uct si gacti on.
Portable programs are guaranteed that these members will not affect them. To use
implementation-defined members, implementati on-defined flags must be set.

Page 116
Example: Read with a timeout
Before getting too deeply into signals, it would be useful to go through a complete example.

The following program reads aline from the user. If the user does not type anything for 30
seconds, the SI GALRIV signal will interrupt the read and the get t ext () function will return
zero. Thecaller of get t ext () can then take some alternate action, such as, giving the user
some help.

The program looks like this:

#defi ne POSI X SOURCE 1

/* System Headers */
#i ncl ude <stdio. h>

#i ncl ude <signal . h>
#i ncl ude <uni std. h>

/* Local Headers */
#i ncl ude "panic. h"

/* Macros */

#define TI MEQUT 30
#defi ne TRUE 1
#defi ne FALSE 0

/* File scope variables */

volatile int flag; /* The keyword vol atile warns the
* conpiler that the variable flag
* may change in a way that is not

* predictable by the conpiler.
*/

/* External variables */
/* NONE */

/* External functions */
/* NONE */

/* Structures and Unions */
/* Signal Catching Functions */
/*

* The ding() function catches the SI GALRM si gnal and
* merely sets flag to FALSE

*/

voi d di ng()

{
flag = FALSE;
return;

}

/*

*

The gettext function reads a line fromthe user's
console. If the line is not typed w thin TI MEQUT
seconds, the gettext() function aborts the read and

*

*

Page 117
* returns zero.
*/
int gettext(char *buffer,int bufsize)
{
struct sigaction act, oact;
i nt nchars;
act.sa_handl er = ding; /* Call ding() when the
* al arm goes off
*/
si genpt yset (&act . sa_mask) ;
act.sa_flags = 0;
if (sigaction(SIGALRM &act, &act) != 0) PAN C
flag = TRUE
(void)al ar m(TI MEQUT) ;
nchars = read(STDI N_FI LENO buf f er, buf si ze) ;
(void)alarm(0); /* Cancel outstanding SIGALRM (if any) */
/* Restore previos signal handler for S| GALRM */
if (sigaction(SIGALRM &oact, NULL) !'= 0) PANI C
if (flag) return(nchars);
return(0);
}
Signal Sets

The POSIX standard alows a great deal of flexibility for an implementation while still
providing portable interfaces. Thisis evident in the type si gset _t , which holds some sets of

signals. On some systems, it may be asmple int with one bit per signal. BSD usesal ong for
signa sets. On other systems, it may be a complex structure with version numbers, lists of
signals, or other extensions.

Because an application program does not know the format of asignal set, severa functions are
provided to operate on signal sets. All of these functions are new to POSIX.

The sigemptyset() Function
Thesi genpt yset () function is defined by:

int sigenptyset(sigset t *set);
and is used to initialize the signal set pointed to by set. All signals are excluded from the set.
The sidfillset() Function
Thisisthesameassi genpt yset (), except al signals are included.
The sigaddset() Function
Thesi gaddset () function isdefined by:

int sigaddset(sigset_t *set, const int signo);

and adds the signal specified by si gno to the set pointed to by set .

Page 118

Thisfunction will return zero if si gno isvalid. It will return - 1 and set er r no to El NVAL
if the signal number isinvalid.

The sigdelset() Function
Thisfunctionisthe sameassi gaddset () except that the signal is removed from the set.
Using the sigset Functions

A programmer can then build asignal set which includes only the signadls SI GFPE, SI G LL,
and SI GSEGV with:

sigset t set;

si genptyset (&set);

si gaddset (&set, SI GFPE) ;
si gaddset (&set, SIA LL);
si gaddset (&set, SI GSEQV) ;

It isalso possible to build a set which includes al signals except SI GFPE, SI G LL, and
SI GSEGV with:

sigset t set;

sigfillset(&set);
si gdel set (&set, S| GFPE) ;

si gdel set (&set, SIA LL);
si gdel set (&set, SI GSEQV) ;

The sigismember() Function
Thesi gi smenber () functionisused for testing signal sets. It is defined by:
i nt sigismenber(const sigset_t *set, const int signo);

and returnsavaueof 1 if si gno isamember of the signal set pointed to by set, zero if
si gno isnot amember and - 1 if si gno isinvalid.

The sigprocmask() Function

Blocked signals are signals that are temporarily prevented from delivery. It can be useful to
inhibit signals during execution of a critical section of code.

Y ou have already seen one way to block signals. Thesa_rmask member of thest r uct
si gact i on indicates which signals to block during the execution of a signal-catching
function. For example, SI GALRIV can be blocked during the delivery of SI G NT.

Page 119

Thelist of blocked signals can also be changed using the si gpr ocrmask() function. Thisis
defined as:

int sigprocrmask(int how, const sigset t *set,
sigset _t *oset);

Theaction of si gpr ocmask() depends on the how argument:

how Description

SI G BLOCK The set of blocked signalsis the union of the current set of blocked signals anc
set pointed to by the argument set .

SI G_UNBLOCK The set of signals pointed to by thear gunent set isremoved from the cur
set of blocked signals. It is not an error to attempt to unblock signalsthat are n
blocked.

SI G_SETMASK The current set of blocked signalsis set fromthesi gset t pointedtoby set .

In all cases, if theargument oset isnot NULL, the previous mask is stored into the space
pointed to by oset .

This function returns zero unless an invalid argument is used.

The sigpending() Function

If a condition that would cause asignal occurs while that signal is blocked, the signal is said to
be pending. A pending signal will be delivered after it is unblocked.

A program can examine the set of pending signalsusing thesi gpendi ng() function. Thisis
defined as:

i nt sigpending(sigset_t *set);

It stores the set of signals that are blocked and pending in the space pointed to by set.

Wait for a Signal

Sometimes, a program has nothing to do until asignal is delivered. Thepause() function
suspends the caller until asignal is delivered. There are no argumentsto pause() . The
pause() functionisvery portable but rarely used. Itsmain useisby thesl eep() function.

Thesl eep() functionisapause() with atimeout. Thesl| eep() function takesan
argument of aunsi gned i nt number of secondsto deep. Any signals that are delivered
causes| eep() towake up returning the amount of time left to deep. If no signals occur,
sl eep() returnszero.

Page 120

The sl eep() function may or may not be built using SI GALRW. A library that builds
sl eep() using SI GALRV will be careful to hide thisfrom the caller. A program that uses
both sl eep() and SI GALRV at the same time is not advised.

Thesi gsuspend() functionisacombination of si gpr ocnask() andpause().Itis
defined by:

i nt sigsuspend(const sigset_t *nask);

and temporarily replaces the process signal mask with the one pointed to by mask. The
process then suspends until asignal is delivered.

If the action is to terminate the process, the si gsuspend() function never returns.

Why would one ever usesi gsuspend() ? Consder a program that checks a condition and
callspause() if theconditionisnot true. If asignal occurs between the test and the call to
pause() , the program may hang indefinitely. A flow diagram is shown in Figure 6-1.

Read status of child

e Assume the child slatus
changes right here

Process

| pause() I

Figure 6-1 Potential race condition

The signal isdelivered right before the test for done. The test uses stale data and goes to the
pause() . The signal-catching function could try to update the status. This makes signd
catching very complex. A better way to avoid the problem isto:

1. Block the possiblesignalsusing si gpr ocmask() .
2. Test the condition.

3. Usethesi gsuspend() function to unblock the signal and pause.

Page 121
Sending a Signal

You have already seentheuseof ki | | () to terminate child processes. In fact, it isagenera
mechanism that allows delivery of arbitrary signals to arbitrary processes. The definition of
kill() is

int kill(pid_t pid, int sig);

Thesi g argument must be avalid signal. If the calling process has permission to send the
signal, asignal will be delivered to the process (or group of processes) indicated by pi d. For
the caller to have permission to send asignal, the real or effective user ID of the sender must
match the real of effective ID of the target.

The exact action depends of the value of pi d:

pid Description
Positive Send the signal to the process whose process ID is equal to pi d.
Zero Send the signal to all processesin this process group. Thisis normally used only by

shell.

-1 Not defined by POSIX. In many systems, this sends asignal to every processin the
system.

Lessthan-1 Sendthe signal to every processin the process group given by the absolute value of

Theki 'l () function will return zero if at least one signal was sent. Otherwise, - 1 will be
returned and er r no will be set to indicate the error.

Theki I | () function can be used with SI GUSR1 or SI GUSR2 to send signalsto a
cooperating process. Remember, the default action for SI GUSR1 and SI GUSR2 isto
terminate the process. Do not send them until the receiver has established a signal-catching
function.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. Thef or k() function starts a new process. Where does this new process start?
2. What isthe return from a successful call toexec() ?

3. Theexamplefunction di spl ay() endswith thelines:

if (fclose(fileid) = O PANC
wai t (&st at us);

What would be the ill effects of leaving out thef cl ose() ? What about thewai t () ?

4. Giveone advantage of wai t pi d() overwai t ().

Page 122

5. What isthe difference betweentheexi t () functionandthe exi t () function? Whenis
itagoodideatouse exit () instead of exit () ?

6. What isasigna mask? How istheinitial value for the signal mask determined?
7. Give an example of aportable action asignal catcher for the SI GSEGV signa might take.

8. What happensto aprogram that callsal ar m() but failsto establish a signal-catching
function for the resulting SI GALRIV?

9. Canaportable programcall pri nt f () from asignal-catching function? Why or why not?

10. Give one advantage of the POSIX si gacti on() function over the ANSI si gnal ()
function.

11. Write a program fragment to block all signalsexcept SI G NT and SI GHUP.
12. Expand the program fragment from problem 11 to check to seeif SI GALRV is pending.
13. What advantage doessi gsuspend() have over pause() ? When isthisimportant?

14. Write a program to run another program and limit it to 60 seconds of elapsed time.

15. Write a program to compute and display prime numbers until the user types a return.

Page 123

Chapter 7
Obtaining Information at Run-time

Thereisagreat deal of system-specific information available for use by your programs.
Much of thisinformation is contained in header fileslike<l i m ts. h>and
<sys/types. h>, andisbuilt into your programs at compile-time. Thereis other
information, such asthe user name, that is known only at run-time. And still other
information, like the maximum number of open files, may be available at either compile-time
or run-time. This chapter deals with information that is typically available only at runtime.

Process | dentification

Each processin the system is uniquely identified during its lifetime by a positive integer called
aprocess|ID. A process D hastypepi d_t definedin <sys/t ypes. h>. Historicaly,
process IDs have been shor t . As systems grew larger, many implementors made process IDs
long. Thepi d_t typeisused to allow programs to work with both sizes.

Y ou can retrieve your own process ID using theget pi d() function. This function takes no
arguments and returns the process ID. Y ou can retrieve the ID of the parent process using the
get ppi d() function. It also takes no arguments and returns the process ID of the parent
process.

User Identification

When you log in, you have alogin name, auser 1D, and agroup ID. The user and group IDs are
positive numbers which you can convert to the corresponding login names.

Let'swrite a program to generate a ssimple report. The report will look like:

Logi n nanme is 'don'
Term nal pathnane is '/dev/tty
Real U D is 13(don) and effective UDis 2(hin)
Real group IDis 13(don) and effective group IDis 25(denp)
The foll owi ng suppl ementary groups are avail abl e:
13(don)
25(deno)
101(groupl)
102(group?2)
103(group3)

Page 124

Before we start to design the program, let's ook at each item in the report:

The Login name is the name the user used to gain accessto the system. Theget | ogi n()
function takes no arguments and returns a pointer to a string giving a user name associated
with the calling process.

Theget | ogi n() function returns NULL if the user's login name cannot be found. If
get |l ogi n() returnsanon-NULL pointer, that pointer points to the name under which the
user logged in, even if there are severa login names with the same user ID.

The Terminal pathname is aname our program can give to theopen() or f open()
functions to access the controlling terminal. This string may not uniquely identify the
terminal. Thect er m d() function isused to obtain the termina pathname and is defined
as:

char *ctermid(char *s);

If s isnot NULL, the terminal pathnameisstoredin s and s isreturned. If s isNULL,
cterm d() returnsapointer to a possibly static string. The header <st di 0. h> defines
thesymbol L_ct er m d, definedin <st di 0. h>, and gives the maximum length of the
string returned by ct er m d() . A typical useis:

char termd[L_termd];
(voi d)ct ernid(ternid);

The Real UID identifies the group of users who created the process; in most cases, thisis
the user ID associated with the login name. Theget ui d() function takes no arguments
and returnsthe real user ID.

When one of the exec functions runs a program with the SETUID bit set, the effective ID
of the processis set to the owner of the program file. The effective user ID is used to check
permissions. For example, the owner of a game program can make the program SETUID so
that it can update scores. The get eui d() function takes no arguments and returns the
effective user ID.

A group ID is anon-negative integer used to identify a group of system users. Each systerr
user isamember of at least one group. The Real group ID identifies the user who created
the process. Theget gi d() function takes no arguments and returns the real group ID.

When the exec function runs a program with the set-GID bit set, the effective group 1D of
the processis set to the group of the program file. The use of the set-GID isvery smilar to
SETUID. Theget egi d() function takes no arguments and returns the effective group ID.

A process has access to zero or more supplementary group 1Ds in addition to the effective
group ID. A process can st its effective group ID to any one of the supplementary group
IDs.

Page 125

Now, let's consider the design of the sample program. There is some information that occurs
multiple times, for example, user | D(user nane) . Formatting and printing user IDs and
group IDs are good candidates for functions. Printing all the supplementary groups is complex

enough to deserve afunction. Everything else can go into mai n() .

The main purpose of this program is to demonstrate the use of functions that obtain information
about our process. We mention the portability and design concerns as we go along.

User IDs

In order to convert auser 1D to a user name, we use the get pwui d() function. On most
systems, this function looks up the user inthefile/ et ¢/ passwd and returns one entry.
However, there is no requirement for the system to have a password file; get pwui d() might
work some other way.

Theget pwui d() function takesasingle UID as an argument and returns a pointer to a
struct passwd. Thisstructureisdefined in <pwd. h> and contains the following
members:

Member Name Member Type Description

pw_nane char * User'slogin name.
pw_ui d uid t User ID number.

pw_gi d gid_t Group ID number.
pw_dir char * Initial working directory.
pw_shel | char * Initial user program.

The structure may contain other members and the members may bein any order. The
get pwui d() function returnsa NULL pointer if the entry is not found.

Thereis another function called get pwnant) . Thistakesasinglechar * argument and
looks up the user by name instead of number. The get pwnant() function aso returnsa
pointertoastruct passwd.

Theget pwui d() and get pwnan() functions are very portable. Some systems may have
additional membersin st ruct passwd. If you use these members, your programisless
portable.

Page 126

Thepri ntuser () function takesasingle argument of type ui d_t and prints the argument
in decimal form followed by the corresponding user name. Nothing is returned:

/*

* Print out the user IDin decinmal followed by

* (usernane)

*/

void printuser(uid_t userid)

{

unsi gned | ong It; /* tenmp */

struct passwd *pwptr; /* pointer to user info */

It = (unsigned | ong)userid; /* make the uid a long */

(void)printf(" %u(",It); [* print the nunber */
pwptr = get pwui d(userid); /* get the information */
if (pwptr == NULL) /* print question narks if
* user IDis not known
*/
{
(void)printf("?2?2?2???2)");
return;

}
(void)printf("%) ", pwptr->pw_nane);
return;

}

There is one complex step involved. On some POSIX systems, ui d_t will beashort ; on
other systems, it will beal ong. Thepri nt f () function requiresthat we explicitly specify
the size of the value we are printing. To handle thisin a portable fashion, we "promote” the
user ID toalong and then tell pri nt f () to print along. On systemswith 32-bit i nt s, the
default promotion rules give the correct results. On a system with 16-bit i nt s, the defaults
may not work. Explicitly converting to | ong worksin all cases. If this function returned the
UID instead of printing it, we could just return avalue of typeui d_t .

Group IDs

To print the group number and name, usetheget gr gi d() function, which isvery similar to
theget pwui d() function. It returns a pointer to group structure based on agroup ID. This
structure is defined in the header file <gr p. h> and contains the following members:

Member Name Member Type Description

gr _nane char * The name of the group.
gr_gid gid_t Group ID number.
gr_nem char ** Pointer to a null-terminated array of char * . Each element of tt

array points to an individual member of the group.

Aswith get pwui d() , the members of the structure may be in any order and there may be
additional members. A return value of NULL indicates that no entry was found.

Page 127

Thereisasoaget gr nan() function which isidentical to get gr gi d() except that it takes
achar * group name as an argument instead of agroup ID.

Our pri nt group() function takesasingle argument of typegi d_t and printsit in decimal
followed by the corresponding group name. No value is returned.
/ *
* Print out the group nunber in decinmal followed by
* (groupnane)

*/
void printgroup(gid_t groupid)

{
unsi gned long It; [* temp */
struct group *grpptr; /* pointer to group info */
It = (unsigned long)groupid; /* make the gid a |ong */
(void)printf(" %u(",It); [* print it */
grpptr = getgrgid(groupid); /* get group structure */
if (grpptr == NULL) /* print question narks if
* group nane i s unknown
*/
{
(void)printf("??2?2?2??2)");
return,
}
(void)printf("9%)", grpptr->gr_nane);
return,
}

Next, we turn our attention to afunction to print alist of al groups of which the processisa
member. We aready have afunction called pri nt gr oup() that prints out asingle group ID.
It is tempting to name the function that prints all the groupspr i nt gr oups() . Long and bitter
experience has taught that it is a bad idea to have many functions with very smilar names. The
functionspri nt group() andpri nt gr oups() aretoo closetogether. The name
printal | groups() islesslikely to cause confusion. We haveto livewith get gi d()
and get egi d() becausethey arelibrary functions. Do not use them as an example of good
software engineering practice.

Thekeytothepri nt al I groups() functionisthe POSIX function get gr oups() , which
isdefined as:

int getgroups(int gidsetsize,gid t grouplist[]);

andfillsinthearray gr oupl i st withuptogi dset si ze supplementary group IDs. The
actual number of groupsin useis returned.

We could allocate an array with NGROUPS _MAX elements; however, on some systems that
may be alarge value. Instead, we call get gr oups() with gi dset si ze equal to zero and,
because it returns the number of groupsin use, we can use this number to allocate the array. A
second call will then exactly fill the array.

Page 128

Thereis one other complication. The system you are using may not support multiple groups.”
This depends on the symbol NGROUPS_MAX being greater than 1. Future versions of POSIX
may not require NGROUPS_MAX to be defined. We use #i f def s in our function to be sure
that NGROUPS_IVAX is aways defined.

S0, the code ends up looking like this:

voi d printallgroups()
{

i nt ngr oups; /* nunber of active groups */

gidt *grpptr; /* pointer to the list of
* active groups

*/
i nt i;
gidt gi d;
#i f ndef NGROUPS_MAX /* 1f NGROUPSMAX is not defined */

#def i ne NGROUPS MAX 0 /* assunme that it is zero */
#endi f

#i f NGROUPSMAX < 1
/* This printf is conpiled if NGROUPS MAX is less than 1 */
(void)printf("Supplenentary group |IDs are"
"not supported\n");
#el se
/*
* This is conpiled if there is at |east one
* suppl ementary group.
*/
ngroups = getgroups(0, (gidt *)NULL); /* get the nunber
* of suppl ementary group
* |Ds in use
*/
if (ngroups == -1)
{
(void)perror("getgroups() failed");
return,
}
if (ngroups == 0)
{
(void)printf("No suppl enentary groups are"
"avail abl e\ n");
return,
}
grpptr = call oc(ngroups, sizeof(gid t));
/* Allocate an array with
* ngroups nenbers each big
enough for a gid t.
grpptr points to the
array.

*

*

*

*/

if (getgroups(ngroups, grpptr) == -1) /* Get group IDs */

* |tislikely that the system will support multiple groups. The Federal Information Processing
Standard (FIPS) version of POSIX requires that multiple groups be supported. This means than any
vendor who would like to sell to the United States Government must support multiple groups.
However, afully portable program must tolerate any legal environment.

Page 129
{

(void)perror("getgroups() failed");
return;

(void)printf("The followi ng suppl enentary groups are

' available:\n");
for (i=l; i <= ngroups; i++) /* Loop over all IDs */
{
gid = *grpptr++; /* Load an IDinto gid and
* update grpptr to point
* to the next ID

*/
(void)printf("\t"); /[* Print a tab */
printgroup(gid); /* Then the group ID */
(void)printf("\n"); /* Then a new ine */
}
#endi f
return,
}

Now, let'swritethe mai n() function. Thefirst thing we need is the login name; the
get | ogi n() function returns a pointer to the name. To get the terminal pathname, we pass
cterm d() apointer to acharacter array and it fillsin the pathname.

The user and group IDs are obtained with get ui d(), get eui d(),getgi d(),and

get egi d() . Thesefunctions are always successful and there is no return value to indicate an
error. On very old UNIX systems, ui ds and pi ds were 8-bits. Most System V and BSD
systems use 16 bitsfor IDs. POSIX allows 32-bit numbers as vendors expand their systemsto
32-bits. A typical 1991 operating system definesapi d_t asalong and restricts the valuesto
be less than 65535. This practice avoids breaking old applications. Y our programs should
assumethat pi ds and gi ds may be 32 bits.

All that isleft isto add the required #i ncl udes and #def i nes in the front and the
complete program is shown in Example 7-1:

EXAMPLE 7-1.printinfo.c

#define POSI X SOURCE 1

#i ncl ude <stdio. h>
#include <limts. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

#i ncl ude <pwd. h>

/*
* Print out the group nunber in decinmal followed by
* (groupnane)

*/
voi d printgroup(gid_t groupid)
{
unsi gned | ong It; [* tenp */
struct group *grpptr; /* pointer to group info */

Page 130

It = (unsigned long)groupid; /* make the gid a long */
(void)printf(" %u(",1t); [* print it */

grpptr = getgrgid(groupid); /* get group structure */

if (grpptr == NULL) /* print question marks if
* group nane i s unknown
*/
{
(void)printf("?2?2?2???2)");
return;
(void)printf("%s)", grpptr->gr_nane); [* print group nane */
return;
}
/*

* Print out the user IDin decinal followed by
* (usernane)

*/
void printuser(uid_t userid)
{
unsi gned | ong It; /* tenmp */
struct passwd *pwptr; /* pointer to user info */
It = (unsigned | ong)userid; /* make the uid a long */
(void)printf(" %u(",It); [* print the nunber */
pwptr = get pwui d(userid); /* get the information */
if (pwptr == NULL) [* print question nmarks if
* user IDis not known
*/
{
(void)printf("??2?2???2)");
return;
}
(void)printf("%)", pwptr->pw _nane);
return;
}
voi d printall groups()
{
i nt ngr oups; /* nunber of active groups */
gidt *grpptr; /* pointer to the list of
* active groups
*/
i nt i
gidt gi d;

#i f ndef NGROUPS MAX
#defi ne NGROUPS MAX 0
#endi f

#i f NGROUPS_MAX < 1
(void)printf("Supplementary group |IDs are
"not supported\n");
#el se
ngroups = getgroups(0, (gid t *)NULL); /* get the nunber
* of supplenentary
group
* |Ds in use
*/

if (ngroups == -1)

{
(void)perror("getgroups() failed");
return;

if (ngroups == 0)
{
(void)printf("No suppl enentary groups are
"avail abl e\ n");
return;

}
grpptr = (gid_t *)call oc(ngroups, sizeof(gid t));
i f (getgroups(ngroups, grpptr) == -1)

(void)perror("getgroups() failed");
return;

(void)printf("The foll owi ng suppl ementary groups are
"avail able:\n");

for (i=l; i <= ngroups; i++)

{

gid = *grpptr++;

(void)printf("\t");

printgroup(gid);

{void)printf("\n");

}

#endi f

return;
}
int main()
{
ui d_t ui d;
gid_t gi d;
char *| ogi n;
char termd[L_ctermd];

login = getlogin();
if (login == NULL)
{

(void)printf("Login nane is not known\n");

}

el se
{
(void)printf("Login nanme is '%'\n",login);
}
(void)cterm d(termd)
(void)printf("Term nal pathname is '%'\n",termd);
uid = getuid();
(void)printf("Real UDis");
printuser (uid);
uid = geteuid();
(void)printf(" and effective UDis");
printuser (uid);

Page 131

gid = getgid();
(void)printf("\nReal group IDis");

printgroup(gid);
gid = getegid();
(void)printf(" and effective group IDis ");
printgroup(gid);

(void)printf("\n");
Page 132

printallgroups();
return(O;
}

System I dentification

POSIX providestheunane() function to give us some minimal information about the systerr
you are using. The function is defined as:

i nt unane(struct utsname *nane);

andfillsinthest ruct ut sname passed by thecaller. If unane() issuccessful, a
nonnegative value isreturned. Upon failure, - 1 isreturned.

Thest ruct ut snane isdefined inthe header file<sys/ ut snane. h> asaset of
null-terminated character arrays. The structure contains the following members:

Member Name Description

sysnanme Name of this operating system.

nodenane Name of this node within a network. Note: There is no guarantee that this name ¢
be used for anything. The name returned in nodenamne may (or may not) be usef
for network use.

rel ease Current release level of thisimplementation.

vVer si on Current version level of thisrelease.

While POSIX providesthe release level and version, it never defines them.

machi ne Name of the hardware type the system is running on.

Aswith most POSIX structures, these members can be in any order and other members can be
present.

A typical useis:

#i ncl ude <sys/ utsnane. h>

struct utsnane unanebuf;

i f (unane(&unanebuf) == -1)

(void)printf("The systemnanme i s unknown\n");
el se
(void)printf("This systemis called '%"'\n",
unanebuf . sysnane) ;

The format of each member isimplementation-defined. POSIX does not specify the format of
any of the members. Thereis no way a fully-portable program can interpret the information.

Page 133

Dateand Time

One important part of the environment is the current date and time. Programs have |ots of
reasons to obtain and manipulate this information. The Standard C/POSIX environment
provides a set of utilities for dealing with time.

Thetime() Function

Theti me() function returns the number of seconds since midnight January 1, 1970
Coordinated Universal Time.* The function is defined as:

time t tine(tinme_t *tloc);

It returnsthe time and storesitintot | oc. Thecall t i me(NULL) merely returns the time and
no valueis stored.

Thetypeti ne_t isdefinedin<ti me. h>. Whileitistypically an unsi gned | ong, it
canbeadoubl e orl ong doubl e.

The localtime() and gmtime() Functions

Theti me() functionisredly al you need. Given the number of seconds since a known time,
it is possible to compute any time component you need. However, to prevent every programmer
from reinventing the wheel, some handy library functions are provided. Two functions,
gntinme() andl ocal tinme(),convertatime_t toastruct tmn Thegntimnme()
function returns UTC, whilel ocal ti me() returnstheloca time. Thest ruct t mn contains
the following members:

Type Name Range Description

i nt tmsec 0-61** Seconds after the minute.
i nt tmmn 0-59 Minutes after the hour.

i nt t m_hour 0-23 Hours after midnight.

i nt t m nday 1-31 Day of the month.
i nt t m non 0-11 Months since January.
i nt tm year Y ears since 1900.

i nt t m wday 0-6 Days since Sunday.

i nt

t m yday

0- 365

Days since January 1st.

* Coordinated Universal Time isthe new name for Greenwich Mean Time. The standard abbreviation
isUTC because if England was going to get "universal time" at least the name was going to bein
French. Such are the politics of standards.

** Therange fort m_sec allowsfor two leap seconds.

Type

Name

Range

Page 134

Description

i nt

t m.i sdst

Daylight Savings Timeflag:
>0 if DST isin effect
=0if DST isnot in effect

<0 if theinformation is not available

These members can appear in any order and there may be additional members.

The time-conversion functions are defined as;

and:

struct tm*localtine(const tine_t *tiner);

struct tm*gntinme(const time_t *timer);

Theargumentisapointertoati ne_t.Thel ocal ti me() andgnti me() functionsreturn
apointer to a structure containing time information. Thenext cal tol ocal ti me() or

gnti me() may (or may not) overwrite this structure. If you want to keep it around, copy it
somewhere safe.

A smpleexampleof | ocal ti me() is:

time t
struct tm

now;
*t -

now = tine((time_t *)NULL);
t = local tinme(&ow;

(void)printf("It
t->tm hour,
t->tmnon+l,

i's now %d: %2d: %2d on %/ %/ %\ n",
t->tmmn, t->tmsec,
t->tmnday, t->tmyear);

(void)printf("Day of week: %\ n",t->tmwday+l);
(void)printf("Day of year: %\ n",t->tmyday+l);
if (t->tmisdst > 0)

el se

(void)printf("Daylight savings tine\n");

(void)printf("Standard tinme\n");

Notice that you need to add "1" to the month before printing it. Thevalueint m_non isinthe
rangeOto 11.

Thegnt i me() functionisexactly thesameas| ocal ti ne(), except that thetimeis
expressed in Coordinated Universal Time (UTC). Standard C allows this function to return
NULL if the time zone is unknown, but POSIX Section 8.1.1 requires that the time zone be
known.

If your program needs to be ported to non-POSIX and non-UNIX systems, | ocal ti me() is
more portablethan gnt i me() .

Page 135
The mktime() Function

Thenkti me() functionistheinverseof | ocal ti nme() . It convertsthe structure that
Standard C calls a broken-down time to avalue of typet i me_t . The function is defined as:

time_t nktime(struct tm*tinmeptr);

Thenkt i me() functionignoresthe original valuesof t m wday andt m yday. On
successful completion, the valuesof t m wday andt m yday are updated and the other
values are set to reflect the specified calendar time. This can be used to compute the day of the
week agiven date fals on.

Thenkt i me() function may or may not fail on al invalid times, for example, February 29,
1995. It isbest not to give nkt i me() invalid input.

The strftime() Function

To print the current date or time, itispossibletousel ocal ti nme() andformat astring. The
strftime() function, similartospri ntf (), peformsthistask. It convertsast r uct
t i to a string under the guidance of aformat string. Thest rf t i me() function is defined as:

size t strftine(char *s, size_ t maxsize
const char *format, const struct tm*tineptr);

where s pointsto an array of maxsi ze bytes. f or mat isaformat-control string and
ti meptr isapointer to astructurereturned by | ocal ti me() orgnti me().

Characters are copied from the format string to the array pointed to by s. A conversion
specifier consists of a % followed by a character that determines the substitution. The list of
conversion specifiersisstrfti me() conversion specifiers.

Specifier Replaced by the locale's

%a Abbreviated weekday name.
YA Full weekday name.

% Abbreviated month name.

o8 Full month name.

o%c Date and time.

%l Day of the month as a decimal number (01-31).

o Hour as a decimal number (00-23).

% Hour as adecimal number (01-12).

% Day of the year as a decimal number (001-366).

Page 136

Specifier Replaced by the locale's

%m Month as adecima number (01-12).

%vi Minute as a decima number (00-59).

%p Equivalent of AM P for use with a 12-hour clock.

%S Second as a decimal number (00-61).

%) Week of the year as adecima number (00-53) using the first Sunday as day
of week 1.

% Weekday as a decimal number (O] Sunday]-6).

% Week of the year as adecima number (00-53) using the first Monday as day
of week 1.

X Date.

"X Time.

Ny Y ear without a century (00-99).

%r Y ear with century (e.g., 1991).

Yz Time zone.

%0 %

Here are some examples of format strings and possible output in the POSIX locae:

Format: Resault:

%A, 9B, %d, %r Saturday April 13, 1991
%a %d- %b- Wy Sat 13- Apr-91

% Yel/ %y 04/ 13/ 90

%r vt 19900413

% %M 15: 25

% %Vt %6 15: 25: 30

% Sat Apr 13 15:25:30 1991
%X on % 3:25 PMon 4/13/91

The formats %, %X, and % produce strings for the current locale. They offer an easy way to
produce a program that can be moved from country to country.

* The locales are covered in Chapter 10, Porting to Far-off Lands. The information in the exampleis
the default POSI X result.

Page 137

The asctime() and ctime() Functions
There are a couple of functions that are shorthand for popular routines.
Thefunctionascti me(ti nmeptr) returnsapointer to astring of the form:

Sat Apr 13 15:25:30 1991\n\O0
Thefunctioncti nme(ti nmer) isequivalent to:

asctime(localtime(tinmer))
The difftime() Function
The C standard definesthedi f f ti me() function as:

double difftime(tine t tinmel, tinme_t time2);

returning the number of secondsbetweent i mel andt i me2 expressed as adouble. Since
POSIX definestheunitsof t i me_t as seconds since midnight January 1, 1970 Coordinated
Universal Time, thisfunction is not needed. A ssmple subtraction with a cast gives the same
answer. For example, in:

time t
doubl e

start, end;
diffl, diff2;

diffl = difftine(end,start);
diff2 = end - start;

di ff 1 will beequal todi ff2.Usethedi fftinme() functionif your code might be ported
to systems which use Standard C but do not conform to POSIX.

The clockO and timesO Functions

Thecl ock() function defined in Standard C is defined as:
clock _t clock(void);

and returns the amount of processor time used. The standard does not define when the clock
starts, so this function is used to measure the amount of processor time used between two
events, say, the start and end of a complex calculation.

Thecl ock() function returns anumber that can be converted to seconds by dividing by
CLOCKS_PER_SEC.

In addition to thecl ock() function, POSIX defines a more powerful function called
times(). Thisisdefined as:

clock t tinmes(struct tns *buffer);

Page 138

and returns the amount of real time since the system was started.” The return value is useful for
computing the elapsed time between two events. Thevalueof acl ock _t can be converted to
seconds by dividing by the macro CLK_TCK.

Thestruct tns structure contains at least the following members:

Member Name Description

tns_utinme User CPU time.
tnms_stine System CPU time.
tnms_cutine User time of terminated child processes.

tns_cstine System time of terminated child processes.

All members have thetypecl ock_t and can be converted to seconds by dividing by the
symbol CLK_TCK. User timeistime charged for the execution of user processes. System time
istime charged for executing the system on behalf of the process. Which library functions
charge system time and the amount that they charge will vary from implementation to
implementation.

If you plan to compile your application on every target computer, dividing by CLK_TCK to get
secondsisfine. However, if you plan to compile in one place and move your compiled binary
from computer to computer, dividing by CLK _TCK may give the wrong answer. It is better to
usethesysconf (_SC CLK TCK) function to determine thisvalue at run time."* The
sysconf () functionisdescribed later in this chapter.

Environment Variables

An array of strings called the environment is made available when the process begins. This
array is pointed to by the external variable envi r on, which is defined as:

extern char **environ;

*Thet i mes() function does not really need to return the amount of real time since the system was
started. It really returns the amount of real time since some arbitrary point in the past before any
processes were started. Applications can count on this number increasing asthey f or k() and
exec() new processes.

** Of course, the clever system implementer may have defined the CLK_TCK macro with acall to
sysconf (), for example:

#define CLK TCK ((clock t)(__sysconf(3)))
Heor sheused __sysconf () instead of sysconf () becausethesysconf () functionisnot

declaredin<t i me. h> and is available for the user unless<uni st d. h> isincluded. Thevalue3is
used instead of SC CLK _TCK for the same reason.

Page 139

These strings have the form nanme=val ue; the following names are defined by POSIX:

Name Description

HOVE The name of the user'sinitial working directory.

LANC The name of the predefined setting for locale.

LC ALL The default locale to useif any of thefollowing LC_synbol s isnot defined.

LC COLLATE The name of the locale for collation information.

LC CTYPE The name of the locale for character classification.

LC_MONETARY The name of the locale for money related information.

LC_NUMERI C The name of the locale for numeric editing.

LC TI ME The name of the locale for date- and time-formatting information.

L OGNAME The name of the user's login account.

PATH The sequence of path prefixesused by execl p() and execvp() inlocatin
programs to run.

TERV The user's terminal type.

TZ Time zone information.

The environment variables having to do with locale are used for moving an application from
one country to another. They are discussed in Chapter 10, Porting to Far-off Lands.

Of course, some variables may be missing and other environment variables may be present.
Many programs look in the environment variable list for system-specific information. These
programs can be fully portable and still adjust themselves to a given systerr. The value string

contains some form of user preference information. For example:
nme/ usr/ don/ mail .rc
or:

ham nfo="-call WB2UMF -grid FN42"
The getenvO Function

Theget env() function isused to look up names in the environment strings. Thisis defined
as:

char *getenv(const char *nane);

Page 140

It searches the environment for name and returns a pointer to the value or NULL if name cannot
be found. Like most functions that return a pointer to astring, get env () may overwrite the
information on a subsequent call.

Do not attempt to modify the string returned by get env () ; it might be a copy of the red
environment variable.

The sysconf() Function

The POSIX standard is defined exclusively at the source-code level. The objectiveisthat a
conforming application can be compiled and executed on a conforming implementation.

While POSIX does not guarantee binary portability even across machines of the same make and
model, it does try hard not to preclude portability either.

Traditional UNIX applications are distributed in one of two ways.

By distributing portable source files that can be tailored to each system (most of the public
domain applications fall into this category). Software distributed in source form can be
tailored in many ways. For example, an installation script can create system-specific
header files used to compile the application. Applications distributed by the Free Software
Foundation, such as GNU C, provide a good example of this technique.

By distributing compiled software for a specific make and model of computer. Software
vendors would like to compile their software and distribute only the compiled binary
because it provides the best security for the software. Software vendors would also like as
much binary portability as possible.

One of the aidsto binary portability isthesysconf () function. It lets an application
determine the run-time value of variablesin <l i m t s. h>. Thesysconf () functionis
defined as:

| ong sysconf (i nt nane);

where name is a code for one of the system limits.* The codes are:

Compile-TimeMacro sysconf () name Description

ARG _MAX _SC_ARG_MAX

_POSI X_CHI LD MAX _SC CHI LD_MAX

ID.

The length of the argumentsfor theexec()
function.

The number of simultaneous processes per real

* The most common error | have seen with sysconf () andpat hconf () isconfusing the
parameter to pass with the value returned. The parameter is dways amacro, suchas_SC_OPEN_MAX.

The system limit isreturned.

Compile-Time Macro

sysconf () name

Page 141

Description

CLK_TCK
_POSI X_NGROUPS_MAX

STREAM_MAX*

TZNAVE_MAX*

_POSI X_OPEN_MAX

_POSI X_JOB_CONTROL
_POSI X_SAVED | DS

_PCSI X_VERS| ON

_SC_CLK_TCK
_SC_NGROUPS_MAX

_SC_STREAM MAX*

_ SC_TZNAME_MAX*

_SC_OPEN_MAX

_SC_JOB_CONTROL
_SC_SAVED | DS

_SC_VERSI ON

The number of clock ticks per secon

The number of smultaneous
supplementary group 1Ds.

The maximum number of streams the
one process can have open at one tir
Thisisthe same as FOPEN _MAX frc
the C standard.

The maximum number of bytesin ati
Zone name.

The maximum number of filesthat o
process can have open at one time.

Job control functions are supported.

Each process has a saved SETUI D
asaved SETA D.

Indicates the 4-digit year and 2-digit
month in which the standard was
approved. The integer 198808L indic
the 1988 version and the integer 199009
indicates the 1990 version.

POSIX Section 2.8.4 (2.9.4 in the 1988 version) states, "A definition of one of thevalues. . .
shall be omitted fromthe <l i m t s. h> on specific implementations where the corresponding
valueisequa to or greater than the stated minimum, but is indetermi nate." This paragraph has
been interpreted in severa different ways. | believe that the safest thing to do isto ignore
symbols and always use the value returned by sysconf () . That is, use

sysconf (_SC OPEN_MAX) instead of POSI X OPEN_MAX. Thiswill often be amore

generous value.

* This symbol isdefined in IEEE Std 1003.1-1990 but not in |EEE Std 1003.1-1988.

Page 142

The pathconf() and fpathconf() Functions

Some limits vary not only from system to system but also from fileto file. The pat hconf ()
and f pat hconf () functions return file-specific configuration information. They are defined
as:

| ong pat hconf (const char *path, int nane);
and:
long fpathconf(int fildes, int nane);

The possible values for name are:

Name Description

_PC_LI NK_MAX Maximum vaue of afile'slink count. If pat h orfi | des refer
adirectory, then this value applies to the entire directory.

_PC_MAX_CANON Maximum length of aformatted input line. pat horfi |l des m
refer to aterminal.

_PC_MAX_ | NPUT Maximum length of aninput line. pat h or fi | des must refer
terminal.

_PC_NAME_MAX Maximum length of afilename for this directory.

_PC_PATH_MAX The maximum length of arelative pathname when this directory

the working directory. That is, the number of characters that may
appended to pat h and still have avalid pathname.

_PC_PI PE_BUF Size of the pipe buffer, f i | des must refer to apipe or FIFO.
pat h must beaFIFO.

_PC_CHOWN_RESTRI CTED Thechown() system cal may not be used on thisfile. If pat I
fi | des refersto adirectory, then this appliesto al filesin the

directory
_PC_NO_TRUNC Generate an error if afilename is truncated in the named directo
_PC VDI SABLE Allow special-character processing to be disabled. pathorfi |

must refer to aterminal.

Thesysconf (), pat hconf (),andf pat hconf () functionswereinvented by the
POSIX committee. They are not found on older systems. Y ou must use some form of

compile-time value on non-POSIX systems.

The values returned by these functions should be thought of as minimum guarantees. For
example, if pat hconf (". ", SC _NAME_MAX) returns 63, your application can

Page 143

create files with names up to 63 characters. If you read the directory with r eaddi r () , you
may encounter files with names greater than 63 characters. The values returned by

sysconf () andpat hconf () arenot suitable for alocating memory. Some values may be
huge.

Portability Lab

To review the contents of this chapter, try to do the following exercises.

1

10.

11.
12.

13.

14.

This chapter gives two different waysto get the user's login name. What are they? Isthere
any advantage to one over the other?

What is the difference between the rea user ID and the effective user ID?
What errorsdoes get eui d() detect?

Isthere a portability advantageto using get pwui d() instead of just reading
[et ¢/ passwd?

One way to obtain the number of groupsisto call get gr oups() with gi dset si ze
equal to zero. Another way is to use the symbol NGROUPS _MAX. A third way isto call
sysconf (_SC_NGROUPS_MAX) . Itispossiblefor al three methods to come up with a
different answer. Give an example of agood use for each of the methods.

Give one use for the information returned by the uname() function.

Isit possible for a POSIX system to know the local time but not know the UTC time? Why
or why not?

Write asimple program to print out the day of the week on which your birthday fallsfor the
next 20 years.

The format specifier % instrfti me() printsthe date. Why isthis better than
%/ %m %y ? Note: Answers of the form "it islesstyping" do not count.

The POSIX committee is working to eliminate the use of the symbol CLK_TCK. Why?
What can replace it?

What is a portable use for the information returned by t i mes() ?

What is one disadvantage of using the environment variables to provide user preference
information to an application? What is one advantage?

Thesysconf () function isintended to help a compiled program move from one system
to another. What do you think some of the rules are to allow this kind of portability?

What information does the call:

pat hconf ("/usr", PC NAMVE MAX);

return?

Page 145

Chapter 8
Terminal 1/0

The functions we have already covered (scanf (), printf (), read(),wite(),and
so on) are used by most applicationsto do I/O to a terminal. This chapter concentrates on
the control functions defined in the header file <t er m os. h>. The vast majority of
applications do not use terminal control functions. We begin by looking at the hardware and
theuseof tcsetattr () tomodify aterminal's parameters. Thereisan example showing
how to turn off the echoing of input on the terminal screen, a fairly typical use of the
terminal control functions. Then we go through a detailed description of input processing
and look at all the parameters a program can alter. We look at some examples of using a
terminal port for computer-to-computer communications. Finally, we describe POS X job
control. These are functions used by the shell to control which processes get signals and
which ones have access to the terminal.

The 1984/usr/group Standard attempted to specify a portable mechanism that application
writers could use to get and set the modes of an asynchronous terminal. The intention of that
committee was to provide an interface that was neither implementation-specific nor
hardware-dependent. The terminal interface specification underwent more debate and revision
than any other part of the POSIX standard.

The resulting interface, though it meets al of the original goals, is different from any existing
system. The most dramatic change is the replacement of thei oct | () function with a
collection of terminal-specific functions. The change was made for several reasons:

Thei oct | () mechanism is difficult to specify adequately dueto its use of athird
argument that varies in both size and type according to the second argument.

The exact semanticsof i oct | () aredifferent on different systems.
None of the existing implementations was adequate in an international environment.
While the functions for terminal control may be new to you, experienced UNIX programmers

will see many familiar things.

Page 146

Terminal Concepts

A classic terminal is akeyboard and adisplay (or printer) that is connected to the computer
using an asynchronous communications port. From the perspective of the operating system, the

important characteristic of aterminal is the communications port that connectsit to the host and
not the device sitting at the end of the wire. Figure 8-1 shows atypical configuration.

Communications
Port

Modem

Computer — Communications

:’:F Line
| E | I

Terminal S

Figure 8-1. Communications hardware

e Many UNIX manuals (even the POSIX standard) use the phrase "termina parameters’ in
way that might be confusing. Strictly speaking, the terminal-control library functions char
the characteristics of the communications port and have no effect on the termina. When y
read a phrase like "setting the terminal speed,” it means setting the speed of the
communications port to match the speed of the terminal.

An asynchronous communications port can be used to talk to other computers, printers, plotters,
and specia 1/0 equipment. The programming techniques used are the same as talking to a
computer terminal.

A seria device sends a character one bit at atime. Each character starts with aleading zero
called the start bit. The data bits are sent one at atime, beginning with the Least Significant

Bit(L SB) and ending with the Most Significant Bit(MSB). The last bit to be sent isatrailing
one called the stop bit. The ASCII character D might be represented as shown in Figure 8-2.

The ASCII code uses seven data bits. The parity bit is used to make the total number of one bits
even (or, on some systems, odd). The speed of transmission (the number of bits per second that
are transmitted counting the start and stop hits) is called the baud rate.

If the stop bit isnot a 1, then aframing error takes place. If al of the data bits are zero and
thereisaframing error, a break condition occurs.

Page 147

T ASCI Bits

=T

LS8 |msu

Start Bit Parity Bit J —— Stop Bit

Figure 8-2. ASCII D

Most terminals operate in full-duplex. When you press akey, a character is sent from the
terminal to the computer. When it receives the character, the computer sends the character back
to the termina where it is displayed. The process of sending characters back to the terminal is
called echoing.

Echoing gives the computer control over the characters displayed by the terminal. Some uses of
echoing are:

A program can inhibit echo to hide the characters you type. For example, | ogi n inhibits
echo to keep your password secret and vi inhibits echo to prevent commands from
appearing on the screen.

A program can echo a specia sequence. For example, a backspace may echo as
backspace-space-backspace to wipe out the last character you typed.

Y ou can control echoing using the functions described in this chapter.

Setting Terminal Parameters

Terminal parameters are all manipulated through a data structure known as struct t er m os.
Thet cget at tr () function copiesthe parameters from the operating system into a

t erm os structureandthet cset attr () function copiesthe parametersfromat er m os
structure into the operating system. First, we will look at these two functions and then we will
look at thet er m os structure in detail.

The tcsetattr() and tcgetattr() Functions

The function:
int tcgetattr(int fildes, struct termos *ptr);

copies all of theinformation associated with f i | des intothestruct t er m os pointed to by
ptr.Thefi |l des argument must be avalid file descriptor associated with aterminal.

Page 148
The function:

int tcsetattr(int fildes, int option,
struct termos *ptr);

copies al of the terminal parametersfromthest r uct t erm os pointedto by pt r into the
communications port associated with f i | des. Thet cset at t r () function sets every
terminal parameter with one call. Thereis no way to selectively set terminal parameters. The
fil des argument must be avalid file descriptor associated with aterminal. Theopt i on
argument must be one of the following symbols:

Synbol Description

TCSANOW The changes occur immediately.

TCSADRAI N The changes occur after all output writtentof i | des has been transmitted. This
function may be used when changing parameters that affect output. See "Avoiding
Pitfalls' on Page 161.

TCSAFLUSH Same as TCSADRAI N except that, in addition to waiting for output, al input that
been received but not read is discarded.

Thet cset at tr () function does not detect errorsin the struct t er m os. If thereare
invalid combinations, t cset at t r () just doesits best. If you need to know if a particular
terminal attribute was correctly set, you must follow thet csetattr () witha
tcgetattr()

Thetermios Structure

Thetcgetattr() andtcsetattr () functionsread or write al of the terminal
parameters with one call. The proper way to modify terminal parametersis by reading them
witht cget at t r () , changing the parameters of interest, and rewriting them with
tcsetattr().

Thet er m os structure and all of the functions that operate on it are defined in

<t er m 0s. h>. Most of the terminal parameters should not be changed by an application.
These parameters can be explicitly changed by the user using a utility suchasstty. The

t er m os structure has five members and each member has flags defined by POSIX aswell as
system-specific flags:

Page 149
Member Name Member Type Description

c_iflag tcflag_t Controls the processing of input data. There are 11 flags define
by POSIX. Thereisonly one, | STRI P, that may be of interest
portable application. This flag causes input charactersto be
masked to seven bits.

c_ofl ag tcflag_t Controls the processing of output data. The only flag defined b
PCSI X, OPOST, causes system-specific output processing. Th
are no flags of interest to a portable application.

c_cflag tcf lag_t Controlsinformation related to the hardware, for example, the
parity setting. There are seven flags defined by POSIX, none o
interest to a portable application.

c_Iflag tcflag_t Controls echoing and character processing. There are nine flag
defined by POSIX; four of these flags may be modified by a
portable application:

ECHC Turns on echoing.

| CANON Turnson input processing.

| SIC Enables signals.

TOSTOP Stops background processesiif they write to the
controlling terminal.

c_cc cc_t An array of control characters. The size of the array is given by
symbol NCCS. Each element has a unique function described |
in this chapter.

A portable application may determine what these characters ar
however, it should not change them.

System V termio and POSI X termios Structures

If you use System V, you will notice that the POSIX t er m os structureisvery similar to the
t er m o structure used by System V. The System V structureis:

struct termo

{

unsi gned short c_ifl ag;
unsi gned short c_ofl ag;
unsi gned short c_cfl ag;
unsi gned short c_Iflag
char c_line;
unsi gned char c_cc[NCC];

}

POSIX changed unsigned short to adefined type, t cf | ag_t , whichistypicaly an
unsi gned short oranunsi gned | ong. POSIX aso changed unsigned chartocc_t .
On most systems, cc_t isstill an unsigned char.

Page 150

POSIX aso supports terminals that have different input and output baud rates, System V does
not.

Converting from System V to POSI X isvery easy:
Use<t er m os. h>instead of <t er m 0. h> and add an"s" to the name of the structure.

If your program places a baud rate in the CBAUD field of t er m o, replace that with calls
tocf seti speed() andcf set ospeed().

Changecadllstoi oct| () tocaltcsetattr () oroneof the other functions described
in this chapter.

Thec_I i ne member of t er m o, which must be set to zero in System V, isnot used in
POSIX.

Example: Reading a Password

Before covering al of the details of the various terminal control functions, we will show a
typical use for these functions. Let's write afunction to read a password from the terminal.
Here isabrief specification for this function:

1. Thefunction will be defined as:
int getpswd(char *buff, size_t size);

where buf f isapointer to a buffer to receive the password and si ze isthe size of that
buffer.

Theget pswd() function returns the number of charactersread or - 1 in case of error.
2. Thefunction should issue a prompt of Passwor d:

3. The function should discard characters typed before the prompt appears (type-ahead). This
will encourage the person typing the password to wait for the echo to be turned off.

4. Turn off echo.
5. Read the password from the terminal.
6. Restore echo.
Let'slook at a couple of technical details:

Prompting for a password with:

(void)printf("Password: ");

Page 151
is not enough to guarantee that the user can read it. We need to call:
{void)fflush(stdout);

to make sure that the standard 1/O library issuesacal towri te() .

In addition, we use the TCSAFLUSH optiontot cset at t r () towait for al of the
characters to be sent to the terminal.

The TCSAFLUSH option also discards type-ahead meeting item #3 in the specification for
get pswd() .

The code for this function is shown in Example 8-1.

EXAMPLE 8-1. get pswd. ¢

#define POSI X SOURCE 1

#i ncl ude <term os. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

i nt getpswd(char *buff, unsigned size)

{

struct termios attr; /* Used for getting and setting
* termnal attributes.
*/
i nt n; /* Nunber of bytes read */
(void)printf("Password: "); /* Issue the prompt */
(voi d)fflush(stdout); /* Cause the data to be witten out
* to the termnal
*/
/*
* Now turn of f echo.
*/

if(tcgetattr(STDI N_FILENG &attr) != 0) return(-1);
/* Start by getting current
* attributes. This call
* copies all of the term nal
* paraneters into attr.
*/

attr.c_Iflag & -(ECHO;
/* Turn off echo flag.
* NOTE: W are careful not to
* nodify any bits except ECHO
*/

if(tcsetattr(STDI N_FI LENO, TCSAFLUSH, &ttr) != 0)
return(-1);
/* Wait for all of the data
* to be printed.
*/
/* Set all of the term nal
* parameters fromthe (slightly)

Page 152

* nodi fied struct termos.

*/

/* Discard any characters that
* have been typed but

* not yet read.

*/

n = read(STDI N_FI LENO buf f, si ze);
/* Read a line fromthe

* termnal.
*/
/*
* Turn echo back on.
*/

attr.c_Iflag | = ECHO
if(tcsetattr(STDI N_FI LENO, TCSANOW &attr) != 0)
return(-1);

return(n);
/ *

* Return the nunber of bytes

* in the password

*/
}
This function uses acommon trick: since al of the functions that it calls return - 1 and store an
error code in er r no when they detect an error, al thisfunction hasto do is check for a
non-zero return from the library and pass that back to the caller. Thistrick is easier done than
said, for example:

if (tcdrain(STDOUT_FILENO) !'= 0) return(-1);
Now, let'slook at how input and output characters are processed.
I nput Processing

When an application reads from a disk, the datais merely transferred from the disk to the
program, with no specia processing taking place. Thisis not true when datais read from a
terminal. When a character is typed on aterminal, the system does some processing before
handing it to the user program. This processing consists of two tasks:

Echoing.
Looking for special characters.
Output Processing

Various forms of output processing may be required. For example, aterminal may need adelay
after a newline character to give it enough time to scroll. POSIX does not specify any standard
output processing—each system is free to do what is required. In genera, this freedom makes
your application more portable because the system takes care of the hardware details.

Page 153
Modem Control

If aterminad is connected to the host by a modem and tel ephone line, the program may want to
get some control over the telephone connection. POSIX provides minima modem control:

The SI GHUP signal is sent to a program if the connection to the controlling terminal is
unexpectedly lost.

The host can aso hang up on the user viathet cset attr () function.

More elaborate modem control was not specified because it would reduce application program
portability, especially in Europe. Hardware-specific functions, such as answering the phone
and detecting the carrier, are |eft to the operating system.

Non-Canonical 1/0

In normal, or canonical, mode, terminal input is processed in units of lines. Thus, aread

request does not return until an entire line has been typed. At most onelineisreturned by a
single read call.

Sometimes, you might want to read input without breaking it into lines. For example, an editor
might respond to a single key press. In non-canonical mode, input bytes are not assembled into
lines and erase and kill processing is not done. The read completes either after aminimum
number of charactersisread or after some timeout occurs.

Input Modes

Thec_i f| ag member of thet er m os structureisthe bitwise inclusive OR of 11 flags. The
flags are:

Flag Description

BRKI NT

| GNBRK If BRKI NT is set and | GNBRK is not set, abreak condition flushes al data from the
input and output queues and generatesa SI G NT signal for the foreground process
group. If neither BRKI NT nor | GNBRK is set, abreak conditionisread as'\ 0. If
PARMRK is also set, breaks are trandated into the following three-byte sequence:

Byte1'\ 377"
Byte2\ 0'
Byte3\ '

Using breaks makes your program depend on particular hardware. Not al terminals ¢
generate a break condition.

| GNPAR If | GNPAR is set, a byte with aframing or parity error (other than abreak isignored.

Page 154

Flag Description

PARVRK If PARVRK is set, and | GNPAR is not set, a byte with aframing or parity error is giv
to the application as the following three-byte sequence:

Byte1\ 377"
Byte2'\ 0'
Byte3 X

where X is the byte with the error.

If 1 STRI Pisnot set, avalid' \ 377" isgiven to the application as the following
two-byte sequence:

Byte1'\ 377"
Byte2'\ 377".

| NPCK The | NPCK flag enables parity checking.

| STRI P
| NLCR
| GNCR
| CRNL

| XON

| XOFF

If set, valid input bytes are first stripped to seven bits.

If set, areceived NL character istranslated into a CR character.

If set, areceived CRisignored.

If I CRNL isset and | GNCRis not set, areceived CRistranslated into aNL charact

If set, allows the termina to control the flow of output from the computer Sending a
STOP character to the computer suspends output until a START character is receivec
| XONis s&t, the START and STOP characters merely perform flow control. Y our
program never seesthem. If | XON is not set, the characters are passed to your progre
asordinary data.

If set, requests the computer to control the flow of data from the terminal. The system
will send START and STOP characters to the terminal to prevent loss of input data.

Output Modes

Thec_of | ag field has one bit defined. The OPOST bit, if set, causes output data to be
processed in an implementation-defined manner; otherwise the data is transmitted without
change. Setting this bit makes your program less portable. For full portability, do not change
thec_of | ag member.

Page 155

Control Modes

Thec_cf | ag field is composed of the bitwise inclusive OR of the following seven flags:

Flag Description
CLOCAL Ignore modem status lines.
CREAD Enable receiver. If thisbit is not set, no characters are received.
CSI ZE One of the following symbols:
CS5 for 5 bits-per-byte
CS6 for 6 bits-per-byte
CS7 for 7 bits-per-byte
CS8 for 8 bits-per-byte
CSTOPB If set, two stop bits are sent; otherwise, only oneis sent. Some older mechanical
terminals require two stop bits, but these terminals are quite rare today.
HUPCL If thereisauser logged in on thisterminal, hang up the modem when he or shelogs ol

the communications port is being used for data, hang up the modem after all processe
close the device.

PARENB

PARCDD

Local M odes

If set, parity generation and detection is enabled and a parity bit is added to each
character.

If both PARODE and PARENB are set, odd parity is used. If PARENB is set but PARC
IS not set, even parity is used. If PARENB is not set, the setting of PARODD isignorec

Thec_|I f | ags field contains the bitwise inclusive OR of the following nine flags:

Flag Description

ECHC If set, input characters are echoed back to the terminal.

ECHOE If ECHOE and | CANON are both set, the ERASE character causes the terminal to eras
the last character from the display, if possible.

ECHOK If ECHOK and | CANON are both set, the KI LL character erases the last line from the
display. If the hardware does not allow the data to be erased, thisflag isignored.

ECHONL If ECHONL and I CANON are both set, the '\ n' character is echoed even if ECHC is n(
Set.

| CANON If set, enables canonical input processing.

| SI C If set, thel NTR, QUI T, and SUSP characters generate signals.

Page 156

Flag Description

NOFLSH If set, the normal flush of the input and output queues on the | NTR, QUI T, and SUSP
charactersis not done.

TOSTOP If set and job control is supported, the signal SI GTTOU is sent to the process group o
process that tries to write to the controlling terminal if it is not in the foreground proc
group for that terminal. This signal, by default, stops the members of the process grou

| EXTEN If set, implementation-defined functions are recognized from the input data. Portable

programs should not set this bit.

Control Characters

Specia characters are defined by thec _cc_ar r ay. The size of thisarray is given by the
symbol NCCSinthe<t er m 0s. h> header file. The meaning of the membersof thec_cc
array depends on the setting of the | CANON flag. If | CANON is set, the array elements have the

following meanings.

Array

Subscript Description

VECF EOF character. The end-of-file character (usually Control-D) may be used to generate
ECF from the terminal.

VEQOL EQL character. The newline (Control-J) is the normal line delimiter.

VERASE ERASE character. The erase character (typically backspace or delete) erases the
preceding character.

VI NTR | NTR character. The interrupt character (usually Control-C or DEL) generates a
SI G NT. It is often used to stop a running program. See Example 8-1 to see how an
application can take advantage of SI G NT.

VKI LL KILL character. Thekill character (usually Control-U) deletes the entire line being ty|

VQUI T QUIT character. The quit character (typically Control-\) generatesa SI GQUI T. The
POSIX standard does not specify any special action for SI GQUI T. The shell in UNIX
systems uses SI GQUI T to stop the current program and generate a corefile.

VSUSP SUSP character. The suspend character (typically Control-Z) generatesa SI GTSTP
signal and is used to place a process in the background. See the discussion of POSIX
control later in this chapter for a description of a background process.

VSTART START character. The start character (almost aways Control-Q) is typed by the user
resume output after a stop character.

Page 157

Array

Subscript Description

VSTOP STOP character. The stop character (almost always Control-S) stops the computer frc

sending output to the terminal. It is useful for preventing information from scrolling off
screen faster than you can read it.

Y our program probably should not change any of these special characters because:

The control characters affect all of the processes using the terminal, including the shell. In
genera, you should not do things which may interfere with other processes. Disabling the
| NTR character is very different from ignoring SI G NT.

Y ou may astonish the user. For example, if you change the | NTR character from Control-C
to Control-I, you would confuse most people.

The changes you make are not reset when your program exits. If your program crashes, the
terminal may be left in an unusable state.

An application should not disable specia characters and POSIX does not make it easy. System
V suggests disabling specia characters by setting them to a value unlikely to occur, say \ 377"
Picking an unlikely character is not fully portable, especialy in an international environment.
POSIX triesto solve this problem; however, it does not do a perfect job. Here are the rules
that POSIX defines:

1. If thesymbol POSI X VDI SABLE isdefined in the header <uni st d. h> with avalue
other than - 1, then the value of _ POSI X VDI SABLE can be used to disable special
characterson all terminals.

2. If thesymbol _POSI X VDI SABLE isnot defined in <uni st d. h> or hasthevaue- 1,
pat hconf (pat h, PC VDI SABLE) or f pat hconf (pat h, _PC VDI SABLE)
must be used to determine the character to use, if any.

3. If pat hconf () orf pat hconf () return- 1 with er r no unchanged, the system has no
suggestion for the value to use to disable special characters.

Here is some sample code that disables the interrupt character:

#if ldefined(_POSI X VDI SABLE) || (_PCSI X VDI SABLE == -1)
/* The synbol is defined so we can just use it.
*/

t.c_cc[VINTR] = _PGCsI X VDI SABLE;
#el se /* The synbol is not defined */
errno = 0; /* Make sure we can tell
* | f fpathconf() changes
* errno.
*/
/* See if it is defined for the termnal. */
tenp = fpathconf(tty, PC VD SABLE);
if (temp !'=-1)
{ /[* tenp is not -1. This is
* the value to use to disable
* the interrupt character.

*/
Page 158
t.c_cc[MINTR] = tenp; /* Stuff it in. */
return; /* Al set. */
}

/* W get here if fpathconf() returned -1. |If
* errno i s changed then there was a real

* error.

*/

if (errno !'=0) PANC

/* W get here is we can not disable the

* the interrupt character. Fall back on

* the unlikely character.

*/

t.c_cc[VINTR] = 0377,

#endi f
return,
If ICANON is not set, the c_cc array el enents have the foll ow ng
neani ngs:

Array Subscript Description

VI NTR INTR character.

VM N If VTI VE is zero, it isthe number of bytesto read. A pending read is not satisfi
until enough bytes or asignal isreceived. If VTI ME is not zero, the TI ME val ue
used as an inter-byte timer. If TI ME/10 seconds expire between characters, the

is satisfied.
VQUI T QUIT character.
VTl ME If VM Niszero, aread is satisfied as soon as asingle byte isreceived or TIME

seconds elapse. If VM Nis not zero, the action is as described above for VM N
both VM N and VTI VE are zerother ead() function will return as much data
possible without waiting.

VSTART START character.
VSTOP STORP character.
VSUSP SUSPEND character.

AT&T System V uses the same index into thec_cc array for VM N and VECF. VTI VE shares
an index with VECL. Y ou should remember that this reuse can occur.

Speed Storing Functions

Thet er m os structure aso contains the input and output baud rates for the terminal. POSIX
defines some functions to copy the baud rates into and out of thet er m os structure. The
functions:

speed_t cfgetispeed(const struct termos *ptr);
speed_t cfgetospeed(const struct termos *ptr);

Page 159

return the input and output baud rates from the structure pointed to by pt r . These functions
blindly return the values in the structure. Thereis no check to seeif these values are valid. The
functions:

int cfsetispeed(struct termos *ptr, speed_t spd);
int cfsetospeed(struct termos *ptr, speed_t spd);

copy the value spd into the structure pointed to by pt r . These functions return zero on success
and -1 on error; however, the standard does not require any error checking. These functions
merely store valuesinto a structure. The hardware is not changed until at csetattr () is
done.

Thetypespeed_t isdefinedin <t er m 0s. h>andisunsi gned. Symbols of the form
Bxxxx are defined for each legal baud rate. The complete list of symbols and baud ratesis
given in the following table:

Symboal Baud Rate
BO o*

B50 50

B75 75
B110 110
B134 134. 5™
B150 150
B200 200
B300 300
B600 600
B1200 1200
B1800 1800
B2400 2400
B4800 4800
B9600 9600
B19200 19200
B38400 38400

Portable programs should set both the input and the output baud rates. Split speed may or may
not work for agiven terminal.

*The zero baud rate disables the communications port. If there is a modem, the computer hangs up the
phone.

** The 134.5-baud speed was used by IBM 2741-style terminals. These terminals were very popular
in the late 1960s and early 70s. Since they do not use ASCII and are quite slow, they arerare today.

Page 160

Line Control Functions

There are afew assorted functions for dealing with terminals. These are functions that are new

with POSIX. If you must move your application to an older (non-POSIX) system, you can
create these functionsusing i oct | () .

The tcsendbreakO Function

Some terminals perform a special function when they receive abreak. Thet csendbr eak()
function provides a POSI X application with a portable method of generating a break. Since the
meaning of break varies from terminal to terminal, it is more portable to avoid this function.

The function:
int tcsendbreak(int fildes, int duration);

sendsabreak (a’\ 0" with aframing error). Thedur at i on parameter is used to indicate how
long the break should be. The standard does not define the units of duration and the only
portable valueis zero. Thiswill send a break between 250 and 500 milliseconds long.

Thetcdrain() Function
The function:
int tcdrain(int fildes);

waitsfor al of the datawrittentof i | des to betransmitted. Thef i | des argument must be a
valid file descriptor associated with aterminal. This function waits only for data that has
already been written withthewr i t e() function. If you are using the standard I/O library
(fprintf(),putc(),etc.), youmust firstusethef f | ush() function to transmit buffered
data.

Thisfunctionisequivaenttousingt cset at t r () with the TCSADRAI N flag, except no
terminal parameters are set.

Thetcflush() Function

The function:

int tcflush(int fildes, int option);

Page 161

discards terminal input and/or output data. The exact action depends on the option argument:

option Description
TCl FLUSH Discard all data that has been received but not read.
TCOFLUSH Discard al datathat has been written but not transmitted.

TCl OFLUSH Do both the TCl FLUSH and TCOFLUSH functions.

Thetcflow() Function

The function;

int tcflomint fildes, int action);

suspends or resumes transmission or reception of data depending on the value of action. The
action argument must be one of the following symbols:

action Description

TCOOFF Suspend output.

TCOON Resume output.

TCl OFF Transmit a STOP character. Thisisintended to cause the terminal to stop sendir
data to the system.

TCI ON Transmit a START character. Thisisintended to cause the terminal to resume
sending data to the system.

Avoiding Pitfalls
There are severa unfortunate attributes of thet cset at t r () interface:

There may be (and amost always are) implementation-defined bitsin the st r uct
t erm os. If your program buildsast ruct t er m os anddoesat csetattr (), it
may trash some implementation-defined bits.

Thereis no good error reporting. For example, if you try to set aterminal to 19200 baud
and the hardware does not support thisspeed, t cset at t r () does not change the line
speed.

To be safe and make your program fully portable, follow these steps:
1. Usethet cdrai n() functionto wait for all output datato be transmitted.
2. Usethet cgetattr () function to read the current termina settings.

3. Modify thefiddsinst ruct t er m os to make any changes that you need. Do not change
any bitsthat are not defined in the standard.

Page 162
4. Usethet csetattr () functionto changetheterminal characteristics.
5. Read back the new terminal characteristicswitht cgetattr ().
6. Compare the results of step 5 with the argument to step 4 and see if there were any settings

that you were unable to change.

Example: Computer-to-Computer Communications

Sometimes one needs to use atermina port for data. Thisis often done to talk to other
computers. Let's write asimple version of the System V cu command. The cu command calls up

another system. The cu program runs as two processes. the transmit process reads data from the
standard input and passes it to the remote system; the receive process accepts data from the
remote system and passes it to standard output. The System V version has many command line

opti

ons and other features, but our cuisvery smple.

There are three functions in the cu utility:

1.

comm_i ni t () getsthe package started. This function opens the communications port and
sets al of the terminal parameters. For computer-to-computer communications, most
character processing is turned off.

Thel i st en() function waitsfor datato arrive from the terminal port and calls the
wri t e() function for each character that isread. A f or k() isdone prior to caling
i sten(). Thisleavesone processto listen for data while the other processis used to
transmit.

Themai n() functionfirst callscomm_i ni t () to establish a connection to the remote
system. Next, mai n() turns off echo and canonical processing for the controlling terminal.
Then, mai n() callsli sten() asaprocess. Finaly, mai n() reads characters from
standard input and sends them to the communications port.

The code is shown in Example 8-2:

EXAMPLE 8-2.cu. ¢

O©CoOoO~NOOUI, WNBEF

16
17
18
19
20
21
22
23
24
25
26
27

#defi ne POSI X SOURCE 1

#i ncl ude <term os. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude "panic. h" /* Defines the PANI C macro */

#def i ne BUFFSI ZE 256

static int chan = -1; /* 1/0O Descriptor for the
* termnal port.
*/

Page 163

/*

* Setup the conmuni cations port
*/

voi d comm.i nit (void)

{

struct termos t;

chan = open("/dev/tty0l", O RDWR O NOCTTY);
if (chan == -1) PANIC
if (tcgetattr(chan, &) !'= 0) PAN G

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81

t.c_cc[WMN = 32; /* \Wake up after 32

* characters arrive.

*/
t.c_cc[VTINME = 1; /* Wake up 0.1 seconds

* after the first char

* arrives.

*/

/* The conbi nation of

* VM N VTIME will cause

* the programto wake up
0.1 seconds after the
first character arrives
or after 32 characters
* arrive whi chever cones

L

* first.
*/
t.c_iflag & - (BRKINT /* lgnore break */
| 1 CNPAR | PARMRK /* lgnore parity */
| NPCK | /* lgnore parity */
| STRI P | /* Don't mask */
INLCR | IGNCR | | CRNL /* No <cr> or <lf> */
| 1 XON); /* lgnore STOP char */
t.c_iflag |= IGBRK | | XOFF; [/* |gnore BREAK

* send XON and XOFF for
* f|l ow control.

*/
t.c_oflag & - (OPCST); /* No output flags */
t.c_ Iflag & -(/* No local flags. In */
ECHQ ECHOE| ECHOK| ECHONL| /* particul ar, no echo */
| CANON | /* no canonical input */
/* processing, */
I SIG | /* no signals, */
NOFLSH | /* no queue fl ush, */
TOSTOP) ; /* and no job control.
*/
t.c_cflag &= (/[* Clear out old bits */
Csl ZE | /* Character size */
CSTOPB /* Two stop bits */
HUPCL | /* Hangup on | ast cl ose*/
PARENB) ; /* Parity */

t.c cflag |= CLOCAL | CREAD | Csg;
/* CLOCAL => No nodem
* CREAD => Enable

* recei ver
* (CS8 => 8-bit data
*/

/* Copy input and output speeds into

* struct termos t

*/
if (cfsetispeed(&, B9600) == -1) PANI G
if (cfsetospeed(&, B9600) == -1) PAN G

/* Throw away any input data (noise) */

Page 164

82
83
84
85
86
87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

if (tcflush(chan

TCIFLUSH) == -1) PANIG

/* Now, set the termal port attributes */
if (tcsetattr(chan, TCSANOW &) == -1) PANIC

/*

return;

* Here is the receive process. The call to
* |isten() never returns.

*/

void listen(void)
96 {
char buf [BUFFSI ZE] ;
int count;

i nt

}
/*

whi | (1)

{

count

}

/* Loop forever */

read(chan, &buf, BUFFSI ZE)
if (count < 0) PANIC
(voi d)write(STDOUTFI LENO, &buf, count);

* Here is the main() function

*/

int mai n(void)

{

struct termos t;

char

ch;

comminit();

/* Fire up the comm port */

if (tcgetattr(STDIN FILENO &) != 0) PANIC

/* Read the current term na

* paraneters into t.

*

t.c_Iflag & - (1 CANON | ECHO);

if (fork()

== O)

/* Turn off the flags for
* echo and canoni ca
* i nput processing.
*/

listen();
/* Call listen() as a
* new process.
*/

Page 165

136 while (1) /* Loop forever */
137 {

138 (voi d)read(STDI N_FI LENQ, &ch, 1);
139 if (wite(chan, &h,l) !'= 1) PANC
140 /* Copy standard i nput

141 * to the comm port.

142 */

143 }

144 }

145

146

Noteson cu. c:
LINE NOTES

22 You might think that t is a poor choice for the name of a structure. Why not call
itt erm nal _i nf ormati on or some other descriptive name? There are
reasons why t is an acceptable name:

The structureislocal tothecomnr_i ni t () function. If the structure were globa and
used in many placesin the program, alonger name would be used.

Thenamet isamost dways qualified by a structure member name, for example:
t.c_iflag. Thereader knowsthat t mustbeastruct t erm os.

There isonly one struct termios used in the function. It is not possible to become
confused about which one we mean. If there were two structures, names like
old_terminal state and new_terminal state would be better than t.

The example looks better if statements fit on oneline.

25 A more general version of this program would not build in the filename
[dev/tty01 but might accept the device name as a command-line parameter.

25 Open the data port. The O_NOCTTY macro prevents this terminal from eve
becoming our controlling terminal. We do not want areceived Control-C to stop
our pProcess.

27 Even though we are going to explicitly set or clear every POSIX-defined option,
we need to preserve any implementation-defined bits.

49 If the computer at the other end never sends binary data, IXON may be used for
flow contral. If any binary datais being sent, IXON must be turned off; otherwise
a STOP character in the binary data might hang the program.

50 Herewe are setting IXOFF to alow the system to send STOP charactersto the
target computer. The combination of IXON clear and I XOFF set alows the
computer at the far end to send anything but assumes that it will respond to STOP
and START. Our prograrr is pretending to be atermina on aremote system.

Page 166

LINE NOTES

105 We are not checking for errors writing to standard output. There is not much to
do if standard output does not work.

This sample program shows how to use a communications port from an application. There are
afew practical problems:

1. The program does not pass specia characters to the target machine. If you typed Control-C
(or whatever character is selected to generate SI G NT), the program stops. To be a useful
application, special characters should be sent to the target system.

2. If youfix problem 1, thereis no way to stop the program.

3. When problem 2 is fixed, the program should reset the terminal attributesto their initial
states. This can be done by doing an additional t cget at t r () at program startup and
doingatcsetattr () priortocalingexit().

The solutions to these problems are left as an exercise to the reader.

Process Groups and Job Control

It is often useful to run multiple programs from a single terminal. One of the issues with running
multiple programsis what happens to terminal input and output. POSI X job control is used to
determine which processes have access to the terminal.

Job control isaPOSIX option. There are two ways to find out if job control is supported.

If the symbol _POSI X_JOB_CONTROL isdefined in <uni st d. h>, job control is
supported.

If the symbol _POSI X_JOB_CONTROL isnot defined in <uni st d. h>and
sysconf (_SC JOB_CONTRQOL) returns- 1, job control is not supported and all
processes have equal access to the controlling terminal. Since job control isrequired by
FIPS 151-1, most systems do support POSIX job control.

The process group functions and signals are not used by most applications. They are used only
by the shell to allow commands to run in the background. Some complex applications perform
shell-like functions; the enacs editor is an example of such an application. Unlessyou are
writing that sort of application, you can ignore the job control functions.

Y our application can inadvertently subvert job-control processing by "blindly" altering the
handling of signals. A common application error isto learn how many signals the system
supports and to ignore or catch al of them. Such an application makes the assumption that it
does not know what the signal is, but knows the right action for it. Applications written this
way will not work correctly on POSIX systems.

Page 167
Process Groups

A process group is acollection of related processes. There is one important attribute of a

process group: it is possible to send asignal to every processin the group. Typically, when the
shell creates a process to run an application, the processis placed into a new process group.
As the application forks new processes, these processes are all members of the process group.
There are two types of process groups: foreground and background.

Foreground Process

A foreground process has read and write access to the terminal. Every processin the
foreground process group receives SI G NT, SI GQUI T, and SI GTSTP signals. The
foreground process group normally consists of the process forked by the shell and all the
processes that they f or k.

A termina may (or may not) have aforeground process group associated with it.
Background Process

On the other hand, if a process does not have read access to the termindl, it is a background
process. Attempts by a background process to read from its controlling terminal cause its
process group to be sent aSI GTTI N signal.” The default action of the SI GTTI N signal isto
stop the processto which it is sent.

Whether a background process can write to its controlling terminal depends on the TOSTOP
mode bit. If TOSTOP isnot set, or the processis blocking the SI GTTOU signal, the processis
allowed to write to the terminal and the signal is not sent. If the TOSTCP bit is set, all
processes in the process group are sent a Sl GTTOU signal.** The TOSTOP hit isin the

c_| f 1 ags member of the struct termios and is set or cleared using thet cset attr ()
function. An individual process can achieve the same effect as clearing the TOSTOP by setting
the action for SI GTTOUto SI G_| G\.

Session
A collection of process groups is called a session. Each process group is member of a session.
A newly-created process joins the session of its creator. In normal operation, the login shell

creates anew session and all processes are members of that session. The login shell isthe
session leader.

Historical UNIX systems have a concept of an orphaned process, which is a process whose
parent process has exited. When POSIX job control isin use, it is necessary to

* |f the reading processisignoring or blocking theSI GTTI N signal, or if the process group of the
reading process has no controlling terminal, ther ead() returns- 1 wither r no set to El C and no
signal is sent.

** |f the process group of the writing process has no controlling terminal, thewr i t e() returns- 1
wither r no set to El C, and no signal is sent.

Page 168

prevent processes from being stopped in response to interactions with the controlling terminal
after they are no longer controlled by a job-control-cognizant program. Because signals
generated by the terminal are sent to process groups and not to individual processes, and
because a signal may be provoked by a process that is not orphaned, but sent to another process

that is orphaned, it is hecessary to define an orphaned process group. An orphaned process
group is a process group in which the parent of every member is either itself a member of the
group or is not amember of the group's session.

This definition of orphaned process groups ensures that a session leader's process group is
always considered to be orphaned, and thusiit is prevented from stopping in response to
terminal signals.

Controlling Terminal

If specia characterstyped on aterminal keyboard generate signals, such as SI G NT, then the
termina isacontrolling terminal. A terminal may belong to a process asits controlling
terminal. A termina may be the controlling terminal for at most one session.

A controlling terminal isinherited by achild during af or k() function call. A process can
relinquish its controlling terminal when it creates a new session withtheset si d() call.
When a controlling process terminates, the controlling terminal is disassociated from the
current session, allowing it to be acquired by a new session leader.

Get/Set Process Group

Each processin the system is amember of a process group. A newly-created process joins the
process group of its creator. Each process group is a member of a session.

The setsid() Function

Theset si d() function creates anew session. The calling process is the session group
leader of this new session. The process group ID of the calling processis set equal to the
process ID of the calling process. The calling processis the only processin the new group.
Theset si d() function takes no arguments and returns the value of the process group 1D of
the calling process.

This function is normally used only by the shell.
The setpgid() Function

Theset pgi d() functionisused either to join an existing process group or create a new
process group within the session of the calling process. The call is defined as:

int setpgid(pid t pid, pid_t pgid)

and places the process with process ID pi d into process group pgi d.

Page 169
This function is normally used only by the shell.
Thetcsetpgrp() Function

Thisfunction is used to determine which process group is the foreground process group
associated with a controlling terminal. The call:

int tcsetpgrp(int fildes, pid_t pgrp_id)

is used to associate the process group pgr p_i d with the terminal fildes. On successful
completion, zero isreturned. Otherwise, avalue of- 1 isreturned and errno is set to indicate
the error.

The shell uses this function to move process groups into the foreground. The previous
foreground process group, if any, is moved into the background.

tcget pgrp()
Thecal:

pid_t tcgetpgrp(int fildes)

returns the process group ID of the foreground process group associated with the termind
fildes. If thereis no foreground process group, the 1990 standards says a value greater than 1
that does not match any existing process group is returned.”

Portability Lab
To review the contents of this chapter, try to do the following exercises:

1. Thefast file copy example program given in Chapter 5, Advanced File Operations, will
not work if the input isfrom aterminal. There are at least two problems. What are they?
How can they be fixed?

2. Thefast file copy example program given in Chapter 5 will not work if the input isfrom a
terminal. Will it work if the output is to aterminal ?

Why does the computer echo characters instead of having the termina print them directly?
Why would you ever want to use non-canonical 1/0?

Why are process groups used? Why would a normal application ever useset pgi d() ?
What is the distinction between set pgi d() andt cset pgrp() ~?

N o o &~ W

If an asynchronous communications lineis sending 7-bit ASCII characters with parity at
300 baud, how many characters are sent in one second?

* Thiswas felt to be much more portable than returning an error.

Page 170

8. When the POSIX standard says something like "setting the terminal baud rate," what baud
rate are they redlly talking about?

9. Why might it be useful to set thel STRI P bitsinthec_i f | ag member of st r uct
t er m 0s?Where might this give you problems?

10. What does the OPOST bit inthec_of | ag member of struct termios do? When should a
portable program set it?

11. Clearing thel SI Cflaginthec_| f | ag member of st ruct ter m os will prevent the

| NTR character from generating a signal. Give another way to have asimilar effect. What
are the differences between the two schemes?

12. Why would you ever use the TCSADRAI N option of thet cset att r () function?
13. When would a program usethet cdr ai n() function?

14. Should ordinary applications change the settingsin the c_cc array? Why or why not?

Page 171

Chapter 9
Posix And Standard C

This chapter tells you how to use Sandard C to achieve maximum portability for your

POS X applications. Some people use the name "ANS C" for Standard C. | prefer the name
Standard C to reflect its use as an international standard and not just an American National
Sandard. The POS X standard iswritten in terms of the C programming language. It
recognizes two forms of the C language support: C Standard Language Dependent System
Support and Common Usage C Language-Dependent System Support.

Common Usage C

To allow the greatest possible support for POSI X, implementors are not required to meet the C
standard in implementing POSIX. They may support existing pre-standard C compilers and
"use common usage as guidance." Since common usage varied from one system to another,
portability of applicationsis reduced in this type of implementation. Common usage support is
still the default on many systems; you have to work to get Standard C support.

Standard C

In a Standard C implementation, the system is required to support International Standard

I SO/IEC 9899: Information processing systems—Programming languages—C for all
required POSIX functions. Standard C adds a number of features and capabilities that are not
present in Common Usage C. In general, you are better off writing new applications with
Standard C. Because the definition of Standard C is more precise than Common Usage C, you
will find that Standard C programs are more portable and more easily maintained. Over time,
most systems and programmers will convert to Standard C. This chapter is your guide into the
future.

Getting Standard C

Since Standard C is new, most systems default to pre-Standard C behavior. Typicaly, you must
specify Standard C as a compiler option. For example, under AT& T System V.4, you specify
the - Xa option on the cc command line. The GNU C compiler requirestheansi switch.” See
your system documentation for details.

* The -pedantic switch will cause warnings for all non-standard features.

Page 172

The Standard C Prepr ocessor

The most non-standard and least specified part of Common Usage C is the preprocessor.
Operations like recognition of white space and macro replacement did not have a guaranteed
ordering. Standard C eliminates this problem by supplying a rigorous definition of the
preprocessing and trandlation process. While the committee was nailing down the exact
definition, they aso threw in afew new features. These features are discussed in the following
sections.

Trandation Phases

The standard defines eight trandation phases.

1. Every trigraph in the sourcefileis replaced. This usualy has no effect. For a discussion of
trigraphs, see "Character Sets' on Page 184.

2. Every backdash-newline character pair is deleted. This means that a backslash-newline
can be used to continue aline in any context. In older C compilers, the backdash-newline
pairs were alowed only as away to continue adirective, astring literal, or a character
constant.

3. Thesourcefileis converted into preprocessing tokens and white space. Each comment is
replaced by a space.

4. Every preprocessing directive is handled and all macro invocations are replaced. Each file
read by the#i ncl ude directiveisrun through phases 1 to 4 and replaces the #i ncl ude
line.

Every escape sequence in character constants and string literals is interpreted.
Adjacent character string literals are concatenated.

The result of steps 1-6 is compiled.

© N o O

All external references are resolved. The result is a complete program.

Asyou can see, most of the work isdone in step 7. Most compilers do not perform these
phases as distinct steps but fold them together. The standard does not require distinct phases;
however, the result must be "asif" separate phases are used.

Macro Replacement

Traditional C compilersdid not follow the ssmple sequence of steps described above. Instead,
macros were processed on a moment-by-moment basis and the expansion of complex macros
would vary from system to system. Many macros were not truly portable.

Page 173

Standard C also allows many simple macros to work correctly. For example:

#define allen *allen

will replace all usesof al | en with*al | en. Many traditional C compilerswould diein the
#def i ne statement and complain about macro recursion.

Conversion of Macro Arguments to Strings

There was a big argument about the correct operation of the following example:

#define p(a) printf("a = %\ n", a)
p(sue);

It could expand to either:
printf("sue = %\ n", sue);
or to:
printf("a = %\ n", sue);

Traditional C compilers gave the first result. They looked inside quoted strings for possible
macro arguments. Standard C will produce the second result. String literals are not examined.
To dlow the intended effect of the above macro, the # operator was invented. In Standard C,
you would write:

#define p(a) printf(#a " = %\ n", a)

The# sign converts the argument into a string literal. The concatenation of string literals
produces the desired result.

Token Pasting
In some traditional C compilers, the code:

#define paste(a,b) a/**/b*
X = paste(x,1) + paste(y,2);

would produce:
x = xI + y2;

By Standard C rules, this code would produce;
X =x1+y 2

which is not what you want. To get the correct result, use the new Standard C ## operator. The
Standard C macro would be:

* Y ou cannot just put a next to b because ab is a unique symbol.

Page 174
#define paste(a,b) a ## b

Since ## isared operation and not an artifact of the preprocessor, it is not sensitive to white
space.

New Directives

The#el i f directive has been added as a shorthand form of the #el se #i f preprocessor
sequence.

Theidentifier def i ned isreserved during the#i f or #el i f so that:

#i f defi ned(NULL)
#i f !defined(TRUE)

is equivalent to:

#i fdef NULL
#i f ndef TRUE

In addition to the two legal ways of including a header file:

#i ncl ude <header >
#i nclude "file"

itisnow legal to write:
#i ncl ude MACRO

where MACRC expands to one of the first two cases.

Namespace | ssues

In traditional C implementations, the contents of the various header files would vary from
system to system. This caused portability problems. There was no way to protect yourself from
implementation-defined symbols in the headers you used. Standard C solves this problem by
defining a strict set of rules on the use of names. There are a set of names reserved to various
parts of the implementation. If you avoid those names, there will be no conflicts.

Names Reserved by the C Language

The Standard C language defines alist of keywords. These have special meaning to the
compiler and may not be used for any other purpose. They are:

auto doubl e i nt struct
br eak el se | ong switch
case enurmn register t ypedef
char extern return uni on
const fl oat short unsi gned
conti nue for si gned voi d

def aul t goto si zeof vol atile
do i f static whi | e

Page 175
Names Reserved by Header Files

The C library uses many identifiers that begin with an underscore. Although there are places

where one can safely use an identifier that begins with an underscore, the rules are complex
and it is better just to avoid them. Some of these are POSIX restrictions, not part of standard C.

Using #i ncl ude to read a header file causes a set of symbols to be reserved. These symbols
depend on the header file and are listed in the following table:

Header File

Reserved Names

<ctype. h>
<dirent. h>
<errno. h>

<fcntl. h>

<grp. h>
<limts.h>
<l ocal e. h>
<mat h. h>
<pwd. h>

<si gnal . h>

<string. h>

<sys/stat. h>

<sys/tines. h>

All symbols starting withi s or t o.
All symbols starting with d__.

All symbols starting with E followed by any uppercase letter or adigit.

All symbols starting with | _.* Symbols startingwithF_,0_, or S may
used if an #undef isdone for each symbol prior to any other use.

All symbols starting with gr _.

All symbols ending with _ MAX.

All symbols starting with LC_ followed by an uppercase | etter.
The names of existing math functionsfollowed by anf oranl .
All symbols starting with pw_.

All symbols starting with sa_. Symbols starting with SI Cor SA_ may b
used if an #undef isdone for each symbol prior to any other use.

All symbols starting with mem, st r, or wes.

All symbols starting with st _. Symbols starting with S_ may be used if
#undef isdonefor each symbol prior to any other use.

All symbols starting with t s _.

* That islowercase |l etter

Header File

"I" followed by an underscore.

Page 176

Reserved Names

<term os. h>

Any POSIX header

All symbols starting with ¢_. Symbols starting with V, |, O, or TC may
used if an #undef isdone for each symbol prior to any other use. Symb
starting with B followed by adigit may be used if an #undef isdonefor
each symbol prior to any other use.

All symbols ending with _t .

The Header files section in the Reference Manual of this book spells out the contents of the
header filesin detail. The POSIX interpretation committee has ruled that POSI X 1003.1-1988
isambiguous. A system conforming to the 1988 standard may define any FOSIX symboal in any
POSIX header. Systems meeting the 1990 standard must obey the stricter rules set forth in the
Header Files section.

C Library Functions

The Standard C library defines alarge number of functions. It islegal for a system to load
every function in the library even if you do not use it in your program. Y ou should consider the
following names reserved by the Standard C library:

abort fprintf | ongj np strcat
abs fputc mal | oc strchr
acos fputs nbl en streoll
asctine fread mbst owcs strcopy
asin free mbt owe strcspn
at an freopen nenchr strerror
at an2 frexp nmenctnp drftime
atexit f scanf mentpy strlen

at of f set pos nmenmnove strncat
at oi ftell menset srncmp
at ol fwite mkti me strncpy
bsearch getc nodf strpbrk
ceil get char perror strrchr
cal | oc get env printf strspn
clearerr gets put c strstr

cl ock grtinme put char strtod
cos i sal nur puts st rt ok
cosh i sal pha gsort strtol
ctime iscntrl raise strtoul
difftine isdigit rand strxfrm
div i sgraph real | oc syst em
exit i sl owner renove t an

exp i sprint renane t anh

f abs i spunct rew nd time

fcl ose i sspace scanf tnpfile
f eof i supper set buf t npnam
ferror i sxdigit setl ocal e t ol ower
fflush | abs set vbuf t oupper
fgetc | dexp sin unget c
f get pos [div sprintf vfprintf
fgets | ocal econv sqrt vprintf
f1 oor | ocal tine srand vsprintf
f mod | og strcnp west onbs
f open l ogl O sscanf wet onb

POSI X Library Functions
The POSIX standard defines the following library functions:

access
al arm
asctinme
cfgeti speed
cf get ospeed
cfseti speed
cf set ospeed
chdir

chnod

chown

cl ose

cl osedir
creat
ctermd
cuserid

dup

dup2

execl
execl e
execl p
execv
execve
execvp
_exit

fentl

f dopen
fork

f pat hconf
fstat

get cwd
getegid
get env
geteuid
getgid
getgrgid
get gr nam
get groups
getlogin
get pgrp
getpid
getppid
get pwnam
get pwui d
getuid
isatty
kill

l'i nk

| ongj np

| seek

Avoiding Pitfalls

nkdi r
nkfifo
open
opendi r
pat hconf
pause

pi pe

read
readdir
renane
rew nddir
rdir
setgid
setjnp
setl ocal e
setpgid
setuid

si gaction
si gaddset
si gdel set
si genpt yset
sigfillset
si si smenber

si gl ongj np

Page 177

si gpendi ng
si gpr ocmask
sigsetjnp
si gsuspend
sl eep

st at
sysconf
tcdrain
tcfl ow
tcflush
tcgetattr
tcget pgrp
t csendbr eak
tcsetattr
tcset pgrp
time

times
ttyname

t zset
umask
unane
unl i nk
utine
wai t pi d
wite

The chances of stumbling over areserved C or POSIX name can be minimized by following a

few simple rules:

1. Start each source file with the line:

#defi ne POSI X SOURCE 1

All symbols not defined by Standard C or the POSIX standard will be hidden, except those
with leading underscores.”

2. Following the definition of _POSI X _SOURCE, placethe #i ncl ude statements for any
standard header files.

3. Use#undef for any symbolsthat are used by your application and reserved by the header

filesyou use.

4. After the standard #i ncl ude statements, place any #i ncl ude or #def i ne statements

for this application. The local definitions will redefine any symbol defined in the standard
headers.

* Thereisalso the reverse of this pitfall. If you forget the POSI X SOURCE but specify Standard C,
all of the POSIX symbolswill be hidden.

Page 178

Of course, this practice will merely prevent problems from identifiers that we do not know
about. We can't redefine amacro and still use its standard definition.

Hereisabrief example:

#defi ne POSI X SOURCE 1

#i ncl ude <stdi o. h>
#i ncl ude <term os. h>
#include <limts. h>

* #undef synbols that | use in ny program but are
* reserved to PCSI X headers.
* See Headers section in the reference part of

* this book.

*/

#undef B52 /* <term os.h> reserves B<digit> */
#undef BOVB_NAX /* <limts.h> reserves ??? MAX */
#undef SI GVA /* <signal.h> reserves SIG??? */

/*

* Now, my application specific headers

*

#i ncl ude "pl anes. h"
#i ncl ude "shi ps. h"

[* ~

* Now all of the #defines local to this file
*/

#defi ne B52 "Bonber"

#def i ne BOVBMAX 60

#defi ne SI GVA 2.378

rest of the program goes here.

Function Prototypes

Standard C adds some additiona checking to the traditional C language. The ar gunent
decl ar at i ons can now define the type of each argument. So, we might have a definition as
follows:

I ong sun(short count, long *vect[])

This call defines afunction called sum which returnsal ong. Thesun() function hastwc
arguments, ashort called count and apointer to an array called vect . The identifiersvect
and count are for descriptive purposes only and do not go beyond the scope of surr.

If the parameter list terminates with an ellipsis(, . . .), no information about the number or
types of the parameters after the commais supplied. It is used for functions

Page 179

with avariable number of arguments. If afunction takes no arguments, the parameter list should
havevoi d astheonly entry.

If afunction declaration does not include arguments, asin:
doubl e julie();

then nothing is to be assumed about the arguments of j ul i e, and parameter checking isturned
off. Thisallows older C programs to compile with new compilers, but it is abad ideato useit
with new programs. If the function takes arguments, declare them; if it takes no arguments, use
voi d.

Avoiding Pitfalls

The syntax of function prototypes was borrowed almost completely from C++. Here are some
rules for good use:

1. The parameters are comma separated, instead of semicolon terminated as other
declarations are.

2. Thelast parameter in a prototype must not be followed by a comma. Thisis different from
enumr and st r uct wherethetrailing commais optional.

3. If you use a prototype in one place, use them every place! The compiler isallowed to
generate better code using the knowledge gained from the prototypes. For example, if your
header contains:

i nt nyfunc(char a, unsigned short b, float f);
but the code for nyf unc is:

nyfunc()
char a;

unsi gned short b
float f;

{
}
the code generated for the call to nyf unc may not match what the function is expecting.

4. You do not have to use parameter names in function prototypes. However, they may make
the operation of the function much clearer. Consider:

int copy(char *,char *);

compared to:
int copy(char *from char *to);

5. Do not define prototypes for the standard library functions. These functions are declared in
system headers.

Page 180
Writing New Programs

New programs should use new style function declarations. If you want to alow for the code to
be ported to older systems that do not have Standard C compilers, the . STDC__ macro
should be used, asin:

#ifdef _ _STDC _

voi d nyfunc(const char *src, char *dest);
#el se

nyfunc();
#endi f

Thesymbol _STDC__ should be defined only on systems that meet the C standard.
Maintaining Old Programs

In considering existing programs, the question is. How much code are you going to change?
Depending on the answer, you have a choice of one of severa strategies:

1. Do nothing. The old code should compile just fine.
2. Add function prototypes just to the headers. Thiswill cover al callsto global functions.

3. Add function prototypes to the headers and start each source file with prototypes for its
local functions.

4. Change all function declarations and definitions to use prototypes.

| suggest either 1 or 4. Although choices 2 and 3 are good compromises, they require detailed
knowledge of the rules for the mixing of old and new styles.

It isagood ideato use prototypes for any functions that have POSIX types as arguments. If you
call afunctionwithani no_t asaparameter, it will increase portability to use prototypes for
that function at least.

Mixing Old and New

Mixing old and new style function definitions requires caution. The use of function prototypes
allows the compiler to generate faster and smaller code and do more error checking. This code
may not be compatible with old-style functions. For most purposes, it is best to avoid mixing
old and new. There is one place where you need to consider mixing the two: libraries. The
users of alibrary may want to use old or new type calls.

Page 181

Here are the rules for mixing:

1. You cannot mix the Standard C ellipsis notation and old-style functions. Before Standard C,
functions with a variable number of arguments were not completely portable. If your library
has functions with a variable number of parameters, you must decide to either keep the
old-style definitions or force all callersto use prototypes.

2. For dl integral types narrower thanan i nt , usei nt in the function prototype and the
function itself. Functions without a prototype will widen integral typestoi nt .

3. For dl floating-point types, use doubl e in the function definition and in the function itself.
Functions without a prototype will widen floating-point typesto doubl e.

Using const and volatile

Standard C has added two type qualifiersto C: const andvol atil e. Thevol atile
qualifier tells the compiler to take no shortcuts when accessing an object. Consider the
fragment:

int a,b;
int i;
int tbl[100];

a=b;

b=3;

for (i=Q i<=99; i++)
tbl[i] = a + b;

The compiler isfreeto observe that every element of t bl is set to 8 and then generate
optimized code to do that quickly, maybe with ablock move of some sort. If b may changein
some way that the compiler cannot predict, say as the result of asignal, the optimization may
not provide the correct result.

The following:
volatile int a,b;

tells the compiler not to do anything clever. The compiler will add a to b for every element of
t bl .

A more common use for thisfeatureis:

flag = 1;
while (flag)
{

.

Page 182

wheref | ag isset to zer o by some asynchronous event like aSI GALARM. If thevol atil e
gualifier is not used, the compiler is not required to check the value of f | ag each time around
the loop.

Theconst qualifier ismuch easier to understand. It says that an object of that type will not be
modified. A declaration such as:

int copy(const char *from char *to);

tells the compiler (and the human reader) that f r o is not modified by thecopy() function. It
has two advantages. First, the compiler can detect errors where copy () might attempt to
modify f r orr. Second, the compiler can generate better code both for copy() and for the
places where copy() iscalled. Telling the compiler that afunction parameter will not be
modified is agood thing to do.

Thereis onetricky thing here. The declaration:
const char *spl

and:
char *const sp2

do very different things. Thefirst declaration saysthat sp1 pointsonly at characters that will
not be changed through sp1 (although they may be modified through some other pointer). The
second declaration saysthat sp2 isan unchanging pointer to a possibly changing char . The
way you would declare an un-modifiable pointer to an un-modifiable char iswith:

const char *const sp;

String Constants

A useful new feature of Standard C is that consecutive string constants are seamlessly pasted
together. The statements:

printf("a" "bc" "def");
and:
printf("abcdef");
produce identical results.* This allows programs to be cleanly formatted. For example
text = "x
oy
x";

isareadable way to fill ina3x3 array.

* Thisisanew feature created by the ANSI C committee. Older C compilerswill not support it.

Page 183

It is neither required nor forbidden that identical string constants be represented by asingle
copy of the string in memory. So, if we have the program:

sue = &' This is a string";
jenn = & This is a string";

some compilersset sue andj enn to the same value; other compilers set them to different
values.

Data Type Conversions

When a binary arithmetic operator is presented with two operands of different type, the
operands must be converted to acommon type. The common typeis aso the type of the result.
This set of conversion rulesis called usual arithmetic conversions. The following rules are
applied, in order, until one of them is satisfied:

1. If either operand hastypel ong doubl e, the other operand is convertedto | ong
doubl e. Theresult hastypel ong doubl e.

2. If ether operand has type doubl e, the other operand is converted to doubl e. The result
hastypedoubl e.

3. If either operand hastypef | oat , the other operand is converted tof | oat . Theresult has
type float.

4. If either operand hastypeunsi gned | ong i nt , the other operand is converted to
unsgned | ong i nt . Theresult hastypeunsi gned | ong i nt.

5. If oneoperand hastypel ong i nt and the other hastypeunsi gned i nt , if al ong
i nt canrepresent all valuesof an unsi gned i nt , the operand of typeunsi gned i nt
isconvertedto!l ong i nt ;if al ong i nt cannot represent all of the values of an
unsi gned i nt, both operands are converted tounsi gned | ong i nt .

6. If either operand hastypel ong i nt , the other operand isconvertedtol ong i nt .

7. If either operand hastypeunsi gned i nt , the other operand is converted to unsi gned
i nt.

8. If none of rules 1 to 7 applies, both operands and the result must have typei nt .

A compiler may perform calculations in awider type than absolutely necessary, if this

produces smaller and faster code.” Calculations may also be performed in a narrower type, so
long as the same end result is obtained.

* Strictly speaking, the compiler can do this even if it produces larger, slower code.

Page 184

Standard C uses what is called a value preserving approach to integer promotion. When a
value with an integer type is converted to another integer type, if the value can be represented
by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size, its value
isunchanged. If the unsigned integer has greater size, the signed integer isfirst promoted to the
signed integer of the correct size and then that bit pattern is converted to unsigned.

An ambiguity ariseswhenever an unsi gned i nt andasi gned i nt are operands and the
si gned i nt is, infact, negative. Thesi gned i nt becomesavery largeunsi gned i nt .

This may be surprising or it may be exactly what the programmer has in mind. If we execute
this code fragment:

short a;

unsi gned short b, c;
a
b
c

I
U'I 1

a + b;

¢ will end up with avalue of 65,531 on a machine with 16-bit shorts.

Char acter Sets

The C programming language was created with the ASCII character set in mind. Not all
computers use ASCII. Outside of the United States, some of the special characters are missing.
We need a character set that will work in any country. The following characters are in the
portable” character set:

ABCDEFGHI JKLMNOPQRSTUVWKYZ
abcdef ghi j kl mopgr st uvwxyz
0123456789

"o () *+, -], <=>?

The following characters are used in C but are missing from the portable set:
#[1 {}y\VI "™~

In order to represent these characters, there is a set of magic escape sequences called trigraphs.
A trigraph is a sequence that |ooks like ??x. These trigraphs are converted into the missing
characters by the C compiler. The defined trigraphs are:

??=
?2?2(
??/
??)
??
?7?7<

_~— > = 3

* The International Organization for Standards (ISO) has defined these as an invariant subset of
ASCII in SO standard 646.

Page 185

271 |
27> }
27- ~

Question marks that do not begin atrigraph listed above are not changed. Thus, the following
source line:

printf("Wat???/n");
isthe same as.

printf("Wat?\n");

after ??/ isreplaced by \ .

It isugly and awkward to type ??< instead of { . You can avoid using the trigraphs if your
development computer has the required special characters. It isfairly smpleto write a
program that will replace the specia characters with the trigraphs. Y ou can then port the files
with the trigraphs to other environments.

Y ou also need to be careful not to trip over one of the trigraphs. The statement:
printf("Wat???2\n");

will produce What ?| instead of What ??7?! . Chances are you want the second result. The
escape sequence\ ? resultsin asingle ?. Escape sequences can be used to prevent unintended
trigraphs in character strings. For example:

printf("Wat\2\?2A\2\n");

In fact, if it were not for the possibility that you might get atrigraph by accident, | would not
even have mentioned them.

Using Floating-point Data

Standard C defines a number of additiona constants for the <f | oat . h> header file. In order
to use them, it helps to understand how computers store floating-point data.

A f | oat storesavalue according to the following formula:
val ue = s Xbaseexp

The exact value for base depends on the computer's hardware. The popular values are 2 and
16. A computer storesaf | oat inaformat that looks something like:

+
exp S

The number of bits used to hold the exponent (exp) and thefraction (s) change from
computer to computer. The number of bits may also vary among f | oat , doubl e, and| ong
doubl e.

Page 186

The most natural way to think of afloating-point number isin decimal. The valueis given by
the formula

value = frac X 10%*P

even if no real computer uses this exact formula. Using thisformula, all computers can support
exp vauesfrom - 37 to +37. Itemsof typef | oat have at least 6 decimal digitsin the
fraction. Items of typedoubl e or | ong doubl e have at least 9 decimal digitsin the
fraction.

The header file <f | oat . h> defines symbols for the actual limits on the target computer. Y our
program should use these symbols instead of numeric constants. The macros™ are:

Description Symbol for f | oat Symbol for doubl e Symbol for | ong
doubl e

Radix of theexponent FLT_RADI X FLT_RADI X FLT_RADI X

Number of FLT_MANT_DI G DBL_MANT_DI G LDBL_NMANT_DI G

FLT_RADI X digitsin
frac

Number of decimal
digitsin the fraction

Minimum exponent

Smallest value of exp
such that 10S(exp) is
avalid number

Maximum exponent

Largest value of exp
such that 10S(exp) is
avalid number

Maximum number

Minimum number

FLT DI C
FLT M N_EXP

FLT M N_10_EXP

FLT_MAX_EXP
FLT_MAX_10_EXP

FLT MAX
FLT_M N

DBL_DI G
DBL_M N_EXP

DBL_M N_10_EXP

DBL_MAX_EXP
DBL_MAX_10 EXP

DBL_MAX
DBL_M N

LDBL_DI G
LDBL_M N_EXP

LDBL_M N _10_E

LDBL_MAX_EXP
LDBL_MAX_10_E

LDBL_MAX
LDBL_M N

* These macros are most often simple defines, for example:
#define FLTDI G 6

On some systems they may be defined as functions, asin:
#define FLT_DIG (_ _mathconf(_ _FLT D Q)

The different definitions should have no effect on your program. All of the private symbols used by

these macros must begin with two underscores to prevent conflicts with your symbols.

Description

Symboal for f | oat

Symboal for doubl e

Page 187

Symboal for | ong
doubl e

The smallest value that
can be added to 1.0 to
give adistinct number

FLT_EPSI LON

DBL_EPSI LON

LDBL_EPSI LON

Using Data Structures

This section does not deal with the Standard C/Common Use C definition, but with its
implementation; specificaly, this section covers the way datais stored in memory and some
portability pitfalls related to data structures. Normally, programs are not sensitive to the way
datais stored in memory. If you misuse a pointer or a union, however, your programs may be
sensitive to the way datais stored.

Alignment

The C compiler has agreat deal of freedom in assigning storage. Consider the structure:

struct date {
unsi gned char day;
unsi gned char nont h;
unsi gned short year

}s

It hastwo char elementsand ashort element. It is possible to store this structure in four
contiguous bytes:

nont h day year

Thereis no obligation for the system to pack the data this way, but there are good reasons to
insert padding.

First, the compiler may decide to round up to some convenient boundary. Some computers
requirethat | ongs are placed only at certain storage boundaries. Other computers will give
correct results with any alignment, but give faster results with preferred alignments.

Some compilers have no alignment rules. Some will start every structure on an even boundary.
Otherswill aign a structure on the same boundary as required for its most strictly aligned
component. For instance, ast r uct containing only char members would have no aignment
restrictions, whileast r uct containing adoubl e isaligned on an 8-byte boundary.

Page 188

On some machinesit is much faster to access data aligned on 4-byte boundaries. The compiler
may pad out our date structure to look like:

pad pad pad day
pad pad pad nont h
pad pad year

This requires three times as much storage as atightly packed structure, however, it may be
much faster to access. This packing of datais one difference between traditional Complex
Instruction Set Computers (CI1SC) and the newer Reduced Instruction Set Corrputers (RISC). In

general, the CISCs packed data as tightly as possible to save space. However, they also
require the hardware that accesses memory to be more complex and thus slower. The RISC
computers use more memory and are able to access data using fast and simple hardware.

A structure may be padded at the end to round the size up to a handy value for the computer. On
some machines, it may be just up to an even boundary. On other machines, the size of a
structure is amultiple of the most strictly aligned element. Thus, any structure that contains a
doubl e will beamultiple of 8 byteslong.

Thepointisthat si zeof (struct date) canchangeagreat dea from system to system.
This should not be a problem if you do not write code that depends upon the exact size.

Do not assumethat si zeof (struct a) andsi zeof (struct b) will dwaysbethe
same, even if they are on the system you are using for development.

Data Segment Layout

The compiler and linker may add padding between variables. The following assumption is
incorrect:

short a = 0;
short b 0;
/* assert(&a + sizeof(a) == &) */

Some linkers and compilers place uninitialized variables in a separate segment. Thus:
short a = 0;
short b; /[* uninitalized */
short ¢ = 0;

may result in b being placed a great distance from a or c.

Page 189
Big-endian vs. Little-endian

There are many possible waysto pack char s intoashort andshort s intoal ong. There
are two very popular schemes and most computers use one or the other: big-endian or
little-endian.

Let's assume we have a 16-bit computer that stores two 8-bit bytesin aword.

The least significant bit is on the right and the most significant bit is on the left. The decimal
number 600 is stored in binary as*

00000001 00101100

There are two possible waysto store the string "ab" in those 2 bytes.

lal lbl

Thefirst caseis caled "big-endian” and the second "little-endian.” If the union:

uni on foo {
short num
char ch[2];

}s

had 600 stored in nurr, on big-endian machinesch[0] would contain 00000001 binary and
on little-endian machinesch[0] would contain 00101100 binary.

When we go to 32-bit words, the picture gets even worse. Big-endian looks like:

a b c d

and little-endian looks like:

d C b a

The IBM System/360, introduced in 1964, was big-endian. All of the follow-on IBM
mainframes have also been big-endian. The IBM-PC islittle-endian. Digital Equipment
Corporation introduced the PDP-11 in 1969 as the first little-endian machine. The follow-on
VAX seriesisalso little-endian. The world of micro-computers has been split between the
little-endian Intel family (8080, 8086, 8028, 80386, 80486, etc.) and the big-endian Motorola
family (68000, 68010, 68020, 68030, 88100, etc.). Some chips are used

* Thisis a 16-bit number. Do not assume anything about byte addresses. When the computer uses this
information asashor t , it getsthe bitsin the order shown.
Page 190

both ways. For example, the MIPS R2000 is big-endian in boxes sold by MIPS and Silicon
Graphics and little-endian in boxes sold by Digital Equipment Corp.

The bottom line is. programs must not depend on the way datais stored in memory. It is not
possible to transfer binary data blindly between two computer systems even if the same CPU
chip is used.

I nter nationalization

Standard C adds a number of internationalization features that include multi-byte characters,
wide characters, and new conversion functions. These are covered in detail in the next chapter.

Portability Lab

To review the contents of this chapter, try to do the following exercises.

1. What isthe difference between ANSI C and Standard C?
2. Given the macro:
#define list(a,b) printf(#a "=%\n" #b "=%\n", a, b);
what does:
Iist(howard, harriet)
expand into?
3. What does the ## operator do?
4. If you definethe function | og in your program, what portability risks do you run?

5. Shouldyou #i ncl ude systems headers before application headers? Does it matter? Why
or why not?

6. What can you say about a function defined by the following prototype:
void eniwel (const int i, const int *i, ...);

7. What isthe difference between a function defined by:
julie();

and:
int julie(void);

8. When would you need to usethevol at i | e attribute?

9. What does this do?

wchr = '??";

Page 191
10. Given the structure:

struct tinme {
unsi gned char hours;
unsi gned char m nutes;
unsi gned char seconds;

}

may the compiler pack this structure into 3 bytes? May the compiler insert pad bytes between
hour s and m nut es? May the compiler storeseconds at alower addressthan hour s?

Page 193

Chapter 10
Porting to Far-off Lands

The C programming language and the UNIX system wer e invented by people who speak
English, and the intended users all spoke English. The seven-bit ASCII code was capable of
holding every character anyone really needed. As C and UNIX grew into international
standards, the demand grew for them to address the needs of the world outside of New
Jersey.
= If you arein the United States and you are sure you will never have to port your softwar
other countries or cultures, then you can skip this chapter.”

Some Definitions
Before we get too far into the subject, it is worth defining some terms.
| nternationalization

A program written for a specific culture and following a set of local customs may be difficult
to move elsewhere. It is possible to write programs which make no assumptions about
language, local customs, or coded character set. Such programs are said to be
internationalized. That is, internationalization means making our software location neutral.

Localization

Making a program specific to any particular language, cultural convention, and codeset is
referred to aslocalization. In the ideal situation, no changesin program logic are required: al
localization is done by compiling with the correct library and including the proper datafiles.

Locale

We need a specific term to refer to a set of language and cultural rules. POSIX callsit alocale.
A program must be able to determineits locale and "do the right thing."

* Of course, you may bewrong. | have lots of horror stories about people who knew that their
software was only for the domestic market only to have the boss come in with the big deal they just
closed in Saudi Arabia. Then there was the person who discovered that Puerto Rico was part of the
United States.

Page 194

L ocale Control

A number of things can vary from one locale to the next. Before | discuss the programming
techniques to use, we should understand the problem we are up against.

Character and Codeset

The character set for the United States is based on seven-bit characters defined by the
American Standard Code for Information Interchange (ASCII1). For many locales, additional
characters are required, such as: ce ¢ g8 R G and ; The 8-bit International Standard code |SO
8859-1:1987 has enough specia characters to handle major Western European languages.

Because the low-order seven bits of SO 8859 are the same as ASCII, most data files can be
exchanged.

It isimportant that our programs be "eight-bit clean.” Programs that use the 0200 bit of
characters as some form of internal flag fail in eight-bit locales.

The problem is more difficult in Asia, where the character set might consist of thousands of
characters. Clearly, eight bits cannot do the job. Characters with more than eight bits per
character, (called wide characters) and characters that consist of a sequence of eight-bit bytes,
(called multi-byte characters) provide support for Asian languages. These are covered later in
this chapter.

Messages

One obvious thing to fix is hardcoded messages. Statements such as:
printf("Hello, Wrld\in");

will not work well in places where the correct output is something like:
Bonj our tout |e nonde

The mechanism used to solve this problem is called a message catal og. The message catal og
provides an external file of messages that can be translated without access to the source code.

Unfortunately, POSIX does not yet have a message catalog facility. Such afacility is part of the
X/Open Portability Guide and isincluded as part of AT& T UNIX System V.4.0. Thisfacility is
covered later in this chapter in the Section entitled "Native Language M essages.”

Representation of Numbers

Different cultures have different ways of representing numbers. The most common are the
English (12,345.67) and the French (12.345,67). The decimal point and the commaare
interchanged.

In Asig, four-digit groups are preferred (e.g., 1,2345.67).

Page 195
Currency
Currency symbols vary both in terms of the character used and in its position.
Dates

The format of dates and timesis not universally defined. January 9, 1990 may be written as
1/9/90 in the United States and as 9.1.90 in Germany.

The use of AM and PM is also not universal. Some locals use 24-hour time. Some use a colon
(:) between the hour and the minutes and others use a dot(.).

Setting the Current Locale
A program needs to select itslocale. A single program might be capable of operating in alarge

number of places. A user may want to switch from locale to locale based on what he or sheis
doing. Theset | ocal e() function isused to select the locale. Thisis defined as:

char *setlocal e(int category, const char *|ocale);

The category argument is a symbolic constant and tells the setlocale() function which items to
set. The effect of the locale settings is described in the next section. The choices are:

LC COLLATE Changes the behavior of thest rcol | () andst rxfrnm() functions,

LC _CTYPE Changes the behavior of the character-handling functions:
i sal pha(), isgraph(), islower(), isprint(),
i spunct (), isspace(), isupper(), toupper(),ad
t ol ower () ; and of the rrulti-byte functions; nbl en() ,
nbt owc (), wet onb(), nbst owcs(),andwest onbs() .

LC_MONETARY Changesthe information returned by | ocal econv().

LC _MESSAGES Changes the language in which messages are displayed.

LC_NUMERI C Changes the radix character for numeric conversions.
LC TI ME Changes the behavior of thest r f t i me() function.
LC ALL Changes al of the above.

Thel ocal e argument isthe name of alocale. There are afew specia locale names:

"C Makes everything work as defined in the C standard. No locale-specific actic
take place.
"POSI X" Has the same effect as"C".
Page 196

Selects the native locale. Thisis done using the following steps:
1. If LC_ALL isdefined inthe environment and is not null, the value of LC_ALL

2. If thereisavariable defined in the environment with the same name as the cate
whichis not null, the value specified by that environment variable is used.

3. If LANG isdefined in the environment and is not null, the value of LANC is use

If the resulting value is the same as a supported locale, that name is used. If thevalued
name a supported locale (and isnot null), set | ocal e() returnsaNULL pointer, an
Is not changed by this cal. If no nonnull environment variable is present, the exact beh
set | ocal e() isimplementaion defined.

Setting al of the categoriesby using LC_ALL asthe first argument is similar to succes
setting each individual category of the locale, except that all error checking is done bef
actions are performed.

NULL Returns the current locale without changing it.

At program startup:
setlocal e(LC ALL,"C");

is performed before mai n() iscalled. If your program uses the library functions according to
the guidelinesin this chapter, you can start the program with:

setl ocal e(LC ALL,"");
and do the best job possible in the local environment.

Theset | ocal e() function returns a pointer to the name of the current locale for the selected
category. If set | ocal e() isgiven an unknown locale, NULL isreturned.

Y ou might wonder what effect setting the locale has on functionslikepri nt f () . The answer
is, none at all. Whileyou can set LC_MONETARY and LC_NUMERI C, thepri nt f () family
of functionsis not required to use the information you supply. Most implementations format
numbers for the United Stated even if the locale is set elsewhere. On some systems,

printf () will format numbers based on locale.

Character-handling Functions

Some of the character-handling functions are sensitive to the locale. They will report different
results for different national character sets.

Page 197
TheisalphaO, islower(), and isupper() Functions

These functions may expand the set of alphabetic characters to include native language
characterslike ¢, & and so on. These characters do not have valuesbetween' a' and' z' .

The toupper() and tolower() Functions

Not all lowercase |etters have corresponding upper-case letters. For example, the lowercase
German 3 becomes SSin uppercase. Thet oupper () andt ol ower () functionsassume
that a one-to-one mapping exists. They will return the input character if thereis no way to
convert it.

Theisspace() Function

A native language, such as Japanese, may have specific white space characters beyond the
standard set.

The strcall() Function

Thestrcol | () function compares two strings in the native language character set and
reports which is greater. The function is defined by:

int strcoll(const char *sl, const char *s2);

and returns a number that is less than, equal to, or greater than zero, depending on whether the
string pointed to by s1 islessthan, equa to, or greater than the string pointed by s2.

Inthe"C" locale, strcol | () isequivalenttost rcnp() . Inother locales, st rcol | ()
must compensate for the rules of the native language. Most locales can be accommodated using
aone-to-one mapping that inserts characters like &in the correct place. In some cases, a
one-to-many mapping is required for characters like the German 3. There are also many-to-one
mappings like the Spanish "Il," which is sorted right after "[".

The strxfrm() Function

Theuseof strcol | () canbequite dow if agreat deal of transformation is required and
many comparisons are going to be made. The st r xf r (') function performsthe
transformation required by st r col | () and leavestheresult inaformwherest rcnp() can
be used.

Inthe"C" locale, st r xf r () merely copiesthe string and is amost equivaent to
strncpy() . Thedifferenceisthat st r xf r () returnsthe length of the transformed string
which may be different from the length of the source.

Page 198

In applications where many comparisons must be made, a sort say, using st r xf r () and
st rcnp() can provide a performance enhancement over using st rcol | () . Thereisno
untransform function to recover the source string. It must be kept around if you are going to
need it again. Also, the transformation is implementation-dependent so that even two systems
operating on German may produce different transformations.

The strerror() and perror() Functions

Thestrerror () andperror () functions may produce native language messages even in
the"C" locale.

The strftime() Function

Thestrftime() functioniscoveredin detail in Chapter 7, Obtaining Information at
Run-time. One of itsfeaturesis the ability to generate |ocale-specific dates and times. For
example, the format string "% " may produce:

Friday April 13, 1990 3:25 PM

in one locale and:
viernes abril 13 1990 15.25

in another locale. The "%x" format produces a native date (no time) and the "%X" produces a
native time (no date).

Native Language M essages

One important task of a program isto trandate messages into the native language. Thereisno
provision in Standard C or POSIX to provide this capability. There is an existing method that
is part of the X/Open Portability Guide™ and is available on many systemsincluding AT& T
System V.4 and OSF/1. In late 1990 the POSIX working group concluded that it would be
premature to adopt any messaging proposal because:

No proposal represented significant historical practice.

All proposals had been developed with a primary focus on character terminals. The group
felt that the rapidly rising importance of windowing might require a proposal that explicitly
considered messaging in windows.

All proposals seemed clumsy.

In my opinion, the working group abdicated their responsibility in the face of a difficult
problem. Since thisis an important capability for building portable applications, | have
decided to describe the X/Open functions even though they are not part of POSIX.

* The X/Open Portability Guideis published by Prentice-Hall. Volume 3: X S| Supplementary
Definitions covers internationalization. See the Related Documents section in the Reference Manual
of thisbook.

Page 199

Message Catalogs

The basic mechanism for language-independent messages is a message catalog. It consists of a
file, external to your code, that can be trandated to provide messages in other languages. A
message ID is used to look up the message in the catalog.

The message text file has the form:

$set n
i message-i
j message-]j
k message- k
$set m
1 nmessage- |

Each message isidentified by a set number and a message within that set. The usual backsash
escape sequences may be used.

Sets are often used to break messages into blocks of normal messages, error messages, and so

on. They can aso be used to indicate which source modul e uses the message.

By default, there is no quoting and messages are delimited by white space asiin:

$set 0

1 Hello, Wrld\n

2 Goodbye, World\n
3 Have a nice day.

The $quot e ¢ command makes c a quote character. It can be used to include leading or
trailing white space in amessage. For example:

$quot e

$set 0

1 "Hello, World\n"

2 "CGoodbye, World\n"
3 "Have a nice day

To speed retrieval, the messaget ext iscompiled into binary with thegencat utility. This
command takes two arguments, the name of the catalog to be created and the input text file:

gencat catal og text

The generated catalog isin a machine-specific format and is not portable. The text file, of
course, is portable (at least, on systems with the same code set).

The catopen() Function

Thecat open() routineisused to make a message catalog available to your program. The
function is defined as:

#i ncl ude <nl _types. h>
nl _catd catopen(char *nane, int oflag);

Page 200

The argument name points to a string used to locate the catalog. If the string containsa™ / " itis
assumed to be the full path for the message catal og. Otherwise, the environment variable
NLSPATH is used with the string pointed to by name substituted for %\. The of | ag argument
must be zero.

Thecat open() function returns anumber of typenl _cat d for use with subsequent calls to
catget s() andcat cl ose() . If anerror takesplace, - 1 isreturned and errnois set to
indicate the error.

The catgets() Function

Thecat get s() functionisused to pull strings out of a message catalog. The functionis
defined as:

#i ncl ude <nl _types. h>
char *catgets(nl _catd catd, int set_id, int nsg_id,
char *s);

where cat d isthevaluereturned by cat open(), set _i d isusedto identify ablock of
messages, nsg_i d isused to identify a particular message within a set, and sis apointer to a

default string. The cat get s() function returns a pointer to amessage. If cat get s() hasa
problem locating the message, sisreturned. No errors are detected.

A typical useof cat get s() is:
printf(catgets(catd,0,1,"Hello, Wrld\n"));
which might print out:
Bonj our tout |e nonde

in France.
The catclose() Function

When you are done with the message catalog, the call cat cl ose(cat d) closesthe catalog.
No errors are detected.

L ocal Numeric For matting

Various information for formatting numbers is made availablein thel conv structure. This
structureisdefined in <l ocal e. h> and contains the following members:

Type Member Name Default Description
char * deci mal _point o The character used to format non-mone
guantities.
Page 201
Type Member Name Default Description

char * thousands_sep
digitsin non-monetary quantities.

char * grouping

The character used to separate groups

A string whose elementsindicate the s

of each group of digitsin non-monetary

guantities.

Each character is examined:

0 repeat the previous element for t

remainder of the digits.

1.. CHAR_MAX-1

the number of digitsin the currer

group.
CHAR MAX

no further grouping isto be

performed.

char int_curr_synbol o International currency symbol for the
current locale (e.g., NOK for Norway)

char currency_synbol " Local currency symbol for the current
locale (e.g., Kr for Norway).

char non_deci mal _poi nt o The decimal point for monetary quantit

char nmon_t housands_sep e The character used to separate groups
digits for monetary quantities.

char non_gr oupi ng o A string whose elementsindicate the s
of each group of digitsin monetary
guantities.

char positive_sign e The string used to indicate a nonnegati\
valued monetary quantity (eg., " +",
“DB",or" ").

char negati ve_sign o The string used to indicate a negative
valued monetary quantity (e.g.,"-", ol
"CR").

char int frac digits CHAR_MAX Number of digits after the decimal poir
internationally formatted monetary
quantities.

char frac_digits CHAR_MAX Number of digits after the decimal poir
formatted monetary quantities.

Page 202

Type Member Name Default Description

char p_cs_precedes CHAR_MAX 1if the currency symbol precedes
nonnegative monetary quantities; zero i
goes after them.

char p_sep_by space CHAR_MAX 1if thereis a space between the currer
symbol and the digits in nonnegative
monetary quantities. Zero if thereisno
space.

char n_cs_precedes CHAR_MAX 1if the currency symbol precedes nege

monetary quantities. Zero if it goes afte
them.

char n_sep_by space CHAR_MAX 1if thereis a space between the currer
symbol and the digits in negative mone
quantities. Zero if there is no space.

char p_sign_posn CHAR_MAX Position of the positive sign in monetar
guantities:

0>

1>

Surround with () .

Sign string precedes the quanti
and the currency symbol.

23 Sign string succeeds the quanti
and the currency symbol.
32 Signstring precedes the currex
symbol.
4 5 Signdring immediately after tl
currency symbol.
char n_si gn_posn CHAR_MAX Position of the positive sign in monetar

guantities; has the same codes as
p_sign_posn.

Thel ocal econv() function returns a pointer to this structure. It is defined as.

struct |conv *|ocal econv(void);

There are no arguments and no errors are detected. Do not modify the returned structure, which
may be overwritten by subsequent callstol ocal econv() orsetl ocal e().

Asian Languages

Page 203

The 1SO 8859-1:1987 8-hit code handles most Western European languages. Other eight-bit
codes will support Hebrew, Arabic, or Russian. Asian languages present a problem. For
example, the Japanese language in Japanese is gz . Since many thousands of characters are
required to support the Japanese or Chinese languages, eight bits are not enough.

One could try to use a phonetic English system to represent information inside the computer.
Using the English aphabet does not work very well, because a given symbol may have several
readings, and a given sound maps into a large number of symbols. Many characters are
pronounced ko or shi. Proper names may merge when converted to a phonetic spelling.”

Y ou are forced to keep track of al of the symbols.
Multi-byte Characters

One way to support extended characters without breaking lots of programsis to use escape
codes. We assume that information is stored in a sequence of eight-bit bytes. The interpretation
of these bytes depends on a shift state. A special byte or series of specia bytes are used to
establish the shift state. Thus, the character with avalue of 65 might be "A" in one shift state
and "¥' in another shift state.

Multi-byte encodings are useful for 1/0 in general and termina 1/O in particular. They are also
useful for programs that deal with strings without looking at them. For example:

printf("¥\n");
works just fine with no special additions to the C compiler.

The only important ruleis that the null character (\ 0) must never be used as part of the
multi-byte encodings.

A mgjor disadvantage of this scheme isthat the shift state must be kept around someplace.
Extracting a substring may have unintended side effects; functionslikest r cat () would need
to be made much smarter. The usua assumption is that every string starts in a default shift state
and any required escapes are inserted in the front.

Wide Characters

The more straightforward (but much less C-like) way to extend the character set isto use more
bits per character. Standard C definesthe typewchar _t asawide character. The

* To make matters more complicated, the Japanese use three phonetic alphabets in addition to the
large set of Chinese (kanji) characters: the Latin alphabet called romaji, an aphabet for words of
foreign origin called katakana, and an aphabet for words of true Japanese origin called hiragana.

Page 204

wchar _t has enough bitsto store all possible symbols without the need for escapes or a shift
state.

Wide characters may aso be more efficient for storing text that is mostly in the extended
character set. Severa implementations of AT& T System V.4 have definedwchar _t asa
32-bit dataitem. This requires four bytes per character and is not very efficient.

Working with Multi-byte and Wide Characters

Multi-byte and wide characters are optimized for different purposes. Multi-byte characters are
variable size and optimized for compactness. Wide characters are fixed size and optimized for
random access. The Standard C library provides a set of functions for converting between
wide characters and multi-byte characters. They are all defined inthe<st dl i b. h> header
file.

The mbtowc() Function

Thenbt owc() function converts a single multi-byte character to awide character. The
function is defined as:

int nbtowc(wchar _t *pwc, const char *s, size_t n);

where s pointsto an array of a most n bytes. If the array contains avalid multi-byte character,
the corresponding wide character is stored inthewchar _t pointed to by pwc. The function
returns the number of bytesin the multi-byte character or - 1 if the encoding is not valid.

If s isanull pointer, aspecial case of mbt owc () isused. Inthiscase, no conversionis
performed and a non-zero value is returned if multi-byte characters have a state dependent
encoding; zero isreturned if they do not.

The mbstowcs() Function

A multi-byte-character-encoded string can be converted to a wide-character string using the
nmbst owcs() function. Thisisdefined as.

size_t nbstowcs(wchar_t *pwc, const char *s, size_t n);

and convertsthe string pointed to by s into at most n-wide characters stored in the array
pointed to by pwc. The function returns the number of wide characters stored or - 1 if an
invalid code in encountered.

Page 205
Thewctomb() Function
Thewct onb() function converts awide character to a multi-byte character. It is defined as:
size_t wctonb(char *s, wchart wchar);

and stores the character sequence required to represent wehar inthe string pointedto by s.
Any required shift characters are included. The function returns the number of bytes stored in
s.If s isanull pointer, thewct onb() returnsthe same specia value asnbt owc () with a
null pointer.

The wcstombs() Function

Thewct onbs() function converts awide-character string to a multi-byte-character string. It
isdefined as:

int westonbs(char *s, const wchar _t *pwcs, size_ t n);

and converts the null-terminated, wide-character string pointed to by pwcs into a
null-terminated, multi-byte-character string pointed to by s. At most, n bytes are stored into the
strings. Thewcst onbs() function returns the number of bytes stored in s, not counting the
final null byte. If an invalid wide character is encountered, - 1 isreturned.

The mblen() Function

Thenbl en() function returns the number of bytesin a multi-byte character. The function:
nbl en(const char *s, size_t n);

isexactly the same as.

nbt owc((wchar _t *)0, s, n);

except that the shift state of bt owc () isnot changed.

Page 206

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1.

2
3.
4

o

What is the key distinction between internationalization and localization?

. What does "eight-hit clean” mean?

What isthe C locale? What is the default locale?

. Whenwouldthestrcol | () function give adifferent answer fromthest r cnp()

function? Which function is, in genera, faster?
What can you do with the output of st r xf r () ? Isthere any other use for the output?
Is Poland in the C locale? Why or why not?

One way to support multiple languages would be to write a trandate function. This function
iscalled with:

printf(translate("Have a nice day. . .\n"));

and uses the English string as akey into afile to find the trandation. The file might look
like:

ENGLI SH: nmessage 1

FRENCH: nessage 1

GERVAN: nessage 1

ENGLI SH ﬁessage n

FRENCH: nessage n

GERVAN: nessage n
Thet ransl at e() function merely returns a pointer to the correct text.
Writethet r ansl at e() function.
What are some of the pros and cons of this scheme?

Write a program to convert an amount of money stored in adoubl e into a character string
using the information returned by thel ocal conv() function.

Given the multi-byte and wide-character functions, write a complete Japanese word
processor. If you cannot do it, what information do you need?

Page 209

Library Functions

This section lists all of the library functionsin the ANS C and POS X library. Thetableis
in strict alphabetical order. The reader does not need to know if a function is a macro, a
system call, or a true library function. Every function is listed in its proper place. For
example, thecal | oc() functionislisted at its correct place in the Cs and not hidden
under mal | oc() . The descriptions are self-standing; if you look up cr eat () , you are not
told to seeopen() for details. You aretold that open() isa more general function than
creat () . Youmay also want to look up open() , but the description of thecr eat ()
function is complete.

Format:

Each function is described in the following format:
functi on name—One-line description of the function.
Synopsis:

The C language prototype for the function, with alist of all of the header files that must be
included when this function is used.

Arguments:

Gives adescription of each argument. In many cases the language is not quite as precise asthe
standard. For example, if an argument is defined as char * path, the description might say:

pat h The path of the file to use.
instead of the more precise:
pat h A pointer to a character array representing the path to be used.

Since the programmer is likely to write something like/ usr / don/ f 0o. bar , the short
description is better. If confusion is likely, the more precise description is used.

Returns:

Describes the value returned.

Page 210
Errors:

Liststhe error codes that this function is required to detect. It may aso detect other errors. The
error codes are described in the Error Code section.

The entries for some functions, such asf pri nt f (), do not list error codes, but these
functions do detect errors. The standards do not require any particular error code and error
codes can differ from system to system.

Description:

Provides a complete description of this function.

Reference:

The"American Nationa Standard for Information Systems—Programming Language C" is
abbreviated "C."

The "IEEE Standard Portable Operating System Interface for Computer Environments' is
abbreviated "P."

The section of the appropriate standard isindicated as P s.s.s.sor C s.s.s.s. A few functions
are covered in both documents. In general, the POSIX standard adds additional requirements to
the definition in the ANSI C standard.

Conversions:

Provides compatibility hints for bringing existing programs into compliance with the POSIX
standard. The following abbreviations are used:

SysV: All releasesof AT&T System V.
SVR1: System V Release 1.
SVR2: System V Release 2.
SVRS: System V Release 3.
SVR4: System V Release 4.

These may be combined, asin SVR1-3 to mean System V Release 1to 3.

BSD: Berkeley Software Distribution 4.2 and 4.3.
BSD 4.2: Berkeley Software Distribution 4.2.

BSD 4.3 Berkeley Software Distribution 4.3.

XPG3: X/Open Portability Guide Issue 3.

Notes:

Adds any genera comments when needed, otherwise you can add your own annotations. OSF/1
and SVR4 supply every interface in this chapter.

Page 211
abort () —Causes abnor mal processtermination.

Synopsis:

#i ncl ude <stdlib. h>

voi d abort (void);
Arguments:
None.
Returns:
Never returns.
Description:

Theabort () function causes abnormal program termination unless the signal SI GABRT is
being caught and the signal handler does not return. If theabor t () function causes program
termination, it has the effect of calling f cl ose() on every open stream.

If your program blocks or ignoresthe SI GABRT signal, theabor t () function will still
override it.

Reference:
C4.104.1and P8.2.3.12
Conversions:

BSD and SVR1-2 generate SI G OT instead of SI GABRT and return i nt instead of voi d.
SVR3returnsint instead of voi d. SVR4 is conforming.

Notes:

Theabort () function will not return even if the SI GABRT signal is caught or ignored.
Catching the SI GABRT signal is away to do application-specific cleanup. Programs should
terminate shortly after getting a SI GABRT.

Page 212
abs() —Computes the absolute value of an integer.

Synopsis:

#i ncl ude <stdlib. h>
int abs(int j);

Arguments:

j
Returns:
Absolutevalueof j .
Description:

Theabs() function computes the absolute value of the integer argument.

Reference:
C4.106.1
Conversions:

Add to thelist of included headers:

#i ncl ude <stdlib. h>
Notes:

Trying to take the absolute value of the most negative integer is not defined.

Page 213
access() —Testsfor file accessibility.
Synopsis.
#i ncl ude <uni std. h>
i nt access(const char *path, int anode);
Arguments:
pat h Pointer to the name of file to be checked.
anode Bitwise OR of the access permissions to be checked (R_COK for read, W OK
for write, X _COK for execute, and F_OK for existence).
Returns:
0 If accessis allowed.
-1 On error with er r no set to indicate the error. If accessis not allowed, er r no
will be set to EACCES.
Errors:

EACCES, EINVAL, ENAMETOOLONG ENCENT, ENOTDIR ERCFS
Description:

Theaccess() function checks the accessibility of the file named by the pat h argument for
the permissions indicated by anode, using therea user ID in place of the effective user ID
and the real group ID in place of the effective group ID.

Reference:
P5.6.3.1

Conversions:

Add to thelist of headers;
#i ncl ude <uni std. h>

SVR1-2 used 4, 2, 1, and O instead of the symbols R_COK, W OK, X_OK, and F_CX,
respectively. Change these values to symbols.

BSD and newer releases of SysV used both the symbols and the values. Make sure your
program uses only these symboals.

Page 214
Notes:

access() usestherea UID, not the effective UID. It isnot agenera utility for finding out
"Can | do this?' before doing acall. It isused by SETUID programs to check their actions.

Some historical implementations of access() do not check the file's access correctly when
the real user ID of the processis the superuser. In particular, they indicate that the file may be
executed without regard to whether the file is executable. The standards allow this behavior.

Page 215
acos() —Computesthe principal value of arc cosine.

Synopsis:

#i ncl ude <mat h. h>
doubl e acos(doubl e x);

Arguments:

X
Returns:
Arc cosine of x inthe range O to p radians.

Errors:
EDOM
Description:

Theacos() function computes the principa value of arc cosine. A domain error occurs for
argumentslessthan - 1 or greater than +1.

Reference:

C4521

Notes:

Theacos() function returnsaresult in therange O to p whiletheasi n() function returnsa
result in the range -p/2 to +p/2.

Page 216
al ar m() —Schedules an alarm.

Synopsis:

#i ncl ude <uni std. h>
unsi gned int alarm(unsigned int seconds);

Arguments:

seconds Number of elapsed seconds before signal.

Returns:

Number of seconds left in previous request or zero if no previousal ar m() request.
Description:

Theal ar m() functions causes the system to send the calling process a SI GALARV signd
after a specified number of seconds elapse.

There can be only one outstanding alarm request at any giventime. A cal toal ar n() will
reschedule any previous unsignaled request. An argument of zero causes any previous requests
to be canceled.

Reference:
P34.13
Conversions:
Add to thelist of headers:
#i ncl ude <uni std. h>
Notes:
The SI GALARN may be delayed by other system activity.
The default action for SI GALARWV isto terminate the process.
Some systems allow the signal to occur up to one second early.

Theal ar m(') function uses ordinary wall-clock time. Thistime is measured in the ordinary,
human way and is not related to real-time, virtual-time, or any other form of computer time.

The maximum portable argument is 65,535.
See example on Page 116.

Page 217
ascti me() —Convertsatimestructureto astring.

Synopsis:

#i ncl ude <tine. h>
char *asctinme(const struct tm*tinmeptr);

Arguments:

timeptr Pointer toast ruct t mreturnedby gnti nme() orl ocal tinme().
Returns:

Pointer to string.

Description:

Theasct i me() function convertsthetimein the structure pointedtoby t i meptr intoa
string of the form:

Sun Cct 21 19:54:52 1990\ n\0
Reference:
C4.1231
Conversions:
BSD used the header <sys/ t i me. h> for thisfunction.
Notes:

The string returned may be in static storage. Each call overwrites the results of the previous
call.

The string returned does NOT depend on the current locale. It isawaysin English.

Page 218
asi n() —Computesthe principal value of the arc sine.

Synopsis:

#i ncl ude <mat h. h>
doubl e asi n(doubl e x);

Arguments:

X

Returns:

Arc sineof x intherange-p/2 to +p/2 radians.
Errors:

EDOM
Description:

Theasi n() function computes the principal value of the arc sine. A domain error occurs for
argumentslessthan - 1 or greater than +1.

Reference:
C4522
Notes

Theacos() function returnsaresult in therange O to p whiletheasi n() function returnsa
result in the range -p/2 to +p/2.

Page 219

assert () —Abortstheprogram if assertion isfalse.

Synopsis:

#i ncl ude <assert. h>
voi d assert(int expression);

Arguments:

expression If zero the assert function will crash the application by printing an error
message and calling abort ().

Returns:
No valueisreturned.
Description:

Theassert () macro putstestsinto programs. If expr essi on isfasetheassert ()
macro writes a message with the line and file of thefailing assert () onstderr andcals
abort () . The exact format of the message varieswidely.

Example:
assert(start < end);
for (i=start; i<=end; i++)
{
}
Reference:

CcC4211
Notes:

assert () isimplemented asamacro. If the macro NDEBUC is defined, then callsto
assert () areignored. For example, use statements like:

assert(i > j);

in places where you assumethat i must be greater the j . Define NDEBUC after al of the bugs
have been diminated from the program.

Page 220
Do not use expressions with side-effects! Statements like:
assert (i ++ < 100);

will not increment i when NDEBUC is defined. Programs that fail only when the debug features
are turned off greatly shorten the life of the programmers who write them.

Do not passapointer toassert (). Use
assert(ptr !'= null);
instead of

assert(ptr);

Page 221

at an() —Computesthe principal value of the arc tangent.

Synopsis:

#i ncl ude <mat h. h>
doubl e atan(doubl e x);

Arguments:

X
Returns:
Arc tangent of x in the range -p/2 to +p/2 radians.
Description:
Theat an() function computes the principal value of the arc tangent.
Reference:
C45.23

Notes:

Page 222
at an2() —Computesthe principal value of the arc tangent of y/x.

Synopsis:

#i ncl ude <mat h. h>
doubl e at an2(doubl e y, double x);

Arguments:
xandy.
Returns:

Arc tangent of y/x.

Errors:
EDOM
Description:

Theat an2() function computes the principa value of the arc tangent of y/ x, usng the signs
of both arguments to determine the quadrant of the return value. A domain error can occur if
both arguments are zero.

Reference:
C4524
Notes:

Thefunction at an(y/ x) generates an error when x isequal to zero. Thecall at an2(y, X)
returns £p/2, depending on thesign of y.

Page 223

at exi t () —Registersafunction to be called at normal program
termination.

Synopsis:

#i ncl ude <stdlib. h>
int atexit(void (*func)(void));

Arguments:
func Pointer to function to be called.

Returns:

0 on success and non-zero on failure.

Description:

Thefunction f unc() will be called without arguments at normal program termination.
Thefunctionsregistered by at exi t () are called in the reverse order of their registration.
Reference:

C4.104.2

Conversions:

Thisfunction isnew in Standard C. It isnot included in BSD or System V prior to SVRA4.
Notes:

At least 32 functions can be registered with at exi t () .

Thisfunction isrequired by Standard C and is not part of the POSIX standard.

Page 224

at of () —Convertsatext string to doubl e.

Synopsis:

#i ncl ude <stdlib. h>
doubl e at of (const char *nptr);

Arguments:

nptr Points to the character string to convert.
Returns:

The converted value.

Description:

Theat of () function convertstheinitia portion of the string pointed to by npt r todoubl e.
The behavior isthesameasstrtod(nptr, (char **)NULL) exceptthat at of ()
does not detect errors.

Reference:
C4.10.1.1
Conversions:

Add to thelist of headers;

#i ncl ude <stdlib. h>

Notes:

Seestrtod() forthegenera case.

at oi () —Convertsatext string to integer.

Synopsis:

#i ncl ude <stdlib. h>
int atoi (const char *nptr);

Arguments:

nptr Pointer to text string.
Returns:

Converted value.

Description:

Page 225

Theat oi () function convertstheinitia portion of the string pointedto by nptr toi nt . The
behavior isthesameasstrtol (nptr, (char **)NULL, 10) exceptthat at oi ()

does not detect errors.
Reference:
C4.10.1.2
Conversions:

Add to thelist of headers:

#i ncl ude <stdlib. h>
Notes:

Seestrtol () forthegenera case.

at ol () —Convertsatext stringtolong integer.

Synopsis:

#i ncl ude <stdlib. h>
long int atol (const char *nptr);

Arguments:

nptr Pointer to atext string.

Page 226

Returns:
Converted vaue.
Description:

Theat ol () function convertstheinitia portion of the string pointed to by npt r tol ong.
The behavior isthesameasstrtol (nptr, (char **)NULL, 10) exceptthat
at ol () doesnot detect errors.

Reference:
C4.10.1.3
Conversions:

Add to thelist of headers:

#i ncl ude <stdlib. h>
Notes:

Seestrtol () forthegenera case.

Page 227
bsear ch() —Searchesa sorted array.
Synopsis:
#i ncl ude <stdlib. h>
voi d *bsearch(const void *key, const void *base, size_t nnenb,
Arguments:
key Pointer to the element to match.
base Pointer to the start of the array.
nmenb Number of elementsin the array.
si ze Size of each element.
conpar Pointer to a comparison function called with a pointer to a key and a pointer to an
array element, in that order. It returns a number less than zero, equal to zero, or gree
than zero, depending on the relative order.
Returns:

Pointer to the matching element or NULL if no match isfound.

Description:

Thebsear ch() function searches an array for an element that matches akey. The e ements
must all have afixed size and the array must be sorted (seeqsor t ()) according to the
comparison function.

If there are multiple elements that match the key, the element returned is unspecified.

Example:

/*
* Score structures contain the student's name
* and test score.
*/
struct score
{
char student nane[25];
int test score;
}
/* Cass is an array of scores */
struct score class[50];

Page 228
/*
* Conparison function to use with bsearch
*/
i nt conp_nane(const void *key, const void *test)
{

return(strcnp((char *) key, ((struct score *) test) ->
st udent nane)) ;
}
/*
* Return the score for a student (-1 if not found)

*

i nt | ookup_score(const char *nane)

{

struct score *ptr,;

ptr = (struct score *)bsearch(

(voi d*) namne, /[* key */

&score[0], /* base */

50, /* nunmber of elements */

si zeof (struct score),/* size */

conp_nane) ; /* conparison function */
if (ptr == NULL) return(-1);
return(ptr -> test_score);

}
Reference:

C4.1051

Conversions:

Add to thelist of headers;

#i ncl ude <stdlib. h>
BSD does not support bsear ch() .
Notes:

Thisfunction isrequired by Standard C and is not part of the POSIX standard.

Page 229

cal | oc() —Allocates and zer oes memory.

Synopsis:

#i ncl ude <stdlib. h>
voi d *cal |l oc(size_t nnenb, size t size);

Arguments:

nmenb Number of elements to allocate.
si ze Size of each element.
Returns:

Pointer to the allocated space or NULL if no space can be found.
Description:

Thecal | oc() function allocates space for an array of nnmenb elementsof si ze bytes. The
allocated spaceisfilled with zeros. If the space does not need to be zeroed the mal | oc()
function may be used.

Thecall cal | oc(100, 1) allocates and zeroes 100 bytes.
Reference:

C4.1031

Conversions:

Add to thelist of headers;

#i ncl ude <stdlib. h>
BSD and SVR1-3 use unsigned for si ze and nnmenb.
Notes:

Thecal | oc() functioninitializes the alocated space to all zero bits. This may not be the
same as floating-point zero or the NULL macro.

Page 230
cei | () —Computesthe smallest integer greater than or equal to x.

Synopsis:

#i ncl ude <mat h. h>
doubl e ceil (doubl e x);

Arguments:

X
Returns:
Smallest integral value not less than X, expressed as a double.
Description:

Rounds the argument up to the next integer value. The result is still in floating-point format. For
example:

ceil (1.0000) returns 1.0000
ceil (1.0001) returns 2.0000
ceil (1.9999) retruns 2.0000

Conversions:

C456.1

Notes:

The resulting value may not fitintoan i nt or evenal ong.

Page 231

cf geti speed() —Readsterminal input baud rate.

Synopsis:

#i ncl ude <term os. h>
speed_t cfgetispeed(const struct term os *p);

Arguments:

p Pointer toastruct term os.
Returns:

Code for the baud rate.

Description:

Thecf geti speed() function returns acode for the termina speed storedinast r uct
t erm os. Thecodesaredefined in <t er m os. h> by themacrosBO, B50, B75,

B10, B134, B150, B200, B300, B600, B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

Thecf geti speed() function does not do anything to the hardware. It merely returnsthe
value stored by apreviouscall tot cgetattr ().

Reference:
P71271
Conversions:

Thisfunction is new to POSIX. BSD and System V required the application to store
device-dependent information and usethei oct | () function to passthat information to the
system. That code should be replaced by thisfunction. Seet cset attr () for more
information.

This function is not supported in BSD or SVR1-3.
Notes:

Baud rates are defined by symbols, suchasB110, B1200, B2400. The actual number
returned for any given speed may change from system to system.

See Chapter 8, Terminal 1/0O, for more information.

Page 232
cf get ospeed() —Readsterminal output baud rate.

Synopsis:

#i ncl ude <term os. h>
speed_t cfgetospeed(const struct termos *p);

Arguments:

p Pointer to a struct termios.
Returns:

Code for the baud rate.

Description:

Thecf get ospeed() function returns a code for the terminal speed stored inast r uct
t erm os. Thecodesaredefinedin <t er m os. h> by themacrosBO, B50, B75,
B10, B134, B150, 200, 300, B600,B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

Thecf get ospeed() function does not do anything to the hardware. It merely returnsthe
value stored by apreviouscall tot cgetattr ().

Reference:

P71271

Conversions:

Thisfunction is new to POSIX. BSD and System V required the application to store

device-dependent information and usethei oct | () function to pass that information to the

system. That code should be replaced by thisfunction. Seet cset attr () for more

information.
This function is not supported in BSD or SVR1-3.

Notes:

Baud rates are defined by symbols, suchasB110, B1200, B2400. The actua number

returned for any given speed may change from system to system.
See Chapter 8, Terminal 1/0O, for more information.

cfseti speed() —Setsterminal input baud rate.

Synopsis:

#i ncl ude <term os. h>

int cfsetispeed(struct termos *p, speed_t speed);

Arguments:

p Pointer toastruct term os.
speed Code for the desired speed.
Returns:

Zero on success and - 1 on error.

Description:

Page 233

Thecf seti speed() function stores acode for the terminal speed storedinast r uct
t erm os. Thecodesaredefinedin <t er m os. h> by themacrosBO, B50, B75,
B10, B134, B150, B200, B300, B600, B1200, B1800, B2400, B4800,

B9600, B19200, and B38400.

Thecf seti speed() function doesnot do anything to the hardware. It merely stores avalue

forusebytcsetattr().
Reference:
P7127.1

Conversions:

Thisfunction is new to POSIX. BSD and System V required the application to store
device-dependent information and usethei oct | () function to pass that information to the
system. That code should be replaced by thisfunction. Seet cset attr () for more
information.

This function is not supported in BSD or SVR1-3.
Notes:

Thisfunction merely storesavalueinthet er m os structure. It does not change the terminal
speed until at cset attr () isdone. It does not detect impossible terminal speeds.

See Chapter 8, Terminal 1/0, for more information.

Page 234

cf set ospeed() —Setsterminal output baud rate.

Synopsis:
#i ncl ude <term os. h>

i nt cfsetospeed(struct termos *p, speed_t speed);

Arguments:

p Pointer toast ruct t er m os.
speed Code for the desired speed.
Returns:

Zero on successand - 1 on error.
Description:

Thecf set ospeed() function stores acode for the terminal speed storedinast r uct

t er m os. Thecodesaredefined in <t er m os. h> by themacrosBO, B50, B75,
B10, B134, B150, B200, B300, B600, B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

Thecf set ospeed() function does not do anything to the hardware. It merely stores avalue
forusebytcsetattr().

Reference:
P71271
Conversions:

Thisfunction is new to POSIX. BSD and System V required the application to store

device-dependent information and usethei oct | () function to passthat information to the
system. That code should be replaced by thisfunction. Seet cset attr () for more
information.

This function is not supported in BSD or SVR1-3.
Notes:

This function merely stores avalue in the termios structure. It does not change the terminal
speed until at cset at tr () isdone. It does not detect impossible terminal speeds.

See Chapter 8, Terminal 1/0O, for more information.

Page 235
chdi r () —Changes the current working directory.

Synopsis:

#i ncl ude <uni std. h>
int chdir(const char *path);

Arguments:
pat h Pointer to the name of the new directory.
Returns:
Zero on successand - 1 on failure.
Errors:

EACCES, ENAMETOOLONG ENCENT, ENOTDI R
Description:

Thechdi r () function causesthe directory named by pat h to become the current working
directory; that is, the starting point for searches of pathnames not beginning with adash.

If chdi r () detectsan error, the current working directory is not changed.
Reference:

P5211

Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>

Notes:

Page 236

chnod() —Changes file mode.

Synopsis:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
i nt chrmod(const char *path, node_t node);

Arguments:

pat h Pointer to pathname of the file to modify.

node New permission bits, S | SU Dand S | SA L.
Returns:

Zero on success and -1 on failure.
Errors:

EACCES, ENAMETOOLONG, ENCENT, ENOTDIR, EPERM ERCFS
Description:

Set the file permission bits, the set user 1D bit, and the set group 1D bit for the file named by
pat h to node. If the effective user ID does not match the owner of the file and the calling
process does not have the appropriate privileges, chnod() returns- 1 and setser r no to
EPERWV.

Reference:
P56.4.1
Conversions:

SVR1-2 and BSD did not specify symbols for the mode bits; they gave absolute values. Change
these to symbols using the following key:

Vaue Symbol Meaning

04000 S ISUD Set user 1D on execution.

02000 S 1SE@D Set group ID on execution.
00400 S | RUSR Allow the owner to read thefile.
00200 S | WUSR Allow the owner to write the file.

00100 S | XUSR Allow the owner to execute the file.

Page 237

Vaue Symbol Meaning

00040 S | RGRP Allow aprocess with agroup ID that matches the file's group to
thefile.

00020 S | WGRP Allow aprocess with agroup ID that matches the file's group to
thefile.

00010 S | XGRP Allow aprocess with agroup ID that matches the file's group to
execute thefile.

00004 S | ROTH Allow anyoneto read the file.

00002 S | WOTH Allow anyoneto write thefile.

00001 S | XOTH Allow anyone to execute the file.

BSD and SVR1-3used i nt for node instead of node _t

Notes:

S I SUI DandS_| SE D may beignored on some implementations.

Do not attempt to set any bits not listed above.

Page 238

chown() —Changesthe owner and/or group of afile.

Synopsis:

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
int chown(const char *path,

Arguments:

pat h Pointer to path name of the file to modify.
owner New owner ID.

group New group ID.

Returns:

Zero on success and - 1 on failure.

uid t owner,

gid t group);

Errors:

EACCES, EINVAL, ENAMETOOLONG ENCENT, ENOTDIR EPERM EROFS
Description:

The user ID and group ID of the file named by pat h are set to owner and pat h,
respectively.

For regular files, theset group | D(S_| SAG D) andsetuser | D(S_I SUI D) bits are cleared.

Some systems consider it a security violation to alow the owner of afileto be changed. If
users are billed for disk space usage, loaning afile to another user could result in incorrect
billing. Thechown(') function may be restricted to privileged users for some or al files. The
group 1D can still be changed to one of the supplementary group I1Ds.

Reference:
P56.5.1
Conversions:

Add to thelist of headers:

#i ncl ude <uni std. h>

SVR1-3and BSD used i nt for owner and gr oup.

Page 239
Notes:

This function may be restricted for some files. The pat hconf () function can be used to test
the PC_CHOWN_RESTRI CTED flag.

Page 240

cl earerr () —Clearsend-of-fileand error indicatorsfor a stream.

Synopsis:

#i ncl ude <stdi o. h>
voi d clearerr(FILE *strean);

Arguments:

stream Fileto use.

Returns:

No vaueisreturned.

Description:

The error and end-of-file indicators for st r ear are cleared.
Reference:

C4.9.101

Notes:

Page 241

cl ock() —Determines processor time used.

Synopsis:

#i ncl ude <tine. h>
clock_t clock(void);

Arguments:

None.

Returns:

The processor time used or - 1 if unknown.
Description:

Thecl ock() function returns an approximation of the amount of CPU time used by the
program. The value returned hasatype of cl ock_t . Toconvert acl ock_t to seconds,
divide by the macro CLOCKS_PER_SECOND.

Reference:

C4.1221

Conversions:

This function is not supported in BSD.
SVR1-2return | ong.

SVR3 used the header <sys/ t ypes. h>.
Notes:

The standards say nothing about when the timer for thecl ock() functionisreset. It may not
be reset while your processis running. To measure how much time your program used, call
cl ock() atthestart of your program and again at the end. The difference between the two
valuesisthe answer.

Thisfunction is required by Standard C and is not part of the POSIX standard.

Page 242
cl ose() —Closesafile.

Synopsis:

#i ncl ude <uni std. h>
int close(int fildes);

Arguments:

fildes The file descriptor to close.

Returns:
Zero on successand - 1 onfailure.
Errors:

EBADF, EI NTR
Description:

Thecl ose() function deadllocates the file descriptor named by f i | des and makesit
available for reuse. All outstanding record locks owned by this process for the file are
unlocked.

If it isthe last file descriptor that refersto agiven file, the following additional steps are taken:
1. Anyremaining pipe or FIFO datais discarded.

2. If thelink count of thefileis zero, the space occupied by thefile is freed and thefileisno
longer accessible.

Reference:
P6.3.1.1
Conversions:

Add to thelist of headers:
#i ncl ude <uni std. h>
Notes:
A signa caninterrupt thecl ose() function. Inthat case, cl ose() returns- 1 witherr no

set to El NTR. The file may or may not be closed.

Page 243

cl osedi r () —Endsdirectory read operation.

Synopsis:
#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>
int closedir(DIR *dirp);
Arguments:

dirp Pointer returned by opendi r () .

Returns:
Zero on successand - 1 on failure.
Errors:
EBADF
Description:

The directory stream associated with di r p isclosed. Thevaluein di r p may not be usable
afteracalltocl osedir ().

Reference:
P5.1.2.1
Conversions:

BSD used the header <sys/ di r . h>, which must be replaced by <di r ent . h>. The BSD
struct di rect must bereplaced by the POSIX equivaent struct dirent. BSD also provided
theseekdir () andtel | di r() functionsthat are not supported by POSIX.

SVR1-2 did not provide this function. SVR1-2 programs read directories as ordinary files.
Directory entries are 14-byte names and 2-byte I-node numbers. These programs must be
changedtouser eaddir ().

Notes:

Theargumenttocl osedi r () must be apointer returned by opendi r () . If itisnot, the
results are not portable and most likely unpleasant.

Page 244
cos() —Computesthe cosine function.

Synopsis:

#i ncl ude <mat h. h>

doubl e cos(doubl e x);

Arguments:

X
Returns:
Cosine of x.
Description:
Computes the cosine of x. The result will be between -1 and + 1.
Reference:
C4525

Notes:

Page 245

cosh() —Computesthe hyperbolic cosine function.

Synopsis:

#i ncl ude <mat h. h>
doubl e cosh(doubl e x);

Arguments:

X
Returns:
Hyperbolic cosine of x.

Errors:

ERANGE
Description:

Computes the hyperbolic cosine of x. This function occursin numerical solutionsto partia
differential equations.

Reference:
C4532

Notes:

Page 246

creat () —Createsanew fileor rewrites an existing one.

Synopsis:

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i ncl ude <fcntl. h>

int creat(const char *path, node_t node);

Arguments:

pat h Pointer to path of thefile to be created.
node Permission bits for the new file.
Returns:

A file descriptor or -1 on error.

Errors:

EACCES, EEXI ST, EINTR EISDIR EM-ILE, ENAMETOOLONG ENFILE, ENCENT,
ENCSPC, ENOTDI R, EROFS

Description:
The function call:
creat (pat h, node)
isequivaent to:
open(pat h, O WRONLY| O CREAT| O TRUNC, node);

It opens afile for writing. If the file does not exist, it is created with the permission bits set
from node and the owner and group IDs are set from the effective user and group ID of the
calling process. If the file exists, it is truncated to zero length but the owner and group IDs are
not changed. The file descriptor returned by cr eat () may be used only for writing.

Reference:
P53.21
Conversions:

Make sure the required headers are included.
SVR1-2usedi nt for node.

Page 247

ct erm d() —Generatesterminal pathname.

Synopsis:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
char *cterm d(char *s);

Arguments:

S Pointer to an buffer to hold the termina pathname. If NULL, abuffer in the
cterm d() functionisused.

Returns:

A pointer to the string.
Description:

Thect er m d() function returns a string that, when used as a pathname, refersto the current
controlling terminal for the current process. If a pathname cannot be determined, an empty
string is returned.

The symbolic constant L_ct er mi d is the maximum length of the buffer.
Reference:

P4.7.1.1

Conversions:

BSD does not support this function.

Notes:

The string returned may not uniquely identify aterminal (e.g.,/ dev/ tty).

There is no guarantee that your program can open the terminal.

Page 248
cti me() —Formatsa calendar time.

Synopsis:

#i ncl ude <tine. h>
char *ctinme(const tinme_t *tinmer);

Arguments:

timer Pointer to alocal time value.

Returns:
Pointer to the resulting string.
Description:

Convertsatime stored asat i ne_t into astring of the form:

Mon Nov 19 14:59:51 1990\ n\ 0
Reference:
C4.123.2
Conversions:
BSD and SVR1-3used long for t i mer .
The BSD header file<sys/ t i ne. h> must bechangedto<t i me. h>.
Notes:
Thestring returned by ct i me() may be overwritten by a subsequent call.
ctime() isequivaent to:

asctine(localtinme(tinmer))

Page 249
cuseri d() —Getsuser name.

Synopsis:

#i ncl ude <stdi o. h>
char *cuserid(char *s);

Arguments:

S Pointer toanarray of L_cuser i d bytesto return the user nameor NULL tousea
static array inthecuser i d() function.

Returns:
Pointer to the name string.
Description:

This function returns either the user name associated with the real user 1D or the user name
associated with the effective user ID. Thisfunction isincluded in the 1988 version of POSI X
but removed from the 1990 version. Programs should use one of three alternative calls:

1. getl ogi n() toreturnthe user'slogin name.

2. get pwui d(geteui d()) toreturnthe user name associated with the effective user ID.
3. get pwui d(get ui d()) to return the user name associated with the real user ID.
Reference:

P4.24.1

Notes:

Do not use thisfunction.

Page 250
di ffti me() —Computesthedifference between two times.

Synopsis:

#i ncl ude <tine. h>
double difftime(tine_t tinmel, tine_t time0);

Arguments:

tinmel Ending calendar time.
timeo Starting calendar time.
Returns:

The number of seconds betweenti neOandti mel
Description:

Thedi ffti me() function returnsthe number of secondsbetweenti me0 andti nel
expressed asadoubl e.

Reference:

C4.1222

Conversions:

Thisfunction isnew in Standard C. It isnot included in BSD or System V prior to SVRA4.
Notes:

Thisfunction isrequired by Standard C and is not part of the POSIX standard.

Page 251

di v() —Computesthe quotient and remainder of an integer division.

Synopsis:

#i ncl ude <stdlib. h>
div_t div(int nunmer, int denom;

Arguments:

nuner Numerator.
denom Denominator.
Returns:

A structure of typedi v_t.
Description:

Thedi v() function dividesnuner by denormn in aportable manner. If thedivisonis
inexact, the resulting quotient is the integer of lesser magnitude than the algebraic quotient
(round towards zero).

Thedi v() function returns astructure of typedi v_t with two members, quot andr err.
Usedi v(a, b) .quot instead of a/ b if the quotient must be rounded the same way on all
systems. Usedi v(a, b) .r emr to obtain the remainder of dividing a by b.

Reference:

C4.106.2

Conversions:

Thisfunction isnew in Standard C. It isnot included in BSD or System V prior to SVRA4.

Notes:
Thisfunction isrequired by Standard C and is not part of the POSIX standard.

Page 252

dup() —Duplicates an open file descriptor.

Synopsis:

#i ncl ude <unistd. h>
int dup(int fildes);

Arguments:

fildes File descriptor to duplicate.

Returns:
File descriptor that refersto the samefileasfi | des or - 1 on error.
Errors:
EBADF, EI NTR
Description:
The call:
fid = dup(fildes);
isequivaent to:
fid = fcntl(fildes, F_DUPFD, 0);

This returns the lowest numbered available file descriptor. This new descriptor refersto the
same open file as the original descriptor and shares any locks.

Reference:
P6.2.1.1
Conversions:

Add to thelist of headers:

#i ncl ude <uni std. h>

Notes:

Page 253
dup2() —Duplicates an open file descriptor.

Synopsis:

#i ncl ude <uni std. h>
int dup2(int fildes, int fildes2);

Arguments:

fildes File descriptor to duplicate.
fildes2 Desired new file descriptor.
Returns:

File descriptor that refersto the samefileasfi | des or - 1 on error.

Errors:
EBADF, EI NTR
Description:
Except for error detection, the call:
fid = dup2(fildes, fildes2);
isequivaent to:

close(fil des2);
fid = fentl (fildes, F_DUPFD, fil des2);

In other words, close the file associated with f i | des2, if any. Assign anew file descriptor
withthevaluef i | des2. This new descriptor refers to the same open file as fildes and shares

any locks.
Reference:
P6.2.11
Conversions:

Add to thelist of headers:

#i ncl ude <uni std. h>

This function was not supported in SVR1-2.

execl () —Executes afile.

Synopsis:

#i ncl ude <uni std. h>
i nt execl (const char *path, const char *arg,

Argunent s:

pat h Pointer to the path name for new processimagefile.
argo,...,argn Argumentsto passto new process.

Returns:

-1 oneror with er r no st.

Never returns on success.

Page 254

)5

Errors:
E2BI G EACCES, ENAMETCOLONG ENCENT, ENOTDI R, ENCEXEC, ENOVEM
Description:

This function replaces the current process image with a new processimage. When a C program
isexecuted as aresult of thiscall, it isentered asif called by:

main (argc, argv)

where ar gc isthe argument count and ar gv isan array of character pointers to the arguments
themselves. In addition, the variable:

extern char **environ;

isinitialized as a pointer to an array of character pointers to the environment strings. The
ar gv andenvi r on arrays are each terminated by a NULL pointer. The NULL pointer
terminating the ar gv array isnot counted in ar gc.

The pat h argument identifies the new process imagefile.

Theargument ar g and the subsequent ellipses can be thought of asar gC, ar g1, ar g2, ...,
ar gN.

The environment for the new process is taken from the current process.

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macroin<l i m ts. h>. Thisvalueisusualy greater than 4096.

Page 255

Fileswith the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signas are unchanged.

If the set user D bit of the new process image fileis set, the effective user ID of the new
processis set to the owner of the new process image file. The set group ID bit causes asimilar
action with the effective group ID.

All other process attributes (process ID, real user 1D, current working directory, etc.) are
inherited by the new program.

Reference:
P3.1.21
Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>

Notes:
The last argument must be (char *) NULL.
See Example on Page 103.

Page 256

execl e() —Executesafile.

Synopsis:

#i ncl ude <uni std. h>

i nt execle(const char *path, const char *arg, ...);
Arguments:
pat h Pointer to the path name for new processimagefile.
arg0,...,argn-1 Pointer to arguments to pass to new process.
argn Pointer to an array of pointers to the environment strings.
Returns:

- 1 onerror with er r no set.
Never returns on success.
Errors:
E2BI G EACCES, ENAMETOOLONG, ENCENT, ENOTDI R, ENCEXEC, ENOVEM
Description:

This function replaces the current process image with a new processimage. When a C program
isexecuted as aresult of thiscall, it isentered asif called by:

mai n(argc, argv)

where ar gc isthe argument count and ar gv isan array of character pointers to the arguments
themselves. In addition, the variable:

extern char **environ;

isinitialized as a pointer to an array of character pointers to the environment strings. The
ar gv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the ar gv array isnot counted in ar gc.

The pat h argument identifies the new process imagefile.

Theargument ar g and the subsequent ellipses can be thought of asar g0, argl, arg2,

., argN.

Thefina non-NULL argument is a pointer to an array of environment string pointers. This array
isterminated by aNULL pointer.

Page 257

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macroin<l i m ts. h>. Thisvalueisusualy greater than 4096.

Fileswith the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image fileis set, the effective user ID of the new
processis set to the owner of the new process image file. The set group ID bit causes asimilar
action with the effective group ID.

All other process attributes (process ID, real user 1D, current working directory, etc.) are
inherited by the new program.

Reference:
P3.1.21
Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>
Notes:
Thisisthesameasexecl| () except for thefina non-NULL argument.

The last argument must be (char *) NULL.

Page 258
execl p() —Executes afile.
Synopsis:
#i ncl ude <uni std. h>
i nt execl p(const char *file, const char *arg, ...);
Arguments:
file Pointer to the filename for new processimagefile. If file does not contain &

thenexecl p() searchesthelist of directories defined by the PATH
environment variable.

arg0,...,argn Pointer to arguments to pass to new process.

Returns:
-1 oneror with err no set.

Never returns on success.

Errors:
E2BI G EACCES, ENAMETCOLONG ENCENT, ENOTDIR, ENCEXEC, ENOVEM
Description:

This function replaces the current process image with a new processimage. When a C program
isexecuted as aresult of thiscall, it isentered asif called by:

mai n(argc, argv)

where ar gc isthe argument count and ar gv isan array of character pointers to the arguments
themselves. In addition, the variable:

extern char **environ;

isinitialized as a pointer to an array of character pointers to the environment strings. The
ar gv andenvi r on arrays are each terminated by a NULL pointer. The NULL pointer
terminating the ar gv array isnot counted in ar gc.

The pat h argument identifies the new process imagefile.

Theargument ar g and the subsequent ellipses can be thought of asar g0, argl, arg2,
., argN.

The environment for the new process is taken from the current process.

Page 259

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macroin<l i m ts. h>. Thisvalueisusualy greater than 4096.

Fileswith the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signas are unchanged.

If the set user ID bit of the new process image fileis set, the effective user ID of the new
processis set to the owner of the new process image file. The set group ID bit causes asimilar
action with the effective group ID.

All other process attributes (process ID, real user 1D, current working directory, etc.) are
inherited by the new program.

Reference:
P31.21
Conversions:

Add to thelist of headers:

#i ncl ude <uni std. h>
Notes:

The last argument must be (char *) NULL.

Page 260

execVv() —Executesafile.

Synopsis.

#i ncl ude <uni std. h>
i nt execv(const char *path, char *const argv[]);

Arguments:

pat h Pointer to the path name for new processimagefile.

ar gv Pointer to an array of arguments to passto new process.
Returns:

-1 oneror with err no st.

Never returns on success.

Errors:

E2BI G EACCES, ENAMETCOLONG ENCENT, ENOTDI R, ENCEXEC, ENOVEM
Description:

This function replaces the current process image with a new process image. When a C program
is executed as aresult of thiscall, it is entered asif called by:

mai n(argc, argv)

where ar gc isthe argument count and ar gv isan array of character pointers to the arguments
themselves. In addition, the variable:

extern char **environ

isinitialized as a pointer to an array of character pointers to the environment strings. The
ar gv and envi r on arrays are each terminated by a NULL pointer. The NULL pointer

terminating the ar gv array isnot counted in ar gc.
The pat h argument identifies the new process imagefile.

Theargument ar gv isan array of character pointersto null-terminated strings. The last
member of thisarray must be NULL. These strings congtitute the argument list available to the
new process. Thevaluein ar gv[0] isusualy the name of thefile for the new process.

The environment for the new process is taken from the current process.

Page 261

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macroin<l i m ts. h>. Thisvalueisusualy greater than 4096.

Fileswith the FC_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID hit of the new process image fileis set, the effective user ID of the new
processis set to the owner of the new process image file. The set group ID bit causes asimilar
action with the effective group ID.

All other process attributes (process ID, real user 1D, current working directory, etc.) are
inherited by the new program.

Reference:
P3.1.21
Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>

Notes:

Page 262

execve() —Executesafile.

Synopsis:

#i ncl ude <uni std. h>
i nt execve(const char *path, char *const argv[], char *const *envp);

Arguments:
pat h Pointer to the path name for new processimagefile.

ar gv Pointer to an array of arguments to pass to new process.

envp Pointer to an array of character pointers to the environment strings.

Returns:
-1 oneror with err no set.

Never returns on success.

Errors:

E2BI G EACCES, ENAMETOOLONG ENCENT, ENOTDI R ENCEXEC, ENOVEM
Description:

This function replaces the current process image with a new processimage. When a C program
isexecuted as aresult of thiscall, it isentered asif called by:

mai n(argc, argv)

where ar gc isthe argument count and ar gv isan array of character pointers to the arguments
themselves. In addition, the variable:

extern char **environ;

isinitialized as a pointer to an array of character pointers to the environment strings. The
ar gv andenvi r on arrays are each terminated by a NULL pointer. The NULL pointer
terminating the ar gv array isnot counted in ar gc.

Theargument ar gv isan array of character pointers to null-terminated strings. The last
member of thisarray must be NULL. These strings constitute the argument list available to the
new process. Thevauein ar gv[0] isusudly the name of thefile for the new process.

Theargument envp isapointer to an array of environment string pointers. Thisarray is
terminated by aNULL pointer.

Page 263
The environment for the new processis taken from the current process.

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macroin<l i m ts. h>. Thisvalueisusualy greater than 4096.

Fileswith the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new processimage fileis set, the effective user ID of the new
processis set to the owner of the new process image file. The set group ID bit causes asimilar
action with the effective group ID.

All other process attributes (process ID, real user 1D, current working directory, etc.) are
inherited by the new program.

Reference:
P3.1.21
Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>

Notes:
Page 264

execvp() —Executesafile.
Synopsis:

#i ncl ude <uni std. h>

i nt execvp(const char *file, char *const argv[]);
Arguments:
file Pointer to the filename for new process image file. If file does not containa/ then

execl p() searchesthelist of directories defined by the PATHenvironment varia

ar gv Pointer to an array of arguments to pass to new process.
Returns:

-1 on eror with er r no st.

Never returns on success.

Errors:
E2BI G, EACCES, ENAVETOOLONG, ENCENT, ENOTDI R, ENCEXEC, ENOVEM
Description:

This function replaces the current process image with a new process image. When a C program
is executed as aresult of thiscall, it is entered asif called by:

mai n (argc, argv)

where ar gc isthe argument count and ar gv isan array of character pointersto the arguments
themsalves. In addi t i on, the variable:

extern char **environ

isinitialized as a pointer to an array of character pointers to the environment strings. The
ar gv and envi r on arrays are each terminated by a NULL pointer. The NULL pointer
terminating the ar gv array is not counted in ar gc.

Thef i | e argument is used to construct a pathname that identifies the new processimage file.
If thef i | e argument containsadash, f i | e isused as the pathname. Otherwise, the path
prefix for thisfile is obtained by a search of the directories passed as the environment variable
PATH.

Theargument ar gv isan array of character pointers to null-terminated strings. The last
member of this array must be NULL. These strings constitute the argument list available

Page 265
to the new process. Thevaluein ar gv[0] isusualy the name of the file for the new process.
The environment for the new processis taken from the current process.

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macroin<l i m ts. h>. Thisvalueisusualy greater than 4096.

Fileswith the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signas are unchanged.

If the set user ID bit of the new process image fileis set, the effective user ID of the new
processis set to the owner of the new process image file. The set group ID bit causes asimilar
action with the effective group ID.

All other process attributes (process ID, real user 1D, current working directory, etc.) are
inherited by the new program.

Reference:
P3.1.21
Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>

Notes:

Page 266

exi t () —Causes normal program termination.

Synopsis:

#i ncl ude <stdlib. h>
void exit(int status);

Arguments:

status Value to be returned to the parent.

Returns:
No valueisreturned.
Description:

Theexi t () function causes normal program termination. The following steps are taken, in
order:

1. All functionsregistered with at exi t () arecalled inreverse order of their registration.

2. All open streams are flushed and closed. All files created by thet npfi | e() function are
removed.

3. _exit(status) iscaled.
Reference:

C4.104.3

Conversions:

Add to thelist of headers:

#i ncl ude <stdlib. h>
Notes:
Donot call exi t () fromafunctionregistered by at exi t () .

For maximum portability, use only the EXI T_SUCCESS and EXI T_FAI LURE macros for
st at us.

Page 267
_exit()—Terminates a process.

Synopsis:

#i ncl ude <uni std. h>
void exit(int status);

Arguments:

st at us Termination status.

Returns:

Never returnsto caller.

Description:

Takes the following actions:

1. Closeal open filesand directory streams.

2. If the parent of this processisexecutingawai t () orwai t pi d(),itwakesupandis
given st at us. If the parent is not waiting, the statusis saved for afuture call towai t ()
orwai t pi d().

3. A SI GCHLL signal is sent to the parent.”

4. If the processisacontrolling process, the SI GHUP signal is sent to each processin the
foreground process group and the terminal is disassociated from the session.

5. Children of the terminating process are assigned new parents.
Reference:

P3221

Conversions:

Add to thelist of headers;

#i ncl ude <uni std. h>

Notes:

* Unless the implementation does not support SI GCHLL.

Page 268

exp() —Computesthe exponential function.

Synopsis:

#i ncl ude <mat h. h>
doubl e exp(doubl e x);

Arguments:

X

Returns:

eX

Errors:
ERANGE
Description:
Compute the exponential function of X.
Reference.
C454.1

Notes:

f abs () —Computes the absolute-value function.

Synopsis:

#i ncl ude <mat h. h>
doubl e fabs(doubl e x);

Arguments:

X
Returns:
Absolute value of x.
Description:
If X is positivereturn x elsereturn —x.
Reference:
C456.2

Notes:

f cl ose() —Closes an open stream.

Synopsis:

#i ncl ude <stdi o. h>
int fclose(FILE *stream;

Arguments:

stream Pointer to object to close.

Page 269

Page 270

Returns:
Zero if the operation is succeeds, ECF if it fails.
Description:

Any unwritten buffered datafor st r ean iswritten to the file; any unread buffered data for
st r ean isdiscarded. Any system resources that were automatically allocated are
de-allocated.

Reference:
C4951& P8.23.2

Notes:

Page 271

f cnt 1() —Manipulates an open file descriptor.

Synopsis:

#i ncl ude <sys/types. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

int fentl(int fildes, int cnd, ...);
Arguments:
fildes File descriptor.
cnd Command.

Additional command specific arguments.

Returns:
Dependson cnd. In all cases, - 1 isreturned on error.
Errors:
EACCES, EAGAIN, EBADF, EDEADLK, EINTR, EINVAL, EMFILE, ENOLCK
Description:

This multi-purpose function operates on afile descriptor. The file descriptor isthe first
argument. The second argument isamacro defined in <f cnt | . h>. The action depends on this
macro.

F_DUPFD

Returns the lowest available (not open) file descriptor greater than or equal to the third
argument. The new file descriptor refersto the same openfileasf i | des, and shares any
locks.

The FD_CLCOEXEC flag for the new descriptor is cleared, so the new descriptor will not be
closed on acall to an exec function.

F_GETFD
Returnsthe FD_CLOEXEC flag associated with fildes.
F_SETFD

Sets or clearsthe FD_CLOEXEC flag for afile descriptor. Theexec () family of functions
will close al file descriptors with the FD_CLOEXEC FLAG s&t.

Page 272

The correct way to modify the FD_CLCOEXEC flag isfirst to read the flagswith F_ GETFL.
Then, modify the FD_CLOEXEC bit and rewrite the flagswith F_SETFD.

flags = fentl (fd, F_GETFD); /* Get flags */

flags | = FD_CLOEXEC, /* Set FD _CLOEXEC */

fentl (fd, F_SETFD, flags); /* Load new settings */
This method allows the application to tolerate implementation-defined flags.

F_GETFL

Returns the file status flags for the file associated with f i | des. Unlike F_GETFD, these flags
are associated with the file and shared by all descriptors. The following flags are returned:

O_APPEND Append mode.

O_NONBLOCK Do not block waiting for datato become available.

O _RDONLY Fileis open for reading only.

O_RDWR Fileis open for reading and writing.

O WRONLY Fileis open for writing only.

F_SETFL Set the file status flags from the third argument. The only bits that can be modifi

with thisfunction are O_ APPENC and O_NONBL OCK. Use a read-modify-writi

update the flags (see F_SETFL above).

F_GETLK The third argument must be apointer toast r uct f 1 ock. Thisstructureista
as adescription of alock. If thereisalock which would prevent thislock fron
being locked, itisreturned inthest r uct f | ock. If there are no locks which

would prevent this lock from being locked, thel _t ype member isset to
F_UNLCK.

F_SETLK Thethird argument must be apointer toast r uct f1 ock. Thelock isset or
cleared according to the function codeinthel _t ype member. If thelock isb
fcntl () returns- 1 and setser r no to EACCES or EAGAI N.

F_SETLKW The third argument must be apointer toast ruct fl ock. Thelock isset or
cleared according to the function codeinthel _t ype member. If thelock isk
fcntl () waltsfor it to be unlocked.

Reference:
P6.521
Page 273

Conversions:
Add to thelist of headers:

#i ncl ude <uni std. h>
SVRS returns EAGAI N instead of EACCES to indicate alocked file.
The SVR3 flock structure contained the following members:

short | _type;

short | _whence;

| ong | _start;

| ong I _len;

short | _pid;
POSIX usesoff t for | _start and | | en.ltasousespid_t forl pid,whileon

many POSIX sysemspi d_t isal ong.
TheBSD f | ock() function must be convertedtof cnt | () .

Notes:

F _CGETFD There may be bits other the FD_CL OEXEC returned by this function. Y ou can mask
unwanted bits, for example:

flag = fentl (fd, FD_GETFD) & FD CLOEXEC;
F SETFD / F_SETFL
Do not set the flags directly. Use aread-modify-write to update the flags. See abov
F GETLK / F_SETLK / F_SETLKW

File locks are not inherited through f or k() but are inherited through one of the
exec() functions.

Closing afile descriptor releases al locks held by the process for that file even if there are
other file descriptors open for thisfile.

See discussion on Page 92.

Page 274
f dopen() —Opensa stream on a file descriptor.

Synopsis:

#i ncl ude <stdi o. h>
FILE *fdopen(int fildes, const char *type);

Arguments:
fildes File descriptor.

type Pointer to a character string identical to the mode argumenttof open() (eg., "r"
read and "w" for write).

Returns:
A pointer to astream or NULL on error.
Description:

Thef dopen() function associates a stream with afile descriptor. The FI LE may be used
with st di o functions, suchasprintf () andfread().

Thefile position is set to the file offset associated with the file descriptor. The error indicator
and end-of-file indicator are cleared.

Reference:
P8221
Notes:

Thef dopen() function isnot required to detect an invalid file descriptor.

Page 275
f eof () —Teststhe end-of-file indicator for a stream.

Synopsis:

#i ncl ude <stdi o. h>
int feof (FILE *stream;

Arguments:

stream Pointer to file to test.

Returns:

Nonzero if and only if the end-of-file indicator is set for st r ean.
Description:

Tests the end-of-file indicator for stream.

Reference:

C4.9.10.2

Notes:

Page 276
ferror()—Teststheerror indicator for a stream.

Synopsis:

#i ncl ude <stdi o. h>
int ferror(FILE *stream;

Arguments:

stream Pointer to file to test.

Returns:

Nonzero if and only if the error indicator is set for st r ean.
Description:

Test the error indicator for st r ear.

Reference:

C4.9.10.3

Notes:

Page 277

ffl ush()—Updatesstream.

Synopsis:

#i ncl ude <stdi o. h>
int fflush(FILE *stream;

Arguments:

stream Pointer to the stream to update. If NULL is used, all open files are updated.

Returns:

EOF on error and zero on success.

If an error occurs, acodeis stored in er r no to identify the error.
Description:

If st r ean refersto an output stream or an update stream in which the most recent operation
was not input, any unwritten datais written to thefile. The action of f f | ush() oninput
streams or streams where the most recent operation was aread is undefined.

If st reamisNULL, thef fl ush() operationisperformed on al streamswhereitis
defined.

Reference:
C4952& P8.234

Notes:

Page 278

f get c() —Reads a character from a stream.

Synopsis:

#i ncl ude <stdio. h>
int fgetc(FILE *strean;

Arguments:

stream Pointer to file to read.

Returns:
Character converted to an int. EOF isreturned on error or end-of-file.
Description:

Obtainsfrom st r ean the next character, if any, asan unsi gned char convertedtoi nt .

Advance the file position.
Reference:
C49.71& P8235

Notes:

Page 279

f get pos() —Getsthe current file position.

Synopsis:

#i ncl ude <stdi o. h>
int fgetpos(FILE *stream fpos_t *pos);

Arguments:

stream Pointer to file to use.

pos Pointer to file position indicator.
Returns:

A file position is written into pos and zer o isreturned. Nonzero is returned on error.
Description:

Stores the current value of the file position for stream into the object pointed to by pos.
Reference:

C49.91

Conversions:

Thisfunction isnew in Standard C. It isnot included in BSD or System V prior to SVRA4.
Notes:

Thisfunction is required by Standard C. It is not part of the POSIX standard.

Theformat of an f pos_t isunspecified.

Page 280

f get s() —Reads n charactersfrom a stream.

Synopsis:

#i ncl ude <stdi o. h>

char *fgets(char *s, int n, FILE *strean)

Arguments:

S Pointer to array to read into.
n Number of charactersto read.
stream Pointer to file to read.
Returns:

If thereis no error, sisreturned. If an error occurred, NULL isreturned and acodeis stored in
er r no to identify the error.

Description:

Reads at most one less that the number of characters specified by n from st r earr into the
array s. No additional characters are read after a newline character or after end-offile. If a
newline character isread, it is stored in the array. A null character iswritten immediately after
the last character read into the array.

Reference:
C49.7.2& P8.235

Notes:

Page 281

fil eno()—Mapsastream pointer to afile descriptor.

Synopsis:

#i ncl ude <stdio. h>
int fileno(FILE *stream;

Arguments:

stream Stream pointer.

Returns:

A file descriptor or - 1 on error. If an error occurs, acodeisstored in er r no to identify the
error.

Description:

Thef il eno() function returnsthe integer file descriptor associated with st r ean.

Reference:

P8211

Notes:
fileno(stdin) returns O.
fileno(stdout) returns 1.
fileno(stderr) returns 2.

If streamisinvalidfi | eno() may or may not detect the error.

Page 282

f1 oor () —Computesthelargest integer not greater than x.

Synopsis:

#i ncl ude <mat h. h>
doubl e fl oor (doubl e Xx);

Arguments:

X
Returns:
Theinteger part of x expressed asadoubl e.
Description:

Truncates the argument to an integer. For example, f | oor (2. 0000), fl oor(2.0001),
andf | oor (2.9999) al return 2.0000.

Reference:
C45.6.3

Notes:

Page 283
f mod() —Computestheremainder of x/y.

Synopsis:

#i ncl ude <mat h. h>
doubl e fnod(doubl e x, double y);

Arguments:

x andy

Returns:

Remainder of x/ y expressed asadoubl e.
Description:

Computesthevalueof x —(y * i), wherei isthelargestinteger suchthat, if y is
nonzero, the result has the same sign as x and a magnitude less than y. The argumentsx and 'y
and thereturned value are al doubl es. Thecall f nod(15. 00, 4. 00) returns3. 00.

Reference:
C456.4
Notes

If y iszero, f nod() may or may not detect an error.

Page 284

f open() —Opensa stream.

Synopsis:

#i ncl ude <stdi o. h>
FI LE *fopen(const char *filename, const char *node);

Arguments:
filename Pointer to path of fileto open.
node Pointer to a character string:
"r" forread.
"w' for write.
"a" for append (all writes are at end-of-file).
"r+" for update (reading and writing; all existing datais preserved).
"wW+" truncate to zero length and open for update.

"a+" for append update (read any place but all writes are at end-of-file).

Returns:

Pointer to the object controlling the stream or NULL if the operation failed.

Description:

Opens the file whose nameis pointed to by f i | ename and associates a stream with it.
Reference:

C4953& P8231

Notes:

Opening afile with append mode causes all writes to be forced to the current end-of-file. This
istrueevenif anf seek() operation attempts to change the file position.

If afileisopen for reading and writing (node "r+", "w#+", "a+"),anfflush(),
fseek(),fsetpos(),orrew nd() must bedonewhen changing from output to input.

The node argument may have a b as the second or third character to indicate binary. This has
no effect on POSIX systems but can be useful for portability.

Page 285

f or k() —Creates a process.

Synopsis:
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
pid_t fork(void);
Arguments:
None.
Returns:
-1 oneror.
On success, the Pl D of the child is returned to the parent and zer o isreturned to the child.
Errors:
EAGAI N, ENOVEN
Description:

Thef or k() function creates anew process (the child) that is an exact copy of the calling
process except:

1. Thechild process has a new unique process ID.
2. Thechild process has the process ID of the caller asits parent process ID.

3. Thechild has a copy of the parent's file descriptors. Each descriptor refersto the same
open files as the corresponding descriptor of the parent.

4. The child hasits own copy of the parent's open directory stream.

5. Thetimersreturned by thet i mes() function are reset for the child.
6. Filelocks are not inherited by the child.
7. Pending alarms are cleared for the child.
8. There are no pending signals for the child.
Reference:
P3.111
Page 286
Conversions:

Add to thelist of headers:

#i ncl ude <uni std. h>
BSD and SVR1-3returni nt instead of pi d_t .
Notes:

Theinteraction of f or k() andr eaddi r () isnot well defined. Do not attempt to share a
directory stream between the parent and child.

See example on Page 103.

Page 287
f pat hconf () —Gets configuration variable for an open file.

Synopsis:

#i ncl ude <uni std. h>
long fpathconf(int fildes, int nane);

Arguments:

fildes Open file descriptor.
name Symbolic constant.
Returns:

Iffil desisinvalid, - 1 isreturned and er r no is set to indicate the error. If the
implementation has no limit for the requested item, - 1 isreturned and er r no is not changed.
Otherwise, thelimit is returned.

Errors:

El NVAL, EBADF
Description:

Returns a configuration limit for an openfile. Thef i | des argument is an open file descriptor.
The possible values for name are:

Name Description

_PC_LI NK_MAX Maximum value of afile'slink count. If f i | des refersto adirectory then tf
value appliesto the entire directory.

_PC_MAX_CANON Maximum length of aformatted input line. f i | des must refer to aterminal.
_PC_NMAX_I NPUT Maximum length of aninput line. f i | des must refer to aterminal.
_PC_NAME MAX Maximum length of afilename for this directory.

_PC_PATH_MAX The maximum length of arelative pathname when this directory is the workil
directory.

_PC_PI PE_BUF Size of the pipe buffer. f i | des must refer to a pipe or FIFO.
_PC_CHOWN_RESTRI CTED

Thechown() system call may not beused onthisfile. If pat h orfi | des
refer to adirectory, then this appliesto al filesin that directory.

Page 288

Name Description

_PC_NO_TRUNC Attempting to create afilein the named directory will fail with
ENAMVETOOLONG if the filename would be truncated.

_PC_VDI SABLE Allow special character processing to be disabled. f i | des must refer to
terminal.

Reference:
P5.7.1.1
Conversions:

Thisfunction is new to POSIX. It allows a portable application to determine the quantity of a
resource, or the presence of an option, at execution time.

Older applications either use afixed amount of aresource or attempt to deduce the amount of
resource available using the error returns from various functions.

Notes:

Thevauereturned by PC PATH _MAXisnot useful for allocating storage. Files with paths
longer than _PC_PATH_ MAX may exist.

Page 289

fprintf()—Writesformatted text to a stream.

Synopsis:

#i ncl ude <stdi o. h>

inf fprintf(FILE *stream const char *format, ...);
Arguments:
stream File to be written.
f or mat Format string.

Additiona arguments.

Returns:

Number of characters written. Negative value if an error occurred.
Description:

Thef printf () function convertsits arguments to acharacter string and writes that string to
Stream.

The format is a character string that contains zero or more directives. Each directive fetches
zero or more argumentsto f pr i nt f . Each directive starts with the % character. After the %,
the following appear in sequence:

flags Zero or more of the following flags (in any order):

- Will cause this conversion to be left-justified. If the - flagis not used, the re

will be right-justified.

+ The result of asigned conversion will aways begin with asign. If the + flag
used, the result will begin with asign only when negative values are converte

Space Thisisthe same as + except a space is printed instead of a plus sign. If both t

space and the + flags are used, the + wins.

Theresult is converted to an alternate form. The details are given below for «

conversion.

width An optiona width field. The exact meaning depends on the conversion being performed. £

the table on the next page.

prec

type

f or mat

Page 290

An optional precision. The precision indicates how many digits will be printed to the
of the decimal point. If the precision is present, it is preceded by adecimal point (.). If
decimal point is given with no precision, the precision is assumed to be zero. A precis

argument may be used only withthee, E, f,

An optional h,

g, and C conversions.

|, orL. Theh causesthe argument to be converted to shor t prior t

printing. Thel specifiesthat theargumentisal ong i nt . TheL specifiesthat the
argumentisal ong doubl e.

A character that specifies the conversion to be perfor