
Page iii

POSIX Programmer's Guide

Writing Portable UNIX Programs with the POSIX.1 Standard

Donald A. Lewine
Data General Corporation

O'Reilly & Associates, Inc
103 Morris Street, Suite A

Sebastopol, CA 95472

Page iv

POSIX Programmer's Guide
by Donald A. Lewine

Editor: Dale Dougherty

Copyright © 1991 O'Reilly & Associates, Inc.
All rights reserved

Printed in the United States of America

Printing History
April 1991: First edition
December 1991: Minor corrections. Appendix G added.
July 1992: Minor corrections.
November 1992: Minor corrections.
March 1994: Minor corrections and updates.

NOTICE
Portions of this text have been reprinted from IEEE Std 1003.1-1988, IEEE Standard Portable
Operating System for Computer Environments, copyright © 1988 by the Institute of Electrical
and Electronics Engineers, Inc., and IEEE Std 1003.1-1990, Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System Application
Program Interface (API) [C Language], copyright © 1990 by the Institute of Electrical and
Electronics Engineers, Inc., with the permission of the IEEE Standards Department.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
O'Reilly and Associates, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

Please address comments and questions in care of the publisher:

O'Reilly & Associates, Inc. INTERNET: letters@ora.com
103 Morris Street, Suite A
Sebastopol, CA 9547
(800) 998-9938

[8/98] ISBN: 0-937175-73-0

Page v

To all my students

To my wife, Susan,
who convinced me to do this
book and who put up with
all the time this effort took

Page vi

Acknowledgments

I would like to thank all of my students who put up with all of the beta test quality revisions.
They provided many useful suggestions.

I would like to thank some people who provided very complete technical reviews and
provided useful comments: Hal Jespersen (Posix Software Group), Chuck Karish (Mindcraft,
Inc.), Thomas Mitas (HBO & Company), Neil Todd (European UNIX Systems User Group),
Andy Huber (Data General Corporation), Richard Eckhouse (University of Massachusetts),
Andy Silverman (88open Consortium), Henry Spencer (University of Toronto), Jeffrey S.
Haemer (Interactive Systems Corporation), Paul Rabin, Dave Kirschen, and Michael Meissner
(Open Software Foundation), and John S. Quarterman (Texas Internet Consulting).

Thanks go to the following readers of previous printings who pointed out errors and typos:
Eric Boweles, Eric Hanchrow, Milt Ratcliff, Stephen J. Friedl, Ed Myer, Chesley Reyburn.
Derek M. Jones, Todd Stevenson, Bob Burchfield, Anthony Scian, and Wayne Pallock

Thanks to Allen Gray for his help with the reference material. Thanks to Mike Sierra and Ellie
Cutler of O'Reilly & Associates for doing the production work and for writing the index.
Special thanks to Dale Dougherty for a great job of editing. His many useful suggestions were
worth the months they took to implement.

Thanks to the POSIX standards committees for making this book possible.

Page vii

Table of Contents

Preface xxiii

The POSIX Standard Documents xxiv

Guide to POSIX for Programmers xxv

Programming Guide xxv

Reference Guide and Appendixes xxvi

Assumptions xxvi

Conventions xxvii

Chapter 1 Introduction to POSIX and Portability 1

Who is Backing POSIX? 2

The POSIX Family of Standards 3

The POSIX.1 Standard Document 5

The Design of POSIX 7

POSIX and UNIX 7

7

POSIX and Non-UNIX Operating Systems 8

POSIX, C, ANSI C, and Standard C 8

Why Standard C? 9

Working Outside the Standards 10

Finding The POSIX Libraries 11

Converting Existing Programs 11

Page viii

Chapter 2 Developing POSIX Applications 13

The POSIX Development Environment 13

The Standard C Compiler 13

POSIX and C Libraries 14

Converting Existing Programs 15

A Porting Example 16

An Alternate Approach 19

Standard Header Files 20

Template for a POSIX Application 24

/* Feature test switches */ 25

/* System headers */ 25

/* Local headers */ 25

/* Macros */ 25

/* File scope variables */ 25

/* External variables */ 26

/* External functions */ 26

/* Structures and unions */ 26

/* Signal catching functions */ 26

26

/* Functions */ 26

/* Main */ 26

Sample Program 26

Portability Lab 38

Chapter 3 Standard File and Terminal I/O 39

Libraries and System Calls 39

Standard Files 39

Formatted Output 40

Examples 41

Pitfalls 42

The vfprintf(), vprintf(), and vsprintf() Functions 43

Character Output Functions 45

The fputs() and puts() Functions 45

The fputc(), putc(), and putchar() Functions 45

Reading Lines of Input 45

Pitfalls 47

Additional Pitfall 47

Page ix

Other Character Input Functions 47

The fgetc(), getc() and getchar() Functions 47

The fgets() Function 48

The gets() Function 48

The ungetc() Function 48

Opening and Closing Files 49

Direct Input/Output functions 50

50

The fwrite() and fread() Functions 50

File Positioning Functions 50

The fgetpos() and fsetpos() Functions 51

The ftell() and fseek() Function 51

The rewind() Function 51

Managing Buffers 52

Sample Program 53

Portability Lab 60

Chapter 4 Files and Directories 63

Portable Filenames 63

Directory Tree 64

Current Working Directory 64

Making and Removing Directories 66

The rmdir() Function 67

Simulating the mkdir() and rmdir() Functions 67

Directory Structure 67

Manipulating Directories 68

Linking to a File 69

Removing a File 69

Renaming a File 69

File Characteristics 69

Retrieving a File's Characteristics 72

Changing File Accessibility 73

Changing the Owner of a File 73

Setting File Access and Modification Times 74

Page x

Reading Directories 75

The opendir() Function 76

The readdir() Function 76

The closedir() Function 76

The rewinddir() Function 76

General Comments 76

Complete Example 77

Pitfall: Symbolic Links 83

Portability Lab 84

Chapter 5 Advanced File Operations 85

Primitive File Operations 86

File Descriptors 87

Opening a file 87

Reading from a File 89

Writing to a File 89

Fast File Copy Example 90

Control Operations on a File 92

F_GETFD/F_SETFD 92

F_GETFL/F_SETFL 93

F_SETLK/F_SETLKW/F_GETLK 94

F_DUPFD 95

Setting the File Position 95

The dup() and dup2() Functions 96

Closing a File 96

FIFOs and Pipes 96

96

File Creation Mask 97

The umask() Function 98

Mixing the Levels 98

The fdopen() Function 98

The fileno() Function 98

Pitfalls 99

Portability Lab 99

Page xi

Chapter 6 Working with Processes 101

Process Creation 101

The fork() Function 101

The exec() Family of Function 102

Example: Piping Output Through more 103

Portability Note 105

Process Termination 106

The wait() and waitpid() Functions 106

Terminating the Current Process 108

Returning from main() 108

Calling exit() 109

Calling _exit() 109

Calling abort() 110

Terminating Another Process 110

Signals 110

Signal Actions 112

Signal-Catching Functions 112

112

Examine and Change Signal Action 113

Standard C Signals 113

POSIX Signals 114

Example: Timing a System Function 116

Signal Sets 117

The sigemptyset() Function 118

The sigfillset() Function 118

The sigaddset() Function 118

The sigdelset() Function 118

Using the sigset Functions 118

The sigismember() Function 119

The sigprocmask() Function 119

The sigpending() Function 119

Wait for a Signal 120

Sending a Signal 121

Portability Lab 122

Page xii

Chapter 7 Obtaining Information at Run-time 123

Process Identification 123

User Identification 123

User IDs 125

Group IDs 126

System Identification 132

Date and Time 133

The time() Function 133

133

The localtime() and gmtime() Functions 133

The mktime() Function 135

The strftime() Function 135

The asctime() and ctime() Functions 137

The difftime() Function 137

The clock() and times() Functions 137

Environment Variables 138

The getenv() Function 139

The sysconf() Function 140

The pathconf() and fpathconf() Functions 142

Portability Lab 143

Chapter 8 Terminal I/0 145

Terminal Concepts 146

Setting Terminal Parameters 147

The tcsetattr() and tcgetattr() Functions 147

The termios Structure 148

System V termio and POSIX termios Structures 149

Example: Reading a Password 150

Input Processing 152

Output Processing 152

Modem Control 153

Non-Canonical I/O 153

Input Modes 153

Output Modes 154

Control Modes 155

Local Modes 155

155

Control Characters 156

Speed Storing Functions 158

Page xiii

Line Control Functions 160

The tcsendbreak() Function 160

The tcdrain() Function 160

The tcflush(Function 160

The tcflow() Function 161

Avoiding Pitfalls 161

Example: Computer-to-Computer Communications 162

Process Groups and Job Control 166

Process Groups 167

Foreground Process 167

Background Process 167

Session 167

Controlling Terminal 168

Get/Set Process Group 168

The setsid() Function 168

The setpgid() Function 168

The tcsetpgrp() Function 169

Portability Lab 169

Chapter 9 POSIX and Standard C 171

Common Usage C 171

Standard C 171

Getting Standard C 171

171

The Standard C Preprocessor 172

Translation Phases 172

Macro Replacement 172

Conversion of Macro Arguments to Strings 173

Token Pasting 173

New Directives 174

Namespace Issues 174

Names Reserved by the C Language 174

Names Reserved by Header Files 175

C Library Functions 176

POSIX Library Functions 177

Avoiding Pitfalls 177

Page xiv

Function Prototypes 178

Avoiding Pitfalls 179

Writing New Programs 180

Maintaining Old Programs 180

Mixing Old and New 180

Using const and volatile 181

String Constants 182

Data Type Conversions 183

Character Sets 184

Using Floating-point Data 185

Using Data Structures 187

Alignment 187

187

Data Segment Layout 188

Big-endian vs. Little-endian 189

Internationalization 190

Portability Lab 190

Chapter 10 Porting to Far-off Lands 193

Some Definitions 193

Internationalization 193

Localization 193

Locale 193

Locale Control 194

Character and Codeset 194

Messages 194

Rep esentation of Numbers 194

Currency 195

Dates 195

Setting the Current Locale 195

Character-handling Functions 196

The isalpha(), islower(), and isupper() Functions 197

The toupper() and tolower() Functions 197

The isspace() Function 197

The strcoll() Function 197

The strxfrm() Function 197

The strerror() and perror() Functions 198

The strftime() Function 198

Page xv

Native Language Messages 198

Message Catalogs 199

The catopen() Function 199

The catgets() Function 200

The catclose() Function 200

Local Numeric Formatting 200

Asian Languages 203

Multi-byte Characters 203

Wide Characters 203

Working with Multi-byte and Wide Characters 204

The mbtowc() Function 204

The mbstowcs() Function 204

The wctomb() Function 205

The wcstombs() Function 205

The mblen() Function 205

Portability Lab 206

Library Functions 209

abort()— Causes abnormal process termination 211

abs()—Computes the absolute value of an integer 212

access()—Tests for file accessibility 213

acos()—Computes the principal value of arc cosine 215

alarm()—Schedules an alarm 216

asctime()—Converts a time structure to a string 217

asin()—Computes the principal value of the arc sine 218

assert()—Aborts the program if assertion is false 219

atan()—Computes the principal value of the arc tangent 221

221

atan2()—Computes the principal value of the arc tangent of y/x 222

atexit()—Registers a function to be called at normal program
termination

223

atof()—Converts a text string to double 224

atoi()—Converts a text string to integer 225

atol()—Converts a text string to long integer 226

bsearch()—Searches a sorted array 227

calloc()—Allocates and zeroes memory 229

ceil()—Computes the smallest integer greater than or equal to x 230

cfgetispeed()—Reads terminal input baud rate 231

cfgetospeed()—Reads terminal output baud rate 232

Page xvi

cfsetispeed()—Sets terminal input baud rate 233

cfsetospeed()—Sets terminal output baud rate 234

chdir()—Changes the current working directory 235

chmod()—Changes file mode 236

chown()—Changes the owner and/or group of a file 238

clearerr()—Clears end—of-file and error indicators for a stream 240

clock()—Determines processor time used 241

close()—Closes a file 242

closedir()—Ends directory read operation 243

cos()—Computes the cosine function 244

cosh()—Computes the hyperbolic cosine function 245

creat()—Creates a new file or rewrites an existing one 246

ctermid()—Generates terminal pathname 247

247

ctime()—Formats a calendar time 248

cuserid()—Gets user name 249

difftime()—Computes the difference between two times 250

div()—Computes the quotient and remainder of an integer division 251

dup()—Duplicates an open file descriptor 252

dup2()——Duplicates an open file descriptor 253

execl()—Executes a file 254

execle()—Executes a file 256

execlp()—Executes a file 258

execv()—Executes a file 260

execve()—Executes a file 262

execvp()—Executes a file 264

exit()—Causes normal program termination 266

_exit()—Terminates a process 267

exp()—Computes the exponential function 268

fabs()—Computes the absolute-value function 269

fclose()—Closes an open stream 270

fcntl()—Manipulates an open file descriptor 271

fdopen()—Opens a stream on a file descriptor 274

feoff()—Tests the end-of-file indicator for a stream 275

ferror()—Tests the error indicator for a stream 276

fflush()—Updates stream 277

fgetc()—Reads a character from a stream 278

fgetpos()—Gets the current file position 279

fgets()—Reads n characters from a stream 280

fileno()—Maps a stream pointer to a file descriptor 281

Page xvii

floor()—Computes the largest integer not greater than x 282

fmod()—Computes the remainder of x/y 283

fopen()—Opens a stream 284

fork()—Creates a process 285

fpathconf()—Gets configuration variable for an open file 287

fprintf()—Writes formatted text to a stream 289

fputc()—Writes a character to a stream 293

fputs()—Writes a string to a stream 294

fread()—Reads an array from a stream 295

free()—Deallocates dynamic memory 296

freopen()—Closes and then opens a stream 297

frexp()—Breaks a floating-point number into a fraction and integer 298

fscanf()—Reads formatted input from a stream 299

fseek()—Sets file position 302

fsetpos()—Sets the file position for a stream 303

fstat()—Gets file status 304

ftell()—Gets the position indicator for a stream 305

fwrite()—Writes an array to a stream 306

getc()—Reads a character from a stream 307

getchar()—Reads a character from standard input 308

getcwd()—Gets current working directory 309

getegid()—Gets effective group ID 310

getenv()—Gets the environment variable 311

geteuid()—Gets effective user ID 313

313

getgid()—Gets real group ID 314

getgrgid()—Reads groups database based on group ID 315

getgrnam)—Reads group database based on group name 316

getgroups()—Gets supplementary group IDs 317

getlogin()—Gets user name 319

getpgrp()—Gets process group ID 320

getpid()—Gets process ID 321

getppid()—Gets parent process ID 322

getpwnam()—Reads user database based on user name 323

getpwuid()—Reads user database based on user ID 324

gets()—Reads a string from standard input 325

getuid()—Gets real user ID 326

gmtime()—Breaks down a timer value into a time structure in
Coordinated Universal Time (UTC)

327

isalnum()—Tests for alphabetic or numeric character 328

Page xviii

isalpha()—Tests for alphabetic character 329

isatty()—Determines if a file descriptor is associated with a terminal 330

iscntrl()—Tests for control character 331

isdigit()—Tests for decimal-digit character 332

isgraph()—Tests for printing character 333

islower()—Tests for lowercase character 334

isprint()—Tests for printing character 335

ispunct()—Tests for punctuation 336

isspace()—Tests for white-space character 337

337

isupper()—Tests for uppercase alphabetic character 338

isxdigit()—Tests for hexadecimal-digit character 339

kill()—Sends a signal to a process 340

labs()—Computes the absolute value of a long integer 341

ldexp()—Multiplies a floating-point number by a power of 2 342

ldiv()—Computes the quotient and remainder of integer division 343

link()—Creates a link to a file 344

localeconv()—Gets rules to format numeric quantities for the current
locale

345

localtime()—Breaks down a timer value into a time structure in local
time

346

log()—Computes the natural log function 347

loglO()—Computes the base-ten logarithm function 348

longjmp()—Restores the calling environment 349

lseek()—Repositions read/write file offset 350

malloc()—Allocates dynamic memory 352

mblen()—Determines the number of bytes in a character 353

mbstowcs()—Converts a multibyte string to a wide-character string 354

mbtowc()—Converts a multibyte character to a wide character 355

memchr()—Scans memory for a byte 356

memcmp()—Compares two memory objects 357

memcpy()—Copies non-overlapping memory objects 358

memmove()—Copies (possibly overlapping) memory objects 359

memset()—Fills memory with a constant byte 360

mkdir()—Makes a directory 361

mkfifo()—Makes a FIFO special file 362

mktime()—Converts time formats 363

363

modf()—Breaks a value into integral and fractional parts 364

open()—Opens a file 365

opendir()—Opens a directory 367

pathconf()—Gets configuration variables for a path 368

Page xix

pause()—Suspends process execution 370

perror()—Prints an error message 371

pipe()—Creates an interprocess channel 372

pow()—Computes x raised to the power y 373

printff()—Writes formatted text to the standard output stream 374

putc()—Writes a character to a stream 378

putchar()—Writes a character to standard output 379

puts()—Writes a string to standard output 380

qsort()—Sorts an array 381

raise()—Sends a signal 383

rand()—Retums a random number 384

read()—Reads from a file 385

readdir()—Reads a directory 387

realloc()—Changes the size of a memory object 389

remove()—Removes a file from a directory 390

rename()—Renames a file 391

rewind()—Sets the file position to the beginning of the file 393

rewinddir()—Resets the readdir() pointer 394

rmdir()—Removes a directory 395

scanf()—Reads formatted text from standard input stream 396

396

setbuf()—Determines how a stream will be buffered 400

setgid()—Sets group ID 401

setjmp()—Saves the calling environment for use by longjmp() 403

setlocale()—Sets or queries a program's locale 405

setpgid()—Sets process group ID for job control 406

setsid()—Creates a session and sets the process group ID 407

setuid()—Sets the user ID 408

setvbuf()—Determines buffering for a stream 410

sigaction()—Examines and changes signal action 412

sigaddset()—Adds a signal to a signal set 414

sigdelset()—Removes a signal from a signal set 415

sigemptyset()—Creates an empty signal set 416

sigfillset()—Creates a full set of signals 417

sigismember()—Tests a signal set for a selected member 418

siglongjmp()—Goes to and restores signal mask 419

signal()—Specifies signal handling 420

sigpending()—Examines pending signals 422

sigprocmask()—Examines and changes blocked signals 423

sigsetjmp()—Saves state for siglongjmp() 425

Page xx

sigsuspend()—Waits for a signal 427

sin()—Computes the sine function 428

sinh()—Computes the hyperbolic sine of x 429

sleep()—Delays process execution 430

sprintf()—Formats a string 431

431

sqrt()—Computes the square root function 435

srand()—Sets a seed for the rand() function 436

sscanf()—Parses a string 437

stat()—Gets information about a file 441

strcat()—Concatenates two strings 442

strchr()—Scans a string for a character 443

strcmp()—Compares two strings 444

strcoll()—Compares two strings using the current locale 445

strcpy()—Copies a string 446

strcspn()—Searches a string for characters which are not in the
second string

447

strerror()—Converts an error number to a string 448

strftime()—Formats date/time 449

strlen()—Computes the length of a string 451

strcat()—Concatenates two counted strings 452

strncmp()—Compares two counted strings 453

strncpy()—Copies a counted string 454

strpbrk()—Searches a string for any of a set of characters 455

strrchr()—Locates the last occurrence of a character in a string 456

strspn()—Searches a string for any of a set of characters 457

strstr()—Locates a substring 458

strtod()—Converts a string to double 459

strtok()—Breaks a string into tokens 461

strtol()—Converts a string to long int 462

strtoul()—Converts a string to unsigned long int 464

strxfrm()—Transforms strings using rules for locale 466

466

sysconf()—Gets system configuration information 468

system()—Executes a command 470

tan()—Computes the tangent of x 471

tanh()—Computes the hyperbolic tangent of x 472

tcdrain()—Waits for all output to be transmitted to the terminal 473

tcflow()—Suspends/restarts terminal output 474

tcflush()—Discards terminal data 476

tcgetattr()—Gets terminal attributes 477

Page xxi

tcgetpgrp()—Gets foreground process group ID 478

tcsendbreak()—Sends a break to a terminal 480

tcsetattr()—Sets terminal attributes 481

tcsetpgrp()—Sets foreground process group ID 483

time()—Determines the current calendar time 484

times()—Gets process times 485

tmpfile()—Creates a temporary file 486

tmpnam()—Generates a string that is a valid non-existing file name 487

tolower()—Converts uppercase to lowercase 488

toupper()—Converts lowercase to uppercase 489

ttyname()—Determines a terminal pathname 490

tzset()—Sets the timezone from environment variables 491

umask()—Sets a file creation mask 492

uname()—Gets system name 493

ungetc()—Pushes a character back onto a stream 495

unlink()—Removes a directory entry 496

496

utime()—Sets file access and modification times 497

va_arg()—Gets the next argument 499

va_end()—Ends variable argument list 501

va_start()—Starts a variable argument list 502

vfprintf()—Writes formatted text with a variable argument list 503

vprintf()—Write formatted text to standard output with a variable
argument list

505

vsprintf()—Write formatted text to a string with a variable argument
list

506

wait()—Waits for process termination 507

waitpid()—Waits for process termination 509

wcstombs()—Converts a wide character string to a multibyte
character string

511

wctomb()—Converts a wide character to a multibyte character 512

write()—Writes to a file 513

Appendix A Header Files 519

Description of Tables 519

Appendix B Data Structures 551

Page xxii

Appendix C Error Codes 559

Appendix D Porting from BSD and System V 565

BSD Functions 566

System V Functions 568

Appendix E Changes and Additions in Standard C 569

Preprocessor 569

Character Set 569

569

Identifiers 569

Keywords 570

Operators 570

Strings 570

Constants 570

Structures, Unions, and Arrays 570

switch Statements 571

Headers 571

Pointers 571

Functions 571

Arithmetic 571

Appendix F Federal Information Processing Standard 151-1 573

Appendix G Answers to Selected Exercises 575

Related Publications 585

The Standards 585

Other Documents of Interest 586

Index 587

Page xxiii

Preface

In 1988, IEEE Std 1003.1-1988, commonly known as POSIX or the IEEE Portable Operating
System Interface for Computing Environments, was published as an American National
Standard. In 1990, IEEE Std 1003.1-1990 was published as an International Standard. POSIX
defines a standard way for an application program to obtain basic services from the operating
system. More specifically, POSIX describes a set of functions derived from a combination of
AT&T UNIX System V and Berkeley Standard Distribution UNIX. All POSIX-conforming
systems must implement these functions, and programs that follow the POSIX standard use only
these functions to obtain services from the operating system and the underlying hardware. When

applications follow POSIX rules, it is easier to move programs from one POSIX-conforming
operating system to another.

Most programmers, and the companies that employ them, understand the benefits of developing
programs that are highly portable across a variety of computer architectures and operating
systems. To write portable programs you want to make use of only those features on a
particular system that are also found on other systems. Writing POSIX-compliant programs
does, in fact, result in more portable programs. However, writing these programs is not so easy
if you rely solely upon the manufacturer's documentation.

A programming reference manual typically combines POSIX-compliant functions with
non-compliant functions. A function might comply with the POSIX requirements but also add
several new features peculiar to that computer system or operating system variant. A
manufacturer may not always point out what features represent added value and are supported
only on that make or model. Even though the computer system you use might conform to the
POSIX standard, you can still write non-conforming applications by making use of the
system-specific features added by the manufacturer.

This book is a guide to the operating system interface as guaranteed by the POSIX standard.
You can write complete, conforming applications by using the information in this book. The
POSIX library of functions is complete enough to write many useful and sophisticated
applications. However, there are many areas that the POSIX standard does not yet address.
Thus, programmers must implement strategies that isolate nonportable code from
portable-code, such that even hardware-dependent features are easily identified. The object of
this book is to help the programmers resolve portability issues at the design stage of
development, and not after the program has been fully implemented on a particular system.

Page xxiv

The POSIX Standard Documents

Not many people actually read a standard, nor are they expected to. It is more like reading an
insurance policy. When a standards organization such as ANSI or IEEE publishes a standards
document, they view it as a formal document in which the primary aim is to be unambiguous.

The language is very technical and precise. The statements ''Applications should not set
O_XYZ" and "Applications shall not set O_XYZ" mean very different (almost opposite) things.
"Should" means that something is recommended but is not required. "Shall" signifies a
requirement.

The primary aim of this book is to interpret the POSIX standard for the application programmer
and explain it in language that he or she can understand. You can read this book without
remembering the technical meaning of words like may, should, or shall.

The POSIX standard contains a lot of information that was written by and for system
implementers. The standard describes how to write an operating system that conforms to the
POSIX standard. A typical passage is:

All of the described members shall appear in the stat structure. The structure members st_mode,
st_ino, st_dev, stuid, st_gid, st_atime, st_ctime, and st_mtime shall have meaningful values for all

file types defined in this part of ISO/IEC9945.*

If you are an application programmer, you don't want to know how to construct an operating
system. You need to know how to write programs using the POSIX library to obtain the
services that an operating system provides. What this passage means to an application
programmer is:

The file size returned by the stat() function is only valid for regular files. It may not contain
meaningful information for special files, such as /dev/tty.

Finally, the POSIX standard is difficult to use; that is, it is not organized for a programmer who
wants to consult it while writing programs. It follows the conventions of a standards document.
This book is organized for use as a programmer's guide to POSIX and a reference guide to
POSIX. The organization of this book is described in more detail in the next section.

In the POSIX standard, there are functions that are defined in relation to the ANSI C standard.
Given the additional requirements placed on C standard functions by POSIX, the programmer
has the chore of reading both the C standard and the POSIX standard to get complete
information. In this book, standard C functions are described in full in one place.

* IEEE Std 1003.1-1990 Section 5.6.1.

Page xxv

This book is a clearly written, complete guide to writing POSIX-compliant programs. In fact,
you may not need to own a copy of the POSIX standard. Or, if you do have it, we believe that
you will come to rely on the information in this book and find that it is more accessible.

Guide to POSIX for Programmers

There are two separate guides that make up this book. The first is a programmer's guide to
writing POSIX-compliant programs. It begins with an overview of what the POSIX standard
actually defines. Then it covers the basic ingredients of a POSIX-compliant program. There are
a set of chapters devoted to explaining the functional areas addressed by the standard. Each
chapter covers a group of related functions. For example, all of the information on terminal I/O
is in Chapter 8. In this part of the book, we discuss in more detail the relation between POSIX
and Standard C, a set of issues regarding internationalization and portability, and finally, how
to design programs that isolate system dependencies from POSIX-compliant code.

The second is a reference guide for everyday use. The library functions are listed in alphabetic
order and there are sections covering error message codes, data structures and the standard
header files.

Here is an outline of the book:

Programming Guide

Chapter 1, Introduction to POSIX and Portability, answers a number of questions anyone
might have concerning POSIX. It addresses such basic questions as: Why is the POSIX
standard important? What does the POSIX standard cover? What is the relationship between
POSIX and UNIX?

Chapter 2, Developing POSIX Applications, covers the basics of writing a POSIX-compliant

program. It describes how to make sure your program accesses the POSIX libraries and looks
at the required elements of a conforming program. It also presents a complete sample program
that uses many POSIX features. After reading this chapter you can read the following chapters
in any order. If your main interest is POSIX terminal I/O, you can skip right to Chapter 8.

Chapter 3, Standard File and Terminal I/O, covers the Input/Output facilities of the Standard
C library. These are highly portable functions that perform general-purpose file operations.

Chapter 4, Files and Directories, deals with the file system as defined by POSIX. It covers
directory structures, filenaming conventions and the library functions to manipulate files and
directories.

Chapter 5, Advanced File Operations, addresses the basic operations of the POSIX
Input/Output system as well as some advanced concepts like pipes and FIFOs.

Page xxvi

Chapter 6, Working with Processes, covers working with processes. It covers creating and
terminating processes and signals.

Chapter 7, Obtaining Information at Run-time, describes how to obtain information about the
environment, such as the user's name or the current time.

Chapter 8, Terminal I/O, covers Input/Output to terminals.

Chapter 9, POSIX and Standard C, covers POSIX and Standard C. This covers some
portability pitfalls and other features of the Standard C language.

Chapter 10, Porting to Far-off Lands, is dedicated to internationalization. That is issues
having to do with porting a program from one culture to another.

Reference Guide and Appendixes

Library Functions is, by far, is the largest chapter in the book. It is a complete list of library
functions in alphabetic order. Every function is defined in its correct place. For example, the
isspace() function is not listed under ctype as it is in traditional UNIX manuals. This
makes this information much easier to find.

Appendix A, Header Files, lists the standard headers and the information that they define.

Appendix B, Data Structures, is a complete list of data structures and their members.

Appendix C, Error Codes, covers all of the error codes.

Appendix D, Porting from BSD and System V, provides information on porting applications
from BSD and AT&T System V systems to POSIX.

Appendix E, Changes and Additions in Standard C, describes the changes and additions to the
C language made by Standard (ANSI) C.

Appendix F, Federal Information Processing Standard 151-1, describes the Federal
Information Processing Standard used by the U.S. Government to purchase systems with
POSIX-like interfaces.

Related Publications lists related publications.

Assumptions

In this book, I assume that you understand the C language and have some experience
programming in C for the UNIX operating system. I also assume knowledge of ANSI C syntax.
By and large, I assume you are an intermediate to expert programmer who is interested in the
substance of POSIX but has little or no interest in reading the standards document to find it out.

Page xxvii

Conventions

Italic is used for:

• New terms where they are defined.

• Titles of publications.

Typewriter Font is used for:

• Anything that would be typed verbatim into code, such as examples of source code and text
on the screen.

• POSIX functions and headers.

• UNIX pathnames, filenames, program names, user command names, and options for user
commands.

Sample Programs Available on Internet

The examples in this book are available on ftp.uu.net in the directory
/published/oreilly/misc/posix_prguide

Page 1

Chapter 1
Introduction to POSIX and Portability

This chapter offers a basic introduction to the POSIX standard and the efforts that led to its
development; it also explains the relationship between POSIX and UNIX and the ANSI C
standard.

Early computers each had a unique program architecture and a unique operating system. When
an application needed to be moved from one generation of hardware to the next, it had to be
rewritten. In 1964, IBM introduced the System/360. This was the first family of compatible
computers. They used one operating system, OS/360, and programs could easily be moved to
more powerful models. A single vendor implementing a single hardware architecture across

multiple machines was a first step in achieving portability.

In 1968, AT&T's Bell Labs began work on the UNIX operating system. It allowed a single
operating system to run on multiple hardware platforms from multiple vendors. UNIX,
however, developed along several different lines: AT&T System V, Berkeley Software
Distributions, Xenix, and so on. None of the flavors works identically and the precise behavior
of each flavor is not well defined. It can be difficult to move applications from one flavor to
another.

Today there is a major battle of operating systems. Unix Systems Lab's System V, the Open
Software Foundation's OSF/1, Digital Equipment's VAX/VMS, and Microsoft's OS/2 are all
trying to set the standard. Yet, they all agree to support the POSIX standards.*

POSIX is an international standard with an exact definition and a set of assertions which can be
used to verify compliance. A conforming POSIX application can move from system to system
with a very high confidence of low maintenance and correct operation. If you want software to
run on the largest possible set of hardware and operating systems, POSIX is the way to go.

POSIX is based on UNIX System V and Berkeley UNIX, but it is not itself an operating system.
POSIX describes the contract between the application and the operating system. POSIX does
not say how to write applications programs or how to write the operating system. Instead,
POSIX defines the interface between applications and their libraries. POSIX does not talk
about ''system calls" or make any distinction between the kernel and the user.

* AT&T Unix System V release 4.0 and OSF/1 release 1.0 are both POSIX-conforming. Digital
Equipment Corporation and Microsoft have both publicly committed to making their operating
systems POSIX conforming.

Page 2

POSIX completes the generalization started by IBM with the System/360. POSIX is a standard
independent of vendor, operating system, and architecture.

The formal name for the POSIX standard is IEEE Standard 1003.1-1988 Portable Operating
System Interface for Computer Environments.* We call it POSIX (pronounced pahz-icks,
similar to positive). In fact, IEEE Std 1003.1-1988 is the first of a group of proposed standards
collectively known as POSIX.

In 1990 POSIX became International Standard ISO/IEC 9945-1: 1990. The International
Standard is slightly different from IEEE Std 1003.1-1988. The IEEE reaffirmed the standard as
IEEE Std 1003.1-1990. The changes are mainly clarifications with no technical impact. We
will point out the few significant differences as we go along.

Who is Backing POSIX?

The United States Government has adopted the POSIX standard as a Federal Information
Processing Standard (FIPS 151) for use in computer systems procurement. The European
Community is getting ready to do the same thing. This has inspired the following System
vendors** to announce support for POSIX:

AEG Modcomp Harris Computer Systems Division

AEG Modcomp Harris Computer Systems Division

Alliant Computer Corp. Hewlett-Packard

Amdahl Corp. Hitachi

Apple Computer Intel

AT&T Intergraph Corp.

Bull International Business Machines

Charles River Data Systems Kendall Square Research Corp.

Concurrent Computer Motorola

Control Data Corporation NeXT, Inc.

Convergent Technology Stratus Computer

Cray Research Inc. Sun Microsystems

Data General Corporation Tandem Computer

Digital Equipment Corp Texas Instruments

Fujitsu Limited Unisys

Gould Computer Systems Division Xerox

Grumman Data Systems

Of course, a list of hardware vendors like that will get lots of software vendors signed up to
help. Some of the major software vendors are The Open Software Foundation, AT&T Unix
System Laboratories, and Microsoft.

Now, if all these players agree on something, it must be important!

* The name POSIX comes from Portable Operating System interface for unIX. The name was
suggested by Richard Stallman.

**By the time you read this there will be even more!

Page 3

The POSIX Family of Standards

POSIX, in time, will be a rich family of standards. The project names for the various POSIX
projects was revised in 1993. The current list* of POSIX projects is:

1003.1
defines the interface between portable application programs and the operating system, based on
historical UNIX system models. This consists of a library of functions that are frequently

implemented as system calls. This project is now complete and is IEEE Std 1003.1-1990.

P1003.1a
Miscellaneous interpretations, clarifications and extensions (including symbolic links) to the
1990 standard. Look for an expanded POSIX. 1 standard by the end of 1994.

P1003.1b
(formerly POSIX.4) Real-time extensions approved as IEE Std 1003.lb1993 and covers:

• Binary Semaphores

• Process memory locking

• Memory-mapped files and shared memory

• Priority scheduling

• Real-time signal extensions

• Timers

• Interprocess communication

• Synchronized I/O

• Asynchronous I/O

P1003.1c
(formerly POSIX.4a) add functions to support threads (light weight processes) to POSIX. This
will allow multiple flows of control within a POSIX process, a requirement for tightly coupled
real-time (as well as transaction processing) applications.

P1003.ld
(formerly POSIX.4b) further real-time extensions

P1003.1e
formerly POSIX.6) is a set of security enhancements meeting the criteria published by the
United States Department of Defense in Trusted Computer System Evaluation Criteria
(TCSEC). This covers four areas:

• Access control lists on POSIX objects.

* This list was correct in February 1994. POSIX is very active and this information will be out of date
by the time you read it. Late breaking information is posted to the USENET comp.std.unix
newsgroup. The USENIX Association publishes a quarterly update of standards activities.
Membership information is available from USENIX association, 2560 Ninth Street, Suite 215,
Berkeley CA 94710 or office@usenix org

Page 4

• Support for labeling of subjects and objects, and for mandatory access control rules to
avoid leaking information.

• Defining auditable events for POSIX. 1 interfaces, and standard audit trail record formats
and functions.

• Defining interfaces for altering process privileges.

P1003.1e
is currently balloting the required extension to P1003.1.

P1003.1f
(formerly POSIX.8) is working on Transparent File Access over a network. Transparent File
Access is the ability to access remote files as if they were local.

P1003.1g
(formerly POSIX.12) covers Protocol Independent Interfaces to network services.

P1003.lh
(new) real-time distributed systems.

P1003.2
specifies a shell command language based on the System V shell with some features from the C
Shell and the Korn Shell. It provides a few services to access shell services from applications.
POSIX.2 provides over 70 utilities to be called from shell scripts or from applications
directly.

POSIX.2 was originally intended to allow shell scripts to be portable. Later, it was decided to
add a User Portability Extension (now called POSIX.2a) to allow users to move from one
system to another without retraining. The POSIX.2a covers about 35 additional utilities like the
vi editor, more,man,mailx, etc.

POSIX.2/.2a has passed all of the steps in the standardization process and is now approved as
ISO/IEC 9945-2:1993 and IEE Std 1003.2-1992.

P1003.2b
miscellaneous extensions (including symbolic links) to the P1003.2 standard.

P1003.2c
security extensions. These are the command and utilities that go along with P1003.1e

P1003.2d
(formerly POSIX. 15) batch queueing extensions

P1003.3
provides the detailed testing and verification requirements for the POSIX family. The standard
(IEEE Std 1003.3-1991) consists of general requirements for how test suites should be written
and administered.

The National Institute for Standards and Technology (NIST), part of the United States
Government, produced the POSIX FIPS Conformance Test Suite (PCTS). The ability to test
that an implementation meets the standard allows programmers and users to get the full
portability that they expect. The specific tests for a POSIX component are numbered 2003 so
the tests for IEEE Std 1003.1-1990 are called IEE Std 2003.1-1992.

Page 5

P1003.5
is a set of ADA bindings to the basic system services defined in POSIX. 1 (IEEE Std
1003.5-1992).

P1387
(formerly POSIX.7) is going to provide standard system administration. System administration
is one of the least standard areas in UNIX. There are several subprojects:
P1387.1 Framework for system administration
P1387.2 Software management
P1387.3 User management
P1387.4 Printer management

P1003.9
is a set of FORTRAN-77 bindings to the basic system services defined in POSIX.1 (IEEE Std
1003.9-1992)

P1003.10
is a supercomputing Application Environment Profile (AEP). The idea is to specify the
requirements that supercomputer users have for the other POSIX groups. For example, batch
processing and checkpoint/restart facilities.

P1003.11
was the Transaction Processing AEP currently inactive.

P1003.13
is the Real-Time AEP. There is no POSIX. 13 committee. The work is done by POSIX.4

P1003.14
is the Multiprocessor AEP.

P1003.16
is a set of C language bindings to the basic system services defined in POSIX.1 (inactive)

P1224.2
(formerly POSIX. 17) covers programming interfaces to network directory services (IEEE Std
1224.2-1993).

POSIX.18
is the POSIX Platform Environment Profile. It will cover what options are required to support
POSIX applications.

POSIX. 19
is a set of Fortran 90 bindings to the basic system services defined in POSIX.1 (inactive)

POSIX.20
is a set of Ada bindings to the real time services defined in POSIX.4

POSIX.0
is a Guide to POSIX Open Systems Environment. This is not a standard in the same sense as

POSIX.1 or POSIX.2. It is more of an introduction to the other standards.

Most of these projects have not yet produced a standard. 1003.1, .2, .3, .5, .9 and 1224.2 are
official standards. The rest are in ballot or still in the hands of their respective committees.

Page 6

The POSIX.1 Standard Document

The POSIX. 1 Standard Document is dedicated to POSIX. 1 which produced an IEEE standard
in 1988 and an international standard in 1990. The full legal name is: IEEE Std. 1003.1-1990
Standard for Information Technology—Portable Operating System Interface
(POSIX)—PART 1. System Application Programming Interface (API) [C Language]. The
Publications section in the Reference Manual at the back of this book gives the ordering
information for this and other standards.

For the rest of this book, we will use the word POSIX to mean POSIX.1.

POSIX covers the basic operating system interface. This includes:

1. The POSIX standard starts out with a set of definitions and general requirements. I have
distributed this information throughout this book so that you are not hit with 89 definitions
all at once.

2. POSIX next covers the Process Primitives. I cover this information in Chapter 6, Working
with Processes.

3. Next comes Process Environment, which I cover in Chapter 7, Obtaining Information at
Run-time.

4. The POSIX sections on Files and Directories and Input and Output Primitives are
covered in Chapter 3, Standard File and Terminal I/O, Chapter 4, Files and Directories
and Chapter 5, Advanced File Operations.

5. Device- and Class-Specific Functions are covered in Chapter 8, Terminal I/O. Terminals
are the only device that POSIX standardizes.

6. The POSIX chapter Language-specific Services for the C Programming Language is
covered in Chapter 9, POSIX and Standard C. The POSIX standard assumes that you have
complete knowledge of ANSI Std X3.159-1989—American National Standard for
Information Systems—Programming Language—C. I have brought the relevant
information from that standard into Chapter 9 (as well as other places in this book).

7. The early drafts of POSIX had a chapter on System Databases covering the
/etc/passwd and /etc/groups files. These files are no longer part of POSIX The
system database is accessed with library functions such as getpwnam(). The POSIX
chapter remained System Databases. I cover the related functions in Chapter 7, Obtaining
Information at Run-time.

8. The POSIX standard defines the tar and cpio - c file formats. I do not cover these
because they do not affect application programs. What you do need to know is that you can
write an archive on one POSIX system using tar or cpio -c and read it on another

POSIX system.

POSIX provides the facilities you will need to write most ordinary character-based
application programs. However, POSIX.1 does not address some significant areas such as

Page 7

networking and graphics. Networking is being addressed by POSIX.8. This is a large complex
area and will require several standards that will take until the mid-90s to complete. Graphics,
graphic user interfaces, and windowing systems standards are all under development.

POSIX also ignores system administration. How do you add users? How do you back up the
file system? How do you install a package? These are not considered issues for portable
applications.

The same force that made POSIX.1 a success is delaying these other areas: a large body of
existing practice and a consensus on the best solution. Most of the features of POSIX and
Standard C had been built and tested by several vendors before being included in an
international standard. Is OSF/Motif the correct user interface? Should it be an international
standard? It is too early to have a broad consensus.

The Design of POSIX

The committee that worked on POSIX had several ''grand principles" to guide their work:

• POSIX is aimed at application portability across many systems. These include not only
UNIX systems but non-UNIX systems such as VAX/VMS and OS/2. Unisys Corp. has
developed a POSIX front end for the CTOS operating system.

• POSIX describes the contract between the application and the operating system. POSIX
does not say how to write applications programs or how to write operating systems.

• The standard has been defined exclusively at the source code level. A strictly conforming
source program can be compiled to execute on any conforming system. The standard does
not guarantee that the object or binary code will execute under a different conforming
implementation, even if the underlying hardware is identical. This applies even to two
identical computers with the same operating system.

• The standard is written in terms of Standard C. The standard does not require that an
implementation support Standard C. FORTRAN and ADA interfaces to POSIX are being
developed.

• There was no intention to specify all aspects of an operating system. Only functions used by
ordinary applications are included. There are no system administration functions.

• The standard is as small as possible.

• The POSIX interface is suitable for the broadest possible range of systems.

• While no known UNIX system was 100% POSIX compatible, the changes required to meet
the standard were kept as small as possible.

Page 8

• POSIX is designed to make less work for developers, not more. However, because no
UNIX system prior to POSIX was POSIX conforming, some existing applications had to
change to become strictly portable.

POSIX and UNIX

POSIX is based on UNIX System V and Berkeley UNIX, but it is not itself an operating system.
Instead, POSIX defines the interface between applications and their libraries. POSIX does not
talk about "system calls" or make any distinction between the kernel and the user.

Vendors can adapt any UNIX variant, or even another operating system, to provide POSIX
interfaces. Applications can be moved from one system to another because they see only the
POSIX interface and have no idea what system is under the interface.

An implementation consists of both a set of libraries and an operating system. The POSIX
standard defines only the interface between the application and the library. Consider Figure
1-1.

Figure 1-1. Software layers

POSIX defines how the application talks to the library and how the library and underlying
operating system behave in response. Each implementation can have its own way of dividing
the work between the library and the operating system.

Page 9

POSIX and Non-UNIX Operating Systems

Because the POSIX standard is the contract between the application and the library, POSIX
allows applications to be ported between operating systems by using a different library to
"glue" the application to the operating system.

For example, there is a function called getcwd() which returns the current working
directory. Some systems may have an operating system trap that returns this information. Other

systems may have a much larger chore of reading directories and computing the current
working directory. The applications programmer does not care. All systems must provide a
getcwd() which works exactly as described in this book.

POSIX, C, ANSI C, and Standard C

This book covers POSIX and Standard C. It is possible to write a book about POSIX without
getting involved in programming languages. The standards committees are moving in that
direction: one topic per standard.

However, programmers must program in a programming language. Divorcing the operating
system interface from the way a programmer accesses that interface may be good for the
standards lawyers, but it is bad for the programmer. We are going to talk about POSIX and
Standard C together.

The IEEE POSIX.5 committee is defining the ADA interface to POSIX and the IEEE POSIX.9
committee is defining the FORTRAN interface to POSIX. In early 1991 those standards are in
the first round of balloting. At some point, it will be possible to write POSIX programs in
ADA or FORTRAN. At the moment, C is the only real choice.

The POSIX standard is written in terms of the C programming language. POSIX supports two
programming environments. One is based on the traditional C language. The other is based on
the Standard C language defined by American National Standard for Information
Systems—Programming Language—C, X3.159-1989. Standard C defines the C language in a
more precise way and allows for more portability than traditional C.

Since Standard C was developed by the American National Standards Institute (ANSI), some
people call it ANSI C. The International Organization for Standards has adopted ANSI
X3.158-1989 as ISO/IEC 9899: Information Processing Systems—Programming
Language—C. I will use the term Standard C instead of ANSI C to reflect its status as an
international standard.

Since POSIX was being developed in parallel with Standard C, the POSIX committee did not
want to require its use. Today, there are many Standard C compilers on the market and most
platforms support one or more of them. Writing a new application in traditional C exposes you
to additional portability risks. Standard C also allows better compile-time checking. This
makes your programs easier to debug. There is no need to use traditional C if Standard C is
available.

Page 10

Why Standard C?

We could look for a subset of C that works on all computers. Let's call that Least Common
Denominator (LCD) C. The problem is that LCD C is hard to define. There are two major
reasons for this:

1. Documentation prior to the publication of American National Standard for Information
Systems—Programming Language—C was unclear at times.

2. Even where the books were clear, implementations got it wrong and there were no test

suites to validate the implementation.

As a result, finding a common subset of C requires a large amount of trial and error. Several
books have been written on C-compiler compatibility. Harbison and Steele's C. A Reference
Manual does a good job of pointing out the fuzzy edge of C and how to avoid it. In the 1990s,
avoiding the fuzzy edge is unnecessary. POSIX became a standard in 1988 and C in 1989.
Systems that implement those standards are just coming to market in 1991. It is unlikely that you
will find a system that conforms to the POSIX standard and does not also supply a Standard C
compiler and libraries.

The Standard C libraries are important. POSIX supplies only one part of the programming
toolkit. We need the libraries provided as part of Standard C in order to write interesting
programs. It is not worth wasting brain cells remembering which tools are in the Standard C
box and which are in the POSIX box. It is better to remember our tools by function. This is like
sorting our tools into screwdrivers and wrenches instead of Craftsman tools and Stanley tools.
In this book, I have attempted to integrate the two standards and present them as a complete
toolkit.

Working Outside the Standards

Most programs have only a few areas which need to go outside of the standards. Keep those
area isolated to a few modules. Keep most of the code POSIX conforming.

For example, I have an amateur radio application which I share with many friends. The
program's structure is shown in Figure 1-2.

Modules in the Program Core do not have any knowledge of the user interface. If I need, for
example, to get a decimal number from the user, I call get_decimal_with_prompt().
That is one of the routines I wrote in the user interface module. On a system with a graphic user
interface, there is a dialog box. On an ordinary terminal there is a question and a pause for the
user to type a number.

Most of the program remains unchanged over several operating systems and user interfaces. I
can build a version for different operating systems and user interfaces by changing that module.

Page 11

Figure 1-2. Example of a portable application

Finding The POSIX Libraries

The POSIX libraries are part of the standard system libraries. You can indicate that you want
all vendor extensions hidden from you by defining the symbol _POSIX_SOURCE with the
statement:

 #define _POSIX_SOURCE 1

According to the rules of Standard C, only those symbols that are in the base standard or are
enabled by a specific #define feature test are allowed to be visible. However, many
vendors require a special command to get the Standard C behavior. They include their added
value by default. By defining _POSIX_SOURCE you should protect yourself from this added
value.

Every conforming POSIX system must provide a ''conformance document" that describes its
implementation. This document will tell you if there is any magic you need to perform to get
standard behavior. We will talk more about the POSIX development environment in the next
chapter.

Converting Existing Programs

Since POSIX is based on existing practice, this is often very easy. It does require checking the
library functions that you use and verifying that you are using them as defined in the standard.

The Functions section in the Reference Manual in the back of this book lists every library
function. For each function there is a section labeled CONVERSION. This is a description of
the changes you have to make from the various releases of AT&T System V and Berkeley
Software Distribution (BSD) to make your application POSIX-conforming.

Page 12

One easy test is to add the statement:

 #define _POSIX_SOURCE 1

to the front of each module, compile and test your application. While this will not verify
complete POSIX conformance, it is a quick way to get close.

Several companies make C portability verifiers. A good one is Flex Lint available from
Gimpel Software, 3207 Hogarth Lane, Collegeville, PA 19426. The phone number is
(215)584-4261 and the FAX is (215)584-4266

Page 13

CHAPTER 2
Developing POSIX Applications

In this chapter, we discuss how to access the C language bindings as well as the POSIX

libraries. We look at what a system vendor must provide for a system to be
POSIX-compliant. We demonstrate two different program development problems—porting
an existing program to a POSIX-conforming system, and developing a program that is
designed to be POSIX-compliant.

The POSIX Development Environment

POSIX provides portability at the source level. This means that you transport your source
program to the target machine, compile it with the Standard C compiler using conforming
headers, and link it with the standard libraries. The system vendor provides the compiler, the
libraries, and headers. Strictly speaking, these are all black boxes and you do not need to know
how they work. However, it is instructive to look into some of these black boxes, and we will
do that in this chapter.

The Standard C Compiler

Each POSIX-conforming system must provide a POSIX-conformance document. This document
describes the behavior of the system for all implementation-defined features identified in the
standard. For maximum portability, applications should not depend upon any particular
behavior that is implementation-specific. The conformance document is dull reading, but it is
valuable because it contains information on how to access the standard C language bindings.

For AT&T UNIX System V Release 4, the Standard C language bindings are accessed by
specifying -Xc on the cc command line. The command:

 cc -Xc subs.c main.c -o prog

will compile subs.c and main.c and link them together to form prog.

Page 14

The Open Software Foundation's OSF/1 operating system comes with the GNU C compiler.*

The Standard C bindings are accessed by specifying -ansi on the cc command line. A
command there looks like:

 cc -ansi subs.c main.c -o prog

For other systems, you will have to buy (or at least look at) the conformance document, look
for on-line manual pages, or ask someone.

On most systems, the default is not Standard C but a C compiler that is compatible with the
historic behavior of that system. In many cases, your program will not notice the difference.
The historic behavior probably includes defining symbols that are not part of Standard C and
POSIX. It is easier to specify strict conformance and clean up small problems as you go than to
deal with a large mess at the end of the project.

Strict ANSI conformance is a good answer to the question: "What can I do to make my
programs more portable?"

POSIX and C Libraries

POSIX defines a library of functions for conforming programs to use. Many of these functions

are also defined in the Standard C library.

Each function in the library requires you to include at least one header. This is done with a
statement like:

 #include <stdio.h>

The header provides a prototype for the function, plus any necessary types and additional
macros to facilitate using the function.

The POSIX and C standards do not require headers to be source files. They may be some sort
of magic command to the compiler. The standards specify only the net effect of including a
header. On most systems (and all UNIX systems) the headers are files that live in the directory
/usr/include.

Many systems support multiple development environments. How do you get the POSIX
headers? You must define the symbol _POSIX_SOURCE before including any of the standard
headers. The best way to do this is to place the statement.**

 #define _POSIX_SOURCE 1

at the start of each file.

* The Open Software Foundation ships GNU C to resellers as part of the reference implementation.
The reseller might ship a different compiler with his or her product.

** The standard merely requires that the symbol _POSIX_SOURCE be defined. There is no required
value. I prefer to define symbols with values.

Page 15

You could also place the option -D_POSIX_SOURCE on the cc command-line; however, this
is error prone. It is better to put the #define into your source file along with the rest of your
program. As a rule of thumb, restrict command-line macro definitions to things that change from
one compile to the next. For example, -DNDEBUG turns off the debug test in assert(). Use
#define statements for symbols that must always be defined, such as _POSIX_SOURCE.

On some systems the header files you include do not do much. They merely select one of
several possible other headers based on the symbols that you have defined. This might look
like:

 #include <common/stdio.h>
 #ifdef SYSVSOURCE
 #include <sysV/stdio.h>
 #endif
 #ifdef _BSD_SOURCE
 #include <BSD/stdio.h>
 #endif
 #ifdef _POSIX_SOURCE
 #include <POSIX/stdio.h>
 #endif

Under most circumstances, you do not need to know how the system defines the correct
symbols. The Header Files section in this book details every POSIX and Standard C header
file. If you follow the rules in this section, the standards guarantee the following:

1. Every symbol required by the standards will be defined with a meaningful value.

2. No symbol not permitted by the standards will be defined. This protects your application
from namespace pollution. Of course, if you include a header not specified by the standard,
all bets are off.

Converting Existing Programs

Porting an existing application to run on a new system requires two major steps. These tasks
can range from very easy to almost impossible. First, you have to transport the program to the
target computer. Second, you have to modify the program to run in the new environment. The
POSIX standard (and this book) can help you in both steps.

The POSIX standard defines the format of both the cpio and tar archives. You can create an
archive with the command:

 ls files | cpio -oc >archive

or:

 tar -cf archive files

* For example, if the header <stdio.h> defined the symbol count, there could be a conflict with
the symbol count in your program.

Page 16

and load it onto the target with the command:

 cpio -ic <archive

or:

 tar -xvf archive

See your system documentation for the exact details. You will still need some form of
compatible disk, tape, or network to move the archive file to the target.

Once the files are moved, you will have to convert system-specific function calls to calls
defined by the POSIX standard. There are several aids in the reference guide in this book that
are designed to make conversion easier. For every function defined by either POSIX or
Standard C, there is a conversion entry in the Functions section. This entry points out the
changes that may be required to convert the function from older UNIX systems to ones that
conform to the POSIX standard. The Porting section covers functions in BSD and System V that
are not in POSIX and suggests ways to build equivalent functions using POSIX calls.

A Porting Example

One day, the boss walks in the door and says, "Here is a program that needs to be ported from
Berkeley UNIX to a Data General AViiON 310. Get it done quickly!"

Now, you could try to find the correct Data General manuals and port the program to the
AViiON, but the next day the boss will want it ported to some other machine. Since you are

clever, you decide to port the program to POSIX. It will then run on any POSIX system.

Let's look at the program:

 #include <stdio.h>
 #include <sys/time.h>

 main(argc,argv)
 int argc;
 char **argv;
 {
 struct timeval tv;
 struct timezone tz;

 gettimeofday(&tv,&tz);
 printf("The current time is:\n%s",
 ctime(&tv.tv_sec));
 if (tz.tz_dsttime)
 printf("Daylight savings time\n");
 else
 printf("Standard time\n");
 exit(0);
 }

Page 17

This program prints out the current time in the following format:

 The current time is:
 Sun Nov 11 18:44:00 1990
 Standard time

Now, in the real world you would not be confronted by a program this tiny. It might be easier
to throw the whole thing away and write a new program from scratch.* However, we will look
at the process of porting this program.

As a first test, we can compile the program and see if it works. We may have a very portable
program. At least, we will get a hint at what must be fixed.

This program will not compile because there is no <sys/time.h>header. This can be
solved by deleting the #include statement. This will get us past that compiler error and
point out any remaining compatibility problems.**

Next the compiler points out that there is no definition for struct timeval or struct
timezone. These seem to be used by the gettimeofday() function. A quick check of the
Functions section of this book reveals that there is no gettimeofday() function in POSIX.
However, it looks like gettimeofday() returns something that can be used as an argument
to ctime(). It also seems to return a daylight savings indication.

If we look up ctime() in the Functions section, it tells us:

1. The #include<sys/time.h> must be changed to #include<time.h>. (We
already knew that there was no <sys/time.h>!)

2. ctime() is equivalent to asctime(localtime(timer)).

This gives a good indication of what must be done to convert the program. The description of
localtime() in the Functions section states:

The localtime() function converts a time_t pointed to by timer into year, month, day, hours,
minutes, seconds, etc., and stores the information in a struct tm. A pointer to the struct tm is
returned. The current time can be obtained with the time() function.

* The option of throwing the existing program away and starting from scratch should not be ignored
even in much larger projects.

** In fact, many systems provide a BSD compatibility package. If we tried to run this program there is
a good chance it would work correctly without any changes. For the purposes of illustration, we will
ignore that possibility.

Page 18

We can replace gettimeofday() with localtime(). A quick check of the tm structure
in the Data Structures section reveals that it contains a flag, tm_isdst, to indicate daylight
savings time. Our program now looks like:

 #define _POSIXSOURCE 1

 #include <stdio.h>
 #include <time.h>

 main(argc,argv)
 int argc;
 char **argv;
 {
 struct tm *tmptr;
 time_t timer;

 timer = time(NULL);
 tmptr = localtime(&timer);
 printf("The current time is:\n%s",
 ctime(&timer));

 if (tmptr -> tm_isdst)
 printf("Daylight savings time\n");
 else
 printf("Standard time\n");
 exit(0);
 }

This program will work and can be considered ''ported." There are a couple of things that we
should do to make sure that the program is 100% standards-conforming. First, we should check
that we have included all of the required headers. The exit() function requires that we
include the <stdlib.h>header. While we are looking at exit() we should change the 0
to EXIT_SUCCESS. This change is not required for correct operation on POSIX systems. As
an act of kindness to those who will look at the program after we are done with it, we will add
some comments (ensuring portability from one programmer to another!).

The final maximally portable program is shown in Example 2-1:

EXAMPLE 2-1. daytime.c

 /* Define _POSIXSOURCE to indicate
 * that this is a POSIX program
 */
 #define _POSIX SOURCE 1

 /* System Headers */
 #include <stdlib.h>
 #include <stdio.h>
 #include <time.h>

 main (argc,argv)
 int argc; /* Argument count -- unused */
 char **argv; /* Argument list -- unused */
 {

Page 19

 struct tm *tmptr; /* Pointer to date and time
 * broken down by component.
 * The only member used is
 * tmdst
 */
 time_t timer; /* Number of seconds since
 * January 1, 1970.
 */

 timer = time(NULL); /* Get current time */
 tmptr = localtime(&timer); /* Break it down */
 printf("The current time is:\n%s",
 ctime(&timer));
 if (tmptr -> tmisdst) /* tm_isdst is non-zero
 * if daylight savings
 * is in effect
 */
 printf("Daylight savings time\n");
 else
 printf("Standard time\n");
 exit(EXIT_SUCCESS); /* Return to system */
 }

We can now tell the boss, "I ported the program to AViiON, and to ULTRIX, and to System
V.4. I even ported it to VAX/VMS. About that raise . . ."

An Alternate Approach

The previous example ported a program from an old system to one that supports the POSIX and
C standards. The new program is conforming but may no longer run on the old system. Of
course, we still have the old version for that system. If we are going to continue to fix bugs and
enhance the old version, we will have two source bases to deal with. We can try to get around
that problem by using #ifdefs as in:

 #ifdef BSD
 struct timeval tv;
 struct timezone tz;
 #endif

 #ifndef BSD
 struct tm *tmptr; /* Pointer to date and time
 * broken down by component.
 * The only member used is
 * tm_dst
 */
 timet timer; /* Number of seconds since
 * January 1, 1970.
 */
 #endif

After a few ports this gets very ugly and hard to read.

Another scheme is to build BSD compatible functions out of POSIX functions. For programs
like this, the emulation does not have to be perfect or complete. You need to supply only the
specific things required by the application you are porting.

Page 20

Of course, after a while you may have a large set of compatibility functions to support. User
frustration with the complexity of supporting a large number of ports was a major driving force
behind POSIX.

Standard Header Files

To write a POSIX program you must specify in your source code that you want it to be
POSIX-compliant (using #define _POSIX_SOURCE) and then use the library functions
that are defined by POSIX. You can become familiar with them by reading the remaining
chapters and using the reference section. The Header File section lists all of the standard
headers and the symbols that they define. This list merely hits the highlights so that you will
know what headers are available:

Header File Function

<assert. h> Defines the assert() macro. This is used to check for bugs.

<ctype. h> Defines the character-testing functions such as isdigit() and isupper().

<dirent. h> Defines the contents of directory entries and the functions that read them.

<errno. h> Defines all of the error codes.

<fcntl. h> Defines symbols used by the file control functions creat(), open(), and fcntl()

<float .h> Defines a set of symbols used for floating-point processing.

<grp. h> Defines the functions that read the group database.

<limits. h> Defines a set of implementation limits. This includes both hardware limits like
INT_MAX and software limits like NGROUPS_MAX.

<locale.h> Defines symbols for use in multi-national applications.

<math.h> Defines standard math functions such as sin() and sqrt().

sin() sqrt()

<pwd.h> Defines the functions that read the user database. This is called <pwd.h> because the
user database file has historically been called /etc/passwd.

<setjmp.h> Defines the C setjmp()/longjmp() macros. The POSIX extensions
sigsetjmp() and siglongjmp() are also defined here.

<signal.h> Defines the symbols and functions used by signals.

<stdarg. h> Defines macros to support functions with a variable number of parameters.

Page 21

Header File Function

<stddef.h> Defines NULL, size_t, and a few other popular symbols.

<stdio.h> Defines the standard I/O library.

<stdlib.h> Defines functions that historically did not require a header. These include exit(),
malloc(), free(), and many others.

<string.h> Defines the string functions strcat(), strlen(), strspn(), etc.

<sys/stat.h> Defines the stat structure and file manipulation functions such as chmod()

<sys/times.h> Defines the times() function and the structure it uses.

<sys/types.h> Defines the POSIX datatypes dev_t,gid_t, ino_t, etc.

<sys/utsname.h> Defines the uname() function and the structure it uses.

<sys/wait.h> Defines the wait() and waitpid() functions.

<termios.h> Defines many symbols used to manipulate terminals.

<time.h> Defines the time-of-day functions.

<unistd.h> Defines a large number of POSIX symbols. This header also defines all of the UNIX
functions which historically have not required a header. These include chdir(),
close(), fork(), pipe(), and so on.

<utime.h> Defines the utime() function and the structure it uses.

Section 4.1.2 of the C Standard states, ''A header is not necessarily a source file, nor are the <
and > delimited sequences in header names necessarily valid source file names." That is, the
compiler is free to define the symbols using any method that it wants. A POSIX system may not
have any headers that you can look at. Having said that, let's look at a typical header file. A
sample <utime.h> is given in Example 2-2:

EXAMPLE 2-2. utime.h header file

 #ifndef _UTIME_
 #define _UTIME_

 struct utimbuf
 {
 timet actime; /* access time */
 timet modtime; /* modification time */
 };

 #ifdef __STDC__
 int utime(const char *path,
 const struct utimbuf *times);

Page 22

 #else
 extern int utime();
 #endif /* __STDC__ */
 #endif /* _UTIME_ */

This is a very simple header file but it still has many interesting points.

The header is wrapped with an #ifndef _UTIME_. This means that the header can be
included any number of times without causing any errors. The symbol _UTIME_ is reserved
for the people who write system header files. All symbols that begin with an underscore
followed by either another underscore or an upper-case letter are for system headers. You
should not use them in your code.

The header then declares struct utimebuf, which is the main job of the header.

Lastly, if the header is being used by a Standard C compiler, the utime() function is
declared. If a compiler supports Standard C, the symbol __STDC__ is defined by the
compiler to have the value 1. Some compilers define the symbol __STDC__ to have a value
other than 1 to indicate "sort of standards-conforming."

Now let's look at <sys/types.h> which is slightly more complex:

EXAMPLE 2-3. sys/types.h header file

 #ifndef _TYPES_
 #define _TYPES_

 #if (__STDC__ != 1) I defined(_IN_KERNEL)
 /*
 * Machine specific system types
 */
 typedef struct{int r[1];} *physadr;
 typedef unsigned short iord_t;
 typedef int label_t[13];
 typedef unsigned short pgadr_t;
 typedef char swck_t;
 typedef unsigned char use_t;
 #define MAXSUSE 255

 /*

 * Machine independent system parameters
 */
 typedef long daddr_t;
 typedef char *caddr_t;
 typedef unsigned char uchar_t;
 typedef unsigned char u_char;
 typedef unsigned short u_short;
 typedef unsigned int u_int;
 typedef unsigned long u_long;
 typedef unsigned char unchar;
 typedef unsigned int uint;
 typedef unsigned short ushort;
 typedef unsigned long ulong;
 typedef ulong ino_tl;
 typedef short cnt_t;
 typedef ong ubadr_t;

Page 23

 #endif /* (__STDC__ != 1) || defined(_IN_KERNEL) */

 #if (__STDC__ != 1) (defined(_POSIX_SOURCE) ||
defined(_SYSV_SOURCE)
 typedef unsigned long clock_t;
 typedef unsigned long dev_t;
 typedef unsigned long gid_t;
 typedef unsigned long ino_t;
 typedef unsigned long mode_t;
 typedef unsigned long nlink_t;
 typedef long off_t;
 typedef long pid_t;
 typedef unsigned long size_t;
 typedef long ssize_t;
 typedef unsigned long uid_t;
 #endif /* (__STDC__ != 1) || defined(_POSIX_SOURCE) */

 #if (__STDC__ != 1) || defined(_SYSV_SOURCE)
 typedef unsigned char uchar_t;
 typedef unsigned short ushort_t;
 typedef unsigned int uint_t;
 typedef unsigned long ulong_t;

 typedef char * addr_t;
 typedef char * caddr_t;
 typedef long daddr_t;
 typedef short cnt_t;
 typedef ulong_t paddr_t;
 typedef short sysid_t;
 typedef short index_t;
 typedef short lock_t;
 typedef long id_t;
 typedef short o_devt;
 typedef unsigned short o_gid_t;
 typedef unsigned short o_ino_t;
 typedef unsigned short o_mode_t;
 typedef short o_nlink_t;
 typedef short opid_t;

 typedef unsigned short o_uid_t;
 typedef unsigned char uchar_t;
 typedef unsigned char u_char;
 typedef unsigned short u_short;
 typedef unsigned int u_int;
 typedef unsigned long u_long;
 typedef unsigned char unchar;
 typedef unsigned int uint;
 typedef unsigned short ushort;
 typedef unsigned long ulong;
 #endif /* (__STDC__ != 1) || defined(_SYSV_SOURCE) */
 #endif /* TYPES */

Here we see a header that uses three feature tests: _IN_KERNEL, _POSIX_SOURCE, and
_SYSV_SOURCE. Unless the header is being compiled with Standard C, every name in the
header is defined. Most of these are symbols that end in_t and are reserved anyway. Some of
them are symbols that could conflict with our application: physadr, unchar, etc. Using
Standard C, these symbols are hidden until we expose them with a feature-test macro.

Page 24

Template for a POSIX Application

There are many ways to structure programs. Many are legal and will work, but some formats
seem to work better. The programs are easier to write, have fewer bugs, and are easier to
maintain. If you are developing new programs, you have the opportunity to establish a template
that assists in producing code with consistent format. As we said earlier, a well-structured
program is portable among the different programmers who may maintain it. Placing program
elements in a consistent order makes finding things easier. We look at a template for writing
POSIX programs.

Before we look at the template, we should say a few words about breaking a program into
several files (or modules). Breaking a large program into several files has some good points
and some bad points. First, the benefits:

1. Compile times can be reduced because only those modules that change need to be
recompiled. This can make a big difference during debugging. The make utility makes this
very easy.

2. Multiple people can work on the program at one time.

3. Well-designed modules can be reused in future projects, a major advantage.

Now the drawbacks:

1. Compile times are larger when everything has to be recompiled. Link times are also longer.

2. It is more difficult to keep track of a large number of files than a small number of files.

3. There can be more global variables.

As a rule-of-thumb, modules should contain between 300 and 1500 lines of codes. We should
always try to design reusable modules. Even though you might not know how the module can be
reused, you can design it in such a way that reuse is easier. We do not write the module with

explicit knowledge of where it will be reused. Our template tries to make it easier to write and
document modules that can be reused.

Let's look at the template and then discuss each part.

/* Feature test switches */
#define _POSIX_SOURCE 1

/* System headers */

/* Local headers */

/* Macros */

/* File scope variables */

/* External variables */

Page 25

/* External functions */

/* Structures and unions */

/* Signal catching functions */

/* Functions */

/* Main */

You can place this template in a file, for example empty.c, and edit it each time you need to
create a module. This file is also handy if your company uses disclaimers and copyright
statements. They can all be placed into empty.c and used as a starter for new programs.

/* Feature test switches */

This section should define the _POSIX_SOURCE macro to enable the POSIX symbols and
disable all unspecified symbols.

/* System headers */

Each Standard C or POSIX function has one or more headers that must be included to define
the symbols used by that function. You should use an #include statement for each required
header. I try to keep these headers in alphabetic order. It is then easy to check to see if a given
header is included.

If you have an empty.c template file, you can put in an #include statement for every
header. Then, after your module is written, you can delete the headers that are not needed. It is
easier to delete things with a text editor than to add them.

/*Local headers */

Most projects have at least one project header. These define common data structures and
symbols that are used in many files.

You may also have things that are part of your personal programming style. These are macros
and functions that you seem to use all of the time. These may be placed in a personal header
and included here.

/*Macros */

Define all of your macros here. Make sure there is a comment to describe any macros that are
not obvious. It is handy to have all macros defined in one place.

/* File scope variables */

These are variable that are shared by several functions in the same file. Again, use comments to
describe how the variables are used. Keeping the variables in one place near the front of the
file makes them easy to find.

Page 26

/* External variables */

This is the list of variables defined in other modules and used in this module.

/* External functions */

There should be a prototype for each user-written external function that you use. An alternative
is to have a header with a prototype for every function in the project. I prefer to list explicitly
the external functions that each module uses.

/* Structures and unions */

Define all of the structures that are used only in this file. Any structure that is used in multiple
files should be in a local header file. In fact, any structure that may be used in multiple files
should be in a header file. Placing definitions in header files makes it easier to expand and
enhance your program.

/* Signal catching functions */

Place signal catching functions in one place. Signals are an unusual calling mechanism and
often hard to debug. Unless you point it out clearly in your source code, it may not be obvious
that something is a signal catching function.

/* Functions */

I like to define each function before it is used. That way I do not have to declare any of the
functions that are local to this file. I also find it easier to read source files where the functions
are defined before they are used. That is merely a matter of personal preference.

/*Main */

If there is a main() function in this file, I put it last.

Sample Program

Let's look at a complete program that uses many POSIX facilities. At this point, it is not

important that you understand the complete program. We will cover each function in detail in
the following chapters.

One easy way to write a program is to start with a program that does one thing and modify it to
do something else. The program that follows uses many POSIX features and can be used as a
starting point for other programs.

The sample is a simple directory listing program. It lists all of the files in the current directory
along with their size in bytes.

Page 27

I have added a few special features. If the user's terminal is running at 2400 baud or higher, the
program will pause every 24 lines to give the user a chance to read the screen. If the user
interrupts the program with Control-C (or whatever key is assigned for interrupt), the program
prints a partial total and exits.

The output from the program looks like this:

 Directory /usr/don/POSIX/c:
 Special .
 Special ..
 175 addcr.c
 1406 comm.c
 855 dirhack.c
 463 i.c
 529 include.c
 1662 ldirs.c
 2162 lstuser.c
 172 malloc0.c
 247 mallocl.c
 342 malloc2.c
 449 malloc3.c
 179 panic.c
 1758 pathconf.c
 5344 sample.c
 17984 BSD.h
 18180 POSIX.h
 41 panic.h
 Total of 51948 bytes in 19 files

If a Control-C is used to interrupt the program, the output would look like:

 Directory /usr/bin:
 Special .
 Special ..
 118264 acctcom
 117672 admin
 29080 asa
 754 assist
 754 astgen
 148656 awk
 27912 banner
 1206 basename
 49432 bc
 39288 bdiff

 68264 berk_diff
 634 berk_diff3
 53320 bfs
 38520 cal
 1280 calendar
 70920 captoinfo
 34536 cat
 43912 cb
 2114 cflow
 78184 chgrp
 34632 chgtinfo
 29128 chmod
 88424 chown
 Interrupted after 25 files and 1076886 bytes

Page 28

At this point it is a useful exercise to stop reading and write a program that matches this
specification. Do not concern yourself with portability. Just write the program so that it works
on your system. How do you read the directory? How do you handle getting interrupted? How
do you find out the speed of the terminal? What assumptions do you make about the operating
system interface? Even if you don't write the program, stop and think about how you might go
about it.

Welcome back. Let's look at how POSIX solves these problems. Basically, what POSIX
defines is a standard interface between an application and the services it depends on from the
operating system. The POSIX interfaces have several attributes that make them portable:

1. The interfaces are symbolic. They use symbols and the C compiler to map those symbols
onto a given system. For example, the file mode word in BSD 4.2 is an unsigned
short; in AT&T System V.3 it is an int. POSIX defines a new type, mode_t. The
<sys/types.h> header defines mode_t for each specific system.

2. POSIX defines functions to mask system differences. The readdir() function is used to
read a directory. The information is returned in a struct dirent where the actual
format of the directory can be hidden from the application. Compare that to System V
where programs "know" that filenames are 14 characters long and are preceded by a
two-byte i-node number.

3. Multi-purpose functions like ioctl() have been replaced by a large number of
special-purpose functions. These functions are easier to describe and easier to test.

4. POSIX also provides methods to test the interfaces and make sure that they work as
described. This does not show up as anything you see while programming. However, it
does help assure that the people who wrote the POSIX library got it right. That increases
the chance that your program will be portable.

Now, what services will this sample program require from the system?

• We need to interact with the user's terminal. We will use the Standard C library described
in Chapter 3, Standard File and Terminal I/O, to read and write formatted data. We will
use tcgetattr() and cfgetospeed() to determine the terminal speed. These are
described in Chapter 8, Terminal I/O.

• We will need to read directories and get information about files. The opendir(),
readdir(), and stat() functions will do this for us. They are described in detail in
Chapter 4, Files and Directories.

• We will use POSIX signals and the sigaction() function described in Chapter 6,
Working with Processes, to intercept the Control-C.

Page 29

• We also make good use of the Standard C library for much of our work. For example, the
div() function is used to test to see if we have printed a multiple of 24 lines. These
functions are not covered in the tutorial part of this book. However, they are all described
in the Library Functions section in the reference part.

Using the interfaces defined by standards helps us achieve portability. What other portability
concerns might we have? For this program, the maximum length of filenames and pathnames is
the only remaining concern. I have written the program so that it will work correctly* even if
the paths or filenames are huge.

As a last step before looking at the code, we should consider how we are going to structure the
program. What are the major blocks? Figure 2-1 shows a flow chart that will do everything we
need.

This will become the main() function. Now, some of those blocks are a bit complex. They
will become functions. The block that says "Print the directory entry" will become the
print_dir_entry() function. The flow for that function is shown in Figure 2-2.

The other routines are not very complex. The cwdname() routine returns a pointer to the
name of the current working directory. The baud() routine returns the terminal output speed
in baud. Both of these routines are fully described in the example.

The intr_key() routine is a signal catching function; it is called when the user types the
interrupt key (usually Control-C). The intr_key() function is called by the system as if a
function call were magically inserted between two statements. Because we don't know exactly
what our program (or the library) might have been doing when the intr_key() function is
called, the function is careful not to disturb any "work-inprogress." The only thing that
intr_key() does is set the variable intr_flag to TRUE.

Here is the complete program. The program is divided into two files: dsksub.c and
dskuse.c. The first file contains the major subroutines for this program. These functions are
written with the hope that they will be useful in future projects. The second file contains the
main function and subroutines that are not reusable.

If you wrote your own version of this program, compare what you wrote to this sample. What
system-specific things did you do?

*The program might truncate the filename if it is longer than the terminal width.

Page 30

Figure 2-1. Flowchart for main()

Here is the first file, dsksub.c:

EXAMPLE 2-4. dsksub.c

 1 /*
 2 * Functions for program to print file names and sizes
 3 */
 4 /* Feature test switches */
 5 #define _POSIX_SOURCE 1
 6
 7 /* System Headers */
 8 #include <assert.h>
 9 #include <dirent.h>

Page 31

Figure 2-2. Flowchart for print_dir_entry()

 10 #include <errno.h>
 11 #include <stdio.h>
 12 #include <stdlib.h>
 13 #include <sys/stat.h>
 14 #include <sys/types.h>
 15 #include <termios.h>
 16 #include <unistd.h>
 17
 18 /* Local Headers */
 19 #include "panic.h" /* Defines the PANIC macro.
 20 * PANIC prints an error
 21 * message when a library
 22 * function fails
 23 */
 24
 25 /* Macros */
 26 #define TRUE 1
 27 #define FALSE 0
 28 #define SIZE 256 /* Arbitrary size */

Page 32

 29 /* File scope variables */
 30 long nbytes = 0; /* Number of bytes */
 31 long nfiles = 0; /* Number of files */

 32
 33 /* External Variables */
 34 /* NONE */
 35
 36 /* External Functions */
 37 /* NONE */
 38
 39 /* Structures and Unions */
 40 /* NONE */
 41
 42 /* Signal Catching Functions */
 43 /* NONE */
 44
 45
 46
 47
 48
 49
 50 /*
 51 * Function to process one directory entry
 52 */
 53 void print_dir_entry(struct dirent *p)
 54 {
 55 /* Prints the file size in bytes followed by the
 56 * file name. If the stat() function fails,
 57 * print question marks. For special files, which
 58 * may not have a valid size, print special.
 59 */
 60 struct stat statbuf;
 61 if(stat(p->d_name,&statbuf) != 0)
 62 (void)printf("??????? ");
 63 else
 64 {
 65 if (S_ISREG(statbuf.st_mode))
 66 {
 67 (void)printf("%71d ",(long)statbuf.st_size);
 68 nbytes += statbuf.st_size;
 69 }
 70 else
 71 (void)printf("Special ");
 72 }
 73 (void)printf("%s\n",p->d_name);
 74 nfiles++;
 75 return;
 76 }
 77 /*
 78 * Function to return a pointer to the name
 79 * of the current working directory
 80 */
 81 char *cwdname(void)
 82 {
 83 int size = SIZE;
 84 char *ptr;
 85 while(TRUE)
 86 {
 87 ptr = (char *)malloc(size);

Page 33

 88 if (ptr == NULL) PANIC; /* Give up if we run out
 89 * of memory
 90 */
 91 if (getcwd(ptr,size-1) != NULL) return(ptr);
 92 if (errno != ERANGE) PANIC; /* Any error other than a
 93 * path name too long for the
 94 * buffer is bad news.
 95 */
 96 free(ptr); /* Return the storage */
 97 size += SIZE; /* Try again with a bigger
buffer */
 98 }
 99 }
 100
 101
 102 /*
 103 * Function to return speed of terminal in baud
 104 */
 105 long baud(void)
 106 {
 107 struct termios t;
 108 speed_t baud_code;
 109 if(tcgetattr(fileno(stdout),&t) == -1)
 110 {
 111 /* If standard output is not a terminal
 112 * return 0. Any other error is bad news
 113 */
 114 if (errno == ENOTTY) return(0);
 115 PANIC;
 116 }
 117 baud_code = cfgetospeed(&t);
 118
 119 /*
 120 * We must decode the baud rate by hand because the Bxxxx
 121 * symbols might not be in order.
 122 */
 123 switch(baud_code)
 124 {
 125 case BO:
 126 return(0);
 127 case B50:
 128 return(50);
 129 case B75:
 130 return(75);
 131 case B110:
 132 return(110);
 133 case B134:
 134 return(134);
 135 case B150:
 136 return(150);
 137 case B200:
 138 return(200);
 139 case B300:
 140 return(300);
 141 case B600:
 142 return(600);

 143 case B1200:
 144 return(1200);
 145 case B1800:
 146 return(1800);
 147 case B2400:
 148 return(2400);

Page 34

 149 case B4800:
 150 return(4800);
 151 case B9600:
 152 return(9600);
 153 case B19200:
 154 return(19200);
 155 case B38400:
 156 return(38400);
 157 default:
 158 (void)fprintf(stderr,
 159 "WARNING: Unknown terminal speed\n");
 160 return(0);
 161 }
 162 }

Notes for dsksub:

Line Note

8 These headers are required by the various library functions. Each library function has one or
more required header. The Functions Section lists the headers for each function.

19 The PANIC macro is defined in the sample program at the end of Chapter 3. It is used
throughout the book.

53 The dirent structure has a member called d_name which is the name of a file in the
directory.

62 The (void) before the call to print() tells the reader (and programs like lint) that we
know that printf() returns a value and we are explicitly ignoring it.

62 If the stat() function fails for some reason, question marks are printed instead of the file size.

65 This tests for a regular file. On most UNIX systems, the stat() function will return a valid
size for directories. The POSIX standard does not guarantee that this size is valid for directories
so this program will print Special and ignore the size.

Also we are using the POSIX defined macro S_ISREG instead of looking at the system-defined
bit pattern in st_mode.

67 The format of %7d and the cast of (long) cause the file size to be printed correctly if
st_size is a long or a short.

st_size is a long or a short.

81 This function gets around a problem with the POSIX standard. There is no way for an
application to determine the maximum path length it might encounter. The string returned by
getcwd() may be huge. This function allocates space for the name of the current working
directory in 256 byte increments. In almost all cases 256 bytes will be enough and the function
will return after only one call to getcwd(). In rare cases where more space is required, the
program will still work correctly. It is important to write programs that work in the rare cases
as well as common cases.

Page 35

If we were not trying to write portable code, we could know the longest path that a given system
might return. This is another case where we have to go the extra mile for portability.

103 This is a case where portability has a cost, at least in development effort. For any specific
system, the documentation would tell you how to determine the line speed. The test for a line
over 2400 baud would be rather simple using a system specific ioctl(). Using
tcgetattr() and making no assumptions about the values of the Bxxxx symbols makes this
routine more complex.

It is possible to determine if the terminal is over 2400 baud with slightly less code than I use
here to determine the actual baud rate. This routine seems more useful and should be no slower
than a less general case.

107 This is a structure that can hold information about a terminal.

109 Get the terminal information for the file associated with stdout and store it into structure

117 The cfgetospeed() function extracts a code for the output speed of the terminal from
structure t.

158 Normal output goes to stdout, errors and warnings go to stderr.

Here is the main function in dskuse.c. It calls the routines that we defined above.

EXAMPLE 2-5. dskuse.c

 1 /*
 2 * Main function
 3 */
 4
 5 /* Feature test switches */
 6 #define _POSIX_SOURCE 1
 7
 8 /* System Headers */
 9 #include <dirent.h>
 10 #include <errno.h>
 11 #include <signal.h>
 12 #include <stdio.h>
 13 #include <stdlib.h>

 14 #include <unistd.h>
 15
 16 /* Local Headers */
 17 #include "panic.h" /* Defines the PANIC macro */
 18
 19 /* Macros */
 20 #define TRUE 1
 21 #define FALSE 0
 22 #define SIZE 256
 23 /* File scope variables */
 24 volatile sig_atomic_t intr_flag = FALSE;
 25 /* Later, set to TRUE if user
 26 * types Control-C
 27 */
 28

Page 36

 29 /* External variables */
 30 extern long nbytes; /* Number of bytes */
 31 extern long nfiles; /* Number of files */
 32
 33 /* External functions */
 34 void print_dir_entry(struct dirent *p);
 35 char *cwdname(void); /* Get working directory name */
 36 long baud(void); /* Get terminal baud rate */
 37
 38
 39 /*
 40 * Signal catching functions
 41 */
 42
 43 /* Interrupt key */
 44 void intr_key(int signo)
 45 {
 46
 47 intr_flag = TRUE; /* Set flag for main loop */
 48 return;
 49 }
 50
 51
 52
 53 /*
 54 * Main function
 55 */
 56
 57 int main(int argc, char *argv[])
 58 {
 59 int fast = FALSE; /* Set to TRUE if terminal is
 60 * 2400 baud or faster
 61 */
 62 struct sigaction sa; /* Used to establish
 63 * signal handler for
 64 * interrupt key
 65 */
 66 DIR *dirptr; /* for readdir() */
 67 struct dirent *entry; /* Returned by readdir() */

 68 char *dirname; /* Current working directory */
 69 char junk[SIZE]; /* Used to read <NL>. Extra size
 70 * allows user to type junk.
 71 */
 72 dirname = cwdname();
 73 (void)printf("\nDirectory %s:\n",dirname);
 74 dirptr = opendir(dirname);
 75 if (dirptr == NULL)
 76 {
 77 (void)fprintf(stderr,"Can not read directory\n");
 78 perror("opendir error");
 79 exit(EXIT_FAILURE);
 80 }
 81 free(dirname); /* cwdname() allocated space */
 82 if (baud() >= 2400) fast = TRUE;
 83 /* Cause interrupt key to call intr_key() */
 84 sa.sa_handler = intr_key;
 85 if (sigemptyset(&sa.sa_mask) != 0) PANIC;
 86 sa.sa_flags = 0;
 87 if (sigaction(SIGINT,&sa,NULL) != 0) PANIC;
 88
 89

Page 37

 90 /*
 91 * Here is the main loop
 92 */
 93 while((entry = readdir(dirptr)) != NULL)
 94 {
 95 print_dir_entry(entry);
 96 if (intr_flag)
 97 {
 98 (void)printf("\nInterrupted after %d files"
 99 " and %d bytes\n",nfiles,nbytes);
100 exit(EXITSUCCESS);
101 }
102 if(fast && (div(nfiles,24).rem == 0))
103 {
104 /* Terminal is over 2400 baud and we printed
105 * a multiple of 24 lines. Allow the user to
106 * read the screen
107 */
108 (void)fprintf(stderr,"Type <NL> to continue");
109 (void)fgets(junk,SIZE,stdin);
110 }
111 }
112 /* End of directory */
113 (void)printf("Total of %d bytes in %d files\n",
114 nbytes, nfiles);
115 exit(EXIT_SUCCESS);
116 }

Notes for main:

Line Note

Line Note

24 The keyword volatile tells the compiler that this variable may change in ways} that can not
be predicted by the rules of C. In this case, intr_flag is changed by a signal catching
function.

The type sig_atomic_t is defined by Standard C for a signal catching function. The
variable intr_flag will all change at one time.

44 The intr_key function merely sets intr_flag to be TRUE. If it attempted to print the
message and exit directly, it would be subject to many race conditions. Also, the printf()
family of functions is not usable in a signal catching function.

It is best to do as little as possible in signal catching functions. Your programs will be much
easier to debug.

81 In this program there would be no problems caused by not calling free(). In general, it is
good practice to return storage allocated by malloc() as soon as it is no longer needed.

83 We are using the POSIX signal routines instead of system-specific signals. The POSIX signal
mechanism solves a number of problems with the AT&T System V signal()function. The
advantages include:

• Support for greater than 32 signals.

• Freedom from many race conditions.

Page 38

• Enhanced portability. The format of sa_mask can change wildly from system to system
but functions like sigemptyset() allow this program to keep working without change.

87 The third argument to sigaction() is a pointer to a place to store the previous action for
this signal. In this case, I don't care.

102 The div() function returns a structure with 2 members. The notation div().rem selects the
remainder element of that structure.

This tests to see if the remainder of nfiles divided by 24 is equal to zero.

109 This just reads the new line to cause the program to continue. It would be possible for junk to be
only 2 bytes long (one for the new line and one for the null). Making it longer causes the
program to eat anything that may have been types before the new line. If 400 spaces were typed
before the new line, the program would not pause on the next call to fgets(). This is more of
a user error than a program bug.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. What information is in the POSIX conformance document? Why would you read one?

2. Why is it better to port an application to POSIX instead of to a specific system?

3. What is the difference between exit(0) and exit(EXITSUCCESS)? When would it
make a difference?

4. What symbol must you define to tell the system that you want to use the POSIX symbols?

5. Can you include header files multiple times? Why would you want to?

6. What does it mean if the symbol __STDC__ has a value other than 1?

7. What is an advantage of breaking a program into several files? What is a disadvantage?

8. Why should you write (void)printf("Hello, world\n"); instead of
printf("Hello, world\n") ;? What does the (void) do?

9. What is the maximum buffer size required for getcwd()? Is there a symbol you can use
for this?

10. What types of messages should go to stderr?

11. What is the value of div(17,3).rem?

Page 39

Chapter 3
Standard File and Terminal I/O

The standard I/O library is one of the first things a programmer learns about. In this
chapter, we assume that you are familiar with printf(),scanf(), and friends. We will
concentrate on the portability aspects of these functions and consider how common
practices may have portability problems. We will also look at functions and features that
have been added by Standard C and POSIX.

Libraries and System Calls

Since we are concerned with source portability, it does not make much difference what goes on
''under the covers'' when we call a library function such as printf(). On the other hand, it is
useful to have some understanding of what the system is doing.

Some library functions can do all of their work without ever calling the operating system. In
almost all systems, the math functions like sin() and exp() fall into this category. Many
functions do call the operating system. A single library function might make several operating
system calls. In other cases, you may call a library function many times before it makes a
system call. There are also library functions that map directly onto a system call.

The point is that you, as an author of portable software, should not care how the library does its
work. On most systems, the malloc() function uses a much more primitive system service

and does most of the work in the library, while the open() function maps directly to a system
service. Your programs should not depend on this division of labor.

Standard Files

Every program starts out with three open files with which you are probably familiar. The files
are:

stdout
is the standard output file. stdout is normally write-only.* It is most often the user's terminal.
Many simple programs can be written that send all of their output to stdout.

*This statement is not strictly true. It may be possible to read stdout and stderr or write to
stdin. For example, the more program sends its output to stdout, but uses stderr for both the
--MORE-- prompt and reading commands. Most programs do not need to do this sort of thing.

Page 40

stdin
is the standard input file. stdin is normally read-only. It is also often the user's terminal.
Many UNIX commands take all of their input from stdin and send their output to stdout.
This is useful for pipelines. The UNIX text processing programs, for example, use standard
input and standard output to allow pipelines like:

 pic file | tbl | eqn | troff | lp

stderr
is a file for messages and is normally write-only. In some cases, it is important to have error
messages go to someplace different from stdout.

Each of the variables stdin, stdout, and stderr points to an object of type FILE. The
information in this object is for use by the system. A portable application should never directly
reference the members of the structures pointed to by these variables.

POSIX does not make any statements about the members of the FILE structure. Any program
that makes assumptions about the internals of standard I/O is not portable.

Formatted Output

One of the most portable programs you can write is the famous example:

 printf("hello, world\n");

Why? Because all it does is write to standard output, and printf() is part of the Standard C
library.*

You still need to be careful using the printf() function. There are portability pitfalls
related to the various conversion directives. The list of conversion directives defined by
Standard C is:

Directive Meaning

Directive Meaning

%c Convert the int argument to unsigned char and write the resulting byte in the output
file.

%d Convert the int argument to a decimal string of the form [-]ddddd.

%e Convert the double argument to scientific notation in the style [-]d.ddd edd.

%E Convert the double argument to scientific notation in the style [-]d.ddd Edd.

%f Convert the double argument to a string in the style [-]ddd.dddd.

%g or
%G

Same as %f for small numbers and %e (or %E) for large numbers.

%i Same as %d.

*There is one portability problem. What happens if the person using the program understands only
French or Japanese? Chapter 10 will cover that issue in detail.

Page 41

Directive Meaning

% n The argument is a pointer to an integer into which is written the number of characters
output so far. Nothing is written to the output stream by the %n directive.

%o Convert the unsigned int argument to octal.

%p Convert the argument (assumed to be a pointer) to characters.

% s Write the argument (assumed to be a pointer to a null-terminated character string) to the
output stream.

%u Convert the unsigned int argument to decimal.

%x or
%x

Convert the unsigned int argument to hex. %x uses the letters abcdef while %X uses
the letters ABCDEF.

% Outputs a %.

You will notice that most of these directives are found even on non-conforming systems. The
%c,%d,%o,%s,%u, and %x options work almost everywhere. The %f,%g, and %e
directives work on all systems that support floating point. The %E,%F, and %G, directives are
derived from System V and are not supported by BSD. The %i,%n, and %p directives were
added by Standard C and are not found on older systems.

Even on systems that conform to the C Standard, some of the directives produce different
results depending on whether an int is 16- or 32-bits.

The full details of the format conversion specifiers are described in the Functions section of the
Reference Manual (see printf()).

Examples

Here are some examples of various formats. The first column is the format specification, the
second column is the output. (The single quotation marks (') are included in the output column
to make it clear where spaces are produced: they are not actually generated by the printf()
function.)

For a value of zero:

 %f '0.000000'
 %e '0.000000e-001'
 %E '0.000000E-001'
 %g '0'
 %-20e '0.000000e-001
 %025.20e '0.00000000000000000000e-001'

Page 42

For a value of Pi:

 %f '3.141593'
 %e '3.141593e+000'
 %-15.2f '3.14
 %010.1f '00000003.1'
 %#010.1f '00000003.1'
 %+10g ' +3.141593'
 %+10e '+3.141593e+000'
 %-20e '3.141593e+000
 %025e '0000000000003.141593e+000'
 %025.20e '3.14159265358979300000e+000'

For a value of ULONG_MAX on a machine where int is 16 bits:

 %d '-1'
 %o '177777'
 %u '65535'
 %x 'ffff'
 %X 'FFFF'
 %lo '37777777777'
 %lu '4294967295'
 %1X 'FFFFFFFF'
 %10d ' -1'
 %10X ' FFFF'
 %#x 'Oxffff'
 %3d ' -1'
 %3x 'ffff'
 %10hX ' FFFF'

For a value of ULONG_MAX on a machine where int is 32 bits:

 %d '-1'
 %o '37777777777'
 %u '4294967295'

 %x 'ffffffff'
 %X 'FFFFFFFF'

Pitfalls

When using printf(), be aware of the following:

• The exact information printed is not tightly specified. Various implementations may
produce slightly different results. For example, the %e format must have at least two digits
of exponent, but may contain more.

• The %d,%i,%o,%u,%x, and %X specifiers assume that the value they are converting has
the size of an int. This is machine-specific. If the argument is short, use
%hd,%hi,%ho,%hx, or %hX; if the argument is long, use %ld,%li,%lo,%lx, or %X.

• The implementation is free to do something reasonable for cases such as minus zero,
not-a-number, and infinity. The results will vary from system to system.

• On some systems, printf() is limited to producing 509 characters on a single call. On
other systems, the limit is much larger. In order to avoid hitting the limit, break up large
blocks of output into several calls to printf().

Page 43

• As far as the compiler is concerned, printf is an ordinary function with a variable
number of parameters of indeterminate type. Most compilers will not flag errors such as:

 double d;
 printf("This answer is %s",d);

The run-time printf function may have no way of knowing it was given a double instead of
the char* expected by the %s directive.

Some UNIX systems support a utility called printfck, which will check for exactly this type
of error. If your development system supports the utility, consult the manual entry for
printfck.

• Give printf only format strings that are safe to print. The correct way to print out a data
string is:

 printf("%s",string);

and not:

 printf(string);

which would fail if string contained a %.*

The vfprintf(), vprintf(), and vsprintf() Functions

Suppose you wanted to write a function that worked just like printf() except that it wrote
to two files: How would you do it? This is an important problem. For example, if you want to
write a message both to the user's terminal and to a log file, what do you do?

Before Standard C, there were several solutions that have various problems. None of the
solutions is very good. Some of the possibilities are:

1. Avoid the problem. Use sprintf() to format a string and pass the string to the function.

2. Pick some maximum number of parameters and write the function like this:

 errmsg(fmt, al, a2, a3, a4, a5)
 char *fmt;
 int al, a2, a3, a4, a5;
 }
 printf(fmt,a1,a2,a3,a4,a5);
 fprintf (log,fmt, al, a2, a3, a4, a5);
 return;
 }

If errmsg() is called with fewer than five arguments, this will work and is fairly
portable. It will not work if the caller needs to write more than five values.

* The command "!a%888888f will crash many versions of csh when it tries to print out an error
message.

Page 44

We also have a problem with some modem compilers. They will optimize the generated
code for the number of parameters expected. If we write:

 errmsg("hello, world\n");

it might not work because a1 to a5 are missing.

3. We can look at the FILE structure and copy the data to another file. This is not portable.
As an example of non-portable programming, look at this program fragment that runs under
4.2BSD on a VAX:

 #include <stdio.h>
 . . .
 FILE fake;
 char buffer[132];
 . . .
 fake.flag = _IOWRT + _IOSTRG;
 fake.ptr = buffer;
 fake.cnt = 32767;
 _doprnt(format, & args,&fake);

This code knows the internals of the printf() function. It creates a struct FILE and
fills it in. It also calls the documented, but highly non-portable, BSD _doprnt()
function.

Standard C solves this problem with three new functions: the functions vfprintf(),
vprintf(), and vsprintf() are identical to fprintf(), printf(), and
sprintf() except that they use a pointer to an argument list. This is best seen with an
example:

 #include <stdarg.h>

 #include <stdio.h>

 /*
 * Write a message to stderr and to a log file
 */
 void errmsg(char *fmt, ...)
 {
 va_list ap;

 va_start(ap, fmt); /* Set ap to point to
 * the argument list.
 */
 vfprintf(stderr, fmt, ap); /* Write the message to
 * stderr.
 */
 va_end(ap); /* Done */

 /* Now, do the same thing except write the message
 * to logfile.
 */
 va_start(ap, fmt);
 vfprintf(logfile, fmt, ap);
 va_end(ap);

 return; /* All done. */
 }

Page 45

This code declares a function called errmsg() with a variable number of arguments. The
vfprintf() function works just like printf() except it writes its data to both stderr
and logfile instead of stdout. The call to va_start() sets ap to point to all of the
arguments that follow fmt. The vfprintf() function then takes fmt and the variable
number of arguments that follow it and prints them.

This gives you a portable solution to a common problem. It lets you write functions that are
called the same way printf() is called but do something extra.

Character Output Functions

In addition to the powerful fprintf() function, there are five lighter-duty character output
functions.

The fputs() and puts() Functions

 fputs(str,stream);

does exactly the same thing as:

 fprintf(stream,"%s",str);

That is, writes the string pointed to by the pointer str into the output stream.

The function puts(str) writes str followed by a newline to the standard output stream
and is the same as fprintf(stdout, "%s\n", str).

These functions are extremely portable.

The fputc(), putc(), and putchar() Functions

The fputc() function writes a single character to a stream. The putchar() function
writes a character to the standard output file. Thus, putchar(ch) is the same as
fputc(ch,stdout).

The function putc() is the same as fputc(). In some systems, putc() is a macro while
fputc() is a real function. The macro may evaluate its arguments several times. This means
that putc(i,file++) may not work as desired.

If you avoid cases like putc(i,file++), these functions are also extremely portable.

Reading Lines of Input

Here fscanf() reads input from stream and analyzes it according to format using
subsequent arguments as pointers to objects to receive the converted input. The fscanf()
function is very similar to fprintf(), however, not nearly as widely used.

Page 46

Like printf(), some directives are more portable than others. Here is the list defined by
Standard C:

Directive Meaning

%c Reads a byte—argument should be char *.

%d Reads a sequence of decimal digits—argument should be int *.

%e Reads a floating point number—argument should be float *.

%f Same as %e.

%g Same as %e.

%i Reads a sequence of decimal digits—argument should be int *.

%n Store the number of characters read so far into the argument. The argument should be int
*. This does not read anything from the input stream.

%o Reads a sequence of octal digits—argument should be unsigned int *.

%p Reads a pointer—argument should be void *.

%s Reads a string of non-white-space characters—argument should be a char *.

%u Reads a sequence of decimal digits—argument should be unsigned int *.

%x Reads a sequence of hex digits—argument should be unsigned int *.

[Reads a set of expected characters—argument should be char *.

Reads a set of expected characters—argument should be char *.

% Matches a single %.

The [,%c,%d,%o,%s, and %x, directives work everywhere. The %e and %f work on all
systems that support floating point. The %g directive is not supported on BSD.

The %i,%n and %p directives are new to Standard C. They will work on all systems
supporting the standard, but not on many older systems.

The full details for format directives are given in the Functions Section under scanf().

Page 47

Pitfalls

There are a few things to be careful about when you use fscanf(). The important ones are:

• A size should always be given on the %s specifier. If there is no size specified, bad input
could overflow available storage and destroy data. The size should include the NULL,
which is stored automatically.*

• The popular pattern of "[A-Za-z]" will match a string of letters on many systems but is
not provided on all systems. Even on systems where it is supported, it may fail on strings
like "ÅLBË".

Additional Pitfall

• Remember that scanf() stores values into locations specified by pointers. To place a
value into the variable var, use &var in the scanf() call. Forgetting the & is a common
mistake that can be very difficult to find.

Other Character Input Functions

There are a few input functions which are less complex than fscanf(). In many cases, these
functions give better control than fscanf().

The fgetc(), getc() and getchar() Functions

The call fgetc(stream) returns the next character from stream. If stream is at
end-of-file, EOF is returned.

The getc() function is the same as fgetc() except it may be implemented as a macro.

The getchar() function returns the next character from stdin. It requires no arguments.

These functions are very portable. There is only one pitfall: the data must be read into a
variable of type int and not of type char. EOF is not a char value.

* Unchecked fscanf() and gets() calls have been exploited to break computer security. For
details read: D. Seeley, "A Tour of the Worm," Proc. of the 1989 Winter USENIX Technical
Conference, pp. 287-304 (January 1989).

Page 48

The fgets() Function

The call:

 char *fgets(char *s, int n, FILE *stream);

reads up to n-1 characters from stream into the array pointed to by s. A null character is
written immediately after the last byte. Reading stops when a newline or end-of-file is
encountered. If reading stops because a newline character is read, the newline is stored in the
array.

This call is very portable.

The gets() Function

The call:

 char *gets(char *s);

reads characters from stdin into the array pointed to by s.

Unlike fgets(), the gets() function does no limit checking. If the input line is too long for
the buffer pointed to by s, the results may be disastrous and are certainly not portable. For this
reason, do not use gets(). The scanf() function may be used instead, as in:

 char inbuf[82];
 int status;

 status = scanf("%82s",inbuf);
 /* Check status for EOF */
 /* If (strlen(inbuf) == 81) the input line may
 * have been truncated.
 */

The POSIX.2 standard (Shell and Utilities) allows for lines of 2048 bytes. You should be aware
that such long lines may exist.

The ungetc() Function

The call:

 int ungetc(int c, FILE *stream);

pushes one character back onto stream. The pushed back characters will be returned by
subsequent reads on that stream in the reverse order of their pushing.

Unfortunately, the maximum number of characters we can push back portably is one.

The ungetc() function returns c on success and EOF on failure.

Page 49

Opening and Closing Files

We have been looking at using the files that the system already opened for us. Almost all
interesting programs need to use other files. The fopen() function is used to connect a file
with a stream:

 FILE *fopen(const char *path, const char *mode);

The argument path points to the file we want to open. For example,
"/usr/don/book/ch3" is the name of the file with this text in it. The next several chapters
discuss portable pathnames and files in greater detail.

The argument mode points to a string beginning with one of the following:

r Open file for reading.

w Create new file for writing. If a file with this name already exists, its contents are lost.

a Append to existing file or create file if it does not exist.

r+ Open file for update (reading and writing). All existing data is preserved.

w+ Open new file for update (reading and writing). If the file already exists, it is truncated to
zero length.

a+ Open or create text file for update. If the file already exists, the first write will add new data
after the current end-of-file.

Some systems make a distinction between text files and binary files. While there is no such
distinction in POSIX, a 'b' may be appended to the mode string to indicate binary. The b
does not do anything but may be useful for compatibility with non-POSIX systems. If you are
creating a binary file, include the b to make your program more portable. Most systems that do
not support the b option will just ignore it.

Upon success, the fopen() function returns a pointer to a file descriptor. This pointer is used
only as an argument to other functions. Do not attempt to manipulate the object it points at. If the
open fails, fopen() returns a null pointer.

When you are finished with a file, you should close it. The call fclose(stream) will
complete any pending processing, release system resources, and end access to the file. If there
are no errors, fclose() returns zero. It returns EOF if any errors are detected.

If you fail to close a file, it will be closed automatically when your program completes. There
are four reasons for closing the file explicitly:

1. If there is other processing to be done, you will free up system resources and are less likely
to hit some implementation limit.

2. Buffers are written out in a timely fashion.

Page 50

3. Closing the file yourself lets you check for errors. It is good practice to report any errors
that take place.

4. If your program ends with a call to _exit(), buffers may not be written out.

Direct Input/Output functions

The fwrite() and fread() Functions

Often, you do not need to format your data for human consumption; you need only to save some
information in a file and get it back later. The fwrite() function lets you dump data
structures to a file, and the fread() function lets you get them back. The definition of
fwrite() is:

 size_t fwrite(const void *ptr,
 size_t size,
 size_t nmemb,
 FILE *stream);

This is not as complex as it looks. The fwrite() function writes, from the array pointed to
by ptr, up to nmemb elements whose size is specified by size, to the stream pointed to by
stream. It returns the number of elements written. This will equal nmemb unless a write
error occurs.

For example:

 fwrite(tbl,sizeof(int),(size_t)100,outfile);

will write 100 int elements from the array tbl into outfile.

To get the data back, we use the fread() function. The arguments to fread() are exactly
the same as fwrite(). The only difference is the direction of transfer.

Programs that use fwrite() and fread() can be completely portable. The data that is
written will not always be portable.

In some systems, fread() and fwrite() are very fast. On others, these functions result in
repeated calls to getc() and putc(); in this case printf() is faster that fwrite(). In
general, use fread()/fwrite() for binary files and printf(), fputs(), and
fgets() for text. This will give you maximum performance and program portability.

File Positioning Functions

So far, we have done all our reading and writing in order. Often, you need to select the place
where you are going to read or write. There are several functions that let you select your
position.

Page 51

The fgetpos() and fsetpos() Functions

The call:

 int fgetpos(FILE *stream, fpos_t *pos);

stores the current file position of stream in the variable pointed to by pos. The value stored
is used only by fsetpos(). Your program should respect its privacy.

The fsetpos() function has the same arguments as fgetpos() and is used to restore the
file position. This function was introduced by Standard C and is not available on older
systems.

The ftell() and fseek() Function

The function ftell(stream) returns a long int which is the number of characters from
the beginning of the file. In case of error, it returns -1L.

 int fseek(FILE *stream, long off, int whence);

The previous example sets the position of the file stream. The new position is determined by
adding offset to the position specified by whence. The values for whence are:

SEEK_SET Indicates the beginning of the file. This can be used with the value returned by
ftell() to restore a remembered position.

SEEK_END Indicates the end of the file.

SEEK_CUR Indicates the current position.

The fseek() function returns nonzero if a request cannot be satisfied.

At this point you may be wondering why we have both the fgetpos/fsetpos pair and the
ftell/fseek pair. Can't we do everything we need with ftell/fseek?

The answer is yes; however, fgetpos/fsetpos have two potential advantages:

1. Possibility of higher performance on some systems.

2. Ability to support files that have more than LONG_MAX bytes.

If there is no need to do anything other than remember a saved file position,
fgetpos/fsetpos are a good bet.

The rewind() Function

The function rewind(stream) is the same as:

 (void)fseek(stream, 0L, SEEK_SET);

except the error indication for the stream is cleared and no errors are reported.

Page 52

Managing Buffers

If each call to fgetc() were required to read a byte off the disk, programs would run very
slowly. Disks are mechanical devices and may take 100,000 times longer to access than main
memory. To avoid this penalty, data is transferred from disk to main memory in large hunks.
These hunks of data are stored in areas of memory called buffers and functions like fgetc()
and fscanf() get their data from the buffer, accessing the disk only when the buffer is empty.

Functions like fputc() and fprintf() perform an analogous operation on output.

While the system's defaults for buffering usually work well, the setvbuf() function is
provided to give the programmer some control over buffering.

The call to setvbuf() must be made after the file is opened and before any other operation
is performed. The definition of setvbuf() is:

 int setvbuf(FILE *stream, char *buf, int mode,
 sizet size);

stream Identifies the I/O stream.

buf Is a pointer to an array to be used as a buffer. If buf is the null pointer, setvbuf() will
allocate a buffer.

mode Must be one of the following macros:

_IOFBF Causes input/output to be fully buffered. Data will be transmitted only
when a buffer is full.

_IOLBF Causes input/output to be line-buffered. Data will be transferred when a
newline character is encountered. This is useful for I/O to terminals.

_IONBF Causes input/output to be unbuffered. This is useful for terminal and other
communications devices where we want something to happen on character
sequences that are shorter than a full line.

size Is the size of the buffer.

The setvbuf() function advises the system of your program's needs, but does not obligate
the system.

The function setbuf(FILE *stream, char *buf) is equivalent to
(void)setvbuf(stream,buf,_IOFBF,BUFSIZ). The setbuf() call is new with
Standard C. Of course, the most portable thing to do is to stick to the default buffering provided
by the system.

The function fflush(FILE *stream) causes any buffered output data for stream to be
written. The call fflush(NULL) causes this action for all open streams.

Page 53

Sample Program

We will now write a complete example. While the example we have chosen might seem a bit
simple-minded, the idea is to show off some of the input/output functions and the logistics of
building an application without getting bogged down in complex computation. Here is a brief
specification for our program:

3. Accept a filename for an output file from the user.

4. Accept two integers from the user: a lower limit and an upper limit.

5. For each integer between the lower limit and the upper limit, write the integer and its
square root to the output file. The output should be nicely formatted text.

The first design question is: How am I going to split the program into reusable modules? One
model that many programs can follow is three modules: one module accepts the input, another
that does the work, and a third that creates the output.

The basic design becomes:

1. A module to ask the user for a filename as well as a starting and an ending value. These
tasks can be performed in main().

2. A module, compute_square_root,* to calculate the square roots.

3. A module, format_output, to take the square roots and print them.

Now that we know what the program should do, we can consider how to make portability an
element of its basic design. We begin by listing those tasks that require our program to depend
upon services provided by the system libraries. Here's a sequential list of those tasks:**

1. Prompt the user for a filename.

2. Accept the filename from the user.

* I have a strong preference for descriptive function names. I find the name
compute_square_root much nicer than say csqrt for instance. On some systems, longer
names may produce a portability problem. The linker may support only six-character external names.
Instead of making my code more obscure for all machines in order to support a brain-damaged linker,
I use #define to work around the problem. In this case, I need an include file which contains:

 #define compute_square_root CS01
 #define format_output FO01

to map my names into something short and portable. This makes debugging harder, so I do my
development on a more friendly system.

** Some of the services are provided by the Standard C library, some by the math library, some by the
POSIX library, and some by the kernel of the operating system. From a programmer's point of view,
there is no need to make a distinction among the various providers of a service. Application modules
are written by the programmer and everything else is provided by the system. The C and POSIX
standards call the part not provided by the programmer the implementation.

Page 54

3. Create the output file.

4. Write to the output file.

5. Compute square roots.

6. Report and process errors.

7. Return control to the system.

If we use the POSIX-defined functions, we are assured that these functions are portable among
POSIX-compliant systems.

What other portability issues might affect the design of this program?

• A target machine may have a 16-bit int. Since that would limit us to numbers less than
65,535, we use long for integer variables.

• We need to know the maximum length filename that a user might type. Unfortunately,
POSIX does not give us this information. We can determine the maximum length of a
filename that we are guaranteed to be able to create, but that is not what we need. We
define the macro MAX_NAME to be the longest path name a user may type. In this example,
we set the value to 255, which should cover most cases. An alternate technique is to define
a huge limit (e.g., 5000). That change can be made by modifying a single line.

• The program needs to know the language the user understands. Our example assumes that
the user understands English. Chapter 10, Porting to Far-off Lands, describes methods to
allow an application to be portable from culture to culture.

We can now start to write some code. First, accept a filename from the user:

 (void)printf("What is the name of the output file: ");
 (void)fgets(filename,MAX_NAME+1,stdin);
 filename[strlen(filename) - 1]= '\0';
 outfile = fopen(filename,"w");

The printf() function prompts the user for a filename. The use of (void) in front of the
call to printf() tells the reader that we are ignoring the value returned by the function.
There is not much we can do if messages to the user's terminal fail. Casting the value to be void
also prevents warnings from lint.

The fgets() function reads up to MAX_NAME+1 characters into the array filename from
the user's keyboard (stdin). The newline character is also stored in the array. The next
statement discards the newline character. The fopen() function opens the file for output and
sets outfile to the resulting file descriptor. Our program does not place any restrictions
(other than total length) on the filename.

Page 55

We need to prompt the user to supply starting and ending values. Because we do the same thing
to get each value, a function can be defined to do this task. We can call the function with:

 from = getlong("Starting value");

 to = get_long("Ending value");

We define the get_long() function later.

Next, we write the values and the series of square roots into a file. Again, we will define a
function and write the code for it later.

 compute_square_root(outfile, from, to);

Last, we return to the operating system and report our success with:

 return(EXIT_SUCCESS);

The (almost) complete main() program looks like:

 main()
 {
 FILE *outfile; /* The output file */
 char filename[MAX_NAME];/* Name of the output file */
 long from,to; /* The limits for the output table */

 (void)printf("What is the name of the output file: ");
 (void)fgets(filename,MAXNAME,stdin);
 filename[strlen(filename) - 1]= '\0';
 outfile = fopen(filename,"w");

 from = get_long("Starting value");
 to = get_long("Ending value");

 compute_square_root(outfile, from, to);

 return(EXIT_SUCCESS);
 }

Not bad; however, it would be a good idea to make sure that the fopen() worked correctly,
and to report the error if it did not.

 if (outfile == NULL)
 {
 perror("Cannot open output file");
 exit(EXIT_FAILURE);
 }

after the call to fopen(We should also add:

 if (fclose(outfile) 1= 0)
 perror("Error on close");

to close the output file and check for errors before returning to the operating system. The
perror() function converts the error number stored in errno to an error message. The
string given as the argument is written to stderr, followed by a colon

Page 56

and a space. Then, the error message is written followed by a newline. If the system has some
non-standard error codes, perror() should correctly convert them to text. Using perror()
is more portable than trying to decode the error number in our program.

We left three functions—get_long(),compute_square_root(), and
format_output to be defined later. The get_long() function has an argument that is the
prompt message. The prompt can be displayed as follows:

 (void)printf("%s: ",prompt);

We can read in the number with a simple call to scanf():

 scanf("%d",&value);

It would be nice , however, to do more error checking and keep asking the question until we get
a valid response.

 while (1)
 {
 (void)printf("%s: ",prompt);
 if (fgets(line, BUFF_MAX, stdin) == NULL)
 exit(EXIT FAILURE);
 if (sscanf(line,"%d",&value) == 1) return(value);
 (void)printf("Please input an integer\n");
 }

The scanf() function scans characters from the user's terminal (stdin). The sscanf()
function is very similar except it scans characters from a string; in this case, line. The return
value of 1 tells us that exactly one specifier (%d) was matched. By using fgets() to read the
data and sscanf() to parse it, we can tell the difference between I/O errors and format
errors. The symbol BUFF_MAX is the maximum number of digits the user may type. We define
BUFF_MAX after the #include statements at the start of the program.

After adding a few declarations, our function is complete:

 long get_long(char *prompt)
 {
 long value;
 char line[BUFF_MAX];

 while (1)
 {
 (void)printf("%s: ",prompt);
 if (fgets(line, BUFFMAX, stdin) == NULL)
 exit(EXIT_FAILURE);
 if (sscanf(line,"%ld",&value) == 1) return(value);
 (void)printf("Please input an integer\n");
 }
 }

The compute_square_root function must calculate a series of square roots using the
sqrt() function in the math library. The sqrt() function returns the square root of

Page 57

its argument. It would be simple enough to write your own square root function. However,
using a library function, we get maximum performance without knowing any of the details of the
hardware. We construct a simple for loop to do the main work of the function:

 void compute_square_root(FILE *fileid,long start,long stop)
 {
 long i;
 double f;

 for (i=start; i <= stop; i++)
 {
 f = (float)i;
 fprintf(fileid, "%10.0f %10.6f\n",
 f,sqrt(f));

 }
 }

We should check for errors when writing to a file, so we revise the for loop as follows:

 for (i=start; i <= stop; i++)
 {
 f = (float)i;
 if (fprintf(fileid, "%10.0f %10.6f\n",
 f,sqrt(f)) < 0)
 {
 perror("Error writing output file");
 exit(EXIT_FAILURE);
 }
 }

We can write a heading into the file with:

 fprintf(fileid," N SQRT(N)\n");

We don't actually need the format_output function, after all. The fprintf() function is
powerful enough to do the job. A separate function to format the output would not make the
program any clearer or more reusable. We modify our initial idea about how to do the job and
as the program takes shape.

It is a problem that we never check for errors when printing the header to the file. Instead of
adding more perror() statements, we add a new macro, PANIC. The PANIC macro prints
an error message and stops. The first printf() becomes:

 if (fprintf(fileid," N SQRT(N)\n") < 0)
 PANIC;

We use the PANIC macro when an error is possible but very unlikely.

The PANIC macro deserves a few comments. It is defined to call an external panic() function
with two arguments:

__FILE__ Defined by the C compiler as a character string literal containing the name of the
program being compiled.

Page 58

__LINE__ A decimal constant for the current source line number.

The panic() function is defined in panic.c:

 #define POSIX_SOURCE 1
 #include <stdlib.h>
 #include <stdio.h>

 void panic(char *filename,int line)
 {
 (void)fprintf(stderr,"\n?Panic in line %d of file %s\n"
 ,line,filename);
 (void)perror("Unexpected library error");
 abort();
 }

and a typical error message is:

 ?Panic in line 27 of file example.c
 Unexpected library error: disk full

The message helps the programmer locate the place where the error was detected. It also may
give the user some idea of how to get around the problem.

The abort() function causes abnormal program termination. On some systems it may
generate information that is useful for debugging, such as a core file. POSIX does not specify
any debugging facilities, but provides the hooks for vendors to add rich debug environments.
The abort() function will stop the application on all POSIX systems

The last step is to include the required headers. Each library function requires at least one
header. The only way to know which headers to include is to look up each function in the
Function section of the Reference Manual at the end of this book. After a while, you will learn
which headers are required for each function. In this case, we need only two headers:
<stdio.h> and <math.h>.

Example 3-1 is a strictly conforming C program and does not need the #define
POSIX_SOURCE. I am in the habit of including the #define. If you want to have as many
modules as possible depend only on standard C, it would be a good idea to use the #define
POSIX_SOURCE statement only on modules that depend on POSIX calls. The Functions
section in the Reference Manual tells you which functions are in all standard C
implementations and which are only in POSIX systems.

Our complete source is shown in Example 3-1:

EXAMPLE 3-1. sqrt.c

 #define _POSIX_SOURCE 1
 #include <stdio.h>
 #include <stdlib.h>
 #include <math.h>

 #define BUFFMAX 10
 #define MAXNAME 255

Page 59

 #define PANIC (panic(__FILE__,__LINE__))
 extern void panic();

 void compute_square_root(FILE *fileid,long start,long stop)
 {
 long i;
 double f;

 if (fprintf(fileid," N SQRT(N)\n") < 0)
 PANIC;
 for (i=start; i <= stop; i++)
 {
 f = (float)i;
 if (fprintf(fileid, "%10.0f %10.6f\n",
 f,sqrt(f)) < 0)
 {
 perror("Error writing output file");
 exit(EXIT_FAILURE);
 }
 }
 }

 long get_long(char *prompt)
 {
 long value;
 char line[BUFF_MAX];

 while (1)
 {
 (void)printf("%s: ",prompt);
 if (fgets(line, BUFF_MAX, stdin) == NULL)
 exit(EXITFAILURE);
 if (sscanf(line,"%ld",&value) == 1) return(value);
 (void)printf("Please input an integer\n");
 }
 }

 main()
 {
 FILE *outfile; /* The output file */
 char filename[MAX_NAME+l];/* Name of the output file */
 long from,to; /* The limits for the output table */

 (void)printf("What is the name of the output file: ");
 (void)fgets(filename,MAX_NAME+l,stdin);
 filename[strlen(filename) - 1]= '\0';
 outfile = fopen(filename,"w");
 if (outfile == NULL)
 {
 perror("Cannot open output file");
 exit(EXIT_FAILURE);
 }

 from = get_long("Starting value");
 to = get_long("Ending value");

 compute_square_root(outfile, from, to);

 if (fclose(outfile) != 0)

Page 60

 perror("Error on close");
 return(EXIT_SUCCESS);
 }

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. What will the following program fragment print?

 short d=17;

 printf("%07d\n",d);
 printf("%7d\n",d);
 printf("%-7d\n",d);

It is not considered cheating to try it!

2. When should one use a %hd format specifier? How about %ld? What are the portability
problems, if any, with plain %d?

3. If we need to transfer some floating-point data from one machine to another and write it to
an ASCII file using the %f format specifier, what are some of the machine-specific things
that may show up?

4. What is the difference between fputs() and puts()? What about the difference
between fputc() and putc()?

5. What does the fscanf() pattern "[A-Z]" do? Does it work on all computers?

6. What is one of the problems in using the %s specifier in fscanf()?

7. The function gets(buffer) is the same as fgets(buffer,INT_MAX, stdin)
with one exception. What is that exception?

8. The gets() function has a weakness that was exploited to invade a major computer
network. What is that weakness? When can gets() be safely used?

9. What is the difference between a stream opened with:

 fopen("foo", "w");

and one opened with:

 fopen("foo","wb");

10. Why is it a good idea to use the fclose() function?

11. What does:

 fwrite(array,2,100,outfile);

do? Assume that array is an array of short int and outfile is a stream open for

writing.

12. Improve the fwrite() function call in Exercise 11 to make it more portable.

13. What is a possible advantage of fsetpos() over fseek()?

Page 61

14. What is the difference between:

 (void)printf ("Help!");

and:

 printf("Help ");

Would you expect one to be faster than the other? Why or why not?

15. Modify the square root program given at the end of this chapter to make more use of the
PANIC macro. What advantages and disadvantages does the new program have compared
to the old one?

Page 63

Chapter 4
Files and Directories

This chapter discusses the portable use of files and directories. We describe the POSIX file
system, covering the many things that can be done portably as well as the traps and pitfalls
that may be hidden in these operations. The functions described in this chapter perform the
operating system services that deal with the creation and removal of files and directories
and with the detection and modification of their characteristics. They allow applications to
gain access to files for the I/O operations described in the next chapter.

The POSIX file system is based on existing UNIX systems. POSIX defines a common portable
interface to files. Applications do not need to know if they are using an AT&T or a BSD file
system.

The UNIX ''less is better'' philosophy imposed a few simple rules on files:

• All input and output is done using files. Disks, tapes, displays, and scientific instruments
are all manipulated using the same function calls.

• A file is an ordered sequence of bytes. All meaning is provided by the program that reads
or writes the data.

• One type of file is a list of other files; this type of file is called a directory.

While these rules may seem obvious, each one represents a breakthrough. Many systems before
and after UNIX have required one set of calls to write to a user's terminal, another set to write
to a disk, and yet another set to write to a printer. Other systems distinguish between various

types of files and the system gets involved in the job of managing the contents of the file. There
are systems with many formats of files and records. While more complex systems may provide
"more services" for the programmer, UNIX has a powerful advantage: There is less to learn.

Portable Filenames

For a filename to be portable across systems, it must consist of only the following characters:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m n o p q r s t u v w x y z
 0 1 2 3 4 5 6 7 8 9 0 . _ -

That is, uppercase and lowercase letters, numerals, period, underscore, and hyphen. The
hyphen must not be used as the first character of a portable filename. Uppercase and lowercase
letters retain their unique identities. For example, makefile,

Page 64

Makefile, and MAKEFILE name three unique files. Fully portable filenames have 14 or
fewer characters.

If the world were simple, all files would be named using portable filenames. In practice, UNIX
filenames may contain any character except slash (/) and null. Users may have good reasons for
using these characters. If an application is to handle any filename and yet be portable, here are
a few guidelines:

• If a program accepts a filename from the user, assume that the filename may contain any
combination of characters and may be hundreds of characters long.

• If a program has built-in filenames, use only portable filenames with 14 or fewer
characters. Include the name of your program or some other unique text to avoid conflicts.
For example, dirlst.rc or scalc.save.

• Use the tmpnam() or tmpfile() functions for temporary files.

• POSIX does not reserve any filenames. However, some filenames are used by various
systems and should be avoided. These include: a.out,core,.profile,.history,
and .cshrc. Do not read or write any file in the /etc directory.

Directory Tree

The file system starts with a master file directory called root. The root directory is simply a
list of files, some of which may be directories. Each directory, in turn, is simply a list of files,
some of which may be directories.

This structure is typically represented as a tree, as shown in Figure 4-1.

The root directory is called /. In this case, / contains the files usr,lib,etc,bin, and
test. The directory usr in the root directory contains two other files, don and sue.

In order to locate a file, we can start at root and name all of the directories until we get to the
target file. This is called the absolute pathname of the file. Given the tree above,
/usr/don/book/chapters/4 is the path to the file called 4 at the bottom of the tree.

This contains the text for this chapter. The string /usr/don/book/chapters/ is the
path prefix and the string 4 is the filename. The / character is the delimiter used between
filenames. The / character may not be used in a filename and no other character may be used in
its place.

Current Working Directory

Most of the time, an application works with a small set of files that have a common path prefix.
For example, it is convenient to be able to specify 4 as a filename rather than the pathname
/usr/don/book/chapters/4. We can supply a default path prefix to apply whenever a
pathname does not begin with a slash. This is called the current working directory or
sometimes the working directory. A relative pathname specifies a file or directory in the
current working directory.

Page 65

Figure 4-1. Directory tree

The pathname of the current working directory can be obtained with the getcwd() function. It
is defined as:

 char *getcwd(char *buf,size_t size);

The argument buf is the address of a character array in which to place the absolute pathname
of the current working directory. The size argument is the maximum number of bytes to be
stored in buf. If successful, the buf argument is returned. If an error occurs, NULL is

returned.

There is one portability issue: buf may need to be huge. There is no way for an application to
know how much storage to allocate. A declaration of:

 char buf[256];

Page 66

or even:

 char buf[256000];

may not be enough. See the cwdname() function in Example 2-5 for a way to avoid this
problem.

We can select a new working directory with the chdir() system service. This is defined by:

 int chdir(const char *path);

where path points to the pathname of a directory. The named directory becomes the current
working directory. Upon successful completion, this function returns zero. If the chdir()
function fails, -1 is returned; errno is set to indicate the error, and the current working
directory is unchanged.

Making and Removing Directories

You can create a new directory using the mkdir() function or remove a directory with the
rmdir() function. For example, if you specify:

 int mkdir(const char *path, mode_t mode);

a directory with name path is created. The file permission bits for the new directory are set
from mode with the bitwise inclusive OR of one or more of the following flags:

S_IRUSR The directory owner has read permission.

S_IWUSR The directory owner may create new files in the directory.

S_IXUSR The directory may be searched by the owner.

S_IRGRP Members of the directory owner's group have read permission.

S_IWGRP Members of the directory owner's group may create new files in the
directory.

S_IXGRP Members of the owner's group may search the directory.

S_IROTH The world has read permission.

S_IWOTH Anyone can create new files in the directory.

S_IXOTH Anyone can search the directory.

For example:

 mkdir("test", S_IRUSR | S_IWUSR | S_IXUSR);

will create the directory test, allowing the owner read, write, and search access and granting
no other permissions.

Do not set any other bits of the mode argument.

Page 67

The rmdir() Function

You may delete a directory using the rmdir() function. It is defined as:

 int rmdir(const char *path);

The directory must be empty and must not be either the current working directory of any
process or the root directory.

Simulating the mkdir() and rmdir() Functions

The mkdir() and rmdir() functions are very portable across POSIX systems but are not
available in System V.3. These functions can be simulated on those systems by using the
mkdir and rmdir commands. For example:

 int mkdir(char *dirname, mode_t mode)
 {
 int status;
 pid_t pid;

 pid = fork(); /* Create a new process */
 if (pid < 0) return(-1);

 /* Now have the child execute the mkdir
 * command
 */
 if (pid == 0) execl("/bin/mkdir", dirname);

 wait(&status); /* Wait for the child */
 if (status != 0) return(-1);
 return(chmod(dirname, mode));
 }

Although this code may be much slower than the mkdir() function on POSIX systems, the
speed of creating or removing a directory is generally not an issue.

Directory Structure

Before looking at additional directory operations, we need to understand more about how
directories work.

Each file in the file system has a unique file serial number.* A directory maps character strings
into file serial numbers. Many directory entries can point at the same file. This is shown in

Figure 4-2.

There are three data files shown here. They have serial numbers 100, 101, and 102. File 100
has three links to it (file.a, file.b, and file.c). All three names refer to the same
file and the same data. File 101 has two names (data.1 and data.2). File 102 has only one
name (prog.c), which is the most common case.

* "File serial number" is a POSIX term. UNIX systems use the term i-node number. The POSIX
committee felt that file serial number is a more portable phrase because i-nodes do not need to be
used in a conforming file system.

Page 68

Figure 4-2. Directory structure

Manipulating Directories

When we create a file, for example with the fopen() function, a new file serial number is
assigned and a directory entry is created.* The pointer from the directory to the i-node is called
a link. In this case, there will be exactly one link to the i-node.

* The POSIX standard deals only with the application's view of the system. This is only one of many
possible ways to implement the underlying system. For example, VAX/VMS does not have i-nodes.
This does not have any consequences for a POSIX application.

Page 69

Linking to a File

Additional links to a file may be created with the link() function. This function is defined
as:

 int link(const char *path1, const char *path2);

where path1 points to a pathname naming an existing file and path2 points to a pathname
naming the new directory entry to be created. The link() function is very portable.

Removing a File

The unlink() function removes directory entries. It is defined as:

 int unlink(const char *path);

where path points to a pathname to be deleted. When all links to the file have been removed,
and no process has the file open, the file is deleted and is no longer accessible.

Standard C defines the remove() function to perform the same function as unlink(). The
ANSI C Committee felt the name remove was less system-specific than unlink.

Renaming a File

A file's path may be changed with the rename() function. This is defined as:

 int rename(const char *oldpath, const char *newpath);

The effect of rename() is to create a new link to an existing file and then delete the existing
link. If both oldpath and newpath refer to the same file, rename() does not change the
file system.

It is very safe and portable to rename a file. For example, rename("Julie","Jenny")
or rename("/usr/don/old", "/usr/don/new"). Renaming a directory is also
portable: rename("/usr/phred", "/usr/fred"). However, renaming a file across
directories is not.

The call rename("/usr/don/file", "/usr/sue/file") may not work under all
conditions. You cannot rename a file from one file system to another. If your application must
be able to move a file from one directory to another, it should be prepared to copy the file if
the rename() function fails.

File Characteristics

The file system maintains useful information about each file. For example, it maintains the time
and date the file was last written and the size of the file in bytes.

Page 70

The system also maintains the file's file mode, as shown in Figure 4-3.

Figure 4-3. File mode

Each of the permission fields is a three-bit group that defines execute, read, and write
permissions, as shown in Figure 4-4.

Figure 4-4. Read, write, and execute permission bits

Of course, POSIX does not specify that the bits will be in this order. Instead, there are symbols
defined for the bits and fields. These symbols are:

S_IRWXU Read, Write, and Execute bits for the file owner.

S_IRWXG Read, Write, and Execute bits for the file owner's group.

S_IRWXO Read, Write, and Execute bits for others.

S_ISUID Set user ID on execution. When this program is run, the effective user ID will be the
same as the owner of the file.

S_ISGID Set group ID on execution. When this program is run, the effective group ID will be the
same as the owner of the file.

Page 71

There are symbols for all nine of the permission bits. The symbols use this pattern:

Therefore, the symbol for the Read permission for the group class would be S_IRGRP and the
Execute permission for the owner is S_IXUSR.

POSIX does not define the file-type bits. Instead, it defines macros to test for a specific type of
file. These macros are:

S_ISDIR(m) Test for directory.

S_ISCHR(m) Test for character-special file.

S_ISBLK(m) Test for block-special file.

S_ISREG(m) Test for a regular file.

S_ISFIFO(m) Test for a FIFO.

The argument to the macro, m, is the file mode. The macro evaluates to non-zero if the test is
true and to zero if the test is false. These macros are POSIX inventions. Traditional UNIX
systems have defined the absolute octal values for the mode word. For example, System V.2
defines:

0170000 File type

0010000 FIFO

0020000 Character-special file

0040000 Directory

0060000 Block-special file

0100000 Ordinary file

0000000 Ordinary file

Your program will be most portable if you use the POSIX macros. If you need to, you can
define them for older systems.

Page 72

Retrieving a File's Characteristics

A file's characteristics may be retrieved using the stat() function. This function fills in a
struct known as the stat structure. The stat structure contains the following members:

Member Name Member Type Description

st_mode mod_t File mode, as described above.

File mode, as described above.

st_ino ino_t File serial number.

st_dev dev_t ID of device containing this file. The st_dev/st_ino pair
uniquely identify a file.

st_nlink nlink_t Number of links.

st_uid uid_t User ID of file's owner.

st_gid gid_t Group ID of file's group.

st_size off_t File size in bytes. This is defined only for regular files.

st_atime time_t Time of last access.

st_ctime time_t Time of status last change, for example, changing the
permission bits.

st_mtime time_t Time of last data modification of the file.

The stat structure is defined in the header file <sys/stat.h>.

The various data types (dev_t,ino_t,uid_t, etc.) are defined in the header file
<sys/types.h>. These types are defined because the POSIX committee decided to provide
maximum flexibility instead of selecting a common data type.* This means that the size of
ino_t or uid_t changes from system to system. Do not assume that they are of a given size
or that they are small. But you can assume they are arithmetic (including floating point).

The stat() function itself is defined as:

 int stat(const char *path, struct stat *buf);

The first argument is a pointer to a pathname. The second argument is a pointer to a buffer in
which to store the status information.

The stat() function is very portable. Most of the information returned is also portable. The
st_dev and st_ino members should be used with care. It is portable to compare

* In fairness to the POSIX committee, they worked hard to increase consensus. The goal was not to
make a selection by narrow majority but instead to build a broad coalition. These types are defined to
increase portability and compatibility with existing programs.

Page 73

these fields to see if two names refer to the same file. Do not make any other assumptions about
these numbers.

Changing File Accessibility

It is possible to change a file's permission bits using the chmod() function. This is defined as:

 int chmod(const char *path,mode_t mode);

The path argument points at the name of a file and the mode argument contains the new
permission bits. Do not set bits other than the permission bits, S_ISGID or S_ISUID.* In
some implementations, setting additional bits changes the entire meaning of the call.

The chmod() function is very portable. You can make your code portable to older UNIX
systems by defining the permission bits you need with something like:

 #include <sys/stat.h>
 #ifndef S_IRUSR
 #define S_IRUSR 0400
 #endif
 #ifndef S IWUSR
 #define S_IWUSR 0200
 #endif
 #ifndef S_IXUSR
 #define S_IXUSR 0100
 #endif
 . . .
 chmod (myfile,S_IRUSR S_IWUSR S_IXUSR);

The ifndefs will prevent you from changing any values defined in a POSIX header while
providing portability to pre-POSIX systems.

Changing the Owner of a File

The owner of a file may be changed with the chown() function. This is defined as:

 int chown(const char *path,uid_t owner,gid_t group);

where the path argument points at the pathname of an existing file. The user ID and group ID
are set to the values in owner and group.

There is a historical problem with the chown() function. UNIX System V allows a user to
give away files; that is, the owner of a file may change the user ID to anything. This presents a
security problem in some environments. Berkeley UNIX restricts chown() to the superuser.

* Attempt to modify S_ISGID or S_ISUID only for ordinary files. In particular, never use
chmod() in a way that would affect the S_ISGID bit on a directory.

Page 74

The POSIX committee left the actual operation of chown() as an implementation option
indicated by the symbolic constant _POSIX_CHOWN_RESTRICTED. If chown() is
restricted for a particular file:

• The owner may be changed only by a privileged process (most likely not yours).

• The group may be changed, if and only if owner is equal to the file's user ID and group is
equal to either the calling process's effective ID or one of its supplementary group IDs.

A program may determine if chown() is restricted by looking at the variable
_POSIX_CHOWN_RESTRICTED in the header file <unistd.h>. It has three possible

states:

• Defined to have the value -1. In this case, no files have chown() restricted.

• Defined to have a value other than -1. In this case, all files have chown() restricted.

• Not defined in <unistd.h>. In this case, the pathconf() or fpathconf() function
must be used because chown() restrictions may depend on the directory. See Chapter 7,
Obtaining Information at Run-time, for details.

Of course, you can ignore all of the rules about _POSIX_CHOWN_RESTRICTED and just try
it. If if works, you can do it. If it fails with errno set to EPERM, you can't. For example:

 if (chown("file",newuser,newgroup) != 0)
 {
 if (errno == EPERM)
 printf("Sorry, chown is restricted\n");
 else
 {
 perror("unexpected chown failure");
 exit(EXIT_FAILURE);
 }
 }

The only completely portable use for chown() is to change the group of a file to the effective
group ID of the caller or to a member of its group set.

As a security precaution, the S_ISUID and S_ISGID bits of the file mode are cleared upon
successful return from chown(). If this were not done, a user could give away a file and
assume the identity of the new owner.

Setting File Access and Modification Times

The utime() function is used to update the access time and modification time of a file. This
is defined as:

 int utime(const char *path, const struct utimbuf *tm);

Page 75

Here, path points to a pathname for an existing file. The tm argument is either NULL or a
pointer to a utimbuf structure. If the tm argument is NULL, the access and modification
times are set to the current time.

If the tm argument is not NULL, it is assumed to be a pointer to a utimbuf structure. This
contains the following members:

actime Access time

modtime Modification time

Both members have type time_t.

System V did not provide a <utime.h>. Instead, it said that utimbuf must be defined as:

 struct utimbuf
 {
 time_t actime;
 time_t modtime;
 };

You may have to supply a <utime.h> with that definition if you port your POSIX code to
older System V systems.

Reading Directories

A traditional portability problem in UNIX has been knowledge of the format of directories. A
program would open a directory and read the information directly. There is a great deal of
UNIX software that ''knows'' that a directory contains a 2-byte i-node number followed by a
14-byte filename. While true for AT&T System V.2, it is far from universal.

To solve this problem, POSIX adapted from BSD several functions for performing operations
on directories. These functions allow a program to obtain directory entries without defining the
format of the directory file. In fact, the internal format of directories is completely unspecified.

The header file <dirent.h> defines a structure that is used to obtain filenames from a
directory, the struct dirent, that includes one member d_name, an array of char that
may be up to NAME_MAX bytes long. All other information in the dirent structure should be
ignored for portability.

Page 76

The opendir() Function

The opendir() function is defined as:

 DIR *opendir(const char *dirname)

and returns a directory stream that has type DIR. The dirname argument is the name of the
directory file to open and it must be a directory.

If the opendir() function fails, NULL is returned and errno is set to indicate the error.

The readdir() Function

The readdir() function is defined as:

 struct dirent *readdir(DIR *dirp);

and returns a pointer to a dirent structure. The only argument is dirp, the pointer returned
by opendir().

In case of an error, readdir() returns NULL and errno is set to indicate the error. When
the end of the directory is encountered, readdir() also returns NULL; however, errno is
unchanged.

The closedir() Function

The closedir() function is defined as:

 int closedir(DIR *dirp)

and is used to indicate that we are done reading a directory. Upon successful completion,
closedir() returns a value of zero. On error, a value of -1 is returned and errno is set to
indicate the error.

The rewinddir() Function

The rewinddir() function is defined as:

 void rewinddir(DIR *dirp);

and resets the position of the directory stream indicated by dirp to the beginning of the
directory. No value is returned.

General Comments

Files may be added to or removed from a directory at any time. The readdir() function may
or may not see changes to a directory made after the opendir() (or rewinddir())
function is called.

Page 77

POSIX is also vague on the interaction between opendir() and fork(). For best results,
do not perform a fork() while reading a directory.

Complete Example

To demonstrate the use of the functions for reading directories, let's write a program to print
out a directory tree. Here is a brief specification for the program:

1. Prompt the user and accept the name of a starting directory.

2. Print the name of the starting directory.

3. Read the directory and ignore everything except directories.

4. Print the names of any directories encountered along with any directories that they contain.

5. Indent each level of directory two spaces. This will make it easy to see what is contained
in each directory. The output should look something like this:

 Starting directory: /etc
 log
 zoneinfo
 Australia
 Canada
 Mideast
 SystemV
 US
 YP
 master.d
 boot.d

 init.d
 startup. d
 fwdicp.d
 install.d
 boot.d
 init.d
 master. d
 startup.d
 fwdicp.d
 uninstall.d
 eschatology
 bind
 master
 tools
 doc
 BOG

Where /etc was given as the starting directory and /etc/bind/doc/BOG a nested
subdirectory.

An obvious structure suggests itself: one routine to process one directory and another routine to
call it for each directory encountered. The flowchart for the main program is shown in Figure
4-5.

Page 78

Figure 4-5. Flowchart for main()

The onedir() function is recursive. Each time it encounters a directory, onedir() calls
itself. The flowchart for the onedir() function is shown in Figure 4-6.

Let's start by writing the function to process a single directory, as shown in Example 4-1.

EXAMPLE 4-1. onedir()

 1 /*

 2 * This function will process 1 directory. It is called with
 3 * two arguments:
 4 * indent -- The number of columns to indent this directory
 5 * name -- The file name of the directory to process. This
 6 * is most often a relative directory
 7 *
 8 * The onedir function calls itself to process nested
 9 * directories
10 */
11 void onedir(short indent,char *name)
12 {
13 DIR *current_directory; /* pointer for readdir */
14 struct dirent *this_entry; /* current directory entry */
15 struct stat status; /* for the stat() function */
16 char cwd[MAX_PATH+1]; /* save current working
17 * directory
18 */
19 int i; /* temp */
20

Page 79

FIGURE 4-6. Flowchart for onedir()

21 /*
22 * Print out the name of the current directory with
23 * leading spaces.
24 */
25 for (i=l; i <= indent; i++) (void)printf(" ");
26 (void)printf("%s\n",name);
27
28 /* Now open the directory for reading */
29 current_directory = opendir(name);
30 if (currentdirectory == NULL)

Page 80

31 {
32 (void)perror("Can not open directory");
33 return;
34 }
35 /* Remember the current working directory and connect to
36 * new directory. We will then be able to stat() the
37 * files without building a prefix.
38 */
39 if (getcwd(cwd,MAX_PATH+1) == NULL) PANIC;
40 if (chdir(name) != 0) PANIC;
41
42
43
44
45
46
47
48
49
50 /* Now, look at every entry in the directory */
51 while ((this_entry = readdir(current_directory))
52 != NULL)
53 {
54 /* Ignore "." and ".." or we will get confused */
55 if ((strcmp(this_entry->d_name,".") != 0) &&
56 (strcmp(this_entry->d_name,"..") != 0))
57 {
58 if (stat(this_entry->d_name,&status) 1= 0)
59 PANIC;
60 /* Ignore anything that is not a directory */
61 if (S_ISDIR(status.st_mode))
62 {
63 /* If this is a nested directory,
64 * process it */
65 onedir(indent+2,this_entry->d_name);
66 }
67 }
68 }
69 /* All done. Close the directory */
70 if (closedir(current_directory) != 0) PANIC;
71 /* change back to the "previous" directory */
72 if (chdir(cwd) != 0) PANIC;
73 return;

74 }

Notes for onedir:

Line Note

51 This block will be executed for each file in the directory.

54 Programs must not assume that "." and ". ." exist or are first. This example workscorrectly.
A program that discards the first two directories returned by readdir() is not portable.

59 It would be nice to provide some error recovery here. We could print a message and continue.

65 This is the recursive call. Each level will indent by an additional two spaces.

Page 81

There is only one strange thing here. We want to read a string from the user that may be up to
MAX_PATH characters long. We cannot just write a call to scanf() using MAX_PATH. That
is:

 (void)scanf("%<MAXPATH>s",root)

will not work. We have to build the correct string at run time. We could also use
fgets(root,MAX_PATH,stdin) to read the filename, but then we would need to
remove the newline from the end of the buffer.

The complete program with all the required headers is shown in Example 4-2.

EXAMPLE4-2 direct.c

 /*
 * Include all of the required headers
 */
 #define _POSIX_SOURCE 1
 #include <stdio.h>
 #include <sys/types.h>
 #include <dirent.h>
 #include <sys/stat.h>
 #include <limits.h>
 #include <stdlib.h>
 #include <string.h>
 #include "panic.h" /* Defines the PANIC macro */
 /* See Page 58 for a description of PANIC
*/

 #define MAX_PATH 256
 /*
 * This function will process 1 directory. It is called with
 * two arguments:
 * indent -- The number of columns to indent this directory
 * name -- The file name of the directory to process. This
 * is most often a relative directory
 *

 * The onedir function calls itself to process nested
 * directories
 */
 void onedir(short indent, char *name)
 {
 DIR *current_directory; /* pointer for readdir */
 struct dirent *this_entry; /* current directory entry */
 struct stat status; /* for the stat() function */
 char cwd[MAX_PATH+1]; /* save current working
 * directory
 */
 int i; /* temp */

 /*
 * Print out the name of the current directory with
 * leading spaces.
 */
 for (i=l; i <= indent; i++) (void)printf(" ");
 (void)printf("%s\n",name);

 /* Now open the directory for reading */
 current_directory = opendir(name);
 if (current_directory == NULL)

Page 82

 {
 (void)perror("Can not open directory");
 return;
 }
 /* Remember the current working directory and connect to
 * new directory. We will then be able to stat() the
 * files without building a prefix.
 */
 if (getcwd(cwd,MAX_PATH+1) == NULL) PANIC;
 if (chdir(name) != 0) PANIC;

 /* Now, look at every entry in the directory */
 while ((this_entry = readdir(current_directory))
 != NULL)
 {
 /* Ignore "." and ".." or we will get confused */
 if ((strcmp(this_entry->d_name,".") != 0) &&
 (strcmp(this_entry->d_name,"..") != 0))
 {
 if (stat(this_entry->d_name,&status) != 0)
 PANIC;
 /* Ignore anything that is not a directory */
 if (S_ISDIR(status.st_mode))
 {
 /* If this is a nested directory,
 * process it */
 onedir(indent+2,this_entry->d_name);
 }
 }
 }
 /* All done. Close the directory */

 if (closedir(current_directory) != 0) PANIC;
 /* change back to the "previous" directory */
 if (chdir(cwd) != 0) PANIC;
 return;
 }

 int main()
 {
 char root[MAX_PATH+1]; /* array to store the pathname of
 * the starting directory
 */
 char scanf_string[20]; /* used to hold a format string
 * for scanf
 */
 struct stat root_status; /* stat structure for starting
 * directory
 */

 /* Build a format string for scanf that looks like
 * %<MAXPATH>s.
 */
 (void)sprintf(scanf_string,"%%%ds",MAX_PATH);
 (void)printf("Starting directory: ");
 /* Read the name of the starting directory which
 * may be up to MAX_PATH bytes long
 */
 (void)scanf(scanf_string,root);

Page 83

 /* Verify that it is an existing directory file */
 if (stat(root,&root_status) != 0)
 {
 (void)perror("Can not access starting directory");
 (void)exit(EXIT_FAILURE);
 }
 if (S_ISDIR(root_status.st_mode) == 0)
 {
 (void)fprintf(stderr,"%s is not a directory\n",root);
 (void) exit (EXIT_FAILURE);
 }

 /* If all is well, list the directory */
 onedir(0,root);
 return(0);
 }

Pitfall: Symbolic Links

There is a feature of some UNIX systems called symbolic links. A symbolic link is a special
type of file that points to another file. For example, a link from file to
/usr/opt/lib/X11/realfile links the name file to the
file/usr/opt/lib/Xll/realfile. When we open file, we will get realfile
instead. That is what the user usually wants.

Although symbolic links originated in BSD, many vendors have now included them in AT&T

ports. POSIX does not support symbolic links and you should not have to concern yourself with
them. Unfortunately, symbolic links may confound your program.

There are several operations which can cause problems. For example, deleting file will
delete the link but will leave /usr/opt/lib/X11/realfile unaffected, which may or
may not be OK.

The real problem comes when the symbolic link is to a directory. If there is a symbolic link in
the directory /usr/don/test of the form:

 loop -> /usr/don

the program in Example 4-2 will crash and burn.

Each time readdir() returns loop, the onedir() routine will try to process it. The loop
will continue until some system limit is encountered.

There is no good way to defend against symbolic links. There is no portable way for a
POSIX-conforming program to test for symbolic links. The POSIX.1 committee is adding
symbolic links to a future version of the standard; these changes may be approved in 1992.
About the only thing we can do in the mean time is to warn users of our software that if they use
(abuse?) symbolic links, they may cause applications to fail.

Of course, the fact that no POSIX-conforming application will ever create a symbolic link does
not help much.

Page 84

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. Write a function to accept the name of a directory and to make it the current working
directory. Print the full pathname of both the old and the new working directories.

2. Write a program that keeps creating directories called dir until some error occurs. The
result should be /dir/dir/dir/dir/dir/dir/dir/dir... as far as your system
will let you go.

NOTE: Some systems may fail in unfortunate ways. Use caution when attempting this.

3. Write a program to delete the directories created in exercise 2.

4. Why would a program need to know a file's i-node number (ST_INO)?

5. Why would it be useful to have multiple directory entries (links) for the same file?

6. When does the unlink() function delete a file? Is there any portable way to know that
the file is really gone?

7. Name one piece of information contained in a file's mode word.

8. What does the symbol S_IXUSR mean?

9. Why do you think that POSIX defined S_ISDIR as a macro instead of a value?

10. Is sizeof(ino_t) always less than or equal to sizeof(int)? Is
sizeof(ino_t) always less than or equal to sizeof(long)?

11. How can chown() be used to break system security? What is the only completely
portable use for the chown() function?

12. Why might a program use the utime() function?

13. Write a program to display a file without changing its access time. Is there any way to
detect that the file has been read?

14. Does the dirent structure contain any members other than d_name? If so, what are they?

15. Modify the onedir() function given at the end of this chapter to print the file serial
number of each directory.

16. The onedir() function ignores the files "." and "..". Why does it do this? What would
happen if that check were removed?

17. Modify the main() function in Example 4-2 to use fgets() instead of scanf(). Is
this an improvement?

18. Invent a scheme to allow symbolic links to be transparent to strictly conforming POSIX
1003.1-1988 applications. Mail your solution to the author for a cash reward.

Page 85

Chapter 5
Advanced File Operations

This chapter covers the basic POSIX systems calls such as read(),write(),open(),
and close(). You might think that since these calls are some of the most basic building
blocks of the system, and since there is so much existing practice to look at, that there would
be few portability issues. Surprise! These routines have many more pitfalls than the
higher-level routines that use them.

When the C programming language was invented, it was designed to work with the UNIX
operating system. The original scheme had a C language library that made calls on the
operating system using system calls. The scheme is represented in Figure 5-1.

Figure 5-1. Traditional UNIX software layers

The ''high-level'' routines such as printf() and fread() would call more primitive
"low-level" system calls.

In a traditional implementation, the system calls were more efficient than the library, so some
programmers avoided using high-level calls. Today, there is no reason for this

Page 86

practice because many systems provide very high-performance libraries. For maximum
portability, the high-level routines are your best bet.

The Standard C and POSIX interfaces do not require a layered implementation. It is quite
possible to provide an alternate implementation, as shown in Figure 5-2.

Figure 5-2. Possible POSIX software layers

There is no reason to assume that the low-level routines provide any better performance than
the high-level ones. This is especially true when the application programmer does the work of

the high-level routines in the application.

There are times when you do need to use the primitive routines in your applications: they often
provide functions that are not available in the C library as well as more precise control over
the behavior of your program.

CAUTION

Since many of the systems you will use have the traditional layering of library functions and
system calls, mixing high-level functions (fprintf(),fgets(),fputs(), etc.) and the
low-level functions (read(),write(),lseek(), etc.) requires care. The section called
"Mixing the Levels" later in this chapter talks about the rules for mixing low- and high-level
functions.

Primitive File Operations

The primitive (or low-level) file operations can be thought of as the building blocks for more
complex functions, such as fprintf() and fscanf().

Page 87

File Descriptors

The primitive file operations all operate on file descriptors. A file descriptor is a small,
non-negative integer used to identify an open file. File descriptors are assigned in order (0, 1,
2, 3, ...) on a per-process basis. The number of open file descriptors is limited; however, the
limit is 16 or larger. The exact number is given by the symbol OPEN_MAX in the header file
<limits.h>.

Opening afile

The connection between a file descriptor and a file is established by the open() and
creat() functions. The open() function is used to assign a file descriptor for a new or
existing file. The function is defined as:

 int open(const char *path, int oflag, ...);

The ... indicates an unspecified number of additional arguments. It allows for an optional
third argument, a mode_t called mode that can be used to set the file permission bits when a
file is created.

The path argument is a string that names the file to be opened. It can be either an absolute
path (starting with a /) or a relative path.

The oflag argument is the bitwise inclusive OR of the values of symbolic constants. The
programmer must specify exactly one of the following three symbols:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Any combination of the following symbols can also be used:

O_APPEND Set the file offset to the end-of-file prior to each write.

O_CREAT If the file does not exist, allow it to be created. This flag indicates that the mode
argument is present in the call to open().

O_EXCL This flag may be used only if O_CREAT is also set. It causes the call to open()
to fail if the file already exists.

O_NOCTTY If path identifies a terminal, this flag prevents that terminal from becoming the
controlling terminal for this process. It prevents an application from
unintentionally acquiring a controlling terminal as a side-effect of open(). It is
always safe to set this flag for data files. O_NOCTTY has no effect if the file
being opened is not a terminal. See Chapter 8 for a description of terminal I/O.

Page 88

O_NONBLOCK Do not wait for the device or file to be ready or available. After the file is open,
the read() and write() calls always return immediately. If the process
would be delayed in the read or write operation, -1 is returned and errno is
set to EAGAIN instead of blocking the caller.

System V provides a flag called O_NDELAY that is similar to O_NONBLOCK
The O_NDELAY flag causes read() or write() to return zero instead of
blocking. Since read() also returns zero on end-of-file, it is difficult to
distinguish the two cases. BSD also has an O_NDELAY flag that causes the error
EWOULDBLOCK to be returned if the process would block. POSIX resolved this
incompat ibility by inventing the O_NONBLOCK flag. Port with care!

O_TRUNC This flag should be used only on ordinary files opened for writing. It causes the
file to be truncated to zero length.

Traditional UNIX systems used the values 0, 1, and 2 for O_RDONLY,O_WRONLY, and
O_RDWR. These values should be changed to macros. To allow your code to continue to work
on old systems, include the following:

 #ifndef 0_RDONLY
 #define O_RDONLY 0
 #endif
 #ifndef 0_WRONLY
 #define 0_WRONLY 1
 #endif
 #ifndef 0_RDWR
 #define O_RDWR 2
 #endif

The call:

 creat(path,mode);

is equivalent to:

 open(path, O_WRONLY | O_CREAT | O_TRUNC, mode);

and has the same portability issues.

Page 89

Reading from a File

The only low-level function for reading from a file is the read() function. It is defined as:*

 ssize_t read(int fildes, void *buf, size_t nbyte);

and reads nbyte bytes from the file open on fildes into buffer buf. The read() function
returns the number of bytes placed in the buffer. This value will never be greater than nbyte.
The value will be smaller than nbyte if the file has fewer bytes immediately available for
reading. If there is an error, a value of -1 is returned and errno is set.

That seems easy enough. What portability problems can it have? Here are a few:

• The standard does not specify exactly what happens on an error. It is almost impossible to
do portable error recovery if read() returns EIO.

• Section 6.4.1.2 of POSIX states, "If a read() is interrupted by a signal after it has
successfully read some data, either it shall return -1 with errno set to EINTR, or it shall
return the number of bytes read." Therefore, applications must treat EINTR as a fatal error
because they cannot tell if any data were lost.

The U.S. Government (in FIPS 151-1) requires that read() return the number of bytes
read. Since the Federal Government is the world's largest buyer of POSIX systems, it is a
good bet that most POSIX systems will return the number of bytes read.

• The nbyte argument has type size_t in IEEE Std 1003.1-1990, but has type
unsigned int in the 1988 standard and in most UNIX systems. It was changed because
the largest block that can be read in a single call is UINT_MAX bytes (65,535 on 16-bit
systems). Programs that need to operate using both the 1988 and 1990 standard should limit
reads to 65,535 or fewer bytes.

Writing to a File

The write() function writes to a file. This is defined as:

 ssize_t write(int fildes, const void *buf, size_t nbyte);

and attempts to write nbyte bytes from the buffer pointed to by buf to the file open on
fildes. The write() function returns the number of bytes written to the file. This may be
less than nbyte if an error occurred during the write operation. If an error

* The definition of read() uses two POSIX types: ssize_t and size_t. There are typdefs for
these in <sys/types.h>. A size_t is a type that can hold a number of bytes, for example,
unsigned long. A ssize_t is a signed size_t and is used because read() returns -1 if there
is an error. Unfortunately, this is one of the conflicts between IEEE Std 1003.1-1990 and IEEE Std
1003.1-1988. The 1988 standard defines read() as:

 int read(int fildes, char *buf, unsigned int nbyte);

Page 90

condition prevented any bytes from being written, -1 is returned and errno is set to indicate
the error.

The write() function has the same portability issues as read().

Fast File Copy Example

At this point, it is helpful to look at a simple example showing the use of read() and
write(). The following simple file copy program asks for an input path and an output path
and then copies the input to the output. We assume that both input and output files are ordinary
files. To make our copy program fast, the file is read in one large hunk and then written out.

The program that fills the bill is shown in Example 5-1.

EXAMPLE 5-1 ffcopy.c

#define _POSIX_SOURCE 1

#include <unistd.h>
#include <stdio.h>
#include <limits.h>
#include <sys/types.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "panic.h' /* Defines the PANIC macro */

#define HUNK_MAX INT_MAX
#define MAX_PATH 2048 /* It would be nice if POSIX
 * provided some way to determine
 * the longest path name a user
 * may need to type. Since there
 * is no way to get that number,
 * I am picking something large.
 */

int main()
{
char ifpath[MAX_PATH+1]; /* name of input file */
char ofpath[MAX_PATH+1]; /* name of output file */
char scanf_string[10]; /* argument string for
 scanf() */
struct stat ifstat; /* result of stat() call */
char *bigbuf; /* pointer to buffer */
int ifdes,ofdes; /* input/output file

 descriptors */
size_t hunk; /* number of bytes to
 transfer in one piece */
size_t left; /* number of bytes left to
 transfer */

 /* Build the string "%2048s" */
 (void)sprintf(scanf_string,"%%%ds",MAX_PATH);
 /* Get the input path */
 (void)printf("Input file: ");
 if (scanf(scanf_string,ifpath) != 1) PANIC;
 /* See if the file exists and how big it is */

Page 91

 if (stat(ifpath,&ifstat) != 0)
 {
 (void)perror("? Can not stat file");
 exit(EXIT_FAILURE);
 }
 left = hunk = ifstat.stsize; /* left is the amount left
 * to copy. Start it out
 * with the size of the
 * whole file.
 */
 if (hunk > HUNK_MAX) hunk = HUNK_MAX;
 /* Get a buffer for the whole file (or 1 hunk if the file
 * is too big.
 */
 if((bigbuf = (char *)malloc(hunk)) == NULL)
 {
 (void)fprintf(stderr,
 "? File is too big for fast copy\n");
 exit(EXITFAILURE);
 }
 /* Open the input file */
 if ((ifdes = open(ifpath,O_RDONLY)) == -1) PANIC;
 /* Now that we have the input file open, ask for the
 * path for the output file
 */
 (void)printf("Output file: ");
 if (scanf(scanf_string,ofpath) != 1) PANIC;
 /* Open the output file */
 if ((ofdes = open(ofpath,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR))
 == -1) PANIC;
 while (left > 0)
 {
 /* Read the file in one big bite */
 if (read(ifdes,bigbuf,hunk) != hunk)
 {
 (void)fprintf(stderr,
 "? Error reading file %s\n",ifpath);
 exit(EXIT_FAILURE);
 }
 /* Write out the copy */
 if(write(ofdes,bigbuf,hunk) != hunk)
 {

 (void)fprintf(stderr, " Error writing file %s\n",ofpath);
 exit(EXIT_FAILURE);
 }
 left -= hunk;
 if (left < hunk) hunk = left;
 }
 /* Close the files */
 if (close(ifdes) != 0) PANIC;
 if (close(ofdes) != 0) PANIC;

 /* Print out a status message */
 (void)printf("%s copied to %s (%d bytes)\n",
 ifpath,ofpath,ifstat.st_size);
 return(0);
}

There is an interesting portability sidelight here. On systems where an int is 32-bits, the file
will be copied using a single call to read() and a single call to write(). It is

Page 92

possible that a system has a 16-bit int and a 32-bit st_size. The read() and write()
functions use a size_t* for the number of bytes to transfer. It is possible that there are
systems that cannot read a large file with a single read() call. On these systems, large files
are broken up into multiple hunks.

Control Operations on a File

One of the reasons for using the low-level I/O functions is to get better control. The file control
function fcntl() is a multi-purpose function that performs various operations on open file
descriptors. The definition is:

 int fcntl(int fildes, int cmd, ...);

The exact arguments depend on the command, cmd, given. The commands are:

cmd Value Description

F_DUPFD Duplicate a file descriptor.

F_GETFD Get file descriptor flags.

F_GETLK Get record locking information.

F_SETFD Set file descriptor flags.

F_GETFL Get file status flags.

F_SETFL Set file status flags.

F_SETLK Set record locking information.

F_SETLKW Set record locking information; wait if blocked.

F_GETFD/F_SETFD

Every file descriptor has a close-on-exec flag. In the default case, the fork() and exec()**

function calls allow one process to inherit the open files from the parent process that created it.
That is how the shell passes stdin, stdout, and stderr to programs it runs.

Sometimes you do not want to pass an open file. If the file is not useful to the new program, it
not only uses up valuable open file slots, but also allows the child to interfere with the parent.
One way to prevent this is to set the close-on-exec flag for a file descriptor. The exec()
function will close that descriptor prior to starting the new program.

* The 1990 revision of 1003.1 quietly changed the type of this argument from unsigned int to
size_t

** These are described in detail in the next chapter.

Page 93

There may be fcntl() flags that are specific to a system but are not defined by POSIX. If we
want our code to be portable, we need to preserve those implementation-defined bits. You
set/unset only what you want and avoid the rest. The sequence:

 flags = fcntl(fildes,F_GETFD);
 fcntl(fildes,F_SETFD,flags | FD_CLOEXEC);

will set the close-on-exec bit. The sequence:

 flags = fcntl(fildes,F_GETFD);
 fcntl(fildes,F_SETFD,flags & -FD_CLOEXEC);

will clear the close-on-exec bit. All other bits are preserved.

F_GETFL/F_SETFL

Two of the flags that can be set in the open() call may be modified by the fcntl()
function. The O_APPEND and O_NONBLOCK flags may be changed while the file is open. The
most portable way to modify them is first to read the flags with:

 flags = fcntl(fildes,F_GETFD);

Then set any desired bits with a statement such as:

 flags |= O_NONBLOCK;

Next, clear any flags no longer desired:

 flags &= -(O_APPEND);

Finally, reset the flags with:

 fcntl(fildes,F_SETFD,flags);

This preserves any implementation-defined flags. The normal open flags, such as O_CREAT,
are also preserved by this technique. The POSIX standard does not specify what happens if you
attempt to modify these flags with fcntl(), and it is best not to try it.

You may wonder why POSIX defines both F_SETFD and F_SETFL. Can't we get away with
only one? Well, F_SETFD applies only to a single file descriptor. F_SETFL applies to all
file descriptors that share a common open file description, either by inheritance through
fork() or as the result of an F_DUPFD operation with fcntl(); for example:

 fd1 = open(path,oflags);
 fd2 = dup(fdl);
 fd3 = open(path,oflags);

An F_SETFD on fd1 applies only to fd1. An F_SETFL on fd1 applies to fd1 and fd2
but not to fd3.

Page 94

F_SETLK/F_SETLKW/FGETLK

POSIX supports a form of interprocess communication called "advisory record locking." This
feature is found in POSIX and System V Release 3 and later, but not in BSD. Record locking
lets one process indicate its intent to read or write part of a file. Other processes may observe
these intents. This is called advisory locking because the system does not supervise programs
that read or write locked files. The scheme depends on the good will and proper coding of
each application program.

Record locking is controlled by the flock structure. The flock structure contains the
following members:

Member
Type

Member
Type Description

short l_type One of the symbolic constants:
F_RDLCK: to indicate a read (shared) lock
F_WRLCK: to indicate a write (exclusive) lock
F_UNLCK: to remove a lock

short l_whence One of the symbolic constants: SEEK_SET, SEEK_CUR, or SEEK_END
to indicate that l_start is measured from the start of the file, the current
position, or the end of the file.

off_t l_start Relative offset in bytes.

off_t l_len The number of bytes to lock. This value should not be negative. If it is
zero, it indicates "until EOF."

pid_t l_pid Process ID of the process holding the lock; used only by the F_GETLK
function.

The F_SETLKW function sets and clears locks for a record. A call looks like:

 fcntl(fildes,F_SETLKW,flock_ptr);

where fildes is the file to lock and flock_ptr points to a struct flock. This call
can establish or remove shared or exclusive locks. If the lock is not available, the F_SETLKW
call will wait for some other process to unlock the lock.

The F_SETLK call is identical to the F_SETLKW call except when the lock is not available.
Instead of waiting, F_SETLK returns -1 and sets errno to EAGAIN.

The F_GETLK function is called with:

 fcntl(fildes,F_GETLKW,flock_ptr);

and searches for a lock that would block the one in the struct flock pointed to by
flock_ptr. If no lock is found that would prevent this lock from being created, the lock type
is set to F_UNLCK. Otherwise, the structure is overwritten with lock information for an
arbitrarily chosen lock.

Page 95

You can build a simple semaphore system using advisory record locking. A file can be used as
an array of locks. You do not need to read or write the file to use record locking.

F_DUPFD

The final use for fcntl() is to duplicate an open file descriptor. The call:

 fcntl(fildes,F_DUPFD,minfd)

returns a new file descriptor which is associated with the same open file as fildes and is
greater than or equal to minfd. If minfd is unused then that is the file descriptor that will be
used. Otherwise, the lowest numbered unused file descriptor greater than minfd is returned.

The new file descriptor shares any locks with the original file. The close-on-exec flag for the
new descriptor is clear.

Setting the File Position

I covered the fseek() function in Chapter 3, Standard File and Terminal I/O. The
lseek() function does exactly the same thing (sets the position of the file), except that it
operates on file descriptors instead of on streams. The function is defined as:

 off_t lseek(int fildes, off_t offset, int whence);

The whence argument is either:

Argument Meaning

SEEK_SET To set the file position to offset.

SEEK_CUR To set the file position to be the current position plus offset.

SEEK_EOF To set the file position to be the end-of-file plus offset.

The file position may be set beyond the current end-of-file. If data is written at this point, the
gap is filled with zeros.*

The lseek() function returns the resulting offset measured as the number of bytes from the
beginning of the file. In case of error, it returns ((off_t) -1) and sets errno to indicate
the error.

Seeking is portable only for disk files. The effect of lseek() on pipes, FIFOs, terminals, and
other non-disk devices is undefined. In System V and BSD, an lseek() on a device
incapable of seeking has no effect. You should not count on all systems providing such benign
results.

* The standard does not actually specify that zeros are written into the file, only that an attempt to
read the gap shall return zeros. It is possible to implement a system with ''sparse'' files where no disk
space is used for the holes.

Page 96

In historical UNIX implementations, seek() used an offset of type int and lseek()
(which was added later) used an offset of type long. Today, seek() is obsolete. POSIX
defined the offset for lseek() as an off_t. All useful POSIX systems will define off_t
as a long or larger. You can safely assume that lseek() will work on files of a billion bytes.

The dup() and dup2() Functions

The function dup(fildes) is equivalent to:

 fcntl(fildes,F_DUPFD,0)

and saves some typing.

The function dup2(fildes,fildes2) is more or less equivalent to:

 close(fildes2);
 fcntl(fildes, F_DUPFD, fildes2);

but dup2() is considered outdated and should not be used in new programs. Use the
close()/fcntl() combination instead because it does a better job of error reporting.

Closing a File

When you are done with a file, the close() function should be used to deallocate the file
descriptor and clean up the file. When our program terminates, all of the open files are closed.
There are still good reasons for explicitly calling close() for each file:

• Open files are a limited resource. It is a good idea to give them back as soon as possible.

• It is always a good idea to check for errors. If you let exit() close your open files,
errors will be ignored.

The close() function is about as portable as you can get.

FIFOs and Pipes

One of the original ideas of the UNIX system was to build complex programs out of simple
ones. A pipeline allows you to use the output of one program as the input to the next program.

A pipe is a type of file where one process writes to one end and another process reads from the
other end. Pipes are created by the pipe() function, which is defined as:

 int pipe(int fildes[2]);

Page 97

It places an open file descriptor into fildes[0] and fildes[1]. The file descriptor in
fildes[0] is the read end of the pipe and the file descriptor in fildes[1] is the write
end of the pipe.

Pipes are quite portable. POSIX defines a number of properties for pipes. You can count on all
POSIX systems supporting these features. Older UNIX systems may or may not support these
properties and your program will be more portable if you do not depend on these properties.

• There is no file offset associated with a pipe. Each write appends to the end of the pipe.

• A write of fewer than PIPE_BUF bytes is atomic; the data will not be interleaved with
data from other processes writing to the same pipe. A write of more than PIPE_BUF may
have data interleaved in arbitrary ways.

For example, if PIPE_BUF is 5120,* a write of 5000 bytes will be contiguous. A write of
6000 bytes may be broken into 60 100-byte chunks.

• If O_NONBLOCK is not set, a write will return after writing all the requested data.

• If O_NONBLOCK is set, a write of fewer than PIPE_BUF bytes will either write the entire
buffer or write nothing. A write of more than PIPE_BUF bytes will write what it can.

You can also create a "named pipe" or FIFO using the mkfifo() function. This is defined as:

 int mkfifo(const char *path, mode_t mode);

and creates a new FIFO special file named by the string pointed to by path. The file
permission bits of the new FIFO are set from mode. Permission bits and the mode argument
were described in Chapter 4, Files and Directories.

Because pipes are used for interprocess communication, I will leave the discussion for the next
chapter.

File Creation Mask

There is one file operation that does not fit into any other category: set file creation mask. Each
process has a file creation mask. The open(), creat(), mkdir(), and mkfifo() calls
use the file creation mask to turn off permission bits when they create files. For example,
setting the S_IRWXO bits in the mask would turn off read, write, and execute permission bits
for the "other" class.

* The value of PIPE_BUF is usually 4096 or 5120. POSIX requires that it must be 512 or greater.

Page 98

The umask() Function

The umask() function is defined as:

 mode_t umask(mode_t cmask);

It sets the file creation mask to cmask and returns the previous value. No errors are detected.

The umask() function itself is very portable. Programs developed where the umask value of
000 (no protection) is used may not work in a high security environment where the umask
value may be 077. It is a good idea to test your applications with a umask value of 077. You
can avoid this problem by executing a umask(0) at the start of your program; however, that
may not be what the end-user of your software wants.

Mixing the Levels

Sometimes you need to perform a low-level call on a file you are using at a high level. For
example, you may want to set the close-on-exec flag for a stream. In other cases, you may need
to convert a file descriptor to a stream; for example, to write a pipe using fprintf() calls.
There are some handy functions to perform this mapping.

The fdopen() Function

The fdopen() function associates a stream with a file descriptor. The function is defined as:

 FILE *fdopen(int fildes, const char *type);

The fildes argument is the file descriptor you want to convert. The type argument is
exactly the same as described in Chapter 3, Standard File and Terminal I/O, for fopen()
except the file is never truncated.

In general, the functions described in Chapter 3 are more portable than the ones described in
this chapter. The fdopen() call is a handy way to avoid using the low-level routines when
you are given a file descriptor.

The fileno() Function

The fileno() function returns the file descriptor associated with a stream. It is defined as:

 int fileno(FILE *stream);

A return value of -1 indicates an error; however, fileno() is not required to detect an
invalid argument and I am sure that some systems do not.

The file number returned by fileno() can be used by the functions described in this chapter.
For example, fcntl() can be used to lock and unlock records.

Page 99

Pitfalls

Accessing a single open file description using both streams and file descriptors can cause
problems. Attempting to write a file using both fprintf() and write(), for example, can
cause data to be written out of order and may work differently from system to system.

There are safe operations. For example, fcntl() can be used to perform record locking
while fread() and fwrite() are used to update the file.

If all of the operations that could affect the file offset (for example read(), write(),
lseek(), scanf(), printf(), and so on) are done exclusively through streams,
everything will work correctly. If all of the operations that could affect the file offset are done
exclusively through file descriptor calls, everything will work correctly.

If you have been exclusively using file descriptor functions (read(), write(),
lseek()) to access the file, you can switch to using stream functions exclusively
(fgets(),fputs(), etc.) at any point.

To switch from using stream functions exclusively to using file descriptor functions, special
care must be used. If the stream is unbuffered and the ungetc() function has not been used,
you can switch to using file descriptor functions.

In most other cases* the interaction is not defined and the functions should not be mixed.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. If you were to write a routine to simulate the library function printf() and call the
write() function directly from your code, would it be faster or slower than the library
routine. Why?

2. What is the effect of setting the O_CREAT flag when opening an existing file?

3. The fast file copy example program in this chapter claims to be fast because it uses only
one read and one write to copy the entire file. When might this be slower than using several
reads and writes?

* There are a number of obscure cases which are still defined. For example, if a file is open for read
and positioned at the end of the file, we can freely switch between fread() and read().

If there is an overwhelming reason to mix stream-based and descriptor-based I/O, read section 8.2.3
of the POSIX standard several times.

Page 100

4. Why is the sequence:

 flags = fcntl(fildes,F_GETFD);
 fcntl(fildes,F_SETFD,flags | O_NONBLOCK);

a better way to set the O_NONBLOCK flag for a file than the following?

 fcntl(fildes,F_SETFD,O_NONBLOCK);

5. Assume an application opens a file and sets some exclusive record locks. While the file is

open, you attempt to copy it using the fast file copy example program given in this chapter.
What would happen? Why?

6. Why would one use lseek() instead of fseek()?

7. Why would an application call umask()? Why not just set the permission bits correctly in
the call to open()?

8. What practical reason is there for the use of the fileno() function? What about
fdopen()?

9. What problems might occur if printf() and write() are intermixed writing a file?
How can these problems be eliminated?

Page 101

Chapter 6
Working with Processes

This chapter covers process creation, process termination, and signals. Process creation
involves the fork() and exec() calls, that are familiar to a UNIX programmer. Process
termination involves the wait() and waitpid() calls. POSIX.1 adds some new ideas
here: signals are different in POSIX. Although based on Berkeley signals, the POSIX library
defines different functions that have somewhat different behavior than what you may be
familiar with from using BSD.

Process Creation

The fork() and exec() functions are present in all UNIX systems, and POSIX documented
the common existing practice. In this section, we look at the process creation features that
POSIX guarantees to be portable.

The fork() Function

A process is created with the fork() system call. It takes no arguments and creates a new
process called a child. If it fails, it returns -1.

The original process is called the parent, the child is an exact copy of the parent except for the
following:

• The child process has a unique process ID.

• The child's parent process ID is set to the process ID of the process executing the fork().

• The child has its own copy of the parent's file descriptors. The child has access to all of the
parent's open files.

• The child's run time is set to zero.

• Pending alarms are cleared for the child.

• The set of pending signals is set to the empty set.

• File locks are not inherited.

The child starts out life right after the fork() call that created it. The fork() call returns
zero to the child and returns the process ID of the newly created child to the parent. A program
that calls fork() typically tests the return value and does one thing in the parent and
something different in the child.

Page 102

The fork() call is very portable. BSD has a special flavor of fork() called vfork().
The vfork() call is a special case designed to speed up the fork()/exec() operation.
You may replace a BSD vfork() operation with fork() to make your program more
portable. You can also do the following:

 #ifdef BSD
 pid = vfork();
 #else
 pid = fork();
 #endif

to retain the performance boost on BSD systems while being POSIX-conforming.*

The exec() Family of Function

A child process can run another program. For example, most commands cause the shell to
fork a new process and then exec a program.

There is no function named exec(): instead, there is a family of similar calls, each of which
have slightly different arguments. The family is:

 int execl(const char *path, const char *arg, ...);
 int execv(const char *path, char * const argv[]);
 int execle(const char *path, const char *arg, ...);
 int execve(const char *path, char * const argv[],
 char * const *envp);
 int execlp(const char *file, const char *arg, ...);
 int execvp(const char *file, char * const argv[();

The exec family of calls replaces the current process image with a new program. The new
program is read from an ordinary executable file. There is no return from a successful exec;
instead, the new program is started.

The main() function in the new program is called as:

 int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The

argv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the argv array is not counted in argc.

The argument file should contain just the filename of the new program. The path prefix for
this file is obtained by a search of the directories passed as the environment variable PATH.
The call execlp("more","more",(char*)0); looks for more in each directory in the
search path.

* The BSD vfork() function must be followed by an exec.

Page 103

The argument path points to a pathname that identifies the file to be executed. No searching
takes place on calls with a path argument.

The const char *arg and subsequent ellipses in the execl(), execlp(), and
execle() functions can be thought of as a list of one or more pointers to null-terminated
character strings that represent the argument list available to the new program. The first
argument should point to a file containing the program to be started, and the last argument
should be a NULL pointer. For the execle() function, the environment pointer follows the
NULL pointer that terminates the argument list.

The argument envp to execve(), and the final argument to execle(), name an array of
character pointers to null-terminated strings. These strings constitute the environment for the
new process. The environment array is terminated by a NULL pointer. For
execl(),execv(),execlp(), and execvp(), the environment for the new program is
inherited from the caller.

When you terminate the list with NULL, make sure that you cast it to a pointer with (char *).
On some 80x86 or 680x0 systems, an int is 16 bits but a pointer is 32 bits. A naked zero will
not work on those systems.

The POSIX standard does not say exactly what is a legal "executable file." This is intentional.
Systems based on BSD allow shell scripts as executable files, while AT&T systems do not.*

Some systems allow shell scripts for the execlp() and execvp() functions but for no
others. If the file you are trying to execute is not executable, the call will return -1 with
errno set to ENOEXEC.

The requirements for an application state that the value passed as the first argument must be a
filename associated with the process being started. When you exec() a program, you should
pass the filename (not the full path) as argv[0]. The most common usage of argv[0] is in
printing error messages. The' standard does not say that argv[0] must be the actual filename
of the executable file. For example, the login utility may prefix the filename with a hyphen to
indicate to the command interpreter being invoked that it is a "login shell."

Example: Piping Output Through more

The actions of fork() and exec can be made much clearer by using an example. Consider
the sample program at the end of Chapter 3, Standard File and Terminal I/O. This program
writes square roots to a file. Let's modify the program to display the square roots on the screen.

To allow the user to control the output, we will use the more program to display the results.

* This applies only to the exec() functions.

Page 104

All we need to do is replace the write_file function with a new function to send the output
to the display. Here is what that new function looks like:

void display(long start,long stop)
{
FILE *fileid;
int fildes[2];
long i;
double f;
int status;

/* The first thing we do is create a pipe. The array fildes
 * contains a file descriptor for each end of the pipe,
 * where fildes[0] is the "read" side and fildes[1] is
 * the "write" side.
 */
 if (pipe(fildes) != 0) PANIC;

/* Next we attempt to create a child using the fork()
 * function. This has three possible returns: failure,
 * normal return to child, and normal return to the parent.

 * The switch statement covers the first two cases. Failure
 * is detected and a PANIC message is issued. Otherwise, we
 * get things set for the child.
 */
 switch (fork())
 {
 case -1:
 PANIC;
 break;
 case 0:
/*
 * This is the child.
 * The first step here is to change the child's
 * standard input to be the pipe we just created.
 * Doing this uses an old UNIX trick. We close
 * the existing STDIN file and then call
 * dup() to create a new descriptor. This
 * will use the lowest available file descriptor.
 * Since we just closed STDIN, dup() will reuse it
 * and standard input will be connected to the
 * pipe.
 *
 * It is now required to close the child's side of
 * both fildes[0] and fildes[1]. The child will
 * see EOF, when all writers of the pipe close
 * their side. If we forgot to close the side
 * inherited from the parent, the program would

 * never terminate.
 */
 if (close(STDIN_FILENO) != 0) PANIC;
 if (dup(fildes[0]) ! STDIN_FILENO) PANIC;
 /* Close left over file descriptors */
 if (close(fildes[0]) != 0) PANIC;
 if (close(fildes[l]) != 0) PANIC;
/* The final step for the child is to replace
 * itself with the more program. The execlp()
 * function does that for us.
 */

Page 105

 execlp("more","more",(char *)0);
 PANIC; /* Should never return */
 }
 /*
 * This is the parent
 */

/* In the meantime, the parent will skip both cases of the
 * switch statement and hit the call to fdopen(). The
 * fdopen() function converts a file descriptor to a stream.
 * This allows the use of standard I/O functions, like
 * fprintf() to do our output.
 */
 fileid = fdopen(fildes[l],"w");
 if (close(fildes[0]) != 0) PANIC;
 if (fprintf(fileid," N SQRT(N)\n") < 0)
 PANIC;
/* Next, we do all our computing. The output will flow
 * through the pipe to the more program which will display
 * it.
 */
 for (i=start; i <= stop; i++)
 {
 f = (float)i;
 if (fprintf(fileid, "%10.0f %10.6f\n",
 f,sqrt(f)) < 0)
 {
 perror("Error writing output file");
 abort();
 }
 }

/* When we have computed all of our results, we close fileid.
 * This causes more to see EOF and exit. Note: the fclose()
 * function will perform a close() on fildes[1] as part of
 * its work. We do not have to (can't) close it again.
 */
 if (fclose(fileid) != 0) PANIC;

/* The last step is the wait(). This waits for more to exit.*/
 (void)wait(&status);
}

Portability Note

The first argument to execlp() is "more". This will cause the execlp() function to
search the path specified by the PATH environment variable. This may not get us the system
utility more. You may instead find some other program called more. This is a security hole (or
at least a reliability hole).

Another choice is to build in the absolute pathname for the more utility. Something like
/bin/more will work on many UNIX systems but is not guaranteed to work on all POSIX
systems.

A third choice is to have some sort of installation procedure which asks for a path name for
more and includes it as part of building this application. This is one of the more common
techniques used today.

Page 106

When POSIX.2 is an approved (and implemented) standard, it will specify functions to find the
system utilities. Until then you will have to use one of the ideas given above.

Process Termination

You sometimes need to wait for children processes to complete their work. You also need to
terminate the current program and other programs. Let's look at some of the ways of doing this.

The wait() and waitpid() Functions

In the previous example we used the wait() function to make sure that more was done. Let's
now look at wait() in some more detail. The function is defined as:

 pid_t wait(int *stat_loc);

and waits for status to become available for a child process. A call to wait() with an int
* parameter is very portable and works on all UNIX systems.

The wait() function returns the process ID of a terminated child. If the argument stat_loc
is not NULL, information is stored in the location pointed to by stat_loc. If the child
returned a value of zero from main() or passed a value of zero to exit(), the value stored
in the location pointed to by stat_loc will be zero. The status value can interpreted using
the following macros:
WIFEXITED(stat_value)

Evaluates to a non-zero value if status was returned for a
child that terminated normally.

WEXITSTATUS(stat_value)
Evaluates to the low-order eight bits of the status
argument that the child passed to exit(), or the value the
child process returned from main(). This macro can be
used only if WIFEXITED returned a non-zero value.

WIFSIGNALED(stat_value)
Evaluates to a non-zero value if status was returned for a
child that terminated due to a signal that was not caught.

child that terminated due to a signal that was not caught.
WTERMSIG(stat_value)

Evaluates to the number of the signal that caused the
termination of the process. This macro can be used only if
WIFSIGNALED returned a non-zero value.

WIFSTOPPED(stat_value)
Evaluates to a non-zero value if the status was returned for
a child that is currently stopped. The waitpid() function
with the WUNTRACED option is the only way this value can
be returned.

* Signals are covered in detail later in this chapter.

Page 107

WSTOPSIG(stat_value) Evaluates to the number of the signal that caused the child
process to stop. This macro can be used only if
WIFSTOPPED returned a non-zero value.

Here is how you might use these macros:

 pid = wait(&s); /* s gets termination status
 * of child
 */
 if (pid==-l) PANIC;
 if ((WIFEXITED(s) != 0) && ((WEXITSTATUS(s) != 0))
 fprintf(stderr,"Child exited with code %d\n",
 WEXITSTATUS(s));
 if (WIFSIGNALED(S))
 fprintf(stderr,"Child died with signal %d\n",
 WTERMSIG(s));

These macros are POSIX inventions so they will not work on older systems. The following
definitions will work on most BSD and System V systems:

 #define LO(s) ((int)((s)&0377))
 #define HI(s) ((int)(((s)>>8)&0377))

 #define WIFEXITED(s) (LO(s)==O)
 #define WEXITSTATUS(s) HI(s)
 #define WIFSIGNALED(s) ((LO(s)>0)&&(HI(s)==0))
 #define WTERMSIG(s) (LO(s)&0177)
 #define WIFSTOPPED(s) ((LO(s)==0177)&&(HI(s)!=0))
 #define WSTOPSIG(s) HI(s)

Traditional UNIX systems provided only the wait() function. The POSIX working group felt
the need for better control and added the waitpid() function. It is defined as:

 pid_t waitpid(pid_t pid, int *stat_loc, int options);

The pid argument is one of the following:

-1 To wait for any child process. This is the same as wait().

To wait for any child process. This is the same as wait().

positive To wait for the specific child whose process ID is equal to pid.

zero To wait for any child process whose process group ID is equal to that of the calling
process.

less than -1 To wait for any child process whose process group ID is equal to the absolute value of
pid.

Process groups are normally used only by shells supporting job control and not by ordinary
applications. This book does not discuss process groups.

The options argument is constructed from the bitwise OR of zero or more of the following
flags, defined in the header <sys/wait.h>:

Page 108

WNOHANG Causes the waitpid() function not to suspend execution of the calling process if
status is not immediately available for any of the child processes specified by pid

WUNTRACED Causes the status of any child processes specified by pid that are stopped, and
whose status has not yet been reported since they stopped, to be reported to the
calling process. This is normally used only by the shell program to support job
control.

By the way, the name WUNTRACED comes from BSD. BSD supports several other
functions that are not part of POSIX, so the name made sense in the BSD context.

The wait() and waitpid() functions release any resources that the child was using. If you
do not care about the final status of the child, it is not good enough to simply omit the wait()
or waitpid() call. A common way to produce a child that does not need to be waited for is
to fork() a child and wait() on the child. The child performs another fork() to produce
a grandchild. The child then exits and the parent's wait returns. The grandchild is thus
disinherited by the grandparent. The spawned grandchild will release all its resources when it
terminates because there is no process left to wait for it. This technique is much more portable
than the alternative:

 system("command &");

which depends on features that are outside the scope of POSIX.1.

Terminating the Current Process

There are four ways to terminate the current process:

• Returning from main().

• Calling exit().

• Calling _exit().

• Calling abort().

Let's look at them in detail.

Returning from main()

The normal way for a program to terminate is to execute a return (EXIT_SUCCESS) statement
from the main() function. The action of returning a value from main() is exactly the same
as calling exit() with that value.

Executing a return with no value is not portable.

Page 109

Calling exit()

The exit() function causes normal program termination. The EXIT_SUCCESS macro can
be used to indicate successful termination. Since the POSIX standard requires that
EXIT_SUCCESS be defined as zero, it is safe to write exit(0), keeping with historical
practice. The call exit(0) is extremely portable.

The exit() function performs the following functions:

1. All functions registered by the Standard C atexit() function are called in the reverse
order of registration. If any of these functions calls exit(), the results are not portable.

2. All open output streams are flushed (data written out) and the streams are closed.

3. All files created by tmpfile() are deleted.

4. The _exit() function is called.

Calling _exit()

The _exit() function performs operating system-specific program termination functions.
These include:

1. All open file descriptors and directory streams are closed.

2. If the parent process is executing a wait() or waitpid(), the parent wakes up and
status is made available.

3. If the parent is not executing a wait() or waitpid(), the status is saved for return to
the parent on a subsequent wait() or waitpid().

4. Children of the terminated process are assigned a new parent process ID. Note: the
termination of a parent does not directly terminate its children.

5. If the implementation supports the SIGCHLD signal, a SIGCHLD is sent to the parent.

6. Several job control signals are sent.

7. All of the resources used by the process are returned.

Portable programs should use exit() instead of _exit(). The _exit() function exists
mainly because of the structure of traditional implementations and also the structure of
standards committees. The exit() function is defined by the C standard with some features
that are beyond the scope of POSIX. The only reason for an application to call _exit() is to
defeat the flushing of streams and the calling of functions registered by atexit().

Page 110

Calling abort()

The abort() function causes abnormal program termination. Exactly what that means is not
well-defined.

Portable applications should avoid using abort() except in the case of fatal errors. On some
systems, it may provide useful debugging information, such as a core file.

Terminating Another Process

The kill() function can be used to terminate another process. For example:

 kill(pid,SIGKILL);

will kill the process identified by pid. It returns zero on success and -1 on failure.

In general, it is safe and legal to kill your children and their children. It may be legal to kill
other processes in the system; however, ordinary applications should not kill any process that
they did not create (or cause to be created).

The kill() function can be used for other functions unrelated to terminating a process.
kill() is discussed in greater detail later in this chapter.

Signals

Signals inform a process of the occurrence of an event. There are two general types of events:

Errors For example, division by zero, illegal instruction, or an invalid memory
reference.

Asynchronous events For example, termination of a child or parent process.

The general concept of signals is as old as UNIX. Early versions of UNIX had a number of
design flaws in the signal mechanism. The BSD system fixed many of these problems, and the
signals standardized by POSIX are very similar to BSD signals with a few improvements.

Each process has an action to be taken in response to each signal defined by the system. A
signal is delivered to a process when the appropriate action is taken.

During the time between the generation of a signal and the delivery of that signal, the signal is
pending. In most cases, this interval cannot be detected by an application. However, a signal

can be blocked.

Each process has a signal mask that defines the set of signals currently blocked from delivery
to it. The signal mask from a process is inherited from its parent. The sigaction(),
sigprocmask(), and sigsuspend() functions control the manipulation of the signal
mask.

Page 111

One of several actions is taken when a signal is delivered:

• The process is terminated.

• The signal is ignored.

• The process is stopped.

• The process is continued.

• The signal is caught by a signal-handling function in the application.

There is a set of standard signals which a process can use. These signals are:

SIGABRT Abnormal termination signal caused by the abort() function. A portable program
should avoid catching SIGABRT.

SIGALRM The timer set by the alarm() function has timed-out.

SIGFPE Arithmetic exception, such as overflow or division by zero.

SIGHUP Hangup detected on controlling terminal or death of a controlling process.

SIGILL Illegal instruction indicating a program error. Applications may wish to catch this signal
and attempt to recover from bugs. A portable program should not intentionally generate
illegal instructions.*

After a SIGILL is caught, the only portable thing to do is to siglongjmp() back to
a known place in your program (or call exit()).

SIGINT Interrupt special character typed on controlling keyboard.

SIGKILL Termination signal. This signal cannot be caught or ignored.

SIGPIPE Write to a pipe with no readers.

SIGQUIT Quit special character typed on controlling keyboard.

SIGSEGV Invalid memory reference. Like SIGILL, portable programs should not intentionally
generate invalid memory references.

SIGTERM Termination signal.

SIGUSR1 Application-defined signal 1.

Application-defined signal 1.

SIGUSR2 Application-defined signal 2.

Unless the application changes the action, any of the above signals cause the abnormal
termination of the process.

* Even non-portable programs should avoid intentionally generating illegal instructions. What
happens if a new model defines the instruction to do something?

Page 112

There is also a set of job control signals. They are:

SIGCHLD Child process terminated or stopped. By default, this signal is ignored.

SIGCONT Continue the process if it is currently stopped; otherwise, ignore the signal.

SIGSTOP Stop signal. This signal cannot be caught or ignored.

SIGTSTP Stop special character typed on the controlling keyboard.

SIGTTIN Read from the controlling terminal attempted by a member of a background process
group.

SIGTTOU Write to controlling terminal attempted by a member of a background process group.

Most systems will have signals in addition to those listed here. The POSIX interface allows an
application to manipulate the signals it knows about without disturbing the signals it does not
know about.

Signal Actions

There are three types of actions that can be associated with a signal: SIG_DFL, SIG_IGN, or
a pointer to a function. The actions for these values are:

SIG_DFL Signal-specific default action.

SIG_IGN Ignore the signal.

It is possible to ignore SIGFPE, SIGILL, and SIGSEGV; however, programs with
illegal instructions, erroneous arithmetic operations, and invalid memory references
are not portable.

The default for SIGCHLD is to ignore the signal. Applications that wish to ignore
SIGCHLD should set the action to be SIG_DFL, not to SIG_IGN.*

Pointer to a function to catch signal

Pointer to a function to catch signal

On delivery of the signal, the receiving process executes the signal-catching function.
After returning from the signal-catching function, the process resumes execution.

Signal-Catching Functions

A signal-catching function receives control when a signal is delivered. A signal is somewhat
like an unseen hand placing a call statement in the middle of our program—the signal-catching
function gets control and is able to do things. When the signal catcher returns, the interrupted
program continues without a trace.

* If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is unspecified.

Page 113

There are some cautions that a signal-catching function must observe:

• While a portable program can catch errors such as illegal instructions; it should not assume
that it can continue from a SIGFPE, SIGILL, or SIGSEGV signal. Thus a portable
program can establish signal catchers to be more robust, but it should not depend on illegal
instructions or invalid memory references.

• The program may be in the middle of some function when the signal is delivered. It is not
safe to call arbitrary functions from a signal-catching function. The following library
functions are defined by the standard as safe:

_exit() getegid() rename() tcdrain()
access() geteuid() rmdir() tcflow()
alarm() getgid() setgid() tcflush()
cfgetispeed() getgroups() setpgid() tcgetattr()
cfgetospeed() getpgrp() setsid() tcgetpgrp()
cfsetispeed() getpid() setuid() tcsendbreak()
cfsetospeed() getppid() sigaction() tcsetattr()
chdir() getuid() sigaddset() tcsetpgrp()
chmod() kill() sigdelset() time()
chown() link() sigemptyset() times()
close() lseek() sigfillset() umask()
creat() mkdir() sigismember() uname()
dup2() mkfifo() sigpending() unlink()
dup() open() sigprocmask() ustat()
execle() pathconf() sigsuspend() utime()
execve() pause() sleep() wait()
fcntl() pipe() stat() waitpid()
fork() read() sysconf() write()
fstat()

All other library functions (including printf() and friends) are unsafe and should not be
called from signal-catching functions.

Examine and Change Signal Action

Both Standard C and the POSIX standard define a set of signal-handling functions. The
Standard C functions are limited. They may be useful for programs that need to operate on
non-POSIX systems, such as MS/DOS or System V.3.

Standard C Signals

First, the C Standard defines only a subset of the POSIX signals. These signals are:

SIGABRT Abnormal termination signal. This is caused by the abort() function. Standard C
suggests that other events may cause SIGABRT; however, it does not say what those
events might be.

SIGFPE Arithmetic exception, such as overflow or division by zero.

* IEEE Std 1003.1-1988 defines ustat() as safe to call from signal-catching function. The POSIX
standard never defines ustat(), and it was deleted from the 1990 revision.

Page 114

SIGILL Illegal instruction.

SIGINT Interrupt special character typed on controlling keyboard.

SIGSEGV Invalid memory reference.

SIGTERM Termination signal.

Standard C does not require that any of these signals be generated. An illegal memory
reference may, or may not, generate a SIGSEGV.

The Standard C function used to specify signal handling is called signal() and is defined
by:

 void (*signal(int sig, void(*func)(int)))(int);

where sig is a signal number. The func argument is a pointer to a signal-catching function or
to one of the following macros:

SIG_DFL Set the signal to the default action.

SIG_IGN Ignore the signal.

For example:

 signal(SIGINT,SIG_IGN);

will cause the interrupt key (usually Control-C) to be ignored, and:

 signal(SIGSEGV,oops);

will cause the function oops(SIGSEGV) to be called on illegal memory references.

Standard C also defines the raise() function as:

 int raise(int sig);

to send signal sig to the executing program. The raise() function returns zero if successful
and non-zero if unsuccessful. The raise() function should be used only in programs that
need to meet the C standard and do not use any POSIX features. The raise() function is
more portable than kill() for non-POSIX systems that conform to the C standard. The
kill() function is much more portable to older UNIX systems.

POSIX Signals

The Standard C signal() function has several problems:

• There is no way to determine the current action for a signal. This means that a called
function cannot use the signal() function without disturbing the caller. There is no way
to save and restore signal state.

• When a signal occurs, there is no way to block other signals to keep the signal handler from
being interrupted.

Page 115

• There is no way for an implementation to cleanly extend the signal mechanism.

The POSIX-defined signal functions correct these problems.

The main function for manipulating signals is sigaction(). It is defined as:

 int sigaction(int sig, const struct sigaction *act,
 struct sigaction *oact);

The sigaction structure is defined in the header <signal.h> to include the following
members:

Member Type Member Name Description

void(*)() sa_handler SIG_DFL for the default action.
or:
SIG_IGN to ignore this signal.
or:
pointer to the signal-catching function.

pointer to the signal-catching function.

sigset_t sa_mask Additional signals to be blocked during the execution of the
signal-catching function. (sigset_t and blocked signals will
be defined soon.)

int sa_flags This member is used only for the SIGCHLD signal. If the value
SA_NOCLDSTOP is used, then SIGCHLD will not be generated
when children stop.

There may be other flags defined by a particular implementation.
A portable program should not use them. It should not be
disturbed by them either.

The sigaction() function sets the structure pointed to by oact to the old action for signal
s ig and then takes the action indicated by the structure pointed to by act.

There may be additional members in a given implementation's struct sigaction.
Portable programs are guaranteed that these members will not affect them. To use
implementation-defined members, implementation-defined flags must be set.

Page 116

Example: Read with a timeout

Before getting too deeply into signals, it would be useful to go through a complete example.

The following program reads a line from the user. If the user does not type anything for 30
seconds, the SIGALRM signal will interrupt the read and the gettext() function will return
zero. The caller of gettext() can then take some alternate action, such as, giving the user
some help.

The program looks like this:

 #define _POSIX_SOURCE 1

 /* System Headers */
 #include <stdio.h>
 #include <signal.h>
 #include <unistd.h>

 /* Local Headers */
 #include "panic.h"

 /* Macros */
 #define TIMEOUT 30
 #define TRUE 1
 #define FALSE 0

 /* File scope variables */
 volatile int flag; /* The keyword volatile warns the
 * compiler that the variable flag
 * may change in a way that is not

 * predictable by the compiler.
 */

 /* External variables */
 /* NONE */

 /* External functions */
 /* NONE */

 /* Structures and Unions */

 /* Signal Catching Functions */

 /*
 * The ding() function catches the SIGALRM signal and
 * merely sets flag to FALSE.
 */
 void ding()
 {
 flag = FALSE;
 return;
 }

 /*
 * The gettext function reads a line from the user's
 * console. If the line is not typed within TIMEOUT
 * seconds, the gettext() function aborts the read and

Page 117

 * returns zero.
 */
 int gettext(char *buffer,int bufsize)
 {
 struct sigaction act,oact;
 int nchars;

 act.sa_handler = ding; /* Call ding() when the
 * alarm goes off
 */
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 if (sigaction(SIGALRM,&act,&oact) != 0) PANIC;
 flag = TRUE;
 (void)alarm(TIMEOUT);
 nchars = read(STDIN_FILENO,buffer,bufsize);
 (void)alarm(0); /* Cancel outstanding SIGALRM (if any) */
 /* Restore previos signal handler for SIGALRM */
 if (sigaction(SIGALRM,&oact,NULL) != 0) PANIC;
 if (flag) return(nchars);
 return(0);
 }

Signal Sets

The POSIX standard allows a great deal of flexibility for an implementation while still
providing portable interfaces. This is evident in the type sigset_t, which holds some sets of

signals. On some systems, it may be a simple int with one bit per signal. BSD uses a long for
signal sets. On other systems, it may be a complex structure with version numbers, lists of
signals, or other extensions.

Because an application program does not know the format of a signal set, several functions are
provided to operate on signal sets. All of these functions are new to POSIX.

The sigemptyset() Function

The sigemptyset() function is defined by:

 int sigemptyset(sigset_t *set);

and is used to initialize the signal set pointed to by set. All signals are excluded from the set.

The sigfillset() Function

This is the same as sigemptyset(), except all signals are included.

The sigaddset() Function

The sigaddset() function is defined by:

 int sigaddset(sigset_t *set, const int signo);

and adds the signal specified by signo to the set pointed to by set.

Page 118

This function will return zero if signo is valid. It will return -1 and set errno to EINVAL
if the signal number is invalid.

The sigdelset() Function

This function is the same as sigaddset() except that the signal is removed from the set.

Using the sigset Functions

A programmer can then build a signal set which includes only the signals SIGFPE, SIGILL,
and SIGSEGV with:

 sigset_t set;

 . . .

 sigemptyset (&set);
 sigaddset(&set,SIGFPE);
 sigaddset(&set,SIGILL);
 sigaddset(&set,SIGSEGV);

It is also possible to build a set which includes all signals except SIGFPE, SIGILL, and
SIGSEGV with:

 sigset_t set;

 . . .

 sigfillset(&set);
 sigdelset(&set,SIGFPE);

 sigdelset(&set,SIGILL);
 sigdelset(&set,SIGSEGV);

The sigismember() Function

The sigismember() function is used for testing signal sets. It is defined by:

 int sigismember(const sigset_t *set, const int signo);

and returns a value of 1 if signo is a member of the signal set pointed to by set, zero if
signo is not a member and -1 if signo is invalid.

The sigprocmask() Function

Blocked signals are signals that are temporarily prevented from delivery. It can be useful to
inhibit signals during execution of a critical section of code.

You have already seen one way to block signals. The sa_mask member of the struct
sigaction indicates which signals to block during the execution of a signal-catching
function. For example, SIGALRM can be blocked during the delivery of SIGINT.

Page 119

The list of blocked signals can also be changed using the sigprocmask() function. This is
defined as:

 int sigprocmask(int how, const sigset_t *set,
 sigset_t *oset);

The action of sigprocmask() depends on the how argument:

how Description

SIG_BLOCK The set of blocked signals is the union of the current set of blocked signals and the
set pointed to by the argument set.

SIG_UNBLOCK The set of signals pointed to by the argument set is removed from the current
set of blocked signals. It is not an error to attempt to unblock signals that are not
blocked.

SIG_SETMASK The current set of blocked signals is set from the sigset_t pointed to by set.

In all cases, if the argument oset is not NULL, the previous mask is stored into the space
pointed to by oset.

This function returns zero unless an invalid argument is used.

The sigpending() Function

If a condition that would cause a signal occurs while that signal is blocked, the signal is said to
be pending. A pending signal will be delivered after it is unblocked.

A program can examine the set of pending signals using the sigpending() function. This is
defined as:

 int sigpending(sigset_t *set);

It stores the set of signals that are blocked and pending in the space pointed to by set.

Wait for a Signal

Sometimes, a program has nothing to do until a signal is delivered. The pause() function
suspends the caller until a signal is delivered. There are no arguments to pause(). The
pause() function is very portable but rarely used. Its main use is by the sleep() function.

The sleep() function is a pause() with a timeout. The sleep() function takes an
argument of a unsigned int number of seconds to sleep. Any signals that are delivered
cause sleep() to wake up returning the amount of time left to sleep. If no signals occur,
sleep() returns zero.

Page 120

The sleep() function may or may not be built using SIGALRM. A library that builds
sleep() using SIGALRM will be careful to hide this from the caller. A program that uses
both sleep() and SIGALRM at the same time is not advised.

The sigsuspend() function is a combination of sigprocmask() and pause(). It is
defined by:

 int sigsuspend(const sigset_t *mask);

and temporarily replaces the process signal mask with the one pointed to by mask. The
process then suspends until a signal is delivered.

If the action is to terminate the process, the sigsuspend() function never returns.

Why would one ever use sigsuspend()? Consider a program that checks a condition and
calls pause() if the condition is not true. If a signal occurs between the test and the call to
pause(), the program may hang indefinitely. A flow diagram is shown in Figure 6-1.

Figure 6-1 Potential race condition

The signal is delivered right before the test for done. The test uses stale data and goes to the
pause(). The signal-catching function could try to update the status. This makes signal
catching very complex. A better way to avoid the problem is to:

1. Block the possible signals using sigprocmask().

2. Test the condition.

3. Use the sigsuspend() function to unblock the signal and pause.

Page 121

Sending a Signal

You have already seen the use of kill() to terminate child processes. In fact, it is a general
mechanism that allows delivery of arbitrary signals to arbitrary processes. The definition of
kill() is:

 int kill(pid_t pid, int sig);

The sig argument must be a valid signal. If the calling process has permission to send the
signal, a signal will be delivered to the process (or group of processes) indicated by pid. For
the caller to have permission to send a signal, the real or effective user ID of the sender must
match the real of effective ID of the target.

The exact action depends of the value of pid:

pid Description

Positive Send the signal to the process whose process ID is equal to pid.

Zero Send the signal to all processes in this process group. This is normally used only by the
shell.

shell.

-1 Not defined by POSIX. In many systems, this sends a signal to every process in the
system.

Less than -1 Send the signal to every process in the process group given by the absolute value of

The kill() function will return zero if at least one signal was sent. Otherwise, -1 will be
returned and errno will be set to indicate the error.

The kill() function can be used with SIGUSR1 or SIGUSR2 to send signals to a
cooperating process. Remember, the default action for SIGUSR1 and SIGUSR2 is to
terminate the process. Do not send them until the receiver has established a signal-catching
function.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. The fork() function starts a new process. Where does this new process start?

2. What is the return from a successful call to exec()?

3. The example function display() ends with the lines:

 if (fclose(fileid) != O) PANIC;
 wait(&status);

What would be the ill effects of leaving out the fclose()? What about the wait()?

4. Give one advantage of waitpid() over wait().

Page 122

5. What is the difference between the exit() function and the _exit() function? When is
it a good idea to use _exit() instead of exit()?

6. What is a signal mask? How is the initial value for the signal mask determined?

7. Give an example of a portable action a signal catcher for the SIGSEGV signal might take.

8. What happens to a program that calls alarm() but fails to establish a signal-catching
function for the resulting SIGALRM?

9. Can a portable program call printf() from a signal-catching function? Why or why not?

10. Give one advantage of the POSIX sigaction() function over the ANSI signal()
function.

11. Write a program fragment to block all signals except SIGINT and SIGHUP.

12. Expand the program fragment from problem 11 to check to see if SIGALRM is pending.

13. What advantage does sigsuspend() have over pause()? When is this important?

14. Write a program to run another program and limit it to 60 seconds of elapsed time.

15. Write a program to compute and display prime numbers until the user types a return.

Page 123

Chapter 7
Obtaining Information at Run-time

There is a great deal of system-specific information available for use by your programs.
Much of this information is contained in header files like <limits.h> and
<sys/types.h>, and is built into your programs at compile-time. There is other
information, such as the user name, that is known only at run-time. And still other
information, like the maximum number of open files, may be available at either compile-time
or run-time. This chapter deals with information that is typically available only at runtime.

Process Identification

Each process in the system is uniquely identified during its lifetime by a positive integer called
a process ID. A process ID has type pid_t defined in <sys/types.h>. Historically,
process IDs have been short. As systems grew larger, many implementors made process IDs
long. The pid_t type is used to allow programs to work with both sizes.

You can retrieve your own process ID using the getpid() function. This function takes no
arguments and returns the process ID. You can retrieve the ID of the parent process using the
getppid() function. It also takes no arguments and returns the process ID of the parent
process.

User Identification

When you log in, you have a login name, a user ID, and a group ID. The user and group IDs are
positive numbers which you can convert to the corresponding login names.

Let's write a program to generate a simple report. The report will look like:

 Login name is 'don'
 Terminal pathname is '/dev/tty'
 Real UID is 13(don) and effective UID is 2(bin)
 Real group ID is 13(don) and effective group ID is 25(demo)
 The following supplementary groups are available:
 13(don)
 25(demo)
 101(groupl)
 102(group2)
 103(group3)

Page 124

Before we start to design the program, let's look at each item in the report:

• The Login name is the name the user used to gain access to the system. The getlogin()
function takes no arguments and returns a pointer to a string giving a user name associated
with the calling process.

The getlogin() function returns NULL if the user's login name cannot be found. If
getlogin() returns a non-NULL pointer, that pointer points to the name under which the
user logged in, even if there are several login names with the same user ID.

• The Terminal pathname is a name our program can give to the open() or fopen()
functions to access the controlling terminal. This string may not uniquely identify the
terminal. The ctermid() function is used to obtain the terminal pathname and is defined
as:

 char *ctermid(char *s);

If s is not NULL, the terminal pathname is stored in s and s is returned. If s is NULL,
ctermid() returns a pointer to a possibly static string. The header <stdio.h> defines
the symbol L_ctermid, defined in <stdio.h>, and gives the maximum length of the
string returned by ctermid(). A typical use is:

 char termid[L_termid];
 . . .
 (void)ctermid(termid);

• The Real UID identifies the group of users who created the process; in most cases, this is
the user ID associated with the login name. The getuid() function takes no arguments
and returns the real user ID.

When one of the exec functions runs a program with the SETUID bit set, the effective ID
of the process is set to the owner of the program file. The effective user ID is used to check
permissions. For example, the owner of a game program can make the program SETUID so
that it can update scores. The geteuid() function takes no arguments and returns the
effective user ID.

• A group ID is a non-negative integer used to identify a group of system users. Each system
user is a member of at least one group. The Real group ID identifies the user who created
the process. The getgid() function takes no arguments and returns the real group ID.

• When the exec function runs a program with the set-GID bit set, the effective group ID of
the process is set to the group of the program file. The use of the set-GID is very similar to
SETUID. The getegid() function takes no arguments and returns the effective group ID.

• A process has access to zero or more supplementary group IDs in addition to the effective
group ID. A process can set its effective group ID to any one of the supplementary group
IDs.

Page 125

Now, let's consider the design of the sample program. There is some information that occurs
multiple times, for example, userID(user name). Formatting and printing user IDs and
group IDs are good candidates for functions. Printing all the supplementary groups is complex

enough to deserve a function. Everything else can go into main().

The main purpose of this program is to demonstrate the use of functions that obtain information
about our process. We mention the portability and design concerns as we go along.

User IDs

In order to convert a user ID to a user name, we use the getpwuid() function. On most
systems, this function looks up the user in the file /etc/passwd and returns one entry.
However, there is no requirement for the system to have a password file; getpwuid() might
work some other way.

The getpwuid() function takes a single UID as an argument and returns a pointer to a
struct passwd. This structure is defined in <pwd.h> and contains the following
members:

Member Name Member Type Description

pw_name char * User's login name.

pw_uid uid_t User ID number.

pw_gid gid_t Group ID number.

pw_dir char * Initial working directory.

pw_shell char * Initial user program.

The structure may contain other members and the members may be in any order. The
getpwuid() function returns a NULL pointer if the entry is not found.

There is another function called getpwnam(). This takes a single char * argument and
looks up the user by name instead of number. The getpwnam() function also returns a
pointer to a struct passwd.

The getpwuid() and getpwnam() functions are very portable. Some systems may have
additional members in struct passwd. If you use these members, your program is less
portable.

Page 126

The printuser() function takes a single argument of type uid_t and prints the argument
in decimal form followed by the corresponding user name. Nothing is returned:

/*
 * Print out the user ID in decimal followed by
 * (username)
 */
void printuser(uid_t userid)
{
unsigned long lt; /* temp */
struct passwd *pwptr; /* pointer to user info */

 lt = (unsigned long)userid; /* make the uid a long */
 (void)printf(" %lu(",lt); /* print the number */
 pwptr = getpwuid(userid); /* get the information */
 if (pwptr == NULL) /* print question marks if
 * user ID is not known
 */
 {
 (void)printf("??????)");
 return;
 }
 (void)printf("%s) ",pwptr->pw_name);
 return;
}

There is one complex step involved. On some POSIX systems, uid_t will be a short; on
other systems, it will be a long. The printf() function requires that we explicitly specify
the size of the value we are printing. To handle this in a portable fashion, we "promote" the
user ID to a long and then tell printf() to print a long. On systems with 32-bit ints, the
default promotion rules give the correct results. On a system with 16-bit ints, the defaults
may not work. Explicitly converting to long works in all cases. If this function returned the
UID instead of printing it, we could just return a value of type uid_t.

Group IDs

To print the group number and name, use the getgrgid() function, which is very similar to
the getpwuid() function. It returns a pointer to group structure based on a group ID. This
structure is defined in the header file <grp.h> and contains the following members:

Member Name Member Type Description

gr_name char * The name of the group.

gr_gid gid_t Group ID number.

gr_mem char ** Pointer to a null-terminated array of char *. Each element of the
array points to an individual member of the group.

As with getpwuid(), the members of the structure may be in any order and there may be
additional members. A return value of NULL indicates that no entry was found.

Page 127

There is also a getgrnam() function which is identical to getgrgid() except that it takes
a char * group name as an argument instead of a group ID.

Our printgroup() function takes a single argument of type gid_t and prints it in decimal
followed by the corresponding group name. No value is returned.

 /*
 * Print out the group number in decimal followed by
 * (groupname)

 */
 void printgroup(gid_t groupid)
 {
 unsigned long lt; /* temp */
 struct group *grpptr; /* pointer to group info */

 lt = (unsigned long)groupid; /* make the gid a long */
 (void)printf(" %lu(",lt); /* print it */
 grpptr = getgrgid(groupid); /* get group structure */
 if (grpptr == NULL) /* print question marks if
 * group name is unknown
 */
 {
 (void)printf("??????)");
 return;
 }
 (void)printf("%s)",grpptr->gr_name);
 return;
 }

Next, we turn our attention to a function to print a list of all groups of which the process is a
member. We already have a function called printgroup() that prints out a single group ID.
It is tempting to name the function that prints all the groups printgroups(). Long and bitter
experience has taught that it is a bad idea to have many functions with very similar names. The
functions printgroup() and printgroups() are too close together. The name
printallgroups() is less likely to cause confusion. We have to live with getgid()
and getegid() because they are library functions. Do not use them as an example of good
software engineering practice.

The key to the printallgroups() function is the POSIX function getgroups(), which
is defined as:

 int getgroups(int gidsetsize,gid_t grouplist[]);

and fills in the array grouplist with up to gidsetsize supplementary group IDs. The
actual number of groups in use is returned.

We could allocate an array with NGROUPS_MAX elements; however, on some systems that
may be a large value. Instead, we call getgroups() with gidsetsize equal to zero and,
because it returns the number of groups in use, we can use this number to allocate the array. A
second call will then exactly fill the array.

Page 128

There is one other complication. The system you are using may not support multiple groups.*

This depends on the symbol NGROUPS_MAX being greater than 1. Future versions of POSIX
may not require NGROUPS_MAX to be defined. We use #ifdefs in our function to be sure
that NGROUPS_MAX is always defined.

So, the code ends up looking like this:

 void printallgroups()
 {
 int ngroups; /* number of active groups */

 gid_t *grpptr; /* pointer to the list of
 * active groups
 */
 int i;
 gid_t gid;

 #ifndef NGROUPS_MAX /* If NGROUPSMAX is not defined */
 #define NGROUPS_MAX 0 /* assume that it is zero */
 #endif

 #if NGROUPSMAX < 1
 /* This printf is compiled if NGROUPS_MAX is less than 1 */
 (void)printf("Supplementary group IDs are"
 "not supported\n");
 #else
 /*
 * This is compiled if there is at least one
 * supplementary group.
 */
 ngroups = getgroups(0,(gidt *)NULL); /* get the number
 * of supplementary group
 * IDs in use
 */
 if (ngroups == -1)
 {
 (void)perror("getgroups() failed");
 return;
 }
 if (ngroups == 0)
 {
 (void)printf("No supplementary groups are"
 "available\n");
 return;
 }
 grpptr = calloc(ngroups,sizeof(gid_t));
 /* Allocate an array with
 * ngroups members each big
 * enough for a gid_t.
 * grpptr points to the
 * array.
 */

 if (getgroups(ngroups,grpptr) == -1) /* Get group IDs */

* It is likely that the system will support multiple groups. The Federal Information Processing
Standard (FIPS) version of POSIX requires that multiple groups be supported. This means than any
vendor who would like to sell to the United States Government must support multiple groups.
However, a fully portable program must tolerate any legal environment.

Page 129

 {
 (void)perror("getgroups() failed");
 return;
 }
 (void)printf("The following supplementary groups are

 " available:\n");
 for (i=l; i <= ngroups; i++) /* Loop over all IDs */
 {
 gid = *grpptr++; /* Load an ID into gid and
 * update grpptr to point
 * to the next ID.
 */
 (void)printf("\t"); /* Print a tab */
 printgroup(gid); /* Then the group ID */
 (void)printf("\n"); /* Then a newline */
 }
 #endif
 return;
 }

Now, let's write the main() function. The first thing we need is the login name; the
getlogin() function returns a pointer to the name. To get the terminal pathname, we pass
ctermid() a pointer to a character array and it fills in the pathname.

The user and group IDs are obtained with getuid(), geteuid(), getgid(), and
getegid(). These functions are always successful and there is no return value to indicate an
error. On very old UNIX systems, uids and pids were 8-bits. Most System V and BSD
systems use 16 bits for IDs. POSIX allows 32-bit numbers as vendors expand their systems to
32-bits. A typical 1991 operating system defines a pid_t as a long and restricts the values to
be less than 65535. This practice avoids breaking old applications. Your programs should
assume that pids and gids may be 32 bits.

All that is left is to add the required #includes and #defines in the front and the
complete program is shown in Example 7-1:

EXAMPLE 7-1. printinfo.c

 #define _POSIX SOURCE 1

 #include <stdio.h>
 #include <limits.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <grp.h>
 #include <pwd.h>

 /*
 * Print out the group number in decimal followed by
 * (groupname)
 */
 void printgroup(gid_t groupid)
 {
 unsigned long lt; /* temp */
 struct group *grpptr; /* pointer to group info */

Page 130

 lt = (unsigned long)groupid; /* make the gid a long */
 (void)printf(" %lu(",lt); /* print it */

 grpptr = getgrgid(groupid); /* get group structure */
 if (grpptr == NULL) /* print question marks if
 * group name is unknown
 */
 {
 (void)printf("??????)");
 return;
 }
 (void)printf("%s)",grpptr->gr_name); /* print group name */
 return;
 }

 /*
 * Print out the user ID in decimal followed by
 * (username)
 */
 void printuser(uid_t userid)
 {
 unsigned long lt; /* temp */
 struct passwd *pwptr; /* pointer to user info */

 lt = (unsigned long)userid; /* make the uid a long */
 (void)printf(" %lu(",lt); /* print the number */
 pwptr = getpwuid(userid); /* get the information */
 if (pwptr == NULL) /* print question marks if
 * user ID is not known
 */
 {
 (void)printf("??????)");
 return;
 }
 (void)printf("%s)",pwptr->pw_name);
 return;
 }

 void printallgroups()
 {
 int ngroups; /* number of active groups */
 gid_t *grpptr; /* pointer to the list of
 * active groups
 */
 int i;
 gid_t gid;

 #ifndef NGROUPS_MAX
 #define NGROUPS_MAX 0
 #endif

 #if NGROUPS_MAX < 1
 (void)printf("Supplementary group IDs are
 "not supported\n");
 #else
 ngroups = getgroups(0,(gid_t *)NULL); /* get the number
 * of supplementary
group
 * IDs in use
 */

 if (ngroups == -1)

Page 131

 {
 (void)perror("getgroups() failed");
 return;
 }
 if (ngroups == 0)
 {
 (void)printf("No supplementary groups are
 "available\n");
 return;
 }
 grpptr = (gid_t *)calloc(ngroups,sizeof(gid_t));
 if (getgroups(ngroups,grpptr) == -1)
 {
 (void)perror("getgroups() failed");
 return;
 }
 (void)printf("The following supplementary groups are
 "available:\n");
 for (i=l; i <= ngroups; i++)
 {
 gid = *grpptr++;
 (void)printf("\t");
 printgroup(gid);
 {void)printf("\n");
 }
 #endif
 return;
 }

 int main()
 {
 uid_t uid;
 gid_t gid;
 char *login;
 char termid[L_ctermid];

 login = getlogin();
 if (login == NULL)
 {
 (void)printf("Login name is not known\n");
 }
 else
 {
 (void)printf("Login name is '%s'\n",login);
 }
 (void)ctermid(termid);
 (void)printf("Terminal pathname is '%s'\n",termid);
 uid = getuid();
 (void)printf("Real UID is");
 printuser(uid);
 uid = geteuid();
 (void)printf(" and effective UID is");
 printuser(uid);

 gid = getgid();
 (void)printf("\nReal group ID is");
 printgroup(gid);
 gid = getegid();
 (void)printf(" and effective group ID is ");
 printgroup(gid);
 (void)printf("\n");

Page 132

 printallgroups();
 return(O);
 }

System Identification

POSIX provides the uname() function to give us some minimal information about the system
you are using. The function is defined as:

 int uname(struct utsname *name);

and fills in the struct utsname passed by the caller. If uname() is successful, a
nonnegative value is returned. Upon failure, -1 is returned.

The struct utsname is defined in the header file <sys/utsname.h> as a set of
null-terminated character arrays. The structure contains the following members:

Member Name Description

sysname Name of this operating system.

nodename Name of this node within a network. Note: There is no guarantee that this name can
be used for anything. The name returned in nodename may (or may not) be useful
for network use.

release Current release level of this implementation.

version Current version level of this release.

While POSIX provides the release level and version, it never defines them.

machine Name of the hardware type the system is running on.

As with most POSIX structures, these members can be in any order and other members can be
present.

A typical use is:

 #include <sys/utsname.h>

 struct utsname unamebuf;

 . . .
 if (uname(&unamebuf) == -1)

 (void)printf("The system name is unknown\n");
 else
 (void)printf("This system is called '%s'\n",
 unamebuf.sysname);
 . . .

The format of each member is implementation-defined. POSIX does not specify the format of
any of the members. There is no way a fully-portable program can interpret the information.

Page 133

Date and Time

One important part of the environment is the current date and time. Programs have lots of
reasons to obtain and manipulate this information. The Standard C/POSIX environment
provides a set of utilities for dealing with time.

The time() Function

The time() function returns the number of seconds since midnight January 1, 1970
Coordinated Universal Time.* The function is defined as:

 time_t time(time_t *tloc);

It returns the time and stores it into tloc. The call time(NULL) merely returns the time and
no value is stored.

The type time_t is defined in <time.h>. While it is typically an unsigned long, it
can be a double or long double.

The localtime() and gmtime() Functions

The time() function is really all you need. Given the number of seconds since a known time,
it is possible to compute any time component you need. However, to prevent every programmer
from reinventing the wheel, some handy library functions are provided. Two functions,
gmtime() and localtime(), convert a time_t to a struct tm. The gmtime()
function returns UTC, while localtime() returns the local time. The struct tm contains
the following members:

Type Name Range Description

int tm_sec 0 - 61** Seconds after the minute.

int tm_min 0 - 59 Minutes after the hour.

int tm_hour 0 - 23 Hours after midnight.

int tm_mday 1 - 31 Day of the month.

int tm_mon 0- 11 Months since January.

int tm_year Years since 1900.

int tm_wday 0- 6 Days since Sunday.

0- 6 Days since Sunday.

int tm_yday 0- 365 Days since January 1st.

* Coordinated Universal Time is the new name for Greenwich Mean Time. The standard abbreviation
is UTC because if England was going to get ''universal time'' at least the name was going to be in
French. Such are the politics of standards.

** The range for tm_sec allows for two leap seconds.

Page 134

Type Name Range Description

int tm_isdst Daylight Savings Time flag:

>0 if DST is in effect

=0 if DST is not in effect

<0 if the information is not available

These members can appear in any order and there may be additional members.

The time-conversion functions are defined as:

 struct tm *localtime(const time_t *timer);

and:

 struct tm *gmtime(const time_t *timer);

The argument is a pointer to a time_t. The localtime() and gmtime() functions return
a pointer to a structure containing time information. The next call to localtime() or
gmtime() may (or may not) overwrite this structure. If you want to keep it around, copy it
somewhere safe.

A simple example of localtime() is:

 time_t now;
 struct tm *t;

 now = time((time_t *)NULL);
 t = localtime(&now);
 (void)printf("It is now %2d:%2d:%2d on %d/%d/%d\n",
 t->tm_hour, t->tm_min, t->tm_sec,
 t->tm_mon+l, t->tm_mday, t->tm_year);
 (void)printf("Day of week: %d\n",t->tm_wday+l);
 (void)printf("Day of year: %d\n",t->tm_yday+l);
 if (t->tm_isdst > 0)
 (void)printf("Daylight savings time\n");
 else
 (void)printf("Standard time\n");

Notice that you need to add "1" to the month before printing it. The value in tm_mon is in the
range 0 to 11.

The gmtime() function is exactly the same as localtime(), except that the time is
expressed in Coordinated Universal Time (UTC). Standard C allows this function to return
NULL if the time zone is unknown, but POSIX Section 8.1.1 requires that the time zone be
known.

If your program needs to be ported to non-POSIX and non-UNIX systems, localtime() is
more portable than gmtime().

Page 135

The mktime() Function

The mktime() function is the inverse of localtime(). It converts the structure that
Standard C calls a broken-down time to a value of type time_t. The function is defined as:

 time_t mktime(struct tm *timeptr);

The mktime() function ignores the original values of tm_wday and tm_yday. On
successful completion, the values of tm_wday and tm_yday are updated and the other
values are set to reflect the specified calendar time. This can be used to compute the day of the
week a given date falls on.

The mktime() function may or may not fail on all invalid times, for example, February 29,
1995. It is best not to give mktime() invalid input.

The strftime() Function

To print the current date or time, it is possible to use localtime() and format a string. The
strftime() function, similar to sprintf(), performs this task. It converts a struct
tm to a string under the guidance of a format string. The strftime() function is defined as:

 size_t strftime(char *s, size_t maxsize,
 const char *format, const struct tm *timeptr);

where s points to an array of maxsize bytes. format is a format-control string and
timeptr is a pointer to a structure returned by localtime() or gmtime().

Characters are copied from the format string to the array pointed to by s. A conversion
specifier consists of a % followed by a character that determines the substitution. The list of
conversion specifiers is strftime() conversion specifiers:

Specifier Replaced by the locale's

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

Full month name.

%c Date and time.

%d Day of the month as a decimal number (01-31).

%H Hour as a decimal number (00-23).

%I Hour as a decimal number (01-12).

%j Day of the year as a decimal number (001-366).

Page 136

Specifier Replaced by the locale's

%m Month as a decimal number (01-12).

%M Minute as a decimal number (00-59).

%p Equivalent of AM/PM for use with a 12-hour clock.

%S Second as a decimal number (00-61).

%U Week of the year as a decimal number (00-53) using the first Sunday as day 1
of week 1.

%w Weekday as a decimal number (0[Sunday]-6).

%w Week of the year as a decimal number (00-53) using the first Monday as day 1
of week 1.

%x Date.

%X Time.

%y Year without a century (00-99).

%Y Year with century (e.g., 1991).

%z Time zone.

%% %

Here are some examples of format strings and possible output in the POSIX locale:

Format: Result:

%A,%B,%d,%Y Saturday April 13, 1991

%a %d-%b-%y Sat 13-Apr-91

%a %d-%b-%y Sat 13-Apr-91

%m/%d/%y 04/13/90

%Y%m%d 19900413

%H:%M 15:25

%H:%M:%S 15:25:30

%c Sat Apr 13 15:25:30 1991

%X on %x 3:25 PM on 4/13/91

The formats %c,%X, and %x produce strings for the current locale. They offer an easy way to
produce a program that can be moved from country to country.

* The locales are covered in Chapter 10, Porting to Far-off Lands. The information in the example is
the default POSIX result.

Page 137

The asctime() and ctime() Functions

There are a couple of functions that are shorthand for popular routines.

The function asctime(timeptr) returns a pointer to a string of the form:

 Sat Apr 13 15:25:30 1991\n\0

The function ctime(timer) is equivalent to:

 asctime(localtime(timer))

The difftime() Function

The C standard defines the difftime() function as:

 double difftime(time t timel, time_t time2);

returning the number of seconds between time1 and time2 expressed as a double. Since
POSIX defines the units of time_t as seconds since midnight January 1, 1970 Coordinated
Universal Time, this function is not needed. A simple subtraction with a cast gives the same
answer. For example, in:

 time_t start,end;
 double diffl, diff2;
 . . .
 diffl = difftime(end,start);
 diff2 = end - start;

diff1 will be equal to diff2. Use the difftime() function if your code might be ported
to systems which use Standard C but do not conform to POSIX.

The clockO and timesO Functions

The clock() function defined in Standard C is defined as:

 clock_t clock(void);

and returns the amount of processor time used. The standard does not define when the clock
starts, so this function is used to measure the amount of processor time used between two
events, say, the start and end of a complex calculation.

The clock() function returns a number that can be converted to seconds by dividing by
CLOCKS_PER_SEC.

In addition to the clock() function, POSIX defines a more powerful function called
times(). This is defined as:

 clock_t times(struct tms *buffer);

Page 138

and returns the amount of real time since the system was started.* The return value is useful for
computing the elapsed time between two events. The value of a clock_t can be converted to
seconds by dividing by the macro CLK_TCK.

The struct tms structure contains at least the following members:

Member Name Description

tms_utime User CPU time.

tms_stime System CPU time.

tms_cutime User time of terminated child processes.

tms_cstime System time of terminated child processes.

All members have the type clock_t and can be converted to seconds by dividing by the
symbol CLK_TCK. User time is time charged for the execution of user processes. System time
is time charged for executing the system on behalf of the process. Which library functions
charge system time and the amount that they charge will vary from implementation to
implementation.

If you plan to compile your application on every target computer, dividing by CLK_TCK to get
seconds is fine. However, if you plan to compile in one place and move your compiled binary
from computer to computer, dividing by CLK_TCK may give the wrong answer. It is better to
use the sysconf(_SC_CLK_TCK) function to determine this value at run time.** The
sysconf() function is described later in this chapter.

Environment Variables

An array of strings called the environment is made available when the process begins. This
array is pointed to by the external variable environ, which is defined as:

 extern char **environ;

*The times() function does not really need to return the amount of real time since the system was
started. It really returns the amount of real time since some arbitrary point in the past before any
processes were started. Applications can count on this number increasing as they fork() and
exec() new processes.

** Of course, the clever system implementer may have defined the CLK_TCK macro with a call to
sysconf(), for example:

 #define CLK_TCK ((clock_t)(__sysconf(3)))

He or she used __sysconf() instead of sysconf() because the sysconf() function is not
declared in <time.h> and is available for the user unless <unistd.h> is included. The value 3 is
used instead of _SC_CLK_TCK for the same reason.

Page 139

These strings have the form name=value; the following names are defined by POSIX:

Name Description

HOME The name of the user's initial working directory.

LANG The name of the predefined setting for locale.

LC_ALL The default locale to use if any of the following LC_symbols is not defined.

LC_COLLATE The name of the locale for collation information.

LC_CTYPE The name of the locale for character classification.

LC_MONETARY The name of the locale for money related information.

LC_NUMERIC The name of the locale for numeric editing.

LC_TIME The name of the locale for date- and time-formatting information.

LOGNAME The name of the user's login account.

PATH The sequence of path prefixes used by execlp() and execvp()in locating
programs to run.

TERM The user's terminal type.

TZ Time zone information.

The environment variables having to do with locale are used for moving an application from
one country to another. They are discussed in Chapter 10, Porting to Far-off Lands.

Of course, some variables may be missing and other environment variables may be present.
Many programs look in the environment variable list for system-specific information. These
programs can be fully portable and still adjust themselves to a given system. The value string

contains some form of user preference information. For example:

 mm=/usr/don/mail.rc

or:

 haminfo="-call WB2UMF -grid FN42"

The getenvO Function

The getenv() function is used to look up names in the environment strings. This is defined
as:

 char *getenv(const char *name);

Page 140

It searches the environment for name and returns a pointer to the value or NULL if name cannot
be found. Like most functions that return a pointer to a string, getenv() may overwrite the
information on a subsequent call.

Do not attempt to modify the string returned by getenv(); it might be a copy of the real
environment variable.

The sysconf() Function

The POSIX standard is defined exclusively at the source-code level. The objective is that a
conforming application can be compiled and executed on a conforming implementation.

While POSIX does not guarantee binary portability even across machines of the same make and
model, it does try hard not to preclude portability either.

Traditional UNIX applications are distributed in one of two ways:

• By distributing portable source files that can be tailored to each system (most of the public
domain applications fall into this category). Software distributed in source form can be
tailored in many ways. For example, an installation script can create system-specific
header files used to compile the application. Applications distributed by the Free Software
Foundation, such as GNU C, provide a good example of this technique.

• By distributing compiled software for a specific make and model of computer. Software
vendors would like to compile their software and distribute only the compiled binary
because it provides the best security for the software. Software vendors would also like as
much binary portability as possible.

One of the aids to binary portability is the sysconf() function. It lets an application
determine the run-time value of variables in <limits.h>. The sysconf() function is
defined as:

 long sysconf(int name);

where name is a code for one of the system limits.* The codes are:

Compile-Time Macro sysconf() name Description

Compile-Time Macro sysconf() name Description

ARG_MAX _SC_ARG_MAX The length of the arguments for the exec()
function.

_POSIX_CHILD_MAX _SC_CHILD_MAX The number of simultaneous processes per real user
ID.

* The most common error I have seen with sysconf() and pathconf() is confusing the
parameter to pass with the value returned. The parameter is always a macro, such as _SC_OPEN_MAX.
The system limit is returned.

Page 141

Compile-Time Macro sysconf() name Description

CLK_TCK _SC_CLK_TCK The number of clock ticks per second.

_POSIX_NGROUPS_MAX _SC_NGROUPS_MAX The number of simultaneous
supplementary group IDs.

STREAM_MAX* _SC_STREAM_MAX* The maximum number of streams that
one process can have open at one time.
This is the same as FOPEN_MAX from
the C standard.

TZNAME_MAX* _SC_TZNAME_MAX* The maximum number of bytes in a time
zone name.

_POSIX_OPEN_MAX _SC_OPEN_MAX The maximum number of files that one
process can have open at one time.

_POSIX_JOB_CONTROL _SC_JOB_CONTROL Job control functions are supported.

_POSIX_SAVED_IDS _SC_SAVED_IDS Each process has a saved SETUID
a saved SETGID.

_POSIX_VERSION _SC_VERSION Indicates the 4-digit year and 2-digit
month in which the standard was
approved. The integer 198808L indicates
the 1988 version and the integer 199009L
indicates the 1990 version.

POSIX Section 2.8.4 (2.9.4 in the 1988 version) states, "A definition of one of the values . . .
shall be omitted from the <limits.h> on specific implementations where the corresponding
value is equal to or greater than the stated minimum, but is indeterminate." This paragraph has
been interpreted in several different ways. I believe that the safest thing to do is to ignore
symbols and always use the value returned by sysconf(). That is, use
sysconf(_SC_OPEN_MAX) instead of _POSIX_OPEN_MAX. This will often be a more

generous value.

* This symbol is defined in IEEE Std 1003.1-1990 but not in IEEE Std 1003.1-1988.

Page 142

The pathconf() and fpathconf() Functions

Some limits vary not only from system to system but also from file to file. The pathconf()
and fpathconf() functions return file-specific configuration information. They are defined
as:

 long pathconf(const char *path, int name);

and:

 long fpathconf(int fildes, int name);

The possible values for name are:

Name Description

_PC_LINK_MAX Maximum value of a file's link count. If path or fildes refers to
a directory, then this value applies to the entire directory.

_PC_MAX_CANON Maximum length of a formatted input line. path or fildes must
refer to a terminal.

_PC_MAX_INPUT Maximum length of an input line. path or fildes must refer to a
terminal.

_PC_NAME_MAX Maximum length of a filename for this directory.

_PC_PATH_MAX The maximum length of a relative pathname when this directory is
the working directory. That is, the number of characters that may be
appended to path and still have a valid pathname.

_PC_PIPE_BUF Size of the pipe buffer, fildes must refer to a pipe or FIFO.
path must be a FIFO.

_PC_CHOWN_RESTRICTED The chown() system call may not be used on this file. If path
fildes refers to a directory, then this applies to all files in that
directory

_PC_NO_TRUNC Generate an error if a filename is truncated in the named directory.

_PC_VDISABLE Allow special-character processing to be disabled. path or fildes
must refer to a terminal.

The sysconf(), pathconf(), and fpathconf() functions were invented by the
POSIX committee. They are not found on older systems. You must use some form of

compile-time value on non-POSIX systems.

The values returned by these functions should be thought of as minimum guarantees. For
example, if pathconf(".",_SC_NAME_MAX) returns 63, your application can

Page 143

create files with names up to 63 characters. If you read the directory with readdir(), you
may encounter files with names greater than 63 characters. The values returned by
sysconf() and pathconf() are not suitable for allocating memory. Some values may be
huge.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. This chapter gives two different ways to get the user's login name. What are they? Is there
any advantage to one over the other?

2. What is the difference between the real user ID and the effective user ID?

3. What errors does geteuid() detect?

4. Is there a portability advantage to using getpwuid() instead of just reading
/etc/passwd?

5. One way to obtain the number of groups is to call getgroups() with gidsetsize
equal to zero. Another way is to use the symbol NGROUPS_MAX. A third way is to call
sysconf(_SC_NGROUPS_MAX). It is possible for all three methods to come up with a
different answer. Give an example of a good use for each of the methods.

6. Give one use for the information returned by the uname() function.

7. Is it possible for a POSIX system to know the local time but not know the UTC time? Why
or why not?

8. Write a simple program to print out the day of the week on which your birthday falls for the
next 20 years.

9. The format specifier %x in strftime() prints the date. Why is this better than
%d/%m/%y? Note: Answers of the form "it is less typing" do not count.

10. The POSIX committee is working to eliminate the use of the symbol CLK_TCK. Why?
What can replace it?

11. What is a portable use for the information returned by times()?

12. What is one disadvantage of using the environment variables to provide user preference
information to an application? What is one advantage?

13. The sysconf() function is intended to help a compiled program move from one system
to another. What do you think some of the rules are to allow this kind of portability?

14. What information does the call:

 pathconf("/usr",_PC_NAME_MAX);

return?

Page 145

Chapter 8
Terminal I/O

The functions we have already covered (scanf(),printf(),read(),write(), and
so on) are used by most applications to do I/O to a terminal. This chapter concentrates on
the control functions defined in the header file <termios.h>. The vast majority of
applications do not use terminal control functions. We begin by looking at the hardware and
the use of tcsetattr() to modify a terminal's parameters. There is an example showing
how to turn off the echoing of input on the terminal screen, a fairly typical use of the
terminal control functions. Then we go through a detailed description of input processing
and look at all the parameters a program can alter. We look at some examples of using a
terminal port for computer-to-computer communications. Finally, we describe POSIX job
control. These are functions used by the shell to control which processes get signals and
which ones have access to the terminal.

The 1984/usr/group Standard attempted to specify a portable mechanism that application
writers could use to get and set the modes of an asynchronous terminal. The intention of that
committee was to provide an interface that was neither implementation-specific nor
hardware-dependent. The terminal interface specification underwent more debate and revision
than any other part of the POSIX standard.

The resulting interface, though it meets all of the original goals, is different from any existing
system. The most dramatic change is the replacement of the ioctl() function with a
collection of terminal-specific functions. The change was made for several reasons:

• The ioctl() mechanism is difficult to specify adequately due to its use of a third
argument that varies in both size and type according to the second argument.

• The exact semantics of ioctl() are different on different systems.

• None of the existing implementations was adequate in an international environment.

While the functions for terminal control may be new to you, experienced UNIX programmers
will see many familiar things.

Page 146

Terminal Concepts

A classic terminal is a keyboard and a display (or printer) that is connected to the computer
using an asynchronous communications port. From the perspective of the operating system, the

important characteristic of a terminal is the communications port that connects it to the host and
not the device sitting at the end of the wire. Figure 8-1 shows a typical configuration.

Figure 8-1. Communications hardware

Many UNIX manuals (even the POSIX standard) use the phrase ''terminal parameters'' in a
way that might be confusing. Strictly speaking, the terminal-control library functions change
the characteristics of the communications port and have no effect on the terminal. When you
read a phrase like "setting the terminal speed," it means setting the speed of the
communications port to match the speed of the terminal.

An asynchronous communications port can be used to talk to other computers, printers, plotters,
and special I/O equipment. The programming techniques used are the same as talking to a
computer terminal.

A serial device sends a character one bit at a time. Each character starts with a leading zero
called the start bit. The data bits are sent one at a time, beginning with the Least Significant
Bit(LSB) and ending with the Most Significant Bit(MSB). The last bit to be sent is a trailing
one called the stop bit. The ASCII character D might be represented as shown in Figure 8-2.

The ASCII code uses seven data bits. The parity bit is used to make the total number of one bits
even (or, on some systems, odd). The speed of transmission (the number of bits per second that
are transmitted counting the start and stop bits) is called the baud rate.

If the stop bit is not a 1, then a framing error takes place. If all of the data bits are zero and
there is a framing error, a break condition occurs.

Page 147

Figure 8-2. ASCII D

Most terminals operate in full-duplex. When you press a key, a character is sent from the
terminal to the computer. When it receives the character, the computer sends the character back
to the terminal where it is displayed. The process of sending characters back to the terminal is
called echoing.

Echoing gives the computer control over the characters displayed by the terminal. Some uses of
echoing are:

• A program can inhibit echo to hide the characters you type. For example, login inhibits
echo to keep your password secret and vi inhibits echo to prevent commands from
appearing on the screen.

• A program can echo a special sequence. For example, a backspace may echo as
backspace-space-backspace to wipe out the last character you typed.

You can control echoing using the functions described in this chapter.

Setting Terminal Parameters

Terminal parameters are all manipulated through a data structure known as struct termios.
The tcgetattr() function copies the parameters from the operating system into a
termios structure and the tcsetattr() function copies the parameters from a termios
structure into the operating system. First, we will look at these two functions and then we will
look at the termios structure in detail.

The tcsetattr() and tcgetattr() Functions

The function:

 int tcgetattr(int fildes, struct termios *ptr);

copies all of the information associated with fildes into the struct termios pointed to by
ptr. The fildes argument must be a valid file descriptor associated with a terminal.

Page 148

The function:

 int tcsetattr(int fildes, int option,
 struct termios *ptr);

copies all of the terminal parameters from the struct termios pointed to by ptr into the
communications port associated with fildes. The tcsetattr() function sets every
terminal parameter with one call. There is no way to selectively set terminal parameters. The
fildes argument must be a valid file descriptor associated with a terminal. The option
argument must be one of the following symbols:

Symbol Description

TCSANOW The changes occur immediately.

The changes occur immediately.

TCSADRAIN The changes occur after all output written to fildes has been transmitted. This
function may be used when changing parameters that affect output. See "Avoiding
Pitfalls" on Page 161.

TCSAFLUSH Same as TCSADRAIN except that, in addition to waiting for output, all input that had
been received but not read is discarded.

The tcsetattr() function does not detect errors in the struct termios. If there are
invalid combinations, tcsetattr() just does its best. If you need to know if a particular
terminal attribute was correctly set, you must follow the tcsetattr() with a
tcgetattr()

The termios Structure

The tcgetattr() and tcsetattr() functions read or write all of the terminal
parameters with one call. The proper way to modify terminal parameters is by reading them
with tcgetattr(), changing the parameters of interest, and rewriting them with
tcsetattr().

The termios structure and all of the functions that operate on it are defined in
<termios.h>. Most of the terminal parameters should not be changed by an application.
These parameters can be explicitly changed by the user using a utility such as stty. The
termios structure has five members and each member has flags defined by POSIX as well as
system-specific flags:

Page 149

Member Name Member Type Description

c_iflag tcflag_t Controls the processing of input data. There are 11 flags defined
by POSIX. There is only one, ISTRIP, that may be of interest to a
portable application. This flag causes input characters to be
masked to seven bits.

c_oflag tcflag_t Controls the processing of output data. The only flag defined by
POSIX, OPOST, causes system-specific output processing. There
are no flags of interest to a portable application.

c_cflag tcf lag_t Controls information related to the hardware, for example, the
parity setting. There are seven flags defined by POSIX, none of
interest to a portable application.

c_lflag tcflag_t Controls echoing and character processing. There are nine flags
defined by POSIX; four of these flags may be modified by a
portable application:

ECHO Turns on echoing.

ICANON Turns on input processing.

Turns on input processing.

ISIG Enables signals.

TOSTOP Stops background processes if they write to the
controlling terminal.

c_cc cc_t An array of control characters. The size of the array is given by the
symbol NCCS. Each element has a unique function described later
in this chapter.

A portable application may determine what these characters are;
however, it should not change them.

System V termio and POSIX termios Structures

If you use System V, you will notice that the POSIX termios structure is very similar to the
termio structure used by System V. The System V structure is:

 struct termio
 {
 unsigned short c_iflag;
 unsigned short c_oflag;
 unsigned short c_cflag;
 unsigned short c_lflag
 char c_line;
 unsigned char c_cc[NCC];
 }

POSIX changed unsigned short to a defined type, tcflag_t, which is typically an
unsigned short or an unsigned long. POSIX also changed unsigned char to cc_t.
On most systems, cc_t is still an unsigned char.

Page 150

POSIX also supports terminals that have different input and output baud rates; System V does
not.

Converting from System V to POSIX is very easy:

• Use <termios.h> instead of <termio.h> and add an "s" to the name of the structure.

• If your program places a baud rate in the CBAUD field of termio, replace that with calls
to cfsetispeed() and cfsetospeed().

• Change calls to ioctl() to call tcsetattr() or one of the other functions described
in this chapter.

• The c_line member of termio, which must be set to zero in System V, is not used in
POSIX.

Example: Reading a Password

Before covering all of the details of the various terminal control functions, we will show a
typical use for these functions. Let's write a function to read a password from the terminal.
Here is a brief specification for this function:

1. The function will be defined as:

 int getpswd(char *buff, size_t size);

where buff is a pointer to a buffer to receive the password and size is the size of that
buffer.

The getpswd() function returns the number of characters read or -1 in case of error.

2. The function should issue a prompt of Password:

3. The function should discard characters typed before the prompt appears (type-ahead). This
will encourage the person typing the password to wait for the echo to be turned off.

4. Turn off echo.

5. Read the password from the terminal.

6. Restore echo.

Let's look at a couple of technical details:

• Prompting for a password with:

 (void)printf("Password: ");

Page 151

is not enough to guarantee that the user can read it. We need to call:

 {void)fflush(stdout);

to make sure that the standard I/O library issues a call to write().

• In addition, we use the TCSAFLUSH option to tcsetattr() to wait for all of the
characters to be sent to the terminal.

• The TCSAFLUSH option also discards type-ahead meeting item #3 in the specification for
getpswd().

The code for this function is shown in Example 8-1.

EXAMPLE 8-1. getpswd.c

#define _POSIX_SOURCE 1

#include <termios.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int getpswd(char *buff,unsigned size)

{
struct termios attr; /* Used for getting and setting
 * terminal attributes.
 */

int n; /* Number of bytes read */

 (void)printf("Password: "); /* Issue the prompt */
 (void)fflush(stdout); /* Cause the data to be written out
 * to the terminal
 */

 /*
 * Now turn off echo.
 */

 if(tcgetattr(STDIN_FILENO,&attr) != 0) return(-1);
 /* Start by getting current
 * attributes. This call
 * copies all of the terminal
 * parameters into attr.
 */

 attr.c_lflag &= -(ECHO);
 /* Turn off echo flag.
 * NOTE: We are careful not to
 * modify any bits except ECHO.
 */

 if(tcsetattr(STDIN_FILENO,TCSAFLUSH,&attr) != 0)
 return(-l);
 /* Wait for all of the data
 * to be printed.
 */
 /* Set all of the terminal
 * parameters from the (slightly)

Page 152

 * modified struct termios.
 */
 /* Discard any characters that
 * have been typed but
 * not yet read.
 */

 n = read(STDIN_FILENO,buff,size);
 /* Read a line from the
 * terminal.
 */

 /*
 * Turn echo back on.
 */
 attr.c_lflag |= ECHO;
 if(tcsetattr(STDIN_FILENO,TCSANOW,&attr) != 0)
 return(-1);

 return(n);
 /*
 * Return the number of bytes
 * in the password
 */
}

This function uses a common trick: since all of the functions that it calls return -1 and store an
error code in errno when they detect an error, all this function has to do is check for a
non-zero return from the library and pass that back to the caller. This trick is easier done than
said, for example:

 if (tcdrain(STDOUT_FILENO) != 0) return(-1);

Now, let's look at how input and output characters are processed.

Input Processing

When an application reads from a disk, the data is merely transferred from the disk to the
program, with no special processing taking place. This is not true when data is read from a
terminal. When a character is typed on a terminal, the system does some processing before
handing it to the user program. This processing consists of two tasks:

• Echoing.

• Looking for special characters.

Output Processing

Various forms of output processing may be required. For example, a terminal may need a delay
after a newline character to give it enough time to scroll. POSIX does not specify any standard
output processing—each system is free to do what is required. In general, this freedom makes
your application more portable because the system takes care of the hardware details.

Page 153

Modem Control

If a terminal is connected to the host by a modem and telephone line, the program may want to
get some control over the telephone connection. POSIX provides minimal modem control:

• The SIGHUP signal is sent to a program if the connection to the controlling terminal is
unexpectedly lost.

• The host can also hang up on the user via the tcsetattr() function.

More elaborate modem control was not specified because it would reduce application program
portability, especially in Europe. Hardware-specific functions, such as answering the phone
and detecting the carrier, are left to the operating system.

Non-Canonical I/O

In normal, or canonical, mode, terminal input is processed in units of lines. Thus, a read

request does not return until an entire line has been typed. At most one line is returned by a
single read call.

Sometimes, you might want to read input without breaking it into lines. For example, an editor
might respond to a single key press. In non-canonical mode, input bytes are not assembled into
lines and erase and kill processing is not done. The read completes either after a minimum
number of characters is read or after some timeout occurs.

Input Modes

The c_iflag member of the termios structure is the bitwise inclusive OR of 11 flags. The
flags are:

Flag Description

BRKINT
IGNBRK If BRKINT is set and IGNBRK is not set, a break condition flushes all data from the

input and output queues and generates a SIGINT signal for the foreground process
group. If neither BRKINT nor IGNBRK is set, a break condition is read as '\0'. If
PARMRK is also set, breaks are translated into the following three-byte sequence:

Byte 1 '\377'
Byte 2 '\0'
Byte 3 '\0'

Using breaks makes your program depend on particular hardware. Not all terminals can
generate a break condition.

IGNPAR If IGNPAR is set, a byte with a framing or parity error (other than a break is ignored.

Page 154

Flag Description

PARMRK If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error is given
to the application as the following three-byte sequence:

Byte 1 '\377'
Byte 2 '\0'
Byte 3 X

where X is the byte with the error.

If ISTRIP is not set, a valid '\377' is given to the application as the following
two-byte sequence:

Byte 1 '\377'
Byte 2 '\377'.

INPCK The INPCK flag enables parity checking.

The INPCK flag enables parity checking.

ISTRIP If set, valid input bytes are first stripped to seven bits.

INLCR If set, a received NL character is translated into a CR character.

IGNCR If set, a received CR is ignored.

ICRNL If ICRNL is set and IGNCR is not set, a received CR is translated into a NL character.

IXON If set, allows the terminal to control the flow of output from the computer Sending a
STOP character to the computer suspends output until a START character is received. If
IXON is set, the START and STOP characters merely perform flow control. Your
program never sees them. If IXON is not set, the characters are passed to your program
as ordinary data.

IXOFF If set, requests the computer to control the flow of data from the terminal. The system
will send START and STOP characters to the terminal to prevent loss of input data.

Output Modes

The c_oflag field has one bit defined. The OPOST bit, if set, causes output data to be
processed in an implementation-defined manner; otherwise the data is transmitted without
change. Setting this bit makes your program less portable. For full portability, do not change
the c_oflag member.

Page 155

Control Modes

The c_cflag field is composed of the bitwise inclusive OR of the following seven flags:

Flag Description

CLOCAL Ignore modem status lines.

CREAD Enable receiver. If this bit is not set, no characters are received.

CSIZE One of the following symbols:

CS5 for 5 bits-per-byte
CS6 for 6 bits-per-byte
CS7 for 7 bits-per-byte
CS8 for 8 bits-per-byte

CSTOPB If set, two stop bits are sent; otherwise, only one is sent. Some older mechanical
terminals require two stop bits, but these terminals are quite rare today.

HUPCL If there is a user logged in on this terminal, hang up the modem when he or she logs out. If
the communications port is being used for data, hang up the modem after all processes
close the device.

close the device.

PARENB If set, parity generation and detection is enabled and a parity bit is added to each
character.

PARODD If both PARODD and PARENB are set, odd parity is used. If PARENB is set but PARODD
is not set, even parity is used. If PARENB is not set, the setting of PARODD is ignored.

Local Modes

The c_lflags field contains the bitwise inclusive OR of the following nine flags:

Flag Description

ECHO If set, input characters are echoed back to the terminal.

ECHOE If ECHOE and ICANON are both set, the ERASE character causes the terminal to erase
the last character from the display, if possible.

ECHOK If ECHOK and ICANON are both set, the KILL character erases the last line from the
display. If the hardware does not allow the data to be erased, this flag is ignored.

ECHONL If ECHONL and ICANON are both set, the '\n' character is echoed even if ECHO is not
set.

ICANON If set, enables canonical input processing.

ISIG If set, the INTR, QUIT, and SUSP characters generate signals.

Page 156

Flag Description

NOFLSH If set, the normal flush of the input and output queues on the INTR, QUIT, and SUSP
characters is not done.

TOSTOP If set and job control is supported, the signal SIGTTOU is sent to the process group of a
process that tries to write to the controlling terminal if it is not in the foreground process
group for that terminal. This signal, by default, stops the members of the process group.

IEXTEN If set, implementation-defined functions are recognized from the input data. Portable
programs should not set this bit.

Control Characters

Special characters are defined by the c_cc_array. The size of this array is given by the
symbol NCCS in the <termios.h> header file. The meaning of the members of the c_cc
array depends on the setting of the ICANON flag. If ICANON is set, the array elements have the

following meanings:

Array
Subscript Description

VEOF EOF character. The end-of-file character (usually Control-D) may be used to generate an
EOF from the terminal.

VEOL EOL character. The newline (Control-J) is the normal line delimiter.

VERASE ERASE character. The erase character (typically backspace or delete) erases the
preceding character.

VINTR INTR character. The interrupt character (usually Control-C or DEL) generates a
SIGINT. It is often used to stop a running program. See Example 8-1 to see how an
application can take advantage of SIGINT.

VKILL KILL character. The kill character (usually Control-U) deletes the entire line being typed.

VQUIT QUIT character. The quit character (typically Control-\) generates a SIGQUIT. The
POSIX standard does not specify any special action for SIGQUIT. The shell in UNIX
systems uses SIGQUIT to stop the current program and generate a core file.

VSUSP SUSP character. The suspend character (typically Control-Z) generates a SIGTSTP
signal and is used to place a process in the background. See the discussion of POSIX job
control later in this chapter for a description of a background process.

VSTART START character. The start character (almost always Control-Q) is typed by the user to
resume output after a stop character.

Page 157

Array
Subscript Description

VSTOP STOP character. The stop character (almost always Control-S) stops the computer from
sending output to the terminal. It is useful for preventing information from scrolling off the
screen faster than you can read it.

Your program probably should not change any of these special characters because:

• The control characters affect all of the processes using the terminal, including the shell. In
general, you should not do things which may interfere with other processes. Disabling the
INTR character is very different from ignoring SIGINT.

• You may astonish the user. For example, if you change the INTR character from Control-C
to Control-I, you would confuse most people.

• The changes you make are not reset when your program exits. If your program crashes, the
terminal may be left in an unusable state.

An application should not disable special characters and POSIX does not make it easy. System
V suggests disabling special characters by setting them to a value unlikely to occur, say '\377'.
Picking an unlikely character is not fully portable, especially in an international environment.
POSIX tries to solve this problem; however, it does not do a perfect job. Here are the rules
that POSIX defines:

1. If the symbol _POSIX_VDISABLE is defined in the header <unistd.h> with a value
other than -1, then the value of _POSIX_VDISABLE can be used to disable special
characters on all terminals.

2. If the symbol _POSIX_VDISABLE is not defined in <unistd.h> or has the value -1,
pathconf(path,_PC_VDISABLE) or fpathconf(path,_PC_VDISABLE)
must be used to determine the character to use, if any.

3. If pathconf() or fpathconf() return -1 with errno unchanged, the system has no
suggestion for the value to use to disable special characters.

Here is some sample code that disables the interrupt character:

 #if !defined(_POSIX_VDISABLE) || (_POSIX_VDISABLE == -1)
 /* The symbol is defined so we can just use it.
 */
 t.c_cc[VINTR] = _POSIX_VDISABLE;
 #else /* The symbol is not defined */
 errno = 0; /* Make sure we can tell
 * if fpathconf() changes
 * errno.
 */
 /* See if it is defined for the terminal. */
 temp = fpathconf(tty,_PC_VDISABLE);
 if (temp != -1)
 { /* temp is not -1. This is
 * the value to use to disable
 * the interrupt character.
 */

Page 158

 t.c_cc[VINTR] = temp; /* Stuff it in. */
 return; /* All set. */
 }
 /* We get here if fpathconf() returned -1. If
 * errno is changed then there was a real
 * error.
 */
 if (errno != 0) PANIC;
 /* We get here is we can not disable the
 * the interrupt character. Fall back on
 * the unlikely character.
 */
 t.c_cc[VINTR] = 0377;

 #endif
 return;
 If ICANON is not set, the c_cc array elements have the following
meanings:

Array Subscript Description

VINTR INTR character.

VMIN If VTIME is zero, it is the number of bytes to read. A pending read is not satisfied
until enough bytes or a signal is received. If VTIME is not zero, the TIME value is
used as an inter-byte timer. If TIME/10 seconds expire between characters, the read
is satisfied.

VQUIT QUIT character.

VTIME If VMIN is zero, a read is satisfied as soon as a single byte is received or TIME/10
seconds elapse. If VMIN is not zero, the action is as described above for VMIN. If
both VMIN and VTIME are zero the read() function will return as much data as
possible without waiting.

VSTART START character.

VSTOP STOP character.

VSUSP SUSPEND character.

AT&T System V uses the same index into the c_cc array for VMIN and VEOF. VTIME shares
an index with VEOL. You should remember that this reuse can occur.

Speed Storing Functions

The termios structure also contains the input and output baud rates for the terminal. POSIX
defines some functions to copy the baud rates into and out of the termios structure. The
functions:

 speed_t cfgetispeed(const struct termios *ptr);
 speed_t cfgetospeed(const struct termios *ptr);

Page 159

return the input and output baud rates from the structure pointed to by ptr. These functions
blindly return the values in the structure. There is no check to see if these values are valid. The
functions:

 int cfsetispeed(struct termios *ptr, speed_t spd);
 int cfsetospeed(struct termios *ptr, speed_t spd);

copy the value spd into the structure pointed to by ptr. These functions return zero on success
and -1 on error; however, the standard does not require any error checking. These functions
merely store values into a structure. The hardware is not changed until a tcsetattr() is
done.

The type speed_t is defined in <termios.h> and is unsigned. Symbols of the form
Bxxxx are defined for each legal baud rate. The complete list of symbols and baud rates is
given in the following table:

Symbol Baud Rate

BO 0*

B50 50

B75 75

B110 110

B134 134.5**

B150 150

B200 200

B300 300

B600 600

B1200 1200

B1800 1800

B2400 2400

B4800 4800

B9600 9600

B19200 19200

B38400 38400

Portable programs should set both the input and the output baud rates. Split speed may or may
not work for a given terminal.

*The zero baud rate disables the communications port. If there is a modem, the computer hangs up the
phone.

** The 134.5-baud speed was used by IBM 2741-style terminals. These terminals were very popular
in the late 1960s and early 70s. Since they do not use ASCII and are quite slow, they are rare today.

Page 160

Line Control Functions

There are a few assorted functions for dealing with terminals. These are functions that are new

with POSIX. If you must move your application to an older (non-POSIX) system, you can
create these functions using ioctl().

The tcsendbreakO Function

Some terminals perform a special function when they receive a break. The tcsendbreak()
function provides a POSIX application with a portable method of generating a break. Since the
meaning of break varies from terminal to terminal, it is more portable to avoid this function.

The function:

 int tcsendbreak(int fildes, int duration);

sends a break (a '\0' with a framing error). The duration parameter is used to indicate how
long the break should be. The standard does not define the units of duration and the only
portable value is zero. This will send a break between 250 and 500 milliseconds long.

The tcdrain() Function

The function:

 int tcdrain(int fildes);

waits for all of the data written to fildes to be transmitted. The fildes argument must be a
valid file descriptor associated with a terminal. This function waits only for data that has
already been written with the write() function. If you are using the standard I/O library
(fprintf(), putc(), etc.), you must first use the fflush() function to transmit buffered
data.

This function is equivalent to using tcsetattr() with the TCSADRAIN flag, except no
terminal parameters are set.

The tcflush() Function

The function:

 int tcflush(int fildes, int option);

Page 161

discards terminal input and/or output data. The exact action depends on the option argument:

option Description

TCIFLUSH Discard all data that has been received but not read.

TCOFLUSH Discard all data that has been written but not transmitted.

TCIOFLUSH Do both the TCIFLUSH and TCOFLUSH functions.

The tcflow() Function

The function:

 int tcflow(int fildes, int action);

suspends or resumes transmission or reception of data depending on the value of action. The
action argument must be one of the following symbols:

action Description

TCOOFF Suspend output.

TCOON Resume output.

TCIOFF Transmit a STOP character. This is intended to cause the terminal to stop sending
data to the system.

TCION Transmit a START character. This is intended to cause the terminal to resume
sending data to the system.

Avoiding Pitfalls

There are several unfortunate attributes of the tcsetattr() interface:

• There may be (and almost always are) implementation-defined bits in the struct
termios. If your program builds a struct termios and does atcsetattr(), it
may trash some implementation-defined bits.

• There is no good error reporting. For example, if you try to set a terminal to 19200 baud
and the hardware does not support this speed, tcsetattr() does not change the line
speed.

To be safe and make your program fully portable, follow these steps:

1. Use the tcdrain() function to wait for all output data to be transmitted.

2. Use the tcgetattr() function to read the current terminal settings.

3. Modify the fields in struct termios to make any changes that you need. Do not change
any bits that are not defined in the standard.

Page 162

4. Use the tcsetattr() function to change the terminal characteristics.

5. Read back the new terminal characteristics with tcgetattr().

6. Compare the results of step 5 with the argument to step 4 and see if there were any settings
that you were unable to change.

Example: Computer-to-Computer Communications

Sometimes one needs to use a terminal port for data. This is often done to talk to other
computers. Let's write a simple version of the System V cu command. The cu command calls up

another system. The cu program runs as two processes: the transmit process reads data from the
standard input and passes it to the remote system; the receive process accepts data from the
remote system and passes it to standard output. The System V version has many command line
options and other features, but our cu is very simple.

There are three functions in the cu utility:

1. comm_init() gets the package started. This function opens the communications port and
sets all of the terminal parameters. For computer-to-computer communications, most
character processing is turned off.

2. The listen() function waits for data to arrive from the terminal port and calls the
write() function for each character that is read. A fork() is done prior to calling
listen(). This leaves one process to listen for data while the other process is used to
transmit.

3. The main() function first calls comm_init() to establish a connection to the remote
system. Next, main() turns off echo and canonical processing for the controlling terminal.
Then, main() calls listen() as a process. Finally, main() reads characters from
standard input and sends them to the communications port.

The code is shown in Example 8-2:

EXAMPLE 8-2. cu.c

 1 #define _POSIX_SOURCE 1
 2
 3 #include <termios.h>
 4 #include <sys/types.h>
 5 #include <sys/stat.h>
 6 #include <fcntl.h>
 7 #include <unistd.h>
 8 #include "panic.h" /* Defines the PANIC macro */
 9
 10 #define BUFFSIZE 256
 11
 12 static int chan = -1; /* I/O Descriptor for the
 13 * terminal port.
 14 */
 15

Page 163

 16
 17 /*
 18 * Setup the communications port
 19 */
 20 void comm_init(void)
 21 {
 22 struct termios t;
 23
 24
 25 chan = open("/dev/tty01", O_RDWR|O_NOCTTY);
 26 if (chan == -1) PANIC;
 27 if (tcgetattr(chan, &t) != 0) PANIC;

 28 t.c_cc[VMIN] = 32; /* Wake up after 32
 29 * characters arrive.
 30 */
 31 t.c_cc[VTIME] = 1; /* Wake up 0.1 seconds
 32 * after the first char
 33 * arrives.
 34 */
 35 /* The combination of
 36 * VMIN/VTIME will cause
 37 * the program to wake up
 38 * 0.1 seconds after the
 39 * first character arrives
 40 * or after 32 characters
 41 * arrive whichever comes
 42 * first.
 43 */
 44 t.c_iflag &= -(BRKINT /* Ignore break */
 45 | IGNPAR | PARMRK /* Ignore parity */
 46 INPCK | /* Ignore parity */
 47 ISTRIP | /* Don't mask */
 48 INLCR | IGNCR | ICRNL /* No <cr> or <lf> */
 49 | IXON); /* Ignore STOP char */
 50 t.c_iflag |= IGNBRK | IXOFF; /* Ignore BREAK
 51 * send XON and XOFF for
 52 * flow control.
 53 */
 54 t.c_oflag &= -(OPOST); /* No output flags */
 55 t.c_lflag &= -(/* No local flags. In */
 56 ECHO|ECHOE|ECHOK|ECHONL| /* particular, no echo */
 57 ICANON | /* no canonical input */
 58 /* processing, */
 59 ISIG | /* no signals, */
 60 NOFLSH | /* no queue flush, */
 61 TOSTOP); /* and no job control.
 62 */
 63 t.c_cflag &= (/* Clear out old bits */
 64 CSIZE | /* Character size */
 65 CSTOPB /* Two stop bits */
 66 HUPCL | /* Hangup on last close*/
 67 PARENB); /* Parity */
 68 t.c_cflag |= CLOCAL | CREAD | CS8;
 69 /* CLOCAL => No modem
 70 * CREAD => Enable
 71 * receiver
 72 * CS8 => 8-bit data
 73 */
 74

Page 164

 75 /* Copy input and output speeds into
 76 * struct termios t
 77 */
 78 if (cfsetispeed(&t, B9600) == -1) PANIC;
 79 if (cfsetospeed(&t, B9600) == -1) PANIC;
 80
 81 /* Throw away any input data (noise) */

 82 if (tcflush(chan, TCIFLUSH) == -1) PANIC;
 83
 84 /* Now, set the termial port attributes */
 85 if (tcsetattr(chan,TCSANOW, &t) == -1) PANIC;
 86
 87 return;
 88 }
 89
 90
 91 /*
 92 * Here is the receive process. The call to
 93 * listen() never returns.
 94 */
 95 void listen(void)
 96 {
 97 char buf[BUFFSIZE];
 98 int count;
 99 int i;
100
101 while(1) /* Loop forever */
102 {
103 count = read(chan, &buf, BUFFSIZE);
104 if (count < 0) PANIC;
105 (void)write(STDOUTFILENO,&buf,count);
106 }
107 }
108
109 /*
110 * Here is the main() function
111 */
112 int main(void)
113 {
114 struct termios t;
115 char ch;
116
117 comm_init(); /* Fire up the comm port */
118
119 if (tcgetattr(STDIN_FILENO,&t) != 0) PANIC;
120 /* Read the current terminal
121 * parameters into t.
122 *
123
124 t.c_lflag &= -(ICANON | ECHO);
125 /* Turn off the flags for
126 * echo and canonical
127 * input processing.
128 */
129
130 if (fork() == 0) listen();
131 /* Call listen() as a
132 * new process.
133 */
134
135

 Page 165

136 while (1) /* Loop forever */
137 {
138 (void)read(STDIN_FILENO,&ch,1);
139 if (write(chan,&ch,l) != 1) PANIC;
140 /* Copy standard input
141 * to the comm port.
142 */
143 }
144 }
145
146

Notes on cu.c:

LINE NOTES

22 You might think that t is a poor choice for the name of a structure. Why not call
it terminal_information or some other descriptive name? There are
reasons why t is an acceptable name:

• The structure is local to the comm_init() function. If the structure were global and
used in many places in the program, a longer name would be used.

• The name t is almost always qualified by a structure member name, for example:
t.c_iflag. The reader knows that t must be a struct termios.

• There is only one struct termios used in the function. It is not possible to become
confused about which one we mean. If there were two structures, names like
old_terminal state and new_terminal state would be better than t.

• The example looks better if statements fit on one line.

25 A more general version of this program would not build in the filename
/dev/tty01 but might accept the device name as a command-line parameter.

25 Open the data port. The O_NOCTTY macro prevents this terminal from eve
becoming our controlling terminal. We do not want a received Control-C to stop
our process.

27 Even though we are going to explicitly set or clear every POSIX-defined option,
we need to preserve any implementation-defined bits.

49 If the computer at the other end never sends binary data, IXON may be used for
flow control. If any binary data is being sent, IXON must be turned off; otherwise
a STOP character in the binary data might hang the program.

50 Here we are setting IXOFF to allow the system to send STOP characters to the
target computer. The combination of IXON clear and IXOFF set allows the
computer at the far end to send anything but assumes that it will respond to STOP
and START. Our program is pretending to be a terminal on a remote system.

Page 166

LINE NOTES

105 We are not checking for errors writing to standard output. There is not much to
do if standard output does not work.

This sample program shows how to use a communications port from an application. There are
a few practical problems:

1. The program does not pass special characters to the target machine. If you typed Control-C
(or whatever character is selected to generate SIGINT), the program stops. To be a useful
application, special characters should be sent to the target system.

2. If you fix problem 1, there is no way to stop the program.

3. When problem 2 is fixed, the program should reset the terminal attributes to their initial
states. This can be done by doing an additional tcgetattr() at program startup and
doing a tcsetattr() prior to calling exit().

The solutions to these problems are left as an exercise to the reader.

Process Groups and Job Control

It is often useful to run multiple programs from a single terminal. One of the issues with running
multiple programs is what happens to terminal input and output. POSIX job control is used to
determine which processes have access to the terminal.

Job control is a POSIX option. There are two ways to find out if job control is supported.

• If the symbol _POSIX_JOB_CONTROL is defined in <unistd.h>, job control is
supported.

• If the symbol _POSIX_JOB_CONTROL is not defined in <unistd.h> and
sysconf(_SC_JOB_CONTROL) returns -1, job control is not supported and all
processes have equal access to the controlling terminal. Since job control is required by
FIPS 151-1, most systems do support POSIX job control.

The process group functions and signals are not used by most applications. They are used only
by the shell to allow commands to run in the background. Some complex applications perform
shell-like functions; the emacs editor is an example of such an application. Unless you are
writing that sort of application, you can ignore the job control functions.

Your application can inadvertently subvert job-control processing by ''blindly'' altering the
handling of signals. A common application error is to learn how many signals the system
supports and to ignore or catch all of them. Such an application makes the assumption that it
does not know what the signal is, but knows the right action for it. Applications written this
way will not work correctly on POSIX systems.

Page 167

Process Groups

A process group is a collection of related processes. There is one important attribute of a

process group: it is possible to send a signal to every process in the group. Typically, when the
shell creates a process to run an application, the process is placed into a new process group.
As the application forks new processes, these processes are all members of the process group.
There are two types of process groups: foreground and background.

Foreground Process

A foreground process has read and write access to the terminal. Every process in the
foreground process group receives SIGINT, SIGQUIT, and SIGTSTP signals. The
foreground process group normally consists of the process forked by the shell and all the
processes that they fork.

A terminal may (or may not) have a foreground process group associated with it.

Background Process

On the other hand, if a process does not have read access to the terminal, it is a background
process. Attempts by a background process to read from its controlling terminal cause its
process group to be sent a SIGTTIN signal.* The default action of the SIGTTIN signal is to
stop the process to which it is sent.

Whether a background process can write to its controlling terminal depends on the TOSTOP
mode bit. If TOSTOP is not set, or the process is blocking the SIGTTOU signal, the process is
allowed to write to the terminal and the signal is not sent. If the TOSTOP bit is set, all
processes in the process group are sent a SIGTTOU signal.** The TOSTOP bit is in the
c_lflags member of the struct termios and is set or cleared using the tcsetattr()
function. An individual process can achieve the same effect as clearing the TOSTOP by setting
the action for SIGTTOU to SIG_IGN.

Session

A collection of process groups is called a session. Each process group is member of a session.
A newly-created process joins the session of its creator. In normal operation, the login shell
creates a new session and all processes are members of that session. The login shell is the
session leader.

Historical UNIX systems have a concept of an orphaned process, which is a process whose
parent process has exited. When POSIX job control is in use, it is necessary to

* If the reading process is ignoring or blocking the SIGTTIN signal, or if the process group of the
reading process has no controlling terminal, the read() returns -1 with errno set to EIO and no
signal is sent.

** If the process group of the writing process has no controlling terminal, the write() returns -1
with errno set to EIO, and no signal is sent.

Page 168

prevent processes from being stopped in response to interactions with the controlling terminal
after they are no longer controlled by a job-control-cognizant program. Because signals
generated by the terminal are sent to process groups and not to individual processes, and
because a signal may be provoked by a process that is not orphaned, but sent to another process

that is orphaned, it is necessary to define an orphaned process group. An orphaned process
group is a process group in which the parent of every member is either itself a member of the
group or is not a member of the group's session.

This definition of orphaned process groups ensures that a session leader's process group is
always considered to be orphaned, and thus it is prevented from stopping in response to
terminal signals.

Controlling Terminal

If special characters typed on a terminal keyboard generate signals, such as SIGINT, then the
terminal is a controlling terminal. A terminal may belong to a process as its controlling
terminal. A terminal may be the controlling terminal for at most one session.

A controlling terminal is inherited by a child during a fork() function call. A process can
relinquish its controlling terminal when it creates a new session with the setsid() call.
When a controlling process terminates, the controlling terminal is disassociated from the
current session, allowing it to be acquired by a new session leader.

Get/Set Process Group

Each process in the system is a member of a process group. A newly-created process joins the
process group of its creator. Each process group is a member of a session.

The setsid() Function

The setsid() function creates a new session. The calling process is the session group
leader of this new session. The process group ID of the calling process is set equal to the
process ID of the calling process. The calling process is the only process in the new group.
The setsid() function takes no arguments and returns the value of the process group ID of
the calling process.

This function is normally used only by the shell.

The setpgid() Function

The setpgid() function is used either to join an existing process group or create a new
process group within the session of the calling process. The call is defined as:

 int setpgid(pid_t pid, pid_t pgid)

and places the process with process ID pid into process group pgid.

Page 169

This function is normally used only by the shell.

The tcsetpgrp() Function

This function is used to determine which process group is the foreground process group
associated with a controlling terminal. The call:

 int tcsetpgrp(int fildes, pid_t pgrp_id)

is used to associate the process group pgrp_id with the terminal fildes. On successful
completion, zero is returned. Otherwise, a value of-1 is returned and errno is set to indicate
the error.

The shell uses this function to move process groups into the foreground. The previous
foreground process group, if any, is moved into the background.

 tcgetpgrp()

The call:

 pid_t tcgetpgrp(int fildes)

returns the process group ID of the foreground process group associated with the terminal
fildes. If there is no foreground process group, the 1990 standards says a value greater than 1
that does not match any existing process group is returned.*

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. The fast file copy example program given in Chapter 5, Advanced File Operations, will
not work if the input is from a terminal. There are at least two problems. What are they?
How can they be fixed?

2. The fast file copy example program given in Chapter 5 will not work if the input is from a
terminal. Will it work if the output is to a terminal?

3. Why does the computer echo characters instead of having the terminal print them directly?

4. Why would you ever want to use non-canonical I/O?

5. Why are process groups used? Why would a normal application ever use setpgid()?

6. What is the distinction between setpgid() and tcsetpgrp()?

7. If an asynchronous communications line is sending 7-bit ASCII characters with parity at
300 baud, how many characters are sent in one second?

* This was felt to be much more portable than returning an error.

Page 170

8. When the POSIX standard says something like "setting the terminal baud rate," what baud
rate are they really talking about?

9. Why might it be useful to set the ISTRIP bits in the c_iflag member of struct
termios? Where might this give you problems?

10. What does the OPOST bit in the c_oflag member of struct termios do? When should a
portable program set it?

11. Clearing the ISIG flag in the c_lflag member of struct termios will prevent the

INTR character from generating a signal. Give another way to have a similar effect. What
are the differences between the two schemes?

12. Why would you ever use the TCSADRAIN option of the tcsetattr() function?

13. When would a program use the tcdrain() function?

14. Should ordinary applications change the settings in the c_cc array? Why or why not?

Page 171

Chapter 9
Posix And Standard C

This chapter tells you how to use Standard C to achieve maximum portability for your
POSIX applications. Some people use the name "ANSI C" for Standard C. I prefer the name
Standard C to reflect its use as an international standard and not just an American National
Standard. The POSIX standard is written in terms of the C programming language. It
recognizes two forms of the C language support: C Standard Language Dependent System
Support and Common Usage C Language-Dependent System Support.

Common Usage C

To allow the greatest possible support for POSIX, implementors are not required to meet the C
standard in implementing POSIX. They may support existing pre-standard C compilers and
"use common usage as guidance." Since common usage varied from one system to another,
portability of applications is reduced in this type of implementation. Common usage support is
still the default on many systems; you have to work to get Standard C support.

Standard C

In a Standard C implementation, the system is required to support International Standard
ISO/IEC 9899: Information processing systems—Programming languages—C for all
required POSIX functions. Standard C adds a number of features and capabilities that are not
present in Common Usage C. In general, you are better off writing new applications with
Standard C. Because the definition of Standard C is more precise than Common Usage C, you
will find that Standard C programs are more portable and more easily maintained. Over time,
most systems and programmers will convert to Standard C. This chapter is your guide into the
future.

Getting Standard C

Since Standard C is new, most systems default to pre-Standard C behavior. Typically, you must
specify Standard C as a compiler option. For example, under AT&T System V.4, you specify
the -Xa option on the cc command line. The GNU C compiler requires the ansi switch.* See
your system documentation for details.

* The -pedantic switch will cause warnings for all non-standard features.

Page 172

The Standard C Preprocessor

The most non-standard and least specified part of Common Usage C is the preprocessor.
Operations like recognition of white space and macro replacement did not have a guaranteed
ordering. Standard C eliminates this problem by supplying a rigorous definition of the
preprocessing and translation process. While the committee was nailing down the exact
definition, they also threw in a few new features. These features are discussed in the following
sections.

Translation Phases

The standard defines eight translation phases:

1. Every trigraph in the source file is replaced. This usually has no effect. For a discussion of
trigraphs, see "Character Sets" on Page 184.

2. Every backslash-newline character pair is deleted. This means that a backslash-newline
can be used to continue a line in any context. In older C compilers, the backslash-newline
pairs were allowed only as a way to continue a directive, a string literal, or a character
constant.

3. The source file is converted into preprocessing tokens and white space. Each comment is
replaced by a space.

4. Every preprocessing directive is handled and all macro invocations are replaced. Each file
read by the #include directive is run through phases 1 to 4 and replaces the #include
line.

5. Every escape sequence in character constants and string literals is interpreted.

6. Adjacent character string literals are concatenated.

7. The result of steps 1-6 is compiled.

8. All external references are resolved. The result is a complete program.

As you can see, most of the work is done in step 7. Most compilers do not perform these
phases as distinct steps but fold them together. The standard does not require distinct phases;
however, the result must be "as if" separate phases are used.

Macro Replacement

Traditional C compilers did not follow the simple sequence of steps described above. Instead,
macros were processed on a moment-by-moment basis and the expansion of complex macros
would vary from system to system. Many macros were not truly portable.

Page 173

Standard C also allows many simple macros to work correctly. For example:

 #define allen *allen

will replace all uses of allen with *allen. Many traditional C compilers would die in the
#define statement and complain about macro recursion.

Conversion of Macro Arguments to Strings

There was a big argument about the correct operation of the following example:

 #define p(a) printf("a = %d\n",a)
 p(sue);

It could expand to either:

 printf("sue = %d\n",sue);

or to:

 printf("a = %d\n",sue);

Traditional C compilers gave the first result. They looked inside quoted strings for possible
macro arguments. Standard C will produce the second result. String literals are not examined.
To allow the intended effect of the above macro, the # operator was invented. In Standard C,
you would write:

 #define p(a) printf(#a " = %d\n",a)

The # sign converts the argument into a string literal. The concatenation of string literals
produces the desired result.

Token Pasting

In some traditional C compilers, the code:

 #define paste(a,b) a/**/b*

 x = paste(x,1) + paste(y,2);

would produce:

 x = xl + y2;

By Standard C rules, this code would produce:

 x = x 1 + y 2;

which is not what you want. To get the correct result, use the new Standard C ## operator. The
Standard C macro would be:

* You cannot just put a next to b because ab is a unique symbol.

Page 174

 #define paste(a,b) a ## b

Since ## is a real operation and not an artifact of the preprocessor, it is not sensitive to white
space.

New Directives

The #elif directive has been added as a shorthand form of the #else #if preprocessor
sequence.

The identifier defined is reserved during the #if or #elif so that:

 #if defined(NULL)
 #if !defined(TRUE)

is equivalent to:

 #ifdef NULL
 #ifndef TRUE

In addition to the two legal ways of including a header file:

 #include <header>
 #include "file"

it is now legal to write:

 #include MACRO

where MACRO expands to one of the first two cases.

Namespace Issues

In traditional C implementations, the contents of the various header files would vary from
system to system. This caused portability problems. There was no way to protect yourself from
implementation-defined symbols in the headers you used. Standard C solves this problem by
defining a strict set of rules on the use of names. There are a set of names reserved to various
parts of the implementation. If you avoid those names, there will be no conflicts.

Names Reserved by the C Language

The Standard C language defines a list of keywords. These have special meaning to the
compiler and may not be used for any other purpose. They are:
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Page 175

Names Reserved by Header Files

The C library uses many identifiers that begin with an underscore. Although there are places

where one can safely use an identifier that begins with an underscore, the rules are complex
and it is better just to avoid them. Some of these are POSIX restrictions, not part of standard C.

Using #include to read a header file causes a set of symbols to be reserved. These symbols
depend on the header file and are listed in the following table:

Header File Reserved Names

<ctype.h> All symbols starting with is or to.

<dirent.h> All symbols starting with d_.

<errno.h> All symbols starting with E followed by any uppercase letter or a digit.

<fcntl.h> All symbols starting with l_.* Symbols starting with F_, 0_, or S_ may be
used if an #undef is done for each symbol prior to any other use.

<grp.h> All symbols starting with gr_.

<limits.h> All symbols ending with _MAX.

<locale.h> All symbols starting with LC_ followed by an uppercase letter.

<math.h> The names of existing math functions followed by an f or an l.

<pwd.h> All symbols starting with pw_.

<signal.h> All symbols starting with sa_. Symbols starting with SIG or SA_ may be
used if an #undef is done for each symbol prior to any other use.

<string.h> All symbols starting with mem, str, or wcs.

<sys/stat.h> All symbols starting with st_. Symbols starting with S_ may be used if an
#undef is done for each symbol prior to any other use.

<sys/times.h> All symbols starting with tms_.

* That is lowercase letter "l" followed by an underscore.

Page 176

Header File Reserved Names

<termios.h> All symbols starting with c_. Symbols starting with V,I,O, or TC may be
used if an #undef is done for each symbol prior to any other use. Symbols
starting with B followed by a digit may be used if an #undef is done for
each symbol prior to any other use.

Any POSIX header All symbols ending with _t.

The Header files section in the Reference Manual of this book spells out the contents of the
header files in detail. The POSIX interpretation committee has ruled that POSIX 1003.1-1988
is ambiguous. A system conforming to the 1988 standard may define any POSIX symbol in any
POSIX header. Systems meeting the 1990 standard must obey the stricter rules set forth in the
Header Files section.

C Library Functions

The Standard C library defines a large number of functions. It is legal for a system to load
every function in the library even if you do not use it in your program. You should consider the
following names reserved by the Standard C library:
abort fprintf longjmp strcat
abs fputc malloc strchr
acos fputs mblen strcoll
asctime fread mbstowcs strcopy
asin free mbtowc strcspn
atan freopen memchr strerror
atan2 frexp memcmp strftime
atexit fscanf memcpy strlen
atof fsetpos memmove strncat
atoi ftell memset strncmp
atol fwrite mktime strncpy
bsearch getc modf strpbrk
ceil getchar perror strrchr
calloc getenv printf strspn
clearerr gets putc strstr
clock gmtime putchar strtod
cos isalnum puts strtok
cosh isalpha qsort strtol
ctime iscntrl raise strtoul
difftime isdigit rand strxfrm
div isgraph realloc system
exit islower remove tan
exp isprint rename tanh
fabs ispunct rewind time
fclose isspace scanf tmpfile
feof isupper setbuf tmpnam
ferror isxdigit setlocale tolower
fflush labs setvbuf toupper
fgetc ldexp sin ungetc
fgetpos ldiv sprintf vfprintf
fgets localeconv sqrt vprintf
floor localtime srand vsprintf
fmod log strcmp wcstombs
fopen logl0 sscanf wctomb

Page 177

POSIX Library Functions

The POSIX standard defines the following library functions:
access fdopen mkdir sigpending
alarm fork mkfifo sigprocmask
asctime fpathconf open sigsetjmp
cfgetispeed fstat opendir sigsuspend
cfgetospeed getcwd pathconf sleep
cfsetispeed getegid pause stat
cfsetospeed getenv pipe sysconf
chdir geteuid read tcdrain
chmod getgid readdir tcflow
chown getgrgid rename tcflush
close getgrnam rewinddir tcgetattr
closedir getgroups rmdir tcgetpgrp
creat getlogin setgid tcsendbreak
ctermid getpgrp setjmp tcsetattr
cuserid getpid setlocale tcsetpgrp
dup getppid setpgid time
dup2 getpwnam setuid times
execl getpwuid sigaction ttyname
execle getuid sigaddset tzset
execlp isatty sigdelset umask
execv kill sigemptyset uname
execve link sigfillset unlink
execvp longjmp sisismember utime
_exit lseek siglongjmp waitpid
fcntl write

Avoiding Pitfalls

The chances of stumbling over a reserved C or POSIX name can be minimized by following a
few simple rules:

1. Start each source file with the line:

 #define _POSIX_SOURCE 1

All symbols not defined by Standard C or the POSIX standard will be hidden, except those
with leading underscores.*

2. Following the definition of _POSIX_SOURCE, place the #include statements for any
standard header files.

3. Use #undef for any symbols that are used by your application and reserved by the header
files you use.

4. After the standard #include statements, place any #include or #define statements

for this application. The local definitions will redefine any symbol defined in the standard
headers.

* There is also the reverse of this pitfall. If you forget the _POSIX_SOURCE but specify Standard C,
all of the POSIX symbols will be hidden.

Page 178

Of course, this practice will merely prevent problems from identifiers that we do not know
about. We can't redefine a macro and still use its standard definition.

Here is a brief example:

 #define _POSIX_SOURCE 1

 #include <stdio.h>
 #include <termios.h>
 #include <limits.h>

 /*
 * #undef symbols that I use in my program, but are
 * reserved to POSIX headers.
 * See Headers section in the reference part of
 * this book.
 */

 #undef B52 /* <termios.h> reserves B<digit> */
 #undef BOMB_MAX /* <limits.h> reserves ???_MAX */
 #undef SIGMA /* <signal.h> reserves SIG??? */

 /*
 * Now, my application specific headers
 *

 #include "planes.h"
 #include "ships.h"

 /* ~
 * Now all of the #defines local to this file
 */

 #define B52 "Bomber"
 #define BOMBMAX 60
 #define SIGMA 2.378

 rest of the program goes here. . .

Function Prototypes

Standard C adds some additional checking to the traditional C language. The argument
declarations can now define the type of each argument. So, we might have a definition as
follows:

 long sum(short count, long *vect[])

This call defines a function called sum which returns a long. The sum() function has two
arguments, a short called count and a pointer to an array called vect. The identifiers vect
and count are for descriptive purposes only and do not go beyond the scope of sum.

If the parameter list terminates with an ellipsis (, ...), no information about the number or
types of the parameters after the comma is supplied. It is used for functions

Page 179

with a variable number of arguments. If a function takes no arguments, the parameter list should
have void as the only entry.

If a function declaration does not include arguments, as in:

 double julie();

then nothing is to be assumed about the arguments of julie, and parameter checking is turned
off. This allows older C programs to compile with new compilers, but it is a bad idea to use it
with new programs. If the function takes arguments, declare them; if it takes no arguments, use
void.

Avoiding Pitfalls

The syntax of function prototypes was borrowed almost completely from C++. Here are some
rules for good use:

1. The parameters are comma separated, instead of semicolon terminated as other
declarations are.

2. The last parameter in a prototype must not be followed by a comma. This is different from
enum and struct where the trailing comma is optional.

3. If you use a prototype in one place, use them every place! The compiler is allowed to
generate better code using the knowledge gained from the prototypes. For example, if your
header contains:

 int myfunc(char a, unsigned short b, float f);

but the code for myfunc is:

 myfunc()
 char a;
 unsigned short b;
 float f;
 {
 . . .
 }

the code generated for the call to myfunc may not match what the function is expecting.

4. You do not have to use parameter names in function prototypes. However, they may make
the operation of the function much clearer. Consider:

 int copy(char *,char *);

compared to:

 int copy(char *from, char *to);

5. Do not define prototypes for the standard library functions. These functions are declared in
system headers.

Page 180

Writing New Programs

New programs should use new style function declarations. If you want to allow for the code to
be ported to older systems that do not have Standard C compilers, the _ _STDC_ _ macro
should be used, as in:

 #ifdef _ _STDC_ _
 void myfunc(const char *src, char *dest);
 #else
 myfunc();
 #endif

The symbol _ _STDC_ _ should be defined only on systems that meet the C standard.

Maintaining Old Programs

In considering existing programs, the question is: How much code are you going to change?
Depending on the answer, you have a choice of one of several strategies:

1. Do nothing. The old code should compile just fine.

2. Add function prototypes just to the headers. This will cover all calls to global functions.

3. Add function prototypes to the headers and start each source file with prototypes for its
local functions.

4. Change all function declarations and definitions to use prototypes.

I suggest either 1 or 4. Although choices 2 and 3 are good compromises, they require detailed
knowledge of the rules for the mixing of old and new styles.

It is a good idea to use prototypes for any functions that have POSIX types as arguments. If you
call a function with an ino_t as a parameter, it will increase portability to use prototypes for
that function at least.

Mixing Old and New

Mixing old and new style function definitions requires caution. The use of function prototypes
allows the compiler to generate faster and smaller code and do more error checking. This code
may not be compatible with old-style functions. For most purposes, it is best to avoid mixing
old and new. There is one place where you need to consider mixing the two: libraries. The
users of a library may want to use old or new type calls.

Page 181

Here are the rules for mixing:

1. You cannot mix the Standard C ellipsis notation and old-style functions. Before Standard C,
functions with a variable number of arguments were not completely portable. If your library
has functions with a variable number of parameters, you must decide to either keep the
old-style definitions or force all callers to use prototypes.

2. For all integral types narrower than an int, use int in the function prototype and the
function itself. Functions without a prototype will widen integral types to int.

3. For all floating-point types, use double in the function definition and in the function itself.
Functions without a prototype will widen floating-point types to double.

Using const and volatile

Standard C has added two type qualifiers to C: const and volatile. The volatile
qualifier tells the compiler to take no shortcuts when accessing an object. Consider the
fragment:

 int a,b;
 int i;
 int tbl[100];
 . . .

 a=5;
 b=3;
 for (i=O; i<=99; i++)
 tbl[i] = a + b;

The compiler is free to observe that every element of tbl is set to 8 and then generate
optimized code to do that quickly, maybe with a block move of some sort. If b may change in
some way that the compiler cannot predict, say as the result of a signal, the optimization may
not provide the correct result.

The following:

 volatile int a,b;

tells the compiler not to do anything clever. The compiler will add a to b for every element of
tbl.

A more common use for this feature is:

 flag = 1;
 while (flag)
 {
 . . .
 }

Page 182

where flag is set to zero by some asynchronous event like a SIGALARM. If the volatile
qualifier is not used, the compiler is not required to check the value of flag each time around
the loop.

The const qualifier is much easier to understand. It says that an object of that type will not be
modified. A declaration such as:

 int copy(const char *from, char *to);

tells the compiler (and the human reader) that from is not modified by the copy() function. It
has two advantages. First, the compiler can detect errors where copy() might attempt to
modify from. Second, the compiler can generate better code both for copy() and for the
places where copy() is called. Telling the compiler that a function parameter will not be
modified is a good thing to do.

There is one tricky thing here. The declaration:

 const char *spl

and:

 char *const sp2

do very different things. The first declaration says that sp1 points only at characters that will
not be changed through sp1 (although they may be modified through some other pointer). The
second declaration says that sp2 is an unchanging pointer to a possibly changing char. The
way you would declare an un-modifiable pointer to an un-modifiable char is with:

 const char *const sp;

String Constants

A useful new feature of Standard C is that consecutive string constants are seamlessly pasted
together. The statements:

 printf("a" "bc" "def");

and:

 printf("abcdef");

produce identical results.* This allows programs to be cleanly formatted. For example

 text = "x
 " x "
 " x";

is a readable way to fill in a 3x3 array.

* This is a new feature created by the ANSI C committee. Older C compilers will not support it.

Page 183

It is neither required nor forbidden that identical string constants be represented by a single
copy of the string in memory. So, if we have the program:

 sue = &"This is a string";
 jenn = &"This is a string";

some compilers set sue and jenn to the same value; other compilers set them to different
values.

Data Type Conversions

When a binary arithmetic operator is presented with two operands of different type, the
operands must be converted to a common type. The common type is also the type of the result.
This set of conversion rules is called usual arithmetic conversions. The following rules are
applied, in order, until one of them is satisfied:

1. If either operand has type long double, the other operand is converted to long
double. The result has type long double.

2. If either operand has type double, the other operand is converted to double. The result
has type double.

3. If either operand has type float, the other operand is converted to float. The result has
type float.

4. If either operand has type unsigned long int, the other operand is converted to
unsigned long int. The result has type unsigned long int.

5. If one operand has type long int and the other has type unsigned int, if a long
int can represent all values of an unsigned int, the operand of type unsigned int
is converted to long int; if a long int cannot represent all of the values of an
unsigned int, both operands are converted to unsigned long int.

6. If either operand has type long int, the other operand is converted to long int.

7. If either operand has type unsigned int, the other operand is converted to unsigned
int.

8. If none of rules 1 to 7 applies, both operands and the result must have type int.

A compiler may perform calculations in a wider type than absolutely necessary, if this
produces smaller and faster code.* Calculations may also be performed in a narrower type, so
long as the same end result is obtained.

* Strictly speaking, the compiler can do this even if it produces larger, slower code.

Page 184

Standard C uses what is called a value preserving approach to integer promotion. When a
value with an integer type is converted to another integer type, if the value can be represented
by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater size, its value
is unchanged. If the unsigned integer has greater size, the signed integer is first promoted to the
signed integer of the correct size and then that bit pattern is converted to unsigned.

An ambiguity arises whenever an unsigned int and a signed int are operands and the
signed int is, in fact, negative. The signed int becomes a very large unsigned int.

This may be surprising or it may be exactly what the programmer has in mind. If we execute
this code fragment:

 short a;
 unsigned short b,c;

 a = -10;
 b = 5;
 c = a + b;

c will end up with a value of 65,531 on a machine with 16-bit shorts.

Character Sets

The C programming language was created with the ASCII character set in mind. Not all
computers use ASCII. Outside of the United States, some of the special characters are missing.
We need a character set that will work in any country. The following characters are in the
portable* character set:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz
 0123456789
 ! "%& ' () *+, - ./:;<=>? _

The following characters are used in C but are missing from the portable set:

 # [] { } \ | ^ ~

In order to represent these characters, there is a set of magic escape sequences called trigraphs.
A trigraph is a sequence that looks like ??x. These trigraphs are converted into the missing
characters by the C compiler. The defined trigraphs are:

 ??= #
 ??([
 ??/ \
 ??)]
 ?? ' ^
 ??< {

* The International Organization for Standards (ISO) has defined these as an invariant subset of
ASCII in ISO standard 646.

Page 185

 ??! |
 ??> }
 ??- ~

Question marks that do not begin a trigraph listed above are not changed. Thus, the following
source line:

 printf("What???/n");

is the same as:

 printf("What?\n");

after ??/ is replaced by \.

It is ugly and awkward to type ??< instead of {. You can avoid using the trigraphs if your
development computer has the required special characters. It is fairly simple to write a
program that will replace the special characters with the trigraphs. You can then port the files
with the trigraphs to other environments.

You also need to be careful not to trip over one of the trigraphs. The statement:

 printf("What???!\n");

will produce What?| instead of What???!. Chances are you want the second result. The
escape sequence \? results in a single ?. Escape sequences can be used to prevent unintended
trigraphs in character strings. For example:

 printf("What\?\?\?\n");

In fact, if it were not for the possibility that you might get a trigraph by accident, I would not
even have mentioned them.

Using Floating-point Data

Standard C defines a number of additional constants for the <float.h> header file. In order
to use them, it helps to understand how computers store floating-point data.

A float stores a value according to the following formula:

 value = s Xbaseexp

The exact value for base depends on the computer's hardware. The popular values are 2 and
16. A computer stores a float in a format that looks something like:

+
-

exp s

The number of bits used to hold the exponent (exp) and the fraction (s) change from
computer to computer. The number of bits may also vary among float, double, and long
double.

Page 186

The most natural way to think of a floating-point number is in decimal. The value is given by
the formula:

 value = frac X 10exp

even if no real computer uses this exact formula. Using this formula, all computers can support
exp values from -37 to +37. Items of type float have at least 6 decimal digits in the
fraction. Items of type double or long double have at least 9 decimal digits in the
fraction.

The header file <float.h> defines symbols for the actual limits on the target computer. Your
program should use these symbols instead of numeric constants. The macros* are:

Description Symbol for float Symbol for double Symbol for long
double

Radix of the exponent FLT_RADIX FLT_RADIX FLT_RADIX

Number of
FLT_RADIX digits in
frac

FLT_MANT_DIG DBL_MANT_DIG LDBL_MANT_DIG

Number of decimal
digits in the fraction

FLT_DIG DBL_DIG LDBL_DIG

Minimum exponent FLT_MIN_EXP DBL_MIN_EXP LDBL_MIN_EXP

Smallest value of exp
such that 10S(exp) is
a valid number

FLT_MIN_10_EXP DBL_MIN_10_EXP LDBL_MIN_10_EXP

Maximum exponent FLT_MAX_EXP DBL_MAX_EXP LDBL_MAX_EXP

Largest value of exp
such that 10S(exp) is
a valid number

FLT_MAX_10_EXP DBL_MAX_10_EXP LDBL_MAX_10_EXP

Maximum number FLT_MAX DBL_MAX LDBL_MAX

Minimum number FLT_MIN DBL_MIN LDBL_MIN

* These macros are most often simple defines, for example:

 #define FLTDIG 6

On some systems they may be defined as functions, as in:

 #define FLT_DIG (_ _mathconf(_ _FLT_DIG))

The different definitions should have no effect on your program. All of the private symbols used by
these macros must begin with two underscores to prevent conflicts with your symbols.

Page 187

Description Symbol for float Symbol for double Symbol for long
double

The smallest value that
can be added to 1.0 to
give a distinct number

FLT_EPSILON DBL_EPSILON LDBL_EPSILON

Using Data Structures

This section does not deal with the Standard C/Common Use C definition, but with its
implementation; specifically, this section covers the way data is stored in memory and some
portability pitfalls related to data structures. Normally, programs are not sensitive to the way
data is stored in memory. If you misuse a pointer or a union, however, your programs may be
sensitive to the way data is stored.

Alignment

The C compiler has a great deal of freedom in assigning storage. Consider the structure:

 struct date {
 unsigned char day;
 unsigned char month;
 unsigned short year;
 };

It has two char elements and a short element. It is possible to store this structure in four
contiguous bytes:

month day year

There is no obligation for the system to pack the data this way, but there are good reasons to
insert padding.

First, the compiler may decide to round up to some convenient boundary. Some computers
require that longs are placed only at certain storage boundaries. Other computers will give
correct results with any alignment, but give faster results with preferred alignments.

Some compilers have no alignment rules. Some will start every structure on an even boundary.
Others will align a structure on the same boundary as required for its most strictly aligned
component. For instance, a struct containing only char members would have no alignment
restrictions, while a struct containing a double is aligned on an 8-byte boundary.

Page 188

On some machines it is much faster to access data aligned on 4-byte boundaries. The compiler
may pad out our date structure to look like:

pad pad pad day

pad pad pad month

pad pad year

This requires three times as much storage as a tightly packed structure, however, it may be
much faster to access. This packing of data is one difference between traditional Complex
Instruction Set Computers (CISC) and the newer Reduced Instruction Set Computers (RISC). In

general, the CISCs packed data as tightly as possible to save space. However, they also
require the hardware that accesses memory to be more complex and thus slower. The RISC
computers use more memory and are able to access data using fast and simple hardware.

A structure may be padded at the end to round the size up to a handy value for the computer. On
some machines, it may be just up to an even boundary. On other machines, the size of a
structure is a multiple of the most strictly aligned element. Thus, any structure that contains a
double will be a multiple of 8 bytes long.

The point is that sizeof(struct date) can change a great deal from system to system.
This should not be a problem if you do not write code that depends upon the exact size.

Do not assume that sizeof(struct a) and sizeof(struct b) will always be the
same, even if they are on the system you are using for development.

Data Segment Layout

The compiler and linker may add padding between variables. The following assumption is
incorrect:

 short a = 0;
 short b = 0;
 /* assert(&a + sizeof(a) == &b) */

Some linkers and compilers place uninitialized variables in a separate segment. Thus:

 short a = 0;
 short b; /* uninitalized */
 short c = 0;

may result in b being placed a great distance from a or c.

Page 189

Big-endian vs. Little-endian

There are many possible ways to pack chars into a short and shorts into a long. There
are two very popular schemes and most computers use one or the other: big-endian or
little-endian.

Let's assume we have a 16-bit computer that stores two 8-bit bytes in a word.

The least significant bit is on the right and the most significant bit is on the left. The decimal
number 600 is stored in binary as:*

00000001 00101100

There are two possible ways to store the string "ab" in those 2 bytes.

'a' 'b'

'b' 'a'

The first case is called ''big-endian'' and the second "little-endian." If the union:

 union foo {
 short num;
 char ch[2];
 };

had 600 stored in num, on big-endian machines ch[0] would contain 00000001 binary and
on little-endian machines ch[0] would contain 00101100 binary.

When we go to 32-bit words, the picture gets even worse. Big-endian looks like:

a b c d

and little-endian looks like:

d c b a

The IBM System/360, introduced in 1964, was big-endian. All of the follow-on IBM
mainframes have also been big-endian. The IBM-PC is little-endian. Digital Equipment
Corporation introduced the PDP-11 in 1969 as the first little-endian machine. The follow-on
VAX series is also little-endian. The world of micro-computers has been split between the
little-endian Intel family (8080, 8086, 8028, 80386, 80486, etc.) and the big-endian Motorola
family (68000, 68010, 68020, 68030, 88100, etc.). Some chips are used

* This is a 16-bit number. Do not assume anything about byte addresses. When the computer uses this
information as a short, it gets the bits in the order shown.

Page 190

both ways. For example, the MIPS R2000 is big-endian in boxes sold by MIPS and Silicon
Graphics and little-endian in boxes sold by Digital Equipment Corp.

The bottom line is: programs must not depend on the way data is stored in memory. It is not
possible to transfer binary data blindly between two computer systems even if the same CPU
chip is used.

Internationalization

Standard C adds a number of internationalization features that include multi-byte characters,
wide characters, and new conversion functions. These are covered in detail in the next chapter.

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. What is the difference between ANSI C and Standard C?

2. Given the macro:

 #define list(a,b) printf(#a "=%d\n" #b "=%d\n",a,b);

what does:

 list(howard,harriet)

expand into?

3. What does the ## operator do?

4. If you define the function log in your program, what portability risks do you run?

5. Should you #include systems headers before application headers? Does it matter? Why
or why not?

6. What can you say about a function defined by the following prototype:

 void eniwel(const int i, const int *i, ...);

7. What is the difference between a function defined by:

 julie();

and:

 int julie(void);

8. When would you need to use the volatile attribute?

9. What does this do?

 wchr = '??';

Page 191

10. Given the structure:

 struct time {
 unsigned char hours;
 unsigned char minutes;
 unsigned char seconds;
 };

may the compiler pack this structure into 3 bytes? May the compiler insert pad bytes between
hours and minutes? May the compiler store seconds at a lower address than hours?

Page 193

Chapter 10
Porting to Far-off Lands

The C programming language and the UNIX system were invented by people who speak
English, and the intended users all spoke English. The seven-bit ASCII code was capable of
holding every character anyone really needed. As C and UNIX grew into international
standards, the demand grew for them to address the needs of the world outside of New
Jersey.

If you are in the United States and you are sure you will never have to port your software to
other countries or cultures, then you can skip this chapter.*

Some Definitions

Before we get too far into the subject, it is worth defining some terms.

Internationalization

A program written for a specific culture and following a set of local customs may be difficult
to move elsewhere. It is possible to write programs which make no assumptions about
language, local customs, or coded character set. Such programs are said to be
internationalized. That is, internationalization means making our software location neutral.

Localization

Making a program specific to any particular language, cultural convention, and codeset is
referred to as localization. In the ideal situation, no changes in program logic are required: all
localization is done by compiling with the correct library and including the proper data files.

Locale

We need a specific term to refer to a set of language and cultural rules. POSIX calls it a locale.
A program must be able to determine its locale and "do the right thing."

* Of course, you may be wrong. I have lots of horror stories about people who knew that their
software was only for the domestic market only to have the boss come in with the big deal they just
closed in Saudi Arabia. Then there was the person who discovered that Puerto Rico was part of the
United States.

Page 194

Locale Control

A number of things can vary from one locale to the next. Before I discuss the programming
techniques to use, we should understand the problem we are up against.

Character and Codeset

The character set for the United States is based on seven-bit characters defined by the
American Standard Code for Information Interchange (ASCII). For many locales, additional
characters are required, such as: ce å ß Ç and The 8-bit International Standard code ISO
8859-1:1987 has enough special characters to handle major Western European languages.

Because the low-order seven bits of ISO 8859 are the same as ASCII, most data files can be
exchanged.

It is important that our programs be "eight-bit clean." Programs that use the 0200 bit of
characters as some form of internal flag fail in eight-bit locales.

The problem is more difficult in Asia, where the character set might consist of thousands of
characters. Clearly, eight bits cannot do the job. Characters with more than eight bits per
character, (called wide characters) and characters that consist of a sequence of eight-bit bytes,
(called multi-byte characters) provide support for Asian languages. These are covered later in
this chapter.

Messages

One obvious thing to fix is hardcoded messages. Statements such as:

 printf("Hello, World\n");

will not work well in places where the correct output is something like:

 Bonjour tout le monde

The mechanism used to solve this problem is called a message catalog. The message catalog
provides an external file of messages that can be translated without access to the source code.

Unfortunately, POSIX does not yet have a message catalog facility. Such a facility is part of the
X/Open Portability Guide and is included as part of AT&T UNIX System V.4.0. This facility is
covered later in this chapter in the Section entitled "Native Language Messages."

Representation of Numbers

Different cultures have different ways of representing numbers. The most common are the
English (12,345.67) and the French (12.345,67). The decimal point and the comma are
interchanged.

In Asia, four-digit groups are preferred (e.g., 1,2345.67).

Page 195

Currency

Currency symbols vary both in terms of the character used and in its position.

Dates

The format of dates and times is not universally defined. January 9, 1990 may be written as
1/9/90 in the United States and as 9.1.90 in Germany.

The use of AM and PM is also not universal. Some locals use 24-hour time. Some use a colon
(:) between the hour and the minutes and others use a dot(.).

Setting the Current Locale

A program needs to select its locale. A single program might be capable of operating in a large

number of places. A user may want to switch from locale to locale based on what he or she is
doing. The setlocale() function is used to select the locale. This is defined as:

 char *setlocale(int category, const char *locale);

The category argument is a symbolic constant and tells the setlocale() function which items to
set. The effect of the locale settings is described in the next section. The choices are:

LC_COLLATE Changes the behavior of the strcoll() and strxfrm() functions.

LC_CTYPE Changes the behavior of the character-handling functions:
isalpha(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), toupper(), and
tolower(); and of the multi-byte functions: mblen(),
mbtowc(),wctomb(),mbstowcs(), and wcstombs().

LC_MONETARY Changes the information returned by localeconv().

LC_MESSAGES Changes the language in which messages are displayed.

LC_NUMERIC Changes the radix character for numeric conversions.

LC_TIME Changes the behavior of the strftime() function.

LC_ALL Changes all of the above.

The locale argument is the name of a locale. There are a few special locale names:

"C" Makes everything work as defined in the C standard. No locale-specific actions
take place.

"POSIX" Has the same effect as "C".

Page 196

" " Selects the native locale. This is done using the following steps:

1. If LC_ALL is defined in the environment and is not null, the value of LC_ALL is used.

2. If there is a variable defined in the environment with the same name as the category and
which is not null, the value specified by that environment variable is used.

3. If LANG is defined in the environment and is not null, the value of LANG is used.

3. If LANG is defined in the environment and is not null, the value of LANG is used.

If the resulting value is the same as a supported locale, that name is used. If the value does
name a supported locale (and is not null), setlocale() returns a NULL pointer, and the locale
is not changed by this call. If no nonnull environment variable is present, the exact behavior of
setlocale() is implementaion defined.

Setting all of the categories by using LC_ALL as the first argument is similar to successively
setting each individual category of the locale, except that all error checking is done before any
actions are performed.

NULL Returns the current locale without changing it.

At program startup:

 setlocale(LC_ALL,"C");

is performed before main() is called. If your program uses the library functions according to
the guidelines in this chapter, you can start the program with:

 setlocale(LC_ALL,"");

and do the best job possible in the local environment.

The setlocale() function returns a pointer to the name of the current locale for the selected
category. If setlocale() is given an unknown locale, NULL is returned.

You might wonder what effect setting the locale has on functions like printf(). The answer
is, none at all. While you can set LC_MONETARY and LC_NUMERIC, the printf() family
of functions is not required to use the information you supply. Most implementations format
numbers for the United Stated even if the locale is set elsewhere. On some systems,
printf() will format numbers based on locale.

Character-handling Functions

Some of the character-handling functions are sensitive to the locale. They will report different
results for different national character sets.

Page 197

The isalphaO, islower(), and isupper() Functions

These functions may expand the set of alphabetic characters to include native language
characters like ç, å, and so on. These characters do not have values between 'a' and 'z'.

The toupper() and tolower() Functions

Not all lowercase letters have corresponding upper-case letters. For example, the lowercase
German ß becomes SS in uppercase. The toupper() and tolower() functions assume
that a one-to-one mapping exists. They will return the input character if there is no way to
convert it.

The isspace() Function

A native language, such as Japanese, may have specific white space characters beyond the
standard set.

The strcoll() Function

The strcoll() function compares two strings in the native language character set and
reports which is greater. The function is defined by:

 int strcoll(const char *sl, const char *s2);

and returns a number that is less than, equal to, or greater than zero, depending on whether the
string pointed to by s1 is less than, equal to, or greater than the string pointed by s2.

In the "C" locale, strcoll() is equivalent to strcmp(). In other locales, strcoll()
must compensate for the rules of the native language. Most locales can be accommodated using
a one-to-one mapping that inserts characters like å in the correct place. In some cases, a
one-to-many mapping is required for characters like the German ß. There are also many-to-one
mappings like the Spanish "ll," which is sorted right after "l".

The strxfrm() Function

The use of strcoll() can be quite slow if a great deal of transformation is required and
many comparisons are going to be made. The strxfrm() function performs the
transformation required by strcoll() and leaves the result in a form where strcmp() can
be used.

In the "C" locale, strxfrm() merely copies the string and is almost equivalent to
strncpy(). The difference is that strxfrm() returns the length of the transformed string
which may be different from the length of the source.

Page 198

In applications where many comparisons must be made, a sort say, using strxfrm() and
strcmp() can provide a performance enhancement over using strcoll(). There is no
untransform function to recover the source string. It must be kept around if you are going to
need it again. Also, the transformation is implementation-dependent so that even two systems
operating on German may produce different transformations.

The strerror() and perror() Functions

The strerror() and perror() functions may produce native language messages even in
the "C" locale.

The strftime() Function

The strftime() function is covered in detail in Chapter 7, Obtaining Information at
Run-time. One of its features is the ability to generate locale-specific dates and times. For
example, the format string "%c" may produce:

 Friday April 13, 1990 3:25 PM

in one locale and:

 viernes abril 13 1990 15.25

in another locale. The "%x" format produces a native date (no time) and the "%X" produces a
native time (no date).

Native Language Messages

One important task of a program is to translate messages into the native language. There is no
provision in Standard C or POSIX to provide this capability. There is an existing method that
is part of the X/Open Portability Guide* and is available on many systems including AT&T
System V.4 and OSF/1. In late 1990 the POSIX working group concluded that it would be
premature to adopt any messaging proposal because:

• No proposal represented significant historical practice.

• All proposals had been developed with a primary focus on character terminals. The group
felt that the rapidly rising importance of windowing might require a proposal that explicitly
considered messaging in windows.

• All proposals seemed clumsy.

In my opinion, the working group abdicated their responsibility in the face of a difficult
problem. Since this is an important capability for building portable applications, I have
decided to describe the X/Open functions even though they are not part of POSIX.

* The X/Open Portability Guide is published by Prentice-Hall. Volume 3: XSI Supplementary
Definitions covers internationalization. See the Related Documents section in the Reference Manual
of this book.

Page 199

Message Catalogs

The basic mechanism for language-independent messages is a message catalog. It consists of a
file, external to your code, that can be translated to provide messages in other languages. A
message ID is used to look up the message in the catalog.

The message text file has the form:

 $set n
 i message-i
 j message-j
 k message-k
 $set m
 1 message-l
 . . .

Each message is identified by a set number and a message within that set. The usual backslash
escape sequences may be used.

Sets are often used to break messages into blocks of normal messages, error messages, and so

on. They can also be used to indicate which source module uses the message.

By default, there is no quoting and messages are delimited by white space as in:

 $set 0
 1 Hello, World\n
 2 Goodbye, World\n
 3 Have a nice day. . .

The $quote c command makes c a quote character. It can be used to include leading or
trailing white space in a message. For example:

 $quote
 $set 0
 1 "Hello, World\n"
 2 "Goodbye, World\n"
 3 "Have a nice day . . . "

To speed retrieval, the message text is compiled into binary with the gencat utility. This
command takes two arguments, the name of the catalog to be created and the input text file:

 gencat catalog text

The generated catalog is in a machine-specific format and is not portable. The text file, of
course, is portable (at least, on systems with the same code set).

The catopen() Function

The catopen() routine is used to make a message catalog available to your program. The
function is defined as:

 #include <nl_types.h>
 nl_catd catopen(char *name, int oflag);

Page 200

The argument name points to a string used to locate the catalog. If the string contains a "/" it is
assumed to be the full path for the message catalog. Otherwise, the environment variable
NLSPATH is used with the string pointed to by name substituted for %N. The oflag argument
must be zero.

The catopen() function returns a number of type nl_catd for use with subsequent calls to
catgets() and catclose(). If an error takes place, -1 is returned and errno is set to
indicate the error.

The catgets() Function

The catgets() function is used to pull strings out of a message catalog. The function is
defined as:

 #include <nl_types.h>
 char *catgets(nl_catd catd, int set_id, int msg_id,
 char *s);

where catd is the value returned by catopen(), set_id is used to identify a block of
messages, msg_id is used to identify a particular message within a set, and s is a pointer to a

default string. The catgets() function returns a pointer to a message. If catgets() has a
problem locating the message, s is returned. No errors are detected.

A typical use of catgets() is:

 printf(catgets(catd,0,1,"Hello, World\n"));

which might print out:

 Bonjour tout le monde

in France.

The catclose() Function

When you are done with the message catalog, the call catclose(catd) closes the catalog.
No errors are detected.

Local Numeric Formatting

Various information for formatting numbers is made available in the lconv structure. This
structure is defined in <locale.h> and contains the following members:

Type Member Name Default Description

char * decimal_point "." The character used to format non-monetary
quantities.

Page 201

Type Member Name Default Description

char * thousands_sep " " The character used to separate groups of
digits in non-monetary quantities.

char * grouping " " A string whose elements indicate the size
of each group of digits in non-monetary
quantities.

Each character is examined:

0 repeat the previous element for the
remainder of the digits.

1..CHAR_MAX-1

the number of digits in the current
group.

CHAR_MAX

CHAR_MAX

no further grouping is to be
performed.

char * int_curr_symbol " " International currency symbol for the
current locale (e.g., NOK for Norway).

char * currency_symbol " " Local currency symbol for the current
locale (e.g., Kr for Norway).

char * mon_decimal_point " " The decimal point for monetary quantities.

char * mon_thousands_sep " " The character used to separate groups of
digits for monetary quantities.

char * mon_grouping " " A string whose elements indicate the size
of each group of digits in monetary
quantities.

char * positive_sign " " The string used to indicate a nonnegative
valued monetary quantity (e.g., "+",
"DB", or " ").

char * negative_sign " " The string used to indicate a negative
valued monetary quantity (e.g., "-", or,
"CR").

char int_frac_digits CHAR_MAX Number of digits after the decimal point for
internationally formatted monetary
quantities.

char frac_digits CHAR_MAX Number of digits after the decimal point for
formatted monetary quantities.

Page 202

Type Member Name Default Description

char p_cs_precedes CHAR_MAX 1 if the currency symbol precedes
nonnegative monetary quantities; zero if it
goes after them.

char p_sep_by_space CHAR_MAX 1 if there is a space between the currency
symbol and the digits in nonnegative
monetary quantities. Zero if there is no
space.

char n_cs_precedes CHAR_MAX 1 if the currency symbol precedes negative
monetary quantities. Zero if it goes after
them.

them.

char n_sep_by_space CHAR_MAX 1 if there is a space between the currency
symbol and the digits in negative monetary
quantities. Zero if there is no space.

char p_sign_posn CHAR_MAX Position of the positive sign in monetary
quantities:

0 Surround with ().

1 Sign string precedes the quantity
and the currency symbol.

2 Sign string succeeds the quantity
and the currency symbol.

3 Sign string precedes the currency
symbol.

4 Sign string immediately after the
currency symbol.

char n_sign_posn CHAR_MAX Position of the positive sign in monetary
quantities; has the same codes as
p_sign_posn.

The localeconv() function returns a pointer to this structure. It is defined as:

 struct lconv *localeconv(void);

There are no arguments and no errors are detected. Do not modify the returned structure, which
may be overwritten by subsequent calls to localeconv() or setlocale().

Page 203

Asian Languages

The ISO 8859-1:1987 8-bit code handles most Western European languages. Other eight-bit
codes will support Hebrew, Arabic, or Russian. Asian languages present a problem. For
example, the Japanese language in Japanese is . Since many thousands of characters are
required to support the Japanese or Chinese languages, eight bits are not enough.

One could try to use a phonetic English system to represent information inside the computer.
Using the English alphabet does not work very well, because a given symbol may have several
readings, and a given sound maps into a large number of symbols. Many characters are
pronounced ko or shi. Proper names may merge when converted to a phonetic spelling.*

You are forced to keep track of all of the symbols.

Multi-byte Characters

One way to support extended characters without breaking lots of programs is to use escape
codes. We assume that information is stored in a sequence of eight-bit bytes. The interpretation
of these bytes depends on a shift state. A special byte or series of special bytes are used to
establish the shift state. Thus, the character with a value of 65 might be ''A" in one shift state
and "¥" in another shift state.

Multi-byte encodings are useful for I/O in general and terminal I/O in particular. They are also
useful for programs that deal with strings without looking at them. For example:

 printf("¥\n");

works just fine with no special additions to the C compiler.

The only important rule is that the null character (\0) must never be used as part of the
multi-byte encodings.

A major disadvantage of this scheme is that the shift state must be kept around someplace.
Extracting a substring may have unintended side effects; functions like strcat() would need
to be made much smarter. The usual assumption is that every string starts in a default shift state
and any required escapes are inserted in the front.

Wide Characters

The more straightforward (but much less C-like) way to extend the character set is to use more
bits per character. Standard C defines the type wchar_t as a wide character. The

* To make matters more complicated, the Japanese use three phonetic alphabets in addition to the
large set of Chinese (kanji) characters: the Latin alphabet called romaji, an alphabet for words of
foreign origin called katakana, and an alphabet for words of true Japanese origin called hiragana.

Page 204

wchar_t has enough bits to store all possible symbols without the need for escapes or a shift
state.

Wide characters may also be more efficient for storing text that is mostly in the extended
character set. Several implementations of AT&T System V.4 have defined wchar_t as a
32-bit data item. This requires four bytes per character and is not very efficient.

Working with Multi-byte and Wide Characters

Multi-byte and wide characters are optimized for different purposes. Multi-byte characters are
variable size and optimized for compactness. Wide characters are fixed size and optimized for
random access. The Standard C library provides a set of functions for converting between
wide characters and multi-byte characters. They are all defined in the <stdlib.h> header
file.

The mbtowc() Function

The mbtowc() function converts a single multi-byte character to a wide character. The
function is defined as:

 int mbtowc(wchar_t *pwc, const char *s, size_t n);

where s points to an array of at most n bytes. If the array contains a valid multi-byte character,
the corresponding wide character is stored in the wchar_t pointed to by pwc. The function
returns the number of bytes in the multi-byte character or -1 if the encoding is not valid.

If s is a null pointer, a special case of mbtowc() is used. In this case, no conversion is
performed and a non-zero value is returned if multi-byte characters have a state dependent
encoding; zero is returned if they do not.

The mbstowcs() Function

A multi-byte-character-encoded string can be converted to a wide-character string using the
mbstowcs() function. This is defined as:

 size_t mbstowcs(wchar_t *pwc, const char *s, size_t n);

and converts the string pointed to by s into at most n-wide characters stored in the array
pointed to by pwc. The function returns the number of wide characters stored or -1 if an
invalid code in encountered.

Page 205

The wctomb() Function

The wctomb() function converts a wide character to a multi-byte character. It is defined as:

 size_t wctomb(char *s, wchart wchar);

and stores the character sequence required to represent wchar in the string pointed to by s.
Any required shift characters are included. The function returns the number of bytes stored in
s. If s is a null pointer, the wctomb() returns the same special value as mbtowc() with a
null pointer.

The wcstombs() Function

The wctombs() function converts a wide-character string to a multi-byte-character string. It
is defined as:

 int wcstombs(char *s, const wchar_t *pwcs, size_t n);

and converts the null-terminated, wide-character string pointed to by pwcs into a
null-terminated, multi-byte-character string pointed to by s. At most, n bytes are stored into the
string s. The wcstombs() function returns the number of bytes stored in s, not counting the
final null byte. If an invalid wide character is encountered, -1 is returned.

The mblen() Function

The mblen() function returns the number of bytes in a multi-byte character. The function:

 mblen(const char *s, size_t n);

is exactly the same as:

 mbtowc((wchar_t *)0, s, n);

except that the shift state of mbtowc() is not changed.

Page 206

Portability Lab

To review the contents of this chapter, try to do the following exercises:

1. What is the key distinction between internationalization and localization?

2. What does ''eight-bit clean" mean?

3. What is the C locale? What is the default locale?

4. When would the strcoll() function give a different answer from the strcmp()
function? Which function is, in general, faster?

5. What can you do with the output of strxfrm()? Is there any other use for the output?

6. Is Poland in the C locale? Why or why not?

7. One way to support multiple languages would be to write a translate function. This function
is called with:

 printf(translate("Have a nice day. . .\n"));

and uses the English string as a key into a file to find the translation. The file might look
like:

 ENGLISH: message 1
 FRENCH: message 1
 GERMAN: message 1
 . . .
 ENGLISH: message n
 FRENCH: message n
 GERMAN: message n

The translate() function merely returns a pointer to the correct text.

Write the translate() function.

What are some of the pros and cons of this scheme?

8. Write a program to convert an amount of money stored in a double into a character string
using the information returned by the localconv() function.

9. Given the multi-byte and wide-character functions, write a complete Japanese word
processor. If you cannot do it, what information do you need?

Page 209

Library Functions

This section lists all of the library functions in the ANSI C and POSIX library. The table is
in strict alphabetical order. The reader does not need to know if a function is a macro, a
system call, or a true library function. Every function is listed in its proper place. For
example, the calloc() function is listed at its correct place in the Cs and not hidden
under malloc(). The descriptions are self-standing; if you look up creat(), you are not
told to see open() for details. You are told that open() is a more general function than
creat(). You may also want to look up open(), but the description of the creat()
function is complete.

Format:

Each function is described in the following format:

function name—One-line description of the function.

Synopsis:

The C language prototype for the function, with a list of all of the header files that must be
included when this function is used.

Arguments:

Gives a description of each argument. In many cases the language is not quite as precise as the
standard. For example, if an argument is defined as char *path, the description might say:

path The path of the file to use.

instead of the more precise:

path A pointer to a character array representing the path to be used.

Since the programmer is likely to write something like /usr/don/foo.bar, the short
description is better. If confusion is likely, the more precise description is used.

Returns:

Describes the value returned.

Page 210

Errors:

Lists the error codes that this function is required to detect. It may also detect other errors. The
error codes are described in the Error Code section.

The entries for some functions, such as fprintf(), do not list error codes, but these
functions do detect errors. The standards do not require any particular error code and error
codes can differ from system to system.

Description:

Provides a complete description of this function.

Reference:

The "American National Standard for Information Systems—Programming Language C" is
abbreviated "C."

The "IEEE Standard Portable Operating System Interface for Computer Environments" is
abbreviated "P."

The section of the appropriate standard is indicated as P s.s.s.s or C s.s.s.s. A few functions
are covered in both documents. In general, the POSIX standard adds additional requirements to
the definition in the ANSI C standard.

Conversions:

Provides compatibility hints for bringing existing programs into compliance with the POSIX
standard. The following abbreviations are used:

SysV: All releases of AT&T System V.

SVR1: System V Release 1.

SVR2: System V Release 2.

SVR3: System V Release 3.

SVR4: System V Release 4.

These may be combined, as in SVR1-3 to mean System V Release 1 to 3.

BSD: Berkeley Software Distribution 4.2 and 4.3.

BSD 4.2: Berkeley Software Distribution 4.2.

BSD 4.3: Berkeley Software Distribution 4.3.

XPG3: X/Open Portability Guide Issue 3.

Notes:

Adds any general comments when needed, otherwise you can add your own annotations. OSF/1
and SVR4 supply every interface in this chapter.

Page 211

abort()—Causes abnormal process termination.

Synopsis:

 #include <stdlib.h>

 void abort(void);

Arguments:

None.

Returns:

Never returns.

Description:

The abort() function causes abnormal program termination unless the signal SIGABRT is
being caught and the signal handler does not return. If the abort() function causes program
termination, it has the effect of calling fclose() on every open stream.

If your program blocks or ignores the SIGABRT signal, the abort() function will still
override it.

Reference:

C 4.10.4.1 and P 8.2.3.12

Conversions:

BSD and SVR1-2 generate SIGIOT instead of SIGABRT and return int instead of void.
SVR3 returns int instead of void. SVR4 is conforming.

Notes:

The abort() function will not return even if the SIGABRT signal is caught or ignored.

Catching the SIGABRT signal is a way to do application-specific cleanup. Programs should
terminate shortly after getting a SIGABRT.

Page 212

abs()—Computes the absolute value of an integer.

Synopsis:

 #include <stdlib.h>
 int abs(int j);

Arguments:

 j

Returns:

Absolute value of j.

Description:

The abs() function computes the absolute value of the integer argument.

Reference:

C 4.10.6.1

Conversions:

Add to the list of included headers:

 #include <stdlib.h>

Notes:

Trying to take the absolute value of the most negative integer is not defined.

Page 213

access()—Tests for file accessibility.

Synopsis:

 #include <unistd.h>
 int access(const char *path, int amode);

Arguments:

path Pointer to the name of file to be checked.

amode Bitwise OR of the access permissions to be checked (R_OK for read, W_OK
for write, X_OK for execute, and F_OK for existence).

Returns:

0 If access is allowed.

-1 On error with errno set to indicate the error. If access is not allowed, errno
will be set to EACCES.

Errors:

 EACCES, EINVAL, ENAMETOOLONG, ENOENT, ENOTDIR, EROFS

Description:

The access() function checks the accessibility of the file named by the path argument for
the permissions indicated by amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID.

Reference:

P 5.6.3.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

SVR1-2 used 4, 2, 1, and 0 instead of the symbols R_OK,W_OK,X_OK, and F_OK,
respectively. Change these values to symbols.

BSD and newer releases of SysV used both the symbols and the values. Make sure your
program uses only these symbols.

Page 214

Notes:

access() uses the real UID, not the effective UID. It is not a general utility for finding out
"Can I do this?" before doing a call. It is used by SETUID programs to check their actions.

Some historical implementations of access() do not check the file's access correctly when
the real user ID of the process is the superuser. In particular, they indicate that the file may be
executed without regard to whether the file is executable. The standards allow this behavior.

Page 215

acos()—Computes the principal value of arc cosine.

Synopsis:

 #include <math.h>
 double acos(double x);

Arguments:

 x

Returns:

Arc cosine of x in the range 0 to π radians.

Errors:

 EDOM

Description:

The acos() function computes the principal value of arc cosine. A domain error occurs for
arguments less than -1 or greater than +1.

Reference:

C 4.5.2.1

Notes:

The acos() function returns a result in the range 0 to π while the asin() function returns a
result in the range -π/2 to + ππ/2.

Page 216

alarm()—Schedules an alarm.

Synopsis:

 #include <unistd.h>
 unsigned int alarm(unsigned int seconds);

Arguments:

seconds Number of elapsed seconds before signal.

Returns:

Number of seconds left in previous request or zero if no previous alarm() request.

Description:

The alarm() functions causes the system to send the calling process a SIGALARM signal
after a specified number of seconds elapse.

There can be only one outstanding alarm request at any given time. A call to alarm() will
reschedule any previous unsignaled request. An argument of zero causes any previous requests
to be canceled.

Reference:

P 3.4.1.3

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

The SIGALARM may be delayed by other system activity.

The default action for SIGALARM is to terminate the process.

Some systems allow the signal to occur up to one second early.

The alarm() function uses ordinary wall-clock time. This time is measured in the ordinary,
human way and is not related to real-time, virtual-time, or any other form of computer time.

The maximum portable argument is 65,535.

See example on Page 116.

Page 217

asctime() —Converts a time structure to a string.

Synopsis:

 #include <time.h>
 char *asctime(const struct tm *timeptr);

Arguments:

timeptr Pointer to a struct tm returned by gmtime() or localtime().

Returns:

Pointer to string.

Description:

The asctime() function converts the time in the structure pointed to by timeptr into a
string of the form:

 Sun Oct 21 19:54:52 1990\n\0

Reference:

C 4.12.3.1

Conversions:

BSD used the header <sys/time.h> for this function.

Notes:

The string returned may be in static storage. Each call overwrites the results of the previous
call.

The string returned does NOT depend on the current locale. It is always in English.

Page 218

asin()—Computes the principal value of the arc sine.

Synopsis:

 #include <math.h>
 double asin(double x);

Arguments:

 x

Returns:

Arc sine of x in the range -π/2 to +π/2 radians.

Errors:

 EDOM

Description:

The asin() function computes the principal value of the arc sine. A domain error occurs for
arguments less than -1 or greater than +1.

Reference:

C 4.5.2.2

Notes:

The acos() function returns a result in the range 0 to π while the asin() function returns a
result in the range -π/2 to +π/2.

Page 219

assert() —Aborts the program if assertion is false.

Synopsis:

 #include <assert.h>
 void assert(int expression);

Arguments:

expression If zero the assert function will crash the application by printing an error
message and calling abort().

Returns:

No value is returned.

Description:

The assert() macro puts tests into programs. If expression is false the assert()
macro writes a message with the line and file of the failing assert() on stderr and calls
abort(). The exact format of the message varies widely.

Example:

 assert(start < end);
 for (i=start; i<=end; i++)
 {
 . . .
 }

Reference:

C 4.2.1.1

Notes:

assert() is implemented as a macro. If the macro NDEBUG is defined, then calls to
assert() are ignored. For example, use statements like:

 assert(i > j);

in places where you assume that i must be greater the j. Define NDEBUG after all of the bugs
have been eliminated from the program.

Page 220

Do not use expressions with side-effects! Statements like:

 assert(i++ < 100);

will not increment i when NDEBUG is defined. Programs that fail only when the debug features
are turned off greatly shorten the life of the programmers who write them.

Do not pass a pointer to assert(). Use

 assert(ptr != null);

instead of

 assert(ptr);

Page 221

atan() —Computes the principal value of the arc tangent.

Synopsis:

 #include <math.h>
 double atan(double x);

Arguments:

 x

Returns:

Arc tangent of x in the range -π/2 to +π/2 radians.

Description:

The atan() function computes the principal value of the arc tangent.

Reference:

C 4.5.2.3

Notes:

Page 222

atan2() —Computes the principal value of the arc tangent of y/x.

Synopsis:

 #include <math.h>
 double atan2(double y, double x);

Arguments:

x and y.

Returns:

Arc tangent of y/x.

Errors:

 EDOM

Description:

The atan2() function computes the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the return value. A domain error can occur if
both arguments are zero.

Reference:

C 4.5.2.4

Notes:

The function atan(y/x) generates an error when x is equal to zero. The call atan2(y,x)
returns ±π/2, depending on the sign of y.

Page 223

atexit() —Registers a function to be called at normal program
termination.

Synopsis:

 #include <stdlib.h>
 int atexit(void (*func)(void));

Arguments:

func Pointer to function to be called.

Returns:

0 on success and non-zero on failure.

Description:

The function func() will be called without arguments at normal program termination.

The functions registered by atexit() are called in the reverse order of their registration.

Reference:

C 4.10.4.2

Conversions:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

At least 32 functions can be registered with atexit().

This function is required by Standard C and is not part of the POSIX standard.

Page 224

atof() —Converts a text string to double.

Synopsis:

 #include <stdlib.h>
 double atof(const char *nptr);

Arguments:

nptr Points to the character string to convert.

Returns:

The converted value.

Description:

The atof() function converts the initial portion of the string pointed to by nptr to double.
The behavior is the same as strtod(nptr, (char **)NULL) except that atof()
does not detect errors.

Reference:

C 4.10.1.1

Conversions:

Add to the list of headers:

 #include <stdlib.h>

Notes:

See strtod() for the general case.

Page 225

atoi() —Converts a text string to integer.

Synopsis:

 #include <stdlib.h>
 int atoi(const char *nptr);

Arguments:

nptr Pointer to text string.

Returns:

Converted value.

Description:

The atoi() function converts the initial portion of the string pointed to by nptr to int. The
behavior is the same as strtol(nptr, (char **)NULL, 10) except that atoi()
does not detect errors.

Reference:

C 4.10.1.2

Conversions:

Add to the list of headers:

 #include <stdlib.h>

Notes:

See strtol() for the general case.

Page 226

atol() —Converts a text string to long integer.

Synopsis:

 #include <stdlib.h>
 long int atol(const char *nptr);

Arguments:

nptr Pointer to a text string.

Returns:

Converted value.

Description:

The atol() function converts the initial portion of the string pointed to by nptr to long.
The behavior is the same as strtol(nptr, (char **)NULL, 10) except that
atol() does not detect errors.

Reference:

C 4.10.1.3

Conversions:

Add to the list of headers:

 #include <stdlib.h>

Notes:

See strtol() for the general case.

Page 227

bsearch()—Searches a sorted array.

Synopsis:

 #include <stdlib.h>
 void *bsearch(const void *key, const void *base, size_t nmemb,

Arguments:

key Pointer to the element to match.

base Pointer to the start of the array.

nmemb Number of elements in the array.

size Size of each element.

compar Pointer to a comparison function called with a pointer to a key and a pointer to an
array element, in that order. It returns a number less than zero, equal to zero, or greater
than zero, depending on the relative order.

Returns:

Pointer to the matching element or NULL if no match is found.

Description:

The bsearch() function searches an array for an element that matches a key. The elements
must all have a fixed size and the array must be sorted (see qsort()) according to the
comparison function.

If there are multiple elements that match the key, the element returned is unspecified.

Example:

 /*
 * Score structures contain the student's name
 * and test score.
 */
 struct score
 {
 char student_name[25];
 int test_score;
 };
 /* Class is an array of scores */
 struct score class[50];

Page 228

 /*
 * Comparison function to use with bsearch
 */
 int comp_name(const void *key, const void *test)
 {
 return(strcmp((char *) key,((struct score *) test) ->
studentname));
 }
 /*
 * Return the score for a student (-1 if not found)
 *
 int lookup_score(const char *name)
 {
 struct score *ptr;

 ptr = (struct score *)bsearch(
 (void*)name, /* key */
 &score[0], /* base */
 50, /* number of elements */
 sizeof(struct score),/* size */
 comp_name); /* comparison function */
 if (ptr == NULL) return(-l);
 return(ptr -> test_score);
 }

Reference:

C 4.10.5.1

Conversions:

Add to the list of headers:

 #include <stdlib.h>

BSD does not support bsearch().

Notes:

This function is required by Standard C and is not part of the POSIX standard.

Page 229

calloc()—Allocates and zeroes memory.

Synopsis:

 #include <stdlib.h>
 void *calloc(size_t nmemb, size_t size);

Arguments:

nmemb Number of elements to allocate.

size Size of each element.

Returns:

Pointer to the allocated space or NULL if no space can be found.

Description:

The calloc() function allocates space for an array of nmemb elements of size bytes. The
allocated space is filled with zeros. If the space does not need to be zeroed the malloc()
function may be used.

The call calloc(100,1) allocates and zeroes 100 bytes.

Reference:

C 4.10.3.1

Conversions:

Add to the list of headers:

 #include <stdlib.h>

BSD and SVR1-3 use unsigned for size and nmemb.

Notes:

The calloc() function initializes the allocated space to all zero bits. This may not be the
same as floating-point zero or the NULL macro.

Page 230

ceil() —Computes the smallest integer greater than or equal to x.

Synopsis:

 #include <math.h>
 double ceil(double x);

Arguments:

 x

Returns:

Smallest integral value not less than x, expressed as a double.

Description:

Rounds the argument up to the next integer value. The result is still in floating-point format. For
example:

 ceil(1.0000) returns 1.0000
 ceil(1.0001) returns 2.0000
 ceil(1.9999) retruns 2.0000

Conversions:

C 4.5.6.1

Notes:

The resulting value may not fit into an int or even a long.

Page 231

cfgetispeed() —Reads terminal input baud rate.

Synopsis:

 #include <termios.h>
 speed_t cfgetispeed(const struct termios *p);

Arguments:

p Pointer to a struct termios.

Returns:

Code for the baud rate.

Description:

The cfgetispeed() function returns a code for the terminal speed stored in a struct
termios. The codes are defined in <termios. h> by the macros B0, B50, B75,

B10, B134, B150, B200, B300, B600, B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

The cfgetispeed() function does not do anything to the hardware. It merely returns the
value stored by a previous call to tcgetattr().

Reference:

P 7.1.2.7.1

Conversions:

This function is new to POSIX. BSD and System V required the application to store
device-dependent information and use the ioctl() function to pass that information to the
system. That code should be replaced by this function. See tcsetattr() for more
information.

This function is not supported in BSD or SVR1-3.

Notes:

Baud rates are defined by symbols, such as B110,B1200,B2400. The actual number
returned for any given speed may change from system to system.

See Chapter 8, Terminal I/O, for more information.

Page 232

cfgetospeed() —Reads terminal output baud rate.

Synopsis:

 #include <termios.h>
 speed_t cfgetospeed(const struct termios *p);

Arguments:

p Pointer to a struct termios.

Returns:

Code for the baud rate.

Description:

The cfgetospeed() function returns a code for the terminal speed stored in a struct
termios. The codes are defined in <termios.h> by the macros BO, B50, B75,
B10, B134, B150, 200, 300, B600, B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

The cfgetospeed() function does not do anything to the hardware. It merely returns the
value stored by a previous call to tcgetattr().

Reference:

P 7.1.2.7.1

Conversions:

This function is new to POSIX. BSD and System V required the application to store
device-dependent information and use the ioctl() function to pass that information to the
system. That code should be replaced by this function. See tcsetattr() for more
information.

This function is not supported in BSD or SVR1-3.

Notes:

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number
returned for any given speed may change from system to system.

See Chapter 8, Terminal I/O, for more information.

Page 233

cfsetispeed() —Sets terminal input baud rate.

Synopsis:

 #include <termios.h>
 int cfsetispeed(struct termios *p, speed_t speed);

Arguments:

p Pointer to a struct termios.

speed Code for the desired speed.

Returns:

Zero on success and -1 on error.

Description:

The cfsetispeed() function stores a code for the terminal speed stored in a struct
termios. The codes are defined in <termios.h> by the macros B0, B50, B75,
B10, B134, B150, B200, B300, B600, B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

The cfsetispeed() function does not do anything to the hardware. It merely stores a value
for use by tcsetattr().

Reference:

P 7.1.2.7.1

Conversions:

This function is new to POSIX. BSD and System V required the application to store
device-dependent information and use the ioctl() function to pass that information to the
system. That code should be replaced by this function. See tcsetattr() for more
information.

This function is not supported in BSD or SVR1-3.

Notes:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

See Chapter 8, Terminal I/0, for more information.

Page 234

cfsetospeed() —Sets terminal output baud rate.

Synopsis:

#include <termios.h>

int cfsetospeed(struct termios *p, speed_t speed);

Arguments:

p Pointer to a struct termios.

speed Code for the desired speed.

Returns:

Zero on success and -1 on error.

Description:

The cfsetospeed() function stores a code for the terminal speed stored in a struct
termios. The codes are defined in <termios.h> by the macros B0, B50, B75,
B10, B134, B150, B200, B300, B600, B1200, B1800, B2400, B4800,
B9600, B19200, and B38400.

The cfsetospeed() function does not do anything to the hardware. It merely stores a value
for use by tcsetattr().

Reference:

P 7.1.2.7.1

Conversions:

This function is new to POSIX. BSD and System V required the application to store

device-dependent information and use the ioctl() function to pass that information to the
system. That code should be replaced by this function. See tcsetattr() for more
information.

This function is not supported in BSD or SVR1-3.

Notes:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

See Chapter 8, Terminal I/O, for more information.

Page 235

chdir()—Changes the current working directory.

Synopsis:

 #include <unistd.h>
 int chdir(const char *path);

Arguments:

path Pointer to the name of the new directory.

Returns:

Zero on success and -1 on failure.

Errors:

 EACCES, ENAMETOOLONG, ENOENT, ENOTDIR

Description:

The chdir() function causes the directory named by path to become the current working
directory; that is, the starting point for searches of pathnames not beginning with a slash.

If chdir() detects an error, the current working directory is not changed.

Reference:

P 5.2.1.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 236

chmod()—Changes file mode.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 int chmod(const char *path, mode_t mode);

Arguments:

path Pointer to pathname of the file to modify.

mode New permission bits, S_ISUID and S_ISGID.

Returns:

Zero on success and -1 on failure.

Errors:

 EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, EPERM, EROFS

Description:

Set the file permission bits, the set user ID bit, and the set group ID bit for the file named by
path to mode. If the effective user ID does not match the owner of the file and the calling
process does not have the appropriate privileges, chmod() returns -1 and sets errno to
EPERM.

Reference:

P 5.6.4.1

Conversions:

SVR1-2 and BSD did not specify symbols for the mode bits; they gave absolute values. Change
these to symbols using the following key:

Value Symbol Meaning

04000 S_ISUID Set user ID on execution.

02000 S_ISGID Set group ID on execution.

00400 S_IRUSR Allow the owner to read the file.

00200 S_IWUSR Allow the owner to write the file.

00100 S_IXUSR Allow the owner to execute the file.

Page 237

Value Symbol Meaning

00040 S_IRGRP Allow a process with a group ID that matches the file's group to read
the file.

00020 S_IWGRP Allow a process with a group ID that matches the file's group to write
the file.

00010 S_IXGRP Allow a process with a group ID that matches the file's group to
execute the file.

00004 S_IROTH Allow anyone to read the file.

00002 S_IWOTH Allow anyone to write the file.

00001 S_IXOTH Allow anyone to execute the file.

BSD and SVR1-3 used int for mode instead of mode_t

Notes:

S_ISUID and S_ISGID may be ignored on some implementations.

Do not attempt to set any bits not listed above.

Page 238

chown()—Changes the owner and/or group of a file.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 int chown(const char *path, uid_t owner, gid_t group);

Arguments:

path Pointer to path name of the file to modify.

owner New owner ID.

group New group ID.

Returns:

Zero on success and -1 on failure.

Errors:

 EACCES, EINVAL, ENAMETOOLONG, ENOENT, ENOTDIR, EPERM, EROFS

Description:

The user ID and group ID of the file named by path are set to owner and path,
respectively.

For regular files, the set group ID(S_ISGID) and set user ID(S_ISUID) bits are cleared.

Some systems consider it a security violation to allow the owner of a file to be changed. If
users are billed for disk space usage, loaning a file to another user could result in incorrect
billing. The chown() function may be restricted to privileged users for some or all files. The
group ID can still be changed to one of the supplementary group IDs.

Reference:

P 5.6.5.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

SVR1-3 and BSD used int for owner and group.

Page 239

Notes:

This function may be restricted for some files. The pathconf() function can be used to test
the _PC_CHOWN_RESTRICTED flag.

Page 240

clearerr()—Clears end-of-file and error indicators for a stream.

Synopsis:

 #include <stdio.h>
 void clearerr(FILE *stream);

Arguments:

stream File to use.

Returns:

No value is returned.

Description:

The error and end-of-file indicators for stream are cleared.

Reference:

C 4.9.10.1

Notes:

Page 241

clock()—Determines processor time used.

Synopsis:

 #include <time.h>
 clock_t clock(void);

Arguments:

None.

Returns:

The processor time used or -1 if unknown.

Description:

The clock() function returns an approximation of the amount of CPU time used by the
program. The value returned has a type of clock_t. To convert a clock_t to seconds,
divide by the macro CLOCKS_PER_SECOND.

Reference:

C 4.12.2.1

Conversions:

This function is not supported in BSD.

SVR1-2 return long.

SVR3 used the header <sys/types.h>.

Notes:

The standards say nothing about when the timer for the clock() function is reset. It may not
be reset while your process is running. To measure how much time your program used, call
clock() at the start of your program and again at the end. The difference between the two
values is the answer.

This function is required by Standard C and is not part of the POSIX standard.

Page 242

close()—Closes a file.

Synopsis:

 #include <unistd.h>
 int close(int fildes);

Arguments:

fildes The file descriptor to close.

Returns:

Zero on success and -1 on failure.

Errors:

 EBADF, EINTR

Description:

The close() function deallocates the file descriptor named by fildes and makes it
available for reuse. All outstanding record locks owned by this process for the file are
unlocked.

If it is the last file descriptor that refers to a given file, the following additional steps are taken:

1. Any remaining pipe or FIFO data is discarded.

2. If the link count of the file is zero, the space occupied by the file is freed and the file is no
longer accessible.

Reference:

P 6.3.1.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

A signal can interrupt the close() function. In that case, close() returns -1 with errno
set to EINTR. The file may or may not be closed.

Page 243

closedir()—Ends directory read operation.

Synopsis:

 #include <sys/types.h>
 #include <dirent.h>
 int closedir(DIR *dirp);

Arguments:

dirp Pointer returned by opendir().

Returns:

Zero on success and -1 on failure.

Errors:

 EBADF

Description:

The directory stream associated with dirp is closed. The value in dirp may not be usable
after a call to closedir().

Reference:

P 5.1.2.1

Conversions:

BSD used the header <sys/dir.h>, which must be replaced by <dirent.h>. The BSD
struct direct must be replaced by the POSIX equivalent struct dirent. BSD also provided
the seekdir() and telldir() functions that are not supported by POSIX.

SVR1-2 did not provide this function. SVR1-2 programs read directories as ordinary files.
Directory entries are 14-byte names and 2-byte I-node numbers. These programs must be
changed to use readdir().

Notes:

The argument to closedir() must be a pointer returned by opendir(). If it is not, the
results are not portable and most likely unpleasant.

Page 244

cos()—Computes the cosine function.

Synopsis:

 #include <math.h>

 double cos(double x);

Arguments:

 x

Returns:

Cosine of x.

Description:

Computes the cosine of x. The result will be between -1 and + 1.

Reference:

C 4.5.2.5

Notes:

Page 245

cosh()—Computes the hyperbolic cosine function.

Synopsis:

 #include <math.h>
 double cosh(double x);

Arguments:

 x

Returns:

Hyperbolic cosine of x.

Errors:

 ERANGE

Description:

Computes the hyperbolic cosine of x. This function occurs in numerical solutions to partial
differential equations.

Reference:

C 4.5.3.2

Notes:

Page 246

creat()—Creates a new file or rewrites an existing one.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 int creat(const char *path, mode_t mode);

Arguments:

path Pointer to path of the file to be created.

mode Permission bits for the new file.

Returns:

A file descriptor or -1 on error.

Errors:

 EACCES, EEXIST, EINTR, EISDIR, EMFILE, ENAMETOOLONG, ENFILE, ENOENT,
 ENOSPC, ENOTDIR, EROFS

Description:

The function call:

 creat(path,mode);

is equivalent to:

 open(path, O_WRONLY|O_CREAT|O_TRUNC, mode);

It opens a file for writing. If the file does not exist, it is created with the permission bits set
from mode and the owner and group IDs are set from the effective user and group ID of the
calling process. If the file exists, it is truncated to zero length but the owner and group IDs are
not changed. The file descriptor returned by creat() may be used only for writing.

Reference:

P 5.3.2.1

Conversions:

Make sure the required headers are included.

SVR1-2 used int for mode.

Page 247

ctermid()—Generates terminal pathname.

Synopsis:

 #include <stdio.h>
 #include <unistd.h>
 char *ctermid(char *s);

Arguments:

s Pointer to an buffer to hold the terminal pathname. If NULL, a buffer in the
ctermid() function is used.

Returns:

A pointer to the string.

Description:

The ctermid() function returns a string that, when used as a pathname, refers to the current
controlling terminal for the current process. If a pathname cannot be determined, an empty
string is returned.

The symbolic constant L_ctermid is the maximum length of the buffer.

Reference:

P 4.7.1.1

Conversions:

BSD does not support this function.

Notes:

The string returned may not uniquely identify a terminal (e.g., /dev/tty).

There is no guarantee that your program can open the terminal.

Page 248

ctime()—Formats a calendar time.

Synopsis:

 #include <time.h>
 char *ctime(const time_t *timer);

Arguments:

timer Pointer to a local time value.

Returns:

Pointer to the resulting string.

Description:

Converts a time stored as a time_t into a string of the form:

 Mon Nov 19 14:59:51 1990\n\0

Reference:

C 4.12.3.2

Conversions:

BSD and SVR1-3 used long for timer.

The BSD header file <sys/time.h> must be changed to <time.h>.

Notes:

The string returned by ctime() may be overwritten by a subsequent call.

ctime() is equivalent to:

 asctime(localtime(timer))

Page 249

cuserid()—Gets user name.

Synopsis:

 #include <stdio.h>
 char *cuserid(char *s);

Arguments:

s Pointer to an array of L_cuserid bytes to return the user name or NULL to use a
static array in the cuserid() function.

Returns:

Pointer to the name string.

Description:

This function returns either the user name associated with the real user ID or the user name
associated with the effective user ID. This function is included in the 1988 version of POSIX
but removed from the 1990 version. Programs should use one of three alternative calls:

1. getlogin() to return the user's login name.

2. getpwuid(geteuid()) to return the user name associated with the effective user ID.

3. getpwuid(getuid()) to return the user name associated with the real user ID.

Reference:

P 4.2.4.1

Notes:

Do not use this function.

Page 250

difftime()—Computes the difference between two times.

Synopsis:

 #include <time.h>
 double difftime(time_t time1, time_t time0);

Arguments:

time1 Ending calendar time.

time0 Starting calendar time.

Returns:

The number of seconds between time0and time1

Description:

The difftime() function returns the number of seconds between time0 and time1
expressed as a double.

Reference:

C 4.12.2.2

Conversions:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C and is not part of the POSIX standard.

Page 251

div()—Computes the quotient and remainder of an integer division.

Synopsis:

 #include <stdlib.h>
 div_t div(int numer, int denom);

Arguments:

numer Numerator.

denom Denominator.

Returns:

A structure of type div_t.

Description:

The div() function divides numer by denom in a portable manner. If the division is
inexact, the resulting quotient is the integer of lesser magnitude than the algebraic quotient
(round towards zero).

The div() function returns a structure of type div_t with two members, quot and rem.
Use div(a,b).quot instead of a/b if the quotient must be rounded the same way on all
systems. Use div(a,b).rem to obtain the remainder of dividing a by b.

Reference:

C 4.10.6.2

Conversions:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C and is not part of the POSIX standard.

Page 252

dup()—Duplicates an open file descriptor.

Synopsis:

 #include <unistd.h>
 int dup(int fildes);

Arguments:

fildes File descriptor to duplicate.

Returns:

File descriptor that refers to the same file as fildes or -1 on error.

Errors:

 EBADF, EINTR

Description:

The call:

 fid = dup(fildes);

is equivalent to:

 fid = fcntl(fildes, F_DUPFD, 0);

This returns the lowest numbered available file descriptor. This new descriptor refers to the
same open file as the original descriptor and shares any locks.

Reference:

P 6.2.1.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 253

dup2()—Duplicates an open file descriptor.

Synopsis:

 #include <unistd.h>
 int dup2(int fildes, int fildes2);

Arguments:

fildes File descriptor to duplicate.

fildes2 Desired new file descriptor.

Returns:

File descriptor that refers to the same file as fildes or -1 on error.

Errors:

 EBADF, EINTR

Description:

Except for error detection, the call:

 fid = dup2(fildes, fildes2);

is equivalent to:

 close(fildes2);
 fid = fcntl(fildes, F_DUPFD, fildes2);

In other words, close the file associated with fildes2, if any. Assign a new file descriptor
with the value fildes2. This new descriptor refers to the same open file as fildes and shares
any locks.

Reference:

P 6.2.1.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

This function was not supported in SVR1-2.

Page 254

execl()—Executes a file.

Synopsis:

 #include <unistd.h>
 int execl(const char *path, const char *arg, ...);

Arguments:

path Pointer to the path name for new process image file.

arg0,...,argn Arguments to pass to new process.

Returns:

-1 on error with errno set.

Never returns on success.

Errors:

 E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC, ENOMEM

Description:

This function replaces the current process image with a new process image. When a C program
is executed as a result of this call, it is entered as if called by:

 main (argc,argv)

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The
argv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the argv array is not counted in argc.

The path argument identifies the new process image file.

The argument arg and the subsequent ellipses can be thought of as argO, arg1, arg2, ...,
argN.

The environment for the new process is taken from the current process.

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macro in <limits.h>. This value is usually greater than 4096.

Page 255

Files with the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image file is set, the effective user ID of the new
process is set to the owner of the new process image file. The set group ID bit causes a similar
action with the effective group ID.

All other process attributes (process ID, real user ID, current working directory, etc.) are
inherited by the new program.

Reference:

P 3.1.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

The last argument must be (char *)NULL.

See Example on Page 103.

Page 256

execle()—Executes a file.

Synopsis:

 #include <unistd.h>
 int execle(const char *path, const char *arg, ...);

Arguments:

path Pointer to the path name for new process image file.

arg0,...,argn-1 Pointer to arguments to pass to new process.

argn Pointer to an array of pointers to the environment strings.

Returns:

-1 on error with errno set.

Never returns on success.

Errors:

 E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC, ENOMEM

Description:

This function replaces the current process image with a new process image. When a C program
is executed as a result of this call, it is entered as if called by:

 main(argc,argv)

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The
argv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the argv array is not counted in argc.

The path argument identifies the new process image file.

The argument arg and the subsequent ellipses can be thought of as arg0, argl, arg2,

..., argN.

The final non-NULL argument is a pointer to an array of environment string pointers. This array
is terminated by a NULL pointer.

Page 257

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macro in <limits.h>. This value is usually greater than 4096.

Files with the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image file is set, the effective user ID of the new
process is set to the owner of the new process image file. The set group ID bit causes a similar
action with the effective group ID.

All other process attributes (process ID, real user ID, current working directory, etc.) are
inherited by the new program.

Reference:

P 3.1.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

This is the same as execl() except for the final non-NULL argument.

The last argument must be (char *)NULL.

Page 258

execlp()—Executes a file.

Synopsis:

 #include <unistd.h>
 int execlp(const char *file, const char *arg, ...);

Arguments:

file Pointer to the filename for new process image file. If file does not contain a/
then execlp() searches the list of directories defined by the PATH
environment variable.

environment variable.

arg0,...,argn Pointer to arguments to pass to new process.

Returns:

-1 on error with errno set.

Never returns on success.

Errors:

 E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC, ENOMEM

Description:

This function replaces the current process image with a new process image. When a C program
is executed as a result of this call, it is entered as if called by:

 main(argc,argv)

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The
argv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the argv array is not counted in argc.

The path argument identifies the new process image file.

The argument arg and the subsequent ellipses can be thought of as arg0, arg1, arg2,
..., argN.

The environment for the new process is taken from the current process.

Page 259

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macro in <limits.h>. This value is usually greater than 4096.

Files with the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image file is set, the effective user ID of the new
process is set to the owner of the new process image file. The set group ID bit causes a similar
action with the effective group ID.

All other process attributes (process ID, real user ID, current working directory, etc.) are
inherited by the new program.

Reference:

P 3.1.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

The last argument must be (char *)NULL.

Page 260

execv()—Executes a file.

Synopsis:

 #include <unistd.h>
 int execv(const char *path, char *const argv[]);

Arguments:

path Pointer to the path name for new process image file.

argv Pointer to an array of arguments to pass to new process.

Returns:

-1 on error with errno set.

Never returns on success.

Errors:

 E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC, ENOMEM

Description:

This function replaces the current process image with a new process image. When a C program
is executed as a result of this call, it is entered as if called by:

 main(argc,argv)

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The
argv and environ arrays are each terminated by a NULL pointer. The NULL pointer

terminating the argv array is not counted in argc.

The path argument identifies the new process image file.

The argument argv is an array of character pointers to null-terminated strings. The last
member of this array must be NULL. These strings constitute the argument list available to the
new process. The value in argv[0] is usually the name of the file for the new process.

The environment for the new process is taken from the current process.

Page 261

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macro in <limits.h>. This value is usually greater than 4096.

Files with the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image file is set, the effective user ID of the new
process is set to the owner of the new process image file. The set group ID bit causes a similar
action with the effective group ID.

All other process attributes (process ID, real user ID, current working directory, etc.) are
inherited by the new program.

Reference:

P 3.1.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 262

execve()—Executes a file.

Synopsis:

 #include <unistd.h>
 int execve(const char *path, char *const argv[], char *const *envp);

Arguments:

path Pointer to the path name for new process image file.

argv Pointer to an array of arguments to pass to new process.

Pointer to an array of arguments to pass to new process.

envp Pointer to an array of character pointers to the environment strings.

Returns:

-1 on error with errno set.

Never returns on success.

Errors:

 E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC, ENOMEM

Description:

This function replaces the current process image with a new process image. When a C program
is executed as a result of this call, it is entered as if called by:

 main(argc,argv)

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The
argv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the argv array is not counted in argc.

The argument argv is an array of character pointers to null-terminated strings. The last
member of this array must be NULL. These strings constitute the argument list available to the
new process. The value in argv[0] is usually the name of the file for the new process.

The argument envp is a pointer to an array of environment string pointers. This array is
terminated by a NULL pointer.

Page 263

The environment for the new process is taken from the current process.

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macro in <limits.h>. This value is usually greater than 4096.

Files with the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image file is set, the effective user ID of the new
process is set to the owner of the new process image file. The set group ID bit causes a similar
action with the effective group ID.

All other process attributes (process ID, real user ID, current working directory, etc.) are
inherited by the new program.

Reference:

P 3.1.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 264

execvp()—Executes a file.

Synopsis:

 #include <unistd.h>
 int execvp(const char *file, char *const argv[]);

Arguments:

file Pointer to the filename for new process image file. If file does not contain a / then
execlp() searches the list of directories defined by the PATHenvironment variable.

argv Pointer to an array of arguments to pass to new process.

Returns:

-1 on error with errno set.

Never returns on success.

Errors:

 E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC, ENOMEM

Description:

This function replaces the current process image with a new process image. When a C program
is executed as a result of this call, it is entered as if called by:

 main (argc,argv)

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. In addition, the variable:

 extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings. The
argv and environ arrays are each terminated by a NULL pointer. The NULL pointer
terminating the argv array is not counted in argc.

The file argument is used to construct a pathname that identifies the new process image file.
If the file argument contains a slash, file is used as the pathname. Otherwise, the path
prefix for this file is obtained by a search of the directories passed as the environment variable
PATH.

The argument argv is an array of character pointers to null-terminated strings. The last
member of this array must be NULL. These strings constitute the argument list available

Page 265

to the new process. The value in argv[0] is usually the name of the file for the new process.

The environment for the new process is taken from the current process.

The number of bytes available for the combined argument list and environment list is given by
the ARG_MAX macro in <limits.h>. This value is usually greater than 4096.

Files with the FD_CLOEXEC flag set are closed. All other file descriptors remain unchanged.
Directory streams are closed.

Signals set to be caught by the calling process are set to the default action in the new process.
Other signals are unchanged.

If the set user ID bit of the new process image file is set, the effective user ID of the new
process is set to the owner of the new process image file. The set group ID bit causes a similar
action with the effective group ID.

All other process attributes (process ID, real user ID, current working directory, etc.) are
inherited by the new program.

Reference:

P 3.1.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 266

exit()—Causes normal program termination.

Synopsis:

 #include <stdlib.h>
 void exit(int status);

Arguments:

status Value to be returned to the parent.

Returns:

No value is returned.

Description:

The exit() function causes normal program termination. The following steps are taken, in
order:

1. All functions registered with atexit() are called in reverse order of their registration.

2. All open streams are flushed and closed. All files created by the tmpfile() function are
removed.

3. _exit(status) is called.

Reference:

C 4.10.4.3

Conversions:

Add to the list of headers:

 #include <stdlib.h>

Notes:

Do not call exit() from a function registered by atexit().

For maximum portability, use only the EXIT_SUCCESS and EXIT_FAILURE macros for
status.

Page 267

_exit()—Terminates a process.

Synopsis:

 #include <unistd.h>
 void _exit(int status);

Arguments:

status Termination status.

Returns:

Never returns to caller.

Description:

Takes the following actions:

1. Close all open files and directory streams.

2. If the parent of this process is executing a wait() or waitpid(), it wakes up and is
given status. If the parent is not waiting, the status is saved for a future call to wait()
or waitpid().

3. A SIGCHLD signal is sent to the parent.*

4. If the process is a controlling process, the SIGHUP signal is sent to each process in the
foreground process group and the terminal is disassociated from the session.

5. Children of the terminating process are assigned new parents.

Reference:

P 3.2.2.1

Conversions:

Add to the list of headers:

 #include <unistd.h>

Notes:

* Unless the implementation does not support SIGCHLD.

Page 268

exp()—Computes the exponential function.

Synopsis:

 #include <math.h>
 double exp(double x);

Arguments:

 x

Returns:

 ex

Errors:

 ERANGE

Description:

Compute the exponential function of x.

Reference.

C 4.5.4.1

Notes:

Page 269

fabs()—Computes the absolute-value function.

Synopsis:

 #include <math.h>
 double fabs(double x);

Arguments:

 x

Returns:

Absolute value of x.

Description:

If x is positive return x else return —x.

Reference:

C 4.5.6.2

Notes:

Page 270

fclose()—Closes an open stream.

Synopsis:

 #include <stdio.h>
 int fclose(FILE *stream);

Arguments:

stream Pointer to object to close.

Returns:

Zero if the operation is succeeds, EOF if it fails.

Description:

Any unwritten buffered data for stream is written to the file; any unread buffered data for
stream is discarded. Any system resources that were automatically allocated are
de-allocated.

Reference:

C 4.9.5.1 & P 8.2.3.2

Notes:

Page 271

fcnt1()—Manipulates an open file descriptor.

Synopsis:

 #include <sys/types.h>
 #include <fcntl.h>
 #include <unistd.h>
 int fcntl(int fildes, int cmd, ...);

Arguments:

fildes File descriptor.

cmd Command.

... Additional command specific arguments.

Returns:

Depends on cmd. In all cases, -1 is returned on error.

Errors:

 EACCES, EAGAIN, EBADF, EDEADLK, EINTR, EINVAL, EMFILE, ENOLCK

Description:

This multi-purpose function operates on a file descriptor. The file descriptor is the first
argument. The second argument is a macro defined in <fcntl.h>. The action depends on this
macro.

 F_DUPFD

Returns the lowest available (not open) file descriptor greater than or equal to the third
argument. The new file descriptor refers to the same open file as fildes, and shares any
locks.

The FD_CLOEXEC flag for the new descriptor is cleared, so the new descriptor will not be
closed on a call to an exec function.

 F_GETFD

Returns the FD_CLOEXEC flag associated with fildes.

 F_SETFD

Sets or clears the FD_CLOEXEC flag for a file descriptor. The exec() family of functions
will close all file descriptors with the FD_CLOEXEC FLAG set.

Page 272

The correct way to modify the FD_CLOEXEC flag is first to read the flags with F_GETFD.
Then, modify the FD_CLOEXEC bit and rewrite the flags with F_SETFD.

 flags = fcntl(fd, F_GETFD); /* Get flags */
 flags |= FD_CLOEXEC; /* Set FD_CLOEXEC */
 fcntl(fd, F_SETFD, flags); /* Load new settings */

This method allows the application to tolerate implementation-defined flags.

 F_GETFL

Returns the file status flags for the file associated with fildes. Unlike F_GETFD, these flags
are associated with the file and shared by all descriptors. The following flags are returned:

O_APPEND Append mode.

O_NONBLOCK Do not block waiting for data to become available.

O_RDONLY File is open for reading only.

O_RDWR File is open for reading and writing.

O_WRONLY File is open for writing only.

F_SETFL Set the file status flags from the third argument. The only bits that can be modified
with this function are O_APPEND and O_NONBLOCK. Use a read-modify-write to
update the flags (see F_SETFL above).

F_GETLK The third argument must be a pointer to a struct flock. This structure is taken
as a description of a lock. If there is a lock which would prevent this lock from
being locked, it is returned in the struct flock. If there are no locks which
would prevent this lock from being locked, the l_type member is set to
F_UNLCK.

F_UNLCK.

F_SETLK The third argument must be a pointer to a struct flock. The lock is set or
cleared according to the function code in the l_type member. If the lock is busy,
fcntl() returns -1 and sets errno to EACCES or EAGAIN.

F_SETLKW The third argument must be a pointer to a struct flock. The lock is set or
cleared according to the function code in the l_type member. If the lock is busy,
fcntl() waits for it to be unlocked.

Reference:

P 6.5.2.1

Page 273

Conversions:

Add to the list of headers:

 #include <unistd.h>

SVR3 returns EAGAIN instead of EACCES to indicate a locked file.

The SVR3 flock structure contained the following members:

short l_type;
short l_whence;
long l_start;
long l_len;
short l_pid;

POSIX uses off_t for l_start and l_len. It also uses pid_t for l_pid, while on
many POSIX systems pid_t is a long.

The BSD flock() function must be converted to fcntl().

Notes:

F_GETFD There may be bits other the FD_CLOEXEC returned by this function. You can mask off
unwanted bits, for example:

flag = fcntl(fd,FD_GETFD) & FD_CLOEXEC;

F_SETFD / F_SETFL

Do not set the flags directly. Use a read-modify-write to update the flags. See above.

F_GETLK / F_SETLK / F_SETLKW

File locks are not inherited through fork() but are inherited through one of the
exec() functions.

Closing a file descriptor releases all locks held by the process for that file even if there are
other file descriptors open for this file.

See discussion on Page 92.

Page 274

fdopen()—Opens a stream on a file descriptor.

Synopsis:

#include <stdio.h>
FILE *fdopen(int fildes, const char *type);

Arguments:

fildes File descriptor.

type Pointer to a character string identical to the mode argument to fopen() (e.g., "r" for
read and "w" for write).

Returns:

A pointer to a stream or NULL on error.

Description:

The fdopen() function associates a stream with a file descriptor. The FILE may be used
with stdio functions, such as printf() and fread().

The file position is set to the file offset associated with the file descriptor. The error indicator
and end-of-file indicator are cleared.

Reference:

P 8.2.2.1

Notes:

The fdopen() function is not required to detect an invalid file descriptor.

Page 275

feof()—Tests the end-of-file indicator for a stream.

Synopsis:

 #include <stdio.h>
 int feof(FILE *stream);

Arguments:

stream Pointer to file to test.

Returns:

Nonzero if and only if the end-of-file indicator is set for stream.

Description:

Tests the end-of-file indicator for stream.

Reference:

C 4.9.10.2

Notes:

Page 276

ferror()—Tests the error indicator for a stream.

Synopsis:

 #include <stdio.h>
 int ferror(FILE *stream);

Arguments:

stream Pointer to file to test.

Returns:

Nonzero if and only if the error indicator is set for stream.

Description:

Test the error indicator for stream.

Reference:

C 4.9.10.3

Notes:

Page 277

fflush()—Updates stream.

Synopsis:

 #include <stdio.h>
 int fflush(FILE *stream);

Arguments:

stream Pointer to the stream to update. If NULL is used, all open files are updated.

Returns:

EOF on error and zero on success.

If an error occurs, a code is stored in errno to identify the error.

Description:

If stream refers to an output stream or an update stream in which the most recent operation
was not input, any unwritten data is written to the file. The action of fflush() on input
streams or streams where the most recent operation was a read is undefined.

If stream is NULL, the fflush() operation is performed on all streams where it is
defined.

Reference:

C 4.9.5.2 & P 8.2.3.4

Notes:

Page 278

fgetc()—Reads a character from a stream.

Synopsis:

 #include <stdio.h>
 int fgetc(FILE *stream);

Arguments:

stream Pointer to file to read.

Returns:

Character converted to an int. EOF is returned on error or end-of-file.

Description:

Obtains from stream the next character, if any, as an unsigned char converted to int.

Advance the file position.

Reference:

C 4.9.7.1 & P 8.2.3.5

Notes:

Page 279

fgetpos()—Gets the current file position.

Synopsis:

 #include <stdio.h>
 int fgetpos(FILE *stream, fpos_t *pos);

Arguments:

stream Pointer to file to use.

pos Pointer to file position indicator.

Returns:

A file position is written into pos and zero is returned. Nonzero is returned on error.

Description:

Stores the current value of the file position for stream into the object pointed to by pos.

Reference:

C 4.9.9.1

Conversions:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

The format of an fpos_t is unspecified.

Page 280

fgets()—Reads n characters from a stream.

Synopsis:

 #include <stdio.h>

 char *fgets(char *s, int n, FILE *stream);

Arguments:

s Pointer to array to read into.

n Number of characters to read.

stream Pointer to file to read.

Returns:

If there is no error, s is returned. If an error occurred, NULL is returned and a code is stored in
errno to identify the error.

Description:

Reads at most one less that the number of characters specified by n from stream into the
array s. No additional characters are read after a newline character or after end-offile. If a
newline character is read, it is stored in the array. A null character is written immediately after
the last character read into the array.

Reference:

C 4.9.7.2 & P 8.2.3.5

Notes:

Page 281

fileno()—Maps a stream pointer to a file descriptor.

Synopsis:

 #include <stdio.h>
 int fileno(FILE *stream);

Arguments:

stream Stream pointer.

Returns:

A file descriptor or -1 on error. If an error occurs, a code is stored in errno to identify the
error.

Description:

The fileno() function returns the integer file descriptor associated with stream.

Reference:

P 8.2.1.1

Notes:

 fileno(stdin) returns 0.

 fileno(stdout) returns 1.

 fileno(stderr) returns 2.

If stream is invalid fileno() may or may not detect the error.

Page 282

floor()—Computes the largest integer not greater than x.

Synopsis:

 #include <math.h>
 double floor(double x);

Arguments:

 x

Returns:

The integer part of x expressed as a double.

Description:

Truncates the argument to an integer. For example, floor(2.0000), floor(2.0001),
and floor(2.9999) all return 2.0000.

Reference:

C 4.5.6.3

Notes:

Page 283

fmod()—Computes the remainder of x/y.

Synopsis:

 #include <math.h>
 double fmod(double x, double y);

Arguments:

x and y

Returns:

Remainder of x/y expressed as a double.

Description:

Computes the value of x — (y * i), where i is the largest integer such that, if y is
nonzero, the result has the same sign as x and a magnitude less than y. The arguments x and y
and the returned value are all doubles. The call fmod(15.00,4.00) returns 3.00.

Reference:

C 4.5.6.4

Notes:

If y is zero, fmod() may or may not detect an error.

Page 284

fopen()—Opens a stream.

Synopsis:

 #include <stdio.h>
 FILE *fopen(const char *filename, const char *mode);

Arguments:

filename Pointer to path of file to open.

mode Pointer to a character string:

"r" for read.

"w" for write.

"a" for append (all writes are at end-of-file).

"r+" for update (reading and writing; all existing data is preserved).

"w+" truncate to zero length and open for update.

"a+" for append update (read any place but all writes are at end-of-file).

Returns:

Pointer to the object controlling the stream or NULL if the operation failed.

Description:

Opens the file whose name is pointed to by filename and associates a stream with it.

Reference:

C 4.9.5.3 & P 8.2.3.1

Notes:

Opening a file with append mode causes all writes to be forced to the current end-of-file. This
is true even if an fseek() operation attempts to change the file position.

If a file is open for reading and writing (mode "r+","w+","a+"), an fflush(),
fseek(), fsetpos(), or rewind() must be done when changing from output to input.

The mode argument may have a b as the second or third character to indicate binary. This has
no effect on POSIX systems but can be useful for portability.

Page 285

fork()—Creates a process.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 pid_t fork(void);

Arguments:

None.

Returns:

-1 on error.

On success, the PID of the child is returned to the parent and zero is returned to the child.

Errors:

 EAGAIN, ENOMEM

Description:

The fork() function creates a new process (the child) that is an exact copy of the calling
process except:

1. The child process has a new unique process ID.

2. The child process has the process ID of the caller as its parent process ID.

3. The child has a copy of the parent's file descriptors. Each descriptor refers to the same
open files as the corresponding descriptor of the parent.

4. The child has its own copy of the parent's open directory stream.

5. The timers returned by the times() function are reset for the child.

6. File locks are not inherited by the child.

7. Pending alarms are cleared for the child.

8. There are no pending signals for the child.

Reference:

P 3.1.1.1

Page 286

Conversions:

Add to the list of headers:

 #include <unistd.h>

BSD and SVR1-3 return int instead of pid_t.

Notes:

The interaction of fork() and readdir() is not well defined. Do not attempt to share a
directory stream between the parent and child.

See example on Page 103.

Page 287

fpathconf()—Gets configuration variable for an open file.

Synopsis:

 #include <unistd.h>
 long fpathconf(int fildes, int name);

Arguments:

fildes Open file descriptor.

name Symbolic constant.

Returns:

If fildes is invalid, -1 is returned and errno is set to indicate the error. If the
implementation has no limit for the requested item, -1 is returned and errno is not changed.
Otherwise, the limit is returned.

Errors:

 EINVAL,EBADF

Description:

Returns a configuration limit for an open file. The fildes argument is an open file descriptor.
The possible values for name are:

Name Description

_PC_LINK_MAX Maximum value of a file's link count. If fildes refers to a directory then this
value applies to the entire directory.

_PC_MAX_CANON Maximum length of a formatted input line. fildes must refer to a terminal.

_PC_MAX_INPUT Maximum length of an input line. fildes must refer to a terminal.

_PC_NAME_MAX Maximum length of a filename for this directory.

_PC_PATH_MAX The maximum length of a relative pathname when this directory is the working
directory.

_PC_PIPE_BUF Size of the pipe buffer. fildes must refer to a pipe or FIFO.

_PC_CHOWN_RESTRICTED

The chown() system call may not be used on this file. If path or fildes
refer to a directory, then this applies to all files in that directory.

Page 288

Name Description

_PC_NO_TRUNC Attempting to create a file in the named directory will fail with
ENAMETOOLONG if the filename would be truncated.

_PC_VDISABLE Allow special character processing to be disabled. fildes must refer to a
terminal.

Reference:

P 5.7.1.1

Conversions:

This function is new to POSIX. It allows a portable application to determine the quantity of a
resource, or the presence of an option, at execution time.

Older applications either use a fixed amount of a resource or attempt to deduce the amount of
resource available using the error returns from various functions.

Notes:

The value returned by _PC_PATH_MAX is not useful for allocating storage. Files with paths
longer than _PC_PATH_MAX may exist.

Page 289

fprintf()—Writes formatted text to a stream.

Synopsis:

 #include <stdio.h>
 inf fprintf(FILE *stream, const char *format, ...);

Arguments:

stream File to be written.

format Format string.

... Additional arguments.

Returns:

Number of characters written. Negative value if an error occurred.

Description:

The fprintf() function converts its arguments to a character string and writes that string to
stream.

The format is a character string that contains zero or more directives. Each directive fetches
zero or more arguments to fprintf. Each directive starts with the % character. After the %,
the following appear in sequence:

flags Zero or more of the following flags (in any order):

- Will cause this conversion to be left-justified. If the - flag is not used, the result
will be right-justified.

+ The result of a signed conversion will always begin with a sign. If the + flag i
used, the result will begin with a sign only when negative values are converted.

space This is the same as + except a space is printed instead of a plus sign. If both the
space and the + flags are used, the + wins.

The result is converted to an alternate form. The details are given below for each
conversion.

width An optional width field. The exact meaning depends on the conversion being performed. See
the table on the next page.

the table on the next page.

Page 290

prec An optional precision. The precision indicates how many digits will be printed to the right
of the decimal point. If the precision is present, it is preceded by a decimal point (.). If the
decimal point is given with no precision, the precision is assumed to be zero. A precision
argument may be used only with the e, E, f, g, and G conversions.

type An optional h, l, or L. The h causes the argument to be converted to short prior to
printing. The l specifies that the argument is a long int. The L specifies that the
argument is a long double.

format A character that specifies the conversion to be performed.

The conversions are given by the following table:

Description Meaning of width Meaning of # flag

i or d An int argument is
converted to a signed
decimal string.

Specifies the minimum
number of characters to
appear. If the value is
smaller, padding is used.

The default is 1.

The result of printing zero
with a width of zero is no
characters.

UNDEFINED.

o An unsigned int
argument is converted to
unsigned octal.

Same as i. Increase the precision to
force the first digit to be a
zero.

u An unsigned int
argument is converted o
unsigned decimal.

Same as i. UNDEFINED.

x An unsigned int
argument is converted to
unsigned hexadecimal.
The letters abcdef are
used.

Same as i. Prefix non-zero results with
0x.

X Same as x except the
letters ABCDEF are used.

Same as i. Prefix non-zero results with
0X.

Page 291

Description Meaning of width Meaning of # flag

f A double argument is
converted to decimal
notation in the
[-]ddd.ddd format.

Minimum number of
characters to appear. May be
followed by a period and the
number of digits to print after
the decimal point.

If a decimal point is printed,
at least one digit will appear
to the left of the decimal.

Print a decimal point even
if no digits follow.

e A double argument is
converted in the style
[-]d.ddde dd.

The exponent will always
contain at least two digits.
If the value is zero, the
exponent is zero.

Same as f. Same as f.

E Same as e except E is
used instead of e.

Same as f. Same as f.

g Same as f or e, depending
on the value to be
converted. The e style is
used only if the exponent
is less than -4 or greater
than the precision.

Same as f. Same as f.

G Same as g except an E is
printed instead of e.

Same as f. Same as f.

c An int argument is
converted to an
unsigned char and
the resulting character is
written.

UNDEFINED. UNDEFINED.

Page 292

Description Meaning of width Meaning of # flag

Description Meaning of width Meaning of # flag

s An argument is assumed
to be char *.
Characters up to (but not
including) a terminating
null are written.

Specifies the maximum
number of characters to be
written.

UNDEFINED.

p An argument must be a
pointer to void. The
pointer is converted to a
sequence of printable
characters in an
implementation-defined
manner. This is not very
useful for a portable
program.

UNDEFINED. UNDEFINED.

n An argument should be a
pointer to an integer
which is written with the
number of characters
written to. Nothing is
written to the output
stream by this directive.

UNDEFINED. UNDEFINED.

Reference:

C 4.9.7.3

Conversions:

Change \07 in format to \a.

Notes:

See ''Pitfalls'' on Page 42.

Page 293

fputc()—Writes a character to a stream.

Synopsis:

 #include <stdio.h>
 int fputc(int c, FILE *stream);

Arguments:

c Character to write.

Character to write.

stream Pointer to file to write into.

Returns:

The character written or EOF on error.

Description:

Write the character c (converted to unsigned char) to stream and update the file position.
If stream was opened in append mode, the character is appended to the file.

Reference:

C 4.9.7.3 & P 8.2.3.6

Notes:

Page 294

fputs()—Writes a string to a stream.

Synopsis:

 #include <stdio.h>
 int fputs(const char *s, FILE *stream);

Arguments:

s String to write.

stream Pointer to file to write.

Returns:

EOF on error or a non-negative value.

Description:

The character string pointed to by s is written to stream. The terminating null is not written.

Reference:

C 4.9.7.4 & P 8.2.3.6

Notes:

Page 295

fread()—Reads an array from a stream.

Synopsis:

 #include <stdio.h>
 size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

Arguments:

ptr Pointer to array to read into.

size Size of one array member.

nmemb Number of array members to read.

stream Pointer to file to read from.

Returns:

Number of elements read or EOF on error.

Description:

Reads in the array pointed to by ptr, up to nmemb elements whose size is specified by size,
from stream. The file position of the stream is advanced by the number of characters read. If
an error occurs, the file position is indeterminate. If a partial element is read, its value is
indeterminate.

Reference:

C 4.9.8.1 & P 8.2.3.5

Conversions:

BSD and SVR1-2 use int for size and nmemb.

Notes:

If size or nmemb is zero, fread() returns zero without reading anything.

Page 296

free()—Deallocates dynamic memory.

Synopsis:

 #include <stdlib.h>
 void free(void *ptr);

Arguments:

ptr Pointer returned by a previous call to calloc(), malloc(), realloc().

Returns:

No value is returned.

Description:

The free() function causes the space pointed to by ptr to be made available for allocation.
If ptr is NULL, nothing happens.

Reference:

C 4.10.3.2

Conversions:

Add to the list of headers:

 #include <stdlib.h>

Notes:

If ptr is not a value returned by calloc(), malloc(), realloc(), or if multiple
attempts are made to free the same block, the program is not portable.

Page 297

freopen()—Closes and then opens a stream.

Synopsis:

 #include <stdio.h>
 FILE *freopen(const char *filename, const char *mode, FILE *stream);

Arguments:

filename Pointer to path of the file to open.

mode Pointer to file mode string.

stream Pointer to stream to use.

Returns:

stream, unless the operation failed. In that case, NULL is returned.

Description:

The call:

 stream = freopen(file, mode, stream);

is equivalent to:

 fclose(stream);
 stream = fopen(file,mode);

Reference:

C 4.9.5.4 & P 8.2.3.3

Notes:

Page 298

frexp()—Breaks a floating-point number into a fraction and integer.

Synopsis:

 #include <math.h>
 double frexp(double value, int *exp);

Arguments:

value Floating-point value.

exp Pointer to an int to be returned by frexp().

Returns:

A value x, such that, 1/2≤x<1 and value=x2exp.

Description:

Compute a value x, such that, 1/2£x<1 and value=x2exp. If value is zero, both parts of
the result are zero.

Reference:

C 4.5.4.2

Notes:

See ldexp() for the inverse function.

The frexp() function may be inefficient on nonbinary architectures.

Page 299

fscanf()—Reads formatted input from a stream

Synopsis:

 #include <stdio.h>
 int fscanf(FILE *stream, const char *format, ...);

Arguments:

stream Pointer to file to read.

format Pointer to control string.

. . . Pointers to variables to store into.

Returns:

EOF if an error took place before any characters were read. Otherwise, the number of input
items assigned is returned.

Description:

Reads input from stream under control of format.

The format string contains ordinary text and conversion specifiers. Each directive starts with
the % character. After the %, the following appear in sequence:

star An optional assignment-suppressing character *.

width An optional decimal integer that specifies the maximum field width.

type An optional h,l, or L indicating the size of the receiving object. The exact meaning
depends on the conversion. See the table below

format A character that specifies the type of conversion to perform.

The conversions are given by the following table:

Description Meaning of size flags

d Matches an optionally signed decimal integer. The subject is
defined as the longest initial subsequence of the input string,
starting with the first non-white-space character that is of the
expected form.

The expected form is an optional plus or minus sign followed
by a sequence of the digits 0 through 9.

none → int
h → short
1 → long

Page 300

Description Meaning of size flags

o Same as d except only the digits 0 to 7 are allowed. none → unsigned int
h → unsigned short
1 → unsigned long

u Same as d except the argument is pointer to an unsigned
value. Note: leading minus sign is legal.

Same as o.

x Same as d except the argument is a pointer to an unsigned
value and the letters A to F are valid. Note: a leading
minus is legal.

Same as o.

e
f
g

Matched an optionally signed floating-point number. The
number may be in any format which is acceptable as a
floating-constant, but no floating suffix is allowed.

none → float
l → double
L → long double

s Matches a sequence of non-white-space characters. UNDEFINED.

Note: Use %nc to match exactly n characters.

[Matches a sequence of characters from a set of expected
characters. The conversion specifier includes all
subsequent characters in the format string, up to and
including the matching right bracket (]). The characters
between the brackets comprise the set of expected
characters (the scanset). If the character following the
left bracket is a circumflex (^), the scanset contains all
characters that do not appear between the brackets. If the

conversion specifier begins with [] or [^], the right
bracket is included in the scanset and the next right
bracket ends the specification.

Some systems allow specifications of the form [a-z],
meaning all characters between a and z. This depends on
the codeset used and is not portable.

UNDEFINED.

Page 301

Description Meaning of size flags

c Matches a sequence of characters. The field width
determines how many characters are matched. If there is
no field width, one character is matched.

NOTE: The format %nc matches n characters. The
format %ns matches up to n non-white-space characters.

UNDEFINED.

p Matches a pointer. The only portable use is to read back
a pointer written by the %p directive to fprintf
during the execution of this program.

UNDEFINED.

n Does not match anything. The corresponding argument is
written with the number of characters read from the input
stream so far by this call to fscanf().

UNDEFINED.

% Match a single %. UNDEFINED.

Reference:

C 4.9.6.2 & P 8.2.3.7

Notes:

See "Pitfalls" on Page 47.

Page 302

fseek()—Sets file position.

Synopsis:

 #include <stdio.h>
 int fseek(FILE *stream, long int offset, int whence);

Arguments:

stream Pointer to file to be positioned.

offset File position.

whence One of the following macros:

SEEK_SET absolute offset.

SEEK_CUR relative to current position.

SEEK_END relative to end of file.

Returns:

Zero on success and nonzero on failure.

Description:

Set the file position, measured in bytes from the beginning of the file, by adding offset to the
value specified by whence.

A successful call to fseek() clears the end-of-file indicator and undoes any effects of
ungetc(). The next operation on an update stream may be either input or output.

Reference:

C 4.9.9.2 & P 8.2.3.7

Conversions:

Replace numeric constants with macros using the following key:

0 SEEK_SET

1 SEEK_CUR

2 SEEK_END

Page 303

fsetpos()—Sets the file position for a stream.

Synopsis:

 #include <stdio.h>
 int fsetpos(FILE *stream, const fpos_t *pos);

Arguments:

stream File to use.

pos Value returned by fgetpos().

Returns:

Zero on success and nonzero on failure.

Description:

Set the file position indicator for stream from the object pointed to by pos. The object
pointed to by pos must have been obtained by a prior call to fgetpos().

A successful call to fsetpos() clears the end-of-file indicator and undoes any effects of
ungetc(). The next operation on an update stream may be either input or output.

Reference:

C 4.9.9.3

Conversions:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

Page 304

fstat()—Gets file status.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 int fstat(int fildes, struct stat *buf);

Arguments:

fildes Open file descriptor for file.

buf Pointer to an object of type struct stat where the file information will be written.

Returns:

Zero on success and -1 on failure.
If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF

Description:

The fstat() function obtains information about the file associated with fildes and writes
it to the area pointed to by the buf argument.

Reference:

P 5.6.2.1

Conversions:

System V has an st_rdev member in the stat structure which POSIX does not support.
BSD and SVR4 have st_rdev, st_blksize, and st_blocks members which POSIX
does not support.

Many older programs use short or unsigned short for many stat structure members.
These must be changed to the POSIX types (dev_t, ino_t, and so on). See stat in the Data
Structures section.

Page 305

ftell()—Gets the position indicator for a stream.

Synopsis:

 #include <stdio.h>
 long int ftell(FILE *stream);

Arguments:

stream Pointer to file to use.

Returns:

Current file position or -1L on error.

Description:

Returns the current value of the file position indicator associated with stream. The value is
the number of bytes from the beginning of the file.

Reference:

C 4.9.9.4 & P 8.2.3.6

Notes:

The ftell() function will fail for files with more than LONG_MAX bytes. The fgetpos()
function is more general.

The underlying function is lseek().

Page 306

fwrite()—Writes an array to a stream.

Synopsis:

 #include <stdio.h>
 size_tfwrite(const void *ptr, size_t size, size_t nmemb,FILE*stream);

Arguments:

ptr Pointer to array to write.

size Size of each array element.

nmemb Number of array elements.

stream Pointer to file to write into.

Pointer to file to write into.

Returns:

Number of elements successfully written.

Description:

Writes, from the array pointed to by ptr, up to nmemb elements whose size is specified by
size, to stream. The file position indicator is advanced by the number of bytes written. If
an error occurs, the resulting file position is indeterminate.

Reference:

C 4.9.8.2 & P 8.2.3.6

Conversions:

BSD and SVR1-2 use int for size and nmemb.

Notes:

Page 307

getc()—Reads a character from a stream.

Synopsis:

 #include <stdio.h>
 int getc(FILE *stream);

Arguments:

stream Pointer to file to read.

Returns:

Character converted to int or EOF on error or end-of-file.

Description:

Obtains the next byte, if any, as an unsigned char converted to int from stream and
advances the file position indicator.

This function is equivalent to fgetc(), except that it is implemented as a macro which may
evaluate stream more than once. Do not use an expression with side effects for stream.

Reference:

C 4.9.7.5 & P 8.2.3.5

Notes:

This function may be coded as an ''unsafe'' macro. That is, it may evaluate the argument more
than once. This will produce non-portable results for arguments like file++.

Page 308

getchar()—Reads a character from standard input.

Synopsis:

 #include <stdio.h>
 int getchar(void);

Arguments:

None.

Returns:

Character converted to int or EOF on error.

Description:

The getchar() function is equivalent to getc(stdin).

Reference:

C 4.9.7.6 & P 8.2.3.5

Notes:

Page 309

getcwd()—Gets current working directory.

Synopsis:

 #include <unistd.h>
 char *getcwd(char *buf, size_t size);

Arguments:

buf Pointer to a place to store the current working directory.

size Size of the array pointed to by buf.

Returns:

buf on success and NULL on error.

Errors:

 EINVAL, ERANGE, EACCES

Description:

The getcwd() function copies the absolute pathname of the current working directory to the
character array pointed to by buf. The size argument is the number of bytes available in
buf.

Reference:

P 5.2.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

System V uses int for size. BSD has a similar function called getwd().

Notes:

There is no way to determine the maximum string length that getcwd() may need to return.
Applications should tolerate getting ERANGE and allocate a larger buffer. See Example 2-4 on
Page 30.

It is possible for getcwd() to return EACCES if, say, login puts the process into a
directory without read access.

The 1988 standard uses int instead of size_t for the second parameter.

Page 310

getegid()—Gets effective group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 gid_t getegid(void);

Arguments:

None.

Returns:

Effective group ID.

Description:

The getegid() function returns the effective group ID of the calling process.

Reference:

P 4.2.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int.

SVR1-3 return unsigned short.

Notes:

See Example 7-1 on Page 129.

Page 311

getenv()—Gets the environment variable.

Synopsis:

 #include <stdlib.h>
 char *getenv(const char *name);

Arguments:

name Pointer to the name to match.

Returns:

A pointer to the string associated with the matched name or NULL if there is no match.

Description:

The getenv() function searches the environment list for a string that matches the string
pointed to by name. The strings are of the form name=value. The pointer returned points to
value.

Reference:

C 4.10.4.4 & P 4.6.1.1

Conversion:

Add to the list of headers:

 #include <stdlib.h>

Page 312

Notes:

The string returned by getenv() may be overwritten by a subsequent call. Do not attempt to
modify the string returned by getenv(). The following names are defined:

HOME The initial working directory.

LANG Predefined setting for locale.

LC_COLLATE The name of the locale for collating.

LC_CTYPE The name of the locale for char functions.

LC_MONETARY The name of the locale for editing money.

LC_NUMERIC The name of the locale for editing numbers.

LOGNAME The login account.

PATH The search path for the exec() functions.

TERM The terminal type.

TZ The timezone information.

Page 313

geteuid()—Gets effective user ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 uid_t geteuid(void);

Arguments:

None.

Returns:

Effective user ID.

Description:

The geteuid() function returns the effective user ID.

Reference:

P 4.2.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int.

SVR1-3 return unsigned short.

Notes:

See Example 7-1 on Page 129.

Page 314

getgid()—Gets real group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 gid_t getgid(void);

Arguments:

None.

Returns:

Real group ID.

Description:

The getgid() function returns the real group ID.

Reference:

P 4.2.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int.

SVR1-3 return unsigned short.

Notes:

See Example 7-1 on Page 129.

Page 315

getgrgid()—Reads groups database based on group ID.

Synopsis:

 #include <grp.h>
 struct group *getgrgid(gid_t gid);

Arguments:

gid Group ID to lookup.

Returns:

A pointer to a group structure or NULL on error.

Description:

The getgrgid() function looks up the supplied group ID and returns a pointer to a struct
group.

Reference:

P 9.2.1.1

Conversion:

BSD used int for gid. BSD's struct group also included a gr_passwd member, not
supported by POSIX.

SVR1-3 did not provide this function. Code that reads /etc/groups must be replaced by
calls to this function.

Notes:

The return value may (or may not) point to static data that is overwritten by each call.

See Example 7-1 on Page 129.

Page 316

getgrnam()—Reads group database based on group name.

Synopsis:

 #include <grp.h>
 struct group *getgrnam(const char *name);

Arguments:

name Pointer to name of the group to lookup.

Returns:

A pointer to a group structure or NULL on error.

Description:

The getgrnam() function looks up the supplied group name and returns a pointer to a
struct group.

Reference:

P 9.2.1.1

Conversion:

BSD's struct group also included a gr_passwd member, not supported by POSIX.

SVR1-3 did not provide this function. Code that reads /etc/groups must be replaced by
calls to this function.

Notes:

The return value may (or may not) point to static data that is overwritten by each call.

Page 317

getgroups()—Gets supplementary group IDs.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 int getgroups(int gidsetsize, gid_t grouplist[]);

Arguments:

gidsetsize Size of the grouplist array. If zero, getgroups() returns the number of entries
required.

grouplist Pointer to array to store group IDs.

Returns:

The number of supplementary group IDs returned. On error, -1 is returned.

Errors:

 EINVAL

Description:

The getgroups() function fills in the array grouplist with the supplementary groups
IDs of the calling process. The gidsetsize argument specifies the number of elements in
the supplied array. The actual number of elements used is returned.

If gidsetsize is zero, getgroups() returns the number of supplemental group IDs
associated with the calling process.

Reference:

P 4.2.3.1

Conversion:

Replace BSD's #include <sys/param.h> with #include <unistd.h>.

This function is not supported in SVR1-3.

Page 318

Notes:

If gidsetsize is greater than zero but less than the number of supplementary group IDs, -1
is returned and errno is set to EINVAL. The grouplist array may (or may not) have been
modified.

The effective group ID may (or may not) be returned by getgroups(). Use getegid() to
make sure you have all the information.

See Example 7-1 on Page 129.

The macro NGROUPS_MAX may not be a constant.

Page 319

getlogin()—Gets user name.

Synopsis:

 #include <unistd.h>
 char *getlogin(void);

Arguments:

None.

Returns:

Pointer to a string containing the user's login name.

Description:

The getlogin() function returns a pointer to the user's login name. The same user ID may
be shared by several login names. The string returned by getlogin() may be used as an

argument to getpwnam() to get the user database information.

Reference:

P 4.2.4.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

This function was not supported on SVR1-3.

Notes:

On some systems, a user will have several login names but one user ID. For example,
k_lewine might log in using the Korn shell and c_lewine the C shell.

Page 320

getpgrp()—Gets process group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 pid_t getpgrp(void);

Arguments:

None.

Returns:

Process group ID.

Description:

Returns the process group ID for the calling process.

Reference:

P 4.3.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int. The BSD getpgrp() function takes a process ID as an argument. In
practice, this is never used and is not supported by POSIX.

SVR1- return unsigned short.

Notes:

Page 321

getpid()—Gets process ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 pid_t getpid(void);

Arguments:

None.

Returns:

Process ID.

Description:

Returns the process ID for the calling process.

Reference:

P 4.1.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int.

SVR1-3 returns unsigned short.

Notes:

Page 322

getppid()—Gets parent process ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 pid_t getppid(void);

Arguments:

None.

Returns:

Parent's process ID.

Description:

Returns the process ID of the process that created the calling process.

Reference:

P 4.1.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int.

SVR1-3 returns unsigned short.

Notes:

Parent may no longer exist.

Page 323

getpwnam()—Reads user database based on user name.

Synopsis:

 #include <pwd.h>
 struct passwd *getpwnam(const char *name);

Arguments:

name Pointer to the name to lookup.

Returns:

A pointer to a passwd structure or NULL on error.

Description:

The getpwnam() function looks up the supplied user name and returns a pointer to a
struct passwd.

Reference:

P 9.2.2.1

Conversion:

BSD's struct passwd also included pw_comment, pw_quota, and pw_gecos
members, not supported by POSIX.

SVR1-3 did not provide this function. Code that reads /etc/passwd must be replaced by
calls to this function.

Notes:

Page 324

getpwuid()—Reads user database based on user ID.

Synopsis:

 #include <pwd.h>
 struct passwd *getpwuid(uid_t uid);

Arguments:

uid User ID to lookup.

Returns:

A pointer to a passwd structure or NULL on error.

Description:

The getpwuid() function looks up the supplied user ID and returns a pointer to a struct
passwd.

Reference:

P 9.2.2.1

Conversion:

BSD used int for uid. BSD's struct passwd also included pw_comment, pw_quota,
and pw_gecos members, not supported by POSIX.

SVR1-3 did not provide this function. Code that reads /etc/passwd must be replaced by
calls to this function.

Notes:

See Example 7-1 on Page 129.

Page 325

gets()—Reads a string from standard input.

Synopsis:

 #include <stdio.h>
 char *gets(char *s);

Arguments:

s Pointer to array to store into.

Returns:

s on success and NULL on failure.

Description:

Read characters from stdin into the array pointed to by s until a newline is read or
end-of-file is encountered. Any newline read is discarded and a null character is written after
the last character is read into the array.

Reference:

C 4.9.7.7 & P 8.2.3.5

Notes:

This function is not equivalent to fgets(stdin,s). There is no checking to see if the input
characters fit in the array, and is thus very dangerous. Use fgets() instead.

Page 326

getuid()—Gets real user ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 uid_t getuid(void);

Arguments:

None.

Returns:

Real user ID.

Description:

The getuid() function returns the user ID of the calling process.

Reference:

P 4.2.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

BSD returns int.

SVR1-3 returns unsigned short.

Notes:

Page 327

gmtime()—Breaks down a timer value into a time structure in
Coordinated Universal Time (UTC).

Synopsis:

 #include <time.h>
 struct tm *gmtime(const time_t *timer);

Arguments:

timer time_t returned by time().

Returns:

A pointer to a struct tm.

Description:

The gmtime() function breaks down the time in the time_t pointed to by timer into year,
month, day, hours, minutes, seconds, etc., and stores the information in a struct tm. A
pointer to the struct tm is returned.

Reference:

C 4.12.3.3

Conversion:

BSD used the header <sys/time.h> instead of <time.h>.

BSD and SVR1-3 used long for timer.

Notes:

See localtime().

See description on Page 133.

Page 328

isalnum()—Tests for alphabetic or numeric character.

Synopsis:

 #include <ctype.h>
 int isalnum(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is an uppercase or lowercase letter or a digit.

Description:

The call isalnum(c) is equivalent to isalpha(c) || isdigit(c).

Reference:

C 4.3.1.1

Notes:

Page 329

isalpha()—Tests for alphabetic character.

Synopsis:

 #include <ctype.h>
 int isalpha(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is an uppercase or lowercase letter.

Description:

The isalpha() function returns true if the argument is an alphabetic character in the current
locale. In the "C" or "POSIX" locale isalpha(c) is equivalent to isupper(c) ||
islower(c).

Reference:

C 4.3.1.2

Notes:

Page 330

isatty()—Determines if a file descriptor is associated with a terminal.

Synopsis:

 #include <unistd.h>
 int isatty(int fildes);

Arguments:

fildes File descriptor to test.

Returns:

1 if fildes refers to a terminal and zero if it does not.

Description:

The isatty() function returns 1 if fildes is a valid file descriptor associated with a
terminal, zero otherwise.

Reference:

P 4.7.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 331

iscntrl()—Tests for control character.

Synopsis:

 #include <ctype.h>

 int iscntrl(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is a control character.

Description:

The iscntrl() function returns non-zero if the argument is a control character in the current
locale.

Reference:

C 4.3.1.3

Notes:

Page 332

isdigit()—Tests for decimal-digit character.

Synopsis:

 #include <ctype.h>
 int isdigit(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is a decimal-digit character.

Description:

The isdigit() returns non-zero if the argument is one of '0', '1', '2', '3', '4', '5',
'6', '7', '8', or '9'.

Reference:

C 4.3.1.4

Notes:

Page 333

isgraph()—Tests for printing character.

Synopsis:

 #include <ctype.h>
 int isgraph(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is any printing character except space.

Description:

The isgrah() function returns non-zero for any character except ' '.

Reference:

C 4.3.1.5

Conversion:

Not supported in BSD 4.2, but added in 4.3.

Notes:

Page 334

islower()—Tests for lowercase character.

Synopsis:

 #include <ctype.h>
 int islower(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is a lowercase letter.

Description:

The islower() function returns non-zero if the argument is a lowercase letter in the current
locale.

Reference:

C 4.3.1.6

Notes:

Page 335

isprint()—Tests for printing character.

Synopsis:

 #include <ctype.h>
 int isprint(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is any printing character including space.

Description:

The isprint() function tests for any printing character including a space in the current
locale.

Reference:

C 4.3.1.7

Notes:

Page 336

ispunct()—Tests for punctuation.

Synopsis:

 #include <ctype.h>
 int ispunct(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is an printing character which is not a space, an uppercase
letter, a lowercase letter, or a digit.

Description:

The call ispunct(c) is equivalent to ((c != ' ') && !isalnum(c))

Reference:

C 4.3.1.8

Notes:

Page 337

isspace()—Tests for white-space character.

Synopsis:

 #include <ctype.h>
 int isspace(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is a standard or implementation defined white-space character.

Description:

The isspace() function returns non-zero if the argument is a white-space character in the
current locale. In the "C" or "POSIX" locales, the white-space characters are: space,
form-feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab ('\t'), and vertical tab
('\v').

Reference:

C 4.3.1.9

Notes:

Page 338

isupper()—Tests for uppercase alphabetic character.

Synopsis:

 #include <ctype.h>
 int isupper(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is an uppercase letter.

Description:

The call isupper(c) is equivalent to (!iscntrl(c) && !isdigit(c) &&
!ispunct(c) && !isspace(c)).

Reference:

C 4.3.1.10

Notes:

Page 339

isxdigit()—Tests for hexadecimal-digit character.

Synopsis:

 #include <ctype.h>
 int isxdigit(int c);

Arguments:

c Character to be tested.

Returns:

Non-zero (true) if the argument is one of:

0123456789abcdefABCDEF

Description:

The isxdigit() function returns non-zero if the argument is one of:

0123456789abcdefABCDEF

Reference:

C 4.3.1.11

Conversion:

Not supported in BSD 4.2, but added in 4.3.

Notes:

Page 340

kill()—Sends a signal to a process.

Synopsis:

 #include <sys/types.h>
 #include <signal.h>
 int kill(pid_t pid, int sig);

Arguments:

pid Process ID of the process or processes to be signalled.

sig Signal number to deliver.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EINVAL, EPERM, ESRCH

Description:

The kill() function sends a signal to a process or a group of processes specified by pid. If
the signal is zero, error checking is performed but no signal is actually sent. This can be used to
check for a valid pid.

If pid is greater than zero, sig is sent to the process whose process ID is pid. If pid is
negative, sig is sent to all processes whose process group ID is equal to the absolute value of
pid.

If the kill() function causes a signal to be generated for the calling process, and if sig is
not blocked, either sig or another pending unblocked signal will be delivered before the
kill() function returns.

Reference:

P 3.3.2.1

Conversion:

BSD and SVR1-3 use int for pid.

Notes:

See raise() to signal the current process. pid must not be -1.

Page 341

labs()—Computes the absolute value of a long integer.

Synopsis:

 #include <stdlib.h>
 long int labs(long int j);

Arguments:

 j

Returns:

Absolute value of j.

Description:

If j is greater than or equal to zero, j is returned; else -j is returned.

Reference:

C 4.10.6.3

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

Page 342

ldexp()—Multiplies a floating-point number by a power of 2.

Synopsis:

 #include <math.h>
 double ldexp(double x, int exp);

Arguments:

x Arbitrary value.

exp Integer exponent.

Returns:

 xexp

Errors:

 ERANGE

Description:

The ldexp() function multiplies a floating-point number by an integral power of 2.

Reference:

C 4.5.4.3

Notes:

See frexp() for the inverse function.

The ldexp() function may lose precision on nonbinary architectures.

Page 343

ldiv()—Computes the quotient and remainder of integer division.

Synopsis:

 #include <stdlib.h>
 ldivt ldiv(long int numer, long int denom);

Arguments:

numer Numerator.

denom Denominator.

Returns:

A structure of type ldiv_t.

Description:

The ldiv() function divides numer by denom in a portable manner. If the division is
inexact, the resulting quotient is the integer of lesser magnitude than the algebraic quotient
(round towards zero).

The ldiv() function returns a structure of type ldiv_t with two members, quot and rem.
Use ldiv(a, b) .quot instead of a/b if the quotient must be rounded the same way on all systems.
Use ldiv(a,b).rem to obtain the remainder of dividing a by b.

Reference:

C 4.10.6.2

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

Page 344

link()—Creates a link to a file.

Synopsis:

 #include <unistd.h>
 int link(const char *existing, const char *new);

Arguments:

existing Pointer to path name of an existing file.

new Pointer to additional path name to link to the same data.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EACCES, EEXIST, EMLINK, ENAMETOOLONG, ENOENT, ENOSPC, ENOTDIR, EPERM,
EROFS, EXDEV

Description:

The link() function atomically creates a new link for an existing file and increments the link
count for the file.

If the link() function fails, no directories are modified.

The existing argument should not be a directory.

The caller may (or may not) need permission to access the existing file.

Reference:

P 5.3.4.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Page 345

localeconv()—Gets rules to format numeric quantities for the current
locale.

Synopsis:

 #include <locale.h>
 struct lconv *localeconv(void);

Arguments:

None.

Returns:

Pointer to a struct lconv.

Description:

The localeconv() returns a pointer to a struct lconv for the current locale.

Reference:

C 4.4.2.1

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See Chapter 10, Porting to Far-off Lands, for a complete description of localeconv()
and the merits of using it.

Page 346

localtime()—Breaks down a timer value into a time structure in local
time.

Synopsis:

 #include <time.h>

 struct tm *localtime(const timet *timer);

Arguments:

timer Pointer to a time_t value returned by time().

Returns:

Pointer to a struct tm.

Description:

The localtime() function converts a time_t pointed to by timer into year, month, day,
hours, minutes, seconds, etc., and stores the information in a struct tm. A pointer to the
struct tm is returned. The current time can be obtained with the time() function.

Reference:

C 4.12.3.4 & P 8.1.1

Conversion:

BSD used the headed <sys/time.h> instead of <time.h>.

SVR1-3 and BSD used long for timer.

Notes:

The data returned by localtime() may be overwritten by a subsequent call.

See discussion on Page 133.

Also see gmtime().

Page 347

log()—Computes the natural log function.

Synopsis:

 #include <math.h>
 double log(double x);

Arguments:

 x

Returns:

Natural log of x.

Errors:

 EDOM, ERANGE

Description:

Returns a number ln, such that x = eln.

Reference:

C 4.5.4.4

Notes:

Page 348

log10()—Computes the base-ten logarithm function.

Synopsis:

 #include <math.h>
 double loglO(double x);

Arguments:

 x

Returns:

Base-ten logarithm of x.

Errors:

 EDOM, ERANGE

Description:

Returns a number lc, such that, x = 101c. The argument must be positive.

Reference:

C 4.5.4.5

Notes:

Page 349

longjmp()—Restores the calling environment.

Synopsis:

 #include <setjmp.h>
 void longjmp(jmp_buf env, int val);

Arguments:

env Information saved by setjmp().

val Value to return to caller of setjmp().

Returns:

val is returned to the caller of setjmp().

Description:

The longjump() function restores the environment saved in env by a previous call to
setjmp().

The values of variables in automatic storage which are not qualified by volatile are
indeterminate.

Reference:

C 4.6.2.1

Notes:

POSIX does not specify if setjmp() does or does not save signal masks. If you want to save
signal masks, use sigsetjmp()/siglongjmp().

WINNER OF THE MOST ASTONISHING FEATURE AWARD: If val is set to 0, 1 is
returned instead!

Page 350

lseek()—Repositions read/write file offset.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 off_t lseek(int fildes, off_t offset, int whence);

Arguments:

fildes File descriptor to be repositioned.

offset New offset.

whence One of the following codes:

SEEK_SET Set offset to offset.

SEEK_CUR Add offset to current position.

SEEK_END Add offset to current file size.

Returns:

The new offset. In case of error, ((off_t)-1) is returned.

Errors:

 EBADF, ESPIPE

Description:

The lseek() function sets the file offset for the file description associated with fildes as
follows:

SEEK_SET Set offset to offset.

SEEK_CUR Add offset to current position.

SEEK_END Add offset to current file size.

Reference:

P 6.5.3.1

Page 351

Conversion:

Add to the list of headers:

 #include <unistd.h>

Replace numeric constants with macros using the following key:

 0 SEEK_SET
 1 SEEK_CUR
 2 SEEK_END

SVR1-3 returns long instead of off_t. offset is also long instead of off_t.

BSD uses int for offset and also returns int. The BSD symbols L_SET, L_INCR, and
L_XTND must be replaced by SEEK_SET, SEEK_CUR, and SEEK_END.

Notes:

Some devices are incapable of performing seek operations.

The lseek() function allows the file offset to be set beyond the end of the existing data in the
file.

Page 352

malloc()—Allocates dynamic memory.

Synopsis:

 #include <stdlib.h>
 void *malloc(size_t size);

Arguments:

size Number of bytes to allocate.

Returns:

A pointer to the allocated space or NULL if no space is available.

Description:

The malloc() function allocates size bytes and returns a pointer to the allocated space.
The memory is not cleared.

Reference:

C 4.10.3.3

Conversion:

Add to the list of headers:

 #include <stdlib.h>

SVR1-3 and BSD use unsigned for size.

SVR1-3 uses the header <malloc.h> which is no longer required.

Notes:

malloc() does not zero the storage it allocates. If a program depends on the contents of the
allocated storage, the results are not portable.

Page 353

mblen()—Determines the number of bytes in a character.

Synopsis:

 #include <stdlib.h>
 int mblen(const char *s, size_t n);

Arguments:

s Pointer to string to scan.

Pointer to string to scan.

n Number of bytes to examine.

Returns:

The number of bytes that comprise the character.

Description:

This is equivalent to mbtowc((wchat_t*)0,s,n) except the shift state of the mbtowc
function is not affected.

Reference:

C 4.10.7.1

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See Chapter 10, Porting to Far-off Lands, for a description of multibyte characters.

This function is required by Standard C but is not part of the POSIX standard.

Page 354

mbstowcs()—Converts a multibyte string to a wide-character string.

Synopsis:

 #include <stdlib.h>
 size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

Arguments:

pwcs Pointer to the resulting wide-character string.

s Pointer to the input multibyte character string.

n Maximum number of wide characters to store.

Returns:

The number of wide characters stored or -1 if s contains an invalid character.

Description:

The mbstowcs() function converts a sequence of multibyte characters that begins in the
initial shift state from the array pointed to by s into a sequence of wide characters and stores up

to n wide characters into the array pointed to by pwcs.

Reference.

C 4.10.8.1

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See Chapter 10, Porting to Far-off Lands, for a description of wide characters and multibyte
characters.

The source and destination must not overlap.

This function is required by Standard C and is not part of the POSIX standard.

Page 355

mbtowc()—Converts a multibyte character to a wide character.

Synopsis:

 #include <stdlib.h>
 int mbtowc(wchar_t *pwc, const char *s, size_t n);

Arguments:

pwc Pointer to the wide character.

s Pointer to the multibyte character.

n Maximum number of bytes to examine.

Returns:

The number of bytes in character or -1 if the character is not valid.

Description:

If s is not NULL, the mbtowc() function determines the number of bytes that are contained in
the multibyte character pointed to by s. It then determines a code value of type wchar_t that
corresponds to the multibyte character. If the multibyte character is valid and pwc is not NULL,
the code is stored in the wchar_t pointed to by pwc.

At most, n bytes of s will be examined.

Reference:

C 4.10.7.2

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See Chapter 10, Porting to Far-off Lands, for a description of wide and multibyte characters.

This function is required by Standard C and is not part of the POSIX standard.

Page 356

memchr()—Scans memory for a byte.

Synopsis:

 #include <string.h>
 void *memchr(const void *s, int c, size_t n);

Arguments:

s Pointer to the source string.

c Character to look for.

n Maximum number of bytes to examine.

Returns:

A pointer to the located character or NULL.

Description:

The memchr() function converts c to unsigned char and scans the first n bytes of s. The
first byte (interpreted as unsigned char) to match c stops the operation. A pointer to the
matching byte is returned.

Reference:

C 4.11.5.1

Conversion:

Add to the list of headers:

 #include <string.h>

SVR1-3 used int for n instead of size_t.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

If a constant is used for n, typecast it to size_t, as in (size_t)26.

Page 357

memcmp()—Compares two memory objects.

Synopsis:

 #include <string.h>
 int memcmp(const void *sl, const void *s2, size_t n);

Arguments:

s Pointer to object 1.

s2 Pointer to object 2.

n Number of bytes to compare.

Returns:

An int that is greater than, equal to, or less than zero according to the relative order of s1
and s2.

That is, if s1>s2,memcmp() will return a positive value.

Description:

Compares the first n bytes of s1 with the first n bytes of s2. Returns an int that is greater
than, equal to, or less than zero according to the relative order of s1 and s2.

Reference:

C 4.11.4.1

Conversion:

Add to the list of headers:

 #include <stdlib.h>

SVR1-3 used int for n instead of sizet.

This function is not supported in BSD.

Notes:

This function is required by Standard C and is not part of the POSIX standard.

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 358

memcpy()—Copies non-overlapping memory objects.

Synopsis:

 #include <string.h>
 void *memcpy(void *sl, const void *s2, size_t n);

Arguments:

s1 Pointer to the destination.

s2 Pointer to the source.

n Number of bytes to move.

Returns:

 sl

Description:

Copies n bytes from s2 into s1.

Reference:

C 4.11.2.1

Conversion:

Add to the list of headers:

 #include <stdlib.h>

SVR1-3 used int for n instead of size_t.

This function is not supported in BSD.

Notes:

If the strings might overlap, use memmove().

This function is required by Standard C. It is not part of the POSIX standard.

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 359

memmove()—Copies (possibly overlapping) memory objects.

Synopsis:

 #include <string.h>
 void *memmove(void *sl, const void *s2, size_t n);

Arguments:

s1 Pointer to the destination.

s2 Pointer to the source.

n Number of bytes to move.

Returns:

 s1

Description:

Copies n characters from s2 to s1. Copying takes place as if the n characters are first moved
into a temporary array and then into the destination.

Reference:

C 4.11.2.2

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C and is not part of the POSIX standard.

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 360

memset()—Fills memory with a constant byte.

Synopsis:

 #include <string.h>
 void *memset(void *s, int c, size_t n);

Arguments:

s Pointer to the region of memory to fill.

c Fill byte.

n Number of bytes to store.

Returns:

 s

Description:

Copies c into the first n characters of s.

Reference:

C 4.11.6.1

Conversion:

Add to the list of headers:

 #include <string.h>

SVR1-3 used int for n instead of size_t.

This function is not supported in BSD.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 361

mkdir()—Makes a directory.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 int mkdir(const char *path, mode_t mode);

Arguments:

path Pointer to name of the directory to create.

mode Directory permission bits.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EACCES, EEXIST, EMLINK, ENAMETOOLONG, ENOENT, ENOSPC, ENOTDIR, EROFS

Description:

The mkdir() function creates a new directory named path. The permission bits (modified
by the file creation mask)* are set from mode. The owner and group IDs for the directory are
set from the effective user ID and group ID.

The new directory may (or may not) contain entries for . and .. but is otherwise empty.

Reference:

P 5.4.1.1

Conversion:

SVR1-2 used mknod() to create directories.

BSD and SVR3 use int for mode.

* See umask().

Page 362

mkfifo()—Makes a FIFO special file.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 int mkfifo(const char *path, mode_t mode);

Arguments:

path Path name of the FIFO to create.

mode FIFO permission bits.

Returns:

Zero on success and -1 on failure.

If an error occurs a code is stored in errno to identify the error.

Errors:

 EACCES, EEXIST, ENOENT, ENOSPC, ENOTDIR, EROFS

Description:

The mkfifo() function creates a new FIFO special file named path. The permission bits
(modified by the file creation mask)* are set from mode. The owner and group IDs for the

FIFO are set from the effective user ID and group ID.

Reference:

P 5.4.2.1

Conversion:

SVR1-3 used mknod() to create FIFOs.

BSD does not support this function.

Notes:

* See umask().

Page 363

mktime()—Converts time formats.

Synopsis:

 #include <time.h>
 time_t mktime(struct tm *timeptr);

Arguments:

timeptr Pointer to a struct tm.

Returns:

The calendar time encoded as a time_t. On invalid input, (time-t) -1 is returned.

Description:

The mktime() function converts the local time in the struct tm pointed to by timptr to
a time_t. The values of tm_wday and tm_yday are ignored. If tm_isdst is greater than
zero, mktime() assumes that daylight savings time is in effect. If tm_isdst is equal to
zero, mktime() assumes that daylight savings time is not in effect. If tm_isdst is negative,
the mktime() function will attempt to determine if daylight savings time is in effect for the
specified time. The struct tm pointed to by timeptr is updated with valid values.

Reference:

C 4.12.2.3 & P 8.1.1

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

The mktime() function is not required to reject invalid dates. For example, November 55th
may be equivalent to December 25th.

Page 364

modf()—Breaks a value into integral and fractional parts.

Synopsis:

 #include <math.h>
 double modf(double value, double *iptr);

Arguments:

value Arbitrary value.

iptr Pointer to a double to hold result.

Returns:

Fractional part of value. Store the integer part of value in the double pointed to by iptr.

Description:

The modf() function breaks value into integral and fractional parts. The integral part is
stored into the double pointed to by iptr. The fractional part is returned. For example,
modf(123.4567,&foo) stores 123.0 into foo and returns 0.4567.

Reference:

C 4.5.4.6

Notes:

Page 365

open()—Opens a file.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 int open(const char *path, int oflag, ...);

Arguments:

path Pointer to path of the file to open.

oflag Symbolic flags.

Symbolic flags.

... Permission bits to use if a file is created. This argument is called the file's mode and
has type mode_t.

Returns:

A file descriptor or -1 on error.

Errors:

 EACCES, EEXIST, EINTR, EISDIR, EMFILE, ENAMETOOLONG, ENFILE, ENOENT,
 ENOSPC, ENOTDIR, ENXIO, EROFS

Description:

The open() function establishes a connection between a file and a file descriptor. The file
descriptor is a small integer that is used by I/O functions to reference the file. The path
argument points to the pathname for the file.

The oflag argument is the bitwise inclusive OR of the values of symbolic constants. The
programmer must specify exactly one of the following three symbols:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Page 366

Any combination of the following symbols may also be used:

O_APPEND Set the file offset to the end-of-file prior to each write.

O_CREAT If the file does not exist, allow it to be created. This flag indicates that the mode
argument is present in the call to open().

O_EXCL This flag may be used only if O_CREAT is also set. It causes the call to open()
fail if the file already exists.

O_NOCTTY If path identifies a terminal, this flag prevents that terminal from becoming the
controlling terminal for this process. See Chapter 8 for a description of terminal
I/O.

O_NONBLOCK Do not wait for the device or file to be ready or available. After the file is open, the
read() and write() calls return immediately. If the process would be delayed
in the read or write operation, -1 is returned and errno is set to EAGAIN instead o
blocking the caller.

blocking the caller.

O_TRUNC This flag should be used only on ordinary files opened for writing. It causes the file
to be truncated to zero length.

Upon successful completion, open() returns a non-negative file descriptor.

Reference:

P 5.3.1.1

Conversion:

BSD used the flag O_NDELAY to mark file descriptors so that a process would not block when
doing I/O to them. A read() or write() that would block for data returns zero and sets
errno to EWOULDBLOCK.

System V also has the O_NDELAY flag, however, there is no way to distinguish between no
data available and end-of-file.

To allow implementations to continue to support existing applications, POSIX uses a new flag
O_NONBLOCK for non-blocking I/O. If no data is available, POSIX gives the error EAGAIN.

Notes:

Page 367

opendir()—Opens a directory.

Synopsis:

 #include <sys/types.h>
 #include <dirent.h>
 DIR *opendir(const char *dirname);

Arguments:

dirname Pointer to the name of the directory to read.

Returns:

A pointer for use with readdir() and closedir() or, if an error took place, NULL.

Errors:

 EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, EMFILE, ENFILE

Description:

The opendir() function opens a directory stream corresponding to the directory named in
the dirname argument. The stream is positioned at the first entry.

Reference:

P 5.1.2.1

Conversion:

BSD used the header <sys/dir.h>, which must be changed to <dirent.h>. The BSD
struct direct must be replaced by the POSIX equivalent struct dirent. BSD also
provided the seekdir() and telldir() functions that are not supported by POSIX.

SVR1-2 did not provide this function. SVR1-2 programs read directories as ordinary files.
Directory entries are 14-byte names and 2-byte I-node numbers. These programs must be
changed to use readdir().

Notes:

See ''Complete Example'' on Page 77.

Page 368

pathconf()—Gets configuration variables for a path.

Synopsis:

 #include <unistd.h>
 long pathconf(const char *path, int name);

Arguments:

path Pointer to path name of file.

name Symbolic constant.

Returns:

If name or path is invalid, -1 is returned and errno is set to indicate the error. If the
implementation has no limit for the requested item, -1 is returned and errno is not changed.
Otherwise, the limit is returned.

Errors:

 EINVAL, EACCES, EINVAL, ENAMETOOLONG, ENOENT, ENOTDIR

Description:

The pathconf() function returns a configuration limit.

The possible values for name are:

name Description

name Description

_PC_LINK_MAX The maximum value of a file's link count. If path refers to a directory, then
this value applies to the entire directory.

_PC_MAX_CANON The maximum length of a formatted input line. path must refer to a terminal.

_PC_MAX_INPUT The maximum length of an input line, path must refer to a terminal.

_PC_NAME_MAX The maximum length of a filename for this directory.

_PC_PATH_MAX The maximum length of a relative pathname when this directory is the working
directory; that is, the number of characters that may be appended to path and
still have a valid pathname.

_PC_PIPE_BUF The size of the pipe buffer. path must be a FIFO.

Page 369

name Description

_PC_CHOWN_RESTRICTED

The chown() system call may not be used on this file. If path or fildes
refers to a directory, then this applies to all files in that directory.

_PC_NO_TRUNC Attempting to create a file in the named directory will fail with
ENAMETOOLONG if the filename would be truncated.

_PC_VDISABLE Allow special character processing to be disabled. path or fildes must
refer to a terminal.

Reference:

P 5.7.1.1

Conversion:

This function is new to POSIX. It allows a portable application to determine the quantity of a
resource, or the presence of an option, at execution time.

Older applications either use a fixed amount of resource or attempt to deduce the amount of
resource available using the error returns from various functions.

Notes:

The value returned by _PC_PATH_MAX is not useful for allocating storage. Files with paths
longer than _PC_PATH_MAX may exist.

Page 370

pause()—Suspends process execution.

Synopsis:

 #include <unistd.h>
 int pause(void);

Arguments:

None.

Returns:

-1 on error.

There is no successful completion return value.

Errors:

 EINTR

Description:

The pause() function suspends the calling process until the delivery of a signal whose action
is to either execute a signal-catching function or to terminate the process.

If the signal-catching function returns, pause() returns -1 and sets errno to EINTR.
There is no "success" return.

Reference:

P 3.4.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 371

perror()—Prints an error message.

Synopsis:

 #include <stdio.h>
 void perror(const char *s);

Arguments:

s Pointer to string to print in front of error message.

Pointer to string to print in front of error message.

(implicit) errno error number to convert.

Returns:

No value is returned.

Description:

The perror() function converts the error number in errno to an error message. If s is not
NULL, the string pointed to by s is written to stderr followed by a colon and a space. Then
the error message is written followed by a newline.

Reference:

C 4.9.10.4 & P 8.2.3.8

Notes:

Page 372

pipe()—Creates an interprocess channel.

Synopsis:

 #include <unistd.h>
 int pipe(int fildes[2]);

Arguments:

fildes Array of two integers: fildes[0] is the read end of the pipe and fildes[1] is the
write end of the pipe.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Description:

The pipe() function creates a pipe, placing a descriptor for the read end of the pipe into
fildes[0] and for the write end of the pipe into fildes[1]. The O_NONBLOCK and
FD_CLOEXEC flags are clear on both descriptors (you can use fcntl() to set them).

Data can be written to fildes[1] and read from fildes[0]. A read on fildes[0]
accesses the data written to fildes[1] on a first-in-first-out basis.

Reference:

P 6.1.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 373

pow()—Computes x raised to the power y.

Synopsis:

 #include <math.h>
 double pow(double x, double y);

Arguments:

x Base.

y Power.

Returns:

 xY

Errors:

 EDOM, ERANGE

Description:

The function pow(x,y) returns xy. A domain error occurs if x is negative and y is not an
integral value.

Reference:

C 4.5.5.1

Notes:

Page 374

printf()—Writes formatted text to the standard output stream.

Synopsis:

 #include <stdio.h>

 int printf(const char *format, ...);

Arguments:

format Pointer to format string.

. . . Variables to be written.

Returns:

The number of characters written, or negative if an error occurred.

Description:

The printf() function writes output to stdout under control of the string pointed to by
format.

The format is a character string that contains zero or more directives. Each directive fetches
zero or more arguments to printf(). Each directive starts with the % character. After the %,
the following appear in sequence:

flags Zero or more of the following flags (in any order):

- Will cause this conversion to be left-justified. If the - flag is not used, the result
will be right-justified.

+ The result of a signed conversion will always begin with a sign. If the + flag is not
used, the result will begin with a sign only when negative values are converted.

space This is the same as + except a space is printed instead of a plus sign. If both the
space and the + flags are used, the + wins.

The result is converted to an alternate form. The details are given below for each
conversion.

width An optional width field. The exact meaning depends on the conversion being performed.

prec An optional precision. The precision indicates how many digits will be printed to the right of
the decimal point. If the precision is present, it is preceded by a decimal point(.). If the
decimal point is given with no precision, the precision is assumed to be zero. A precision
argument may be used only with the e, E, f, g, and G conversions.

Page 375

type An optional h,1, or L. The h causes the argument to be converted to short prior to
printing. The 1 specifies that the argument is a long int. The L specifies that the argument
is a long double.

format A character that specifies the conversion to be performed.

The conversions are given by the following table:

Description Meaning of width Meaning of # flag

i or d An int argument is
converted to a signed
decimal string.

Specifies the minimum
number of characters to
appear. If the value is
smaller, padding is used.

The default is 1. The result
of printing zero with a
width of zero is no
characters.

UNDEFINED.

o An unsigned int
argument is converted to
unsigned octal.

Same as i. Increase the precision to
force the first digit to be a
zero.

u An unsigned int
argument is converted to
unsigned decimal.

Same as i. UNDEFINED.

x An unsigned int
argument is converted to
unsigned hexadecimal.
The letters abcdef are
used.

Same as i. Prefix non-zero results
with 0x.

x Same as x except the
letters ABCDEF are used.

Same as i. Prefix non-zero results
with 0X.

f A double argument is
converted to decimal
notation in the
[-]ddd.ddd format.

Minimum number of
characters to appear. May
be followed by a period
and the number of digits to
print after the decimal
point. If a decimal point is
printed, at least one digit
will appear to the left of the
decimal.

Print a decimal point even
if no digits follow.

Page 376

Description Meaning of width Meaning of # flag

Description Meaning of width Meaning of # flag

e A double argument is
converted in the style
[-]d.ddde dd The
exponent will always
contain at least two digits.
If the value is zero, the
exponent is zero.

Same as f. Same as f.

E Same as e except E is
used instead of e.

Same as f. Same as f.

g Same as f or e,
depending on the value to
be converted. The e style
is used only if the
exponent is less than —4
or greater than the
precision.

Same as f. Same as f.

G Same as g except an E is
printed instead of e.

Same as f. Same as f.

c An int argument is
converted to an
unsigned char and
the resulting character is
written.

UNDEFINED. UNDEFINED.

s An argument is as- sumed
to be char *.
Characters up to (but not
including) a terminating
null are written.

Specifies the maximum
number of characters to be
written.

UNDEFINED.

p An argument must be a
pointer to void. The
pointer is converted to a
sequence of printable
characters in an
implementation-defined
manner. This is not very
useful for a portable
program.

UNDEFINED. UNDEFINED.

Page 377

Description Meaning of width Meaning of # flag

Description Meaning of width Meaning of # flag

n An argument should be a
pointer to an integer
which is written with the
number of characters
written to the output
stream so far. Nothing is
written to the output
stream by this directive.

UNDEFINED. UNDEFINED.

Reference:

C 4.9.6.3 & P 8.2.3.6

Conversion:

Change \07 in format to \a.

Notes:

See ''Pitfalls'' on Page 42.

Page 378

putc()—Writes a character to a stream.

Synopsis:

 #include <stdio.h>
 int putc(int c, FILE *stream);

Arguments:

c Character to write.

stream Pointer to an open stream to write into.

Returns:

The character written. If an error occurs, EOF is returned.

Description:

Write the character c, converted to an unsigned char, to stream at the position indicated
by the file position indicator and advance the indicator.

The putc() function is equivalent to fputc(), except putc() may be a macro which may
evaluate stream more than once, so the argument should not have side effects.

Reference:

C 4.9.7.8 & P 8.2.3.6

Notes:

This function may be coded as an "unsafe" macro; that is, it may evaluate the arguments more
than once. This will produce non-portable results for arguments like x++.

Page 379

putchar()—Writes a character to standard output.

Synopsis:

 #include <stdio.h>
 int putchar(int c);

Arguments:

 C

Returns:

The character written or EOF on error.

Description:

The call putchar(c) is equivalent to putc(c,stdout).

Reference:

C 4.9.7.9 & P 8.2.3.6

Notes:

Page 380

puts()—Writes a string to standard output.

Synopsis:

 #include <stdio.h>
 int puts(const char *s);

Arguments:

s Pointer to the string to write.

Returns:

EOF on error; otherwise, a nonnegative value.

Description:

Write the string pointed to by s to stdout and append a newline character. The terminating
null is not written.

Reference:

C 4.9.7.10 & P 8.2.3.6

Notes:

The call puts(s) is not exactly equivalent to fputs(s,stdout) because puts() adds
a new line and fputs() does not.

Page 381

qsort()—Sorts an array.

Synopsis:

 #include <stdlib.h>
 void qsort(void *base, sizet nmemb, sizet size,
 int (*compar)(const void *,const void *));

Arguments:

base Pointer to the start of the array.

nmemb Number of members in the array.

size Size of each element in the array.

compar Pointer to a function with two arguments that point to the objects being compared. The
function returns an int less than, equal to, or greater than zero depending on the relative
order of the two arguments.

Returns:

No value is returned.

Description:

The qsort() function sorts an array with nmemb elements of size size. The base argument
points to the start of the array. The compar function is called with pointers to two array
elements and returns an int less than, equal to, or greater than zero depending on the relative
order of the two arguments.

Example:

 /*
 * Score structures contain the student's name
 * and test score.
 */
 struct score
 {
 char student_name[25];
 int test_score;
 };
 /* Class is an array of scores */
 struct score class[50];
 /*
 * Comparison function to use with qsort
 */
 int comp_elements(const void * tl,
 const void *s2)

Page 382

 {
 return(strcmp(((struct score *) s1) -> student_name,
 ((struct score *) s2) -> student_name));
 }

 /*
 * Sort the score array for later use by bsearch()
 *
 void sort_score(void)
 {
 struct score *ptr;

 qsort(
 &score[O], /* base */
 50, / /* number of elements */
 sizeof(struct score), /* size of one element */
 comp_elements); /* comparison function */
 return;
 }

Reference:

C 4.10.5.2

Conversion:

Add to the list of headers:

 #include <stdlib.h>

SVR1-3 use unsigned for size and nmemb.

BSD used int for size and nmemb.

Notes:

Page 383

raise()—Sends a signal.

Synopsis:

 #include <signal.h>
 int raise(int sig);

Arguments:

sig Signal number.

Returns:

Zero on success, nonzero on failure.

Description:

The call raise(sig) is equivalent to kill(getpid(),sig).

Reference:

C 4.7.2.1

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See kill() for the more general case.

This function is required by Standard C. It is not part of the POSIX standard.

Page 384

rand()—Returns a random number.

Synopsis:

 #include <stdlib.h>
 int rand(void);

Arguments:

None.

Returns:

A value between 0 and RAND_MAX.

Description:

The rand() function returns a pseudo-random integer between 0 and RAND_MAX.

Reference:

C 4.10.2.1

Conversion:

Add to the list of headers:

 #include <stdlib.h>

Notes:

If the srand() function is not called, rand() will return the same sequence of random
numbers every time your program is run.

The rand() function is not completely portable in the sense that different implementations
will produce different sequences. This should not be a problem.

This function is required by Standard C. It is not part of the POSIX standard.

Page 385

read()—Reads from a file.

Synopsis:

 #include <unistd.h>
 int read(int fildes, void *buf, unsigned int nbyte);

Arguments:

fildes File descriptor open for reading.

buf Pointer to the place where the data should be read.

nbyte Maximum number of bytes to read.

Returns:

The number of bytes actually read or -1 on error.

Errors:

 EAGAIN, EBADF, EINTR, EIO

Description:

The read() function reads nbyte bytes from the file associated with fildes into the buffer
pointed to by buf.

The read() function returns the number of bytes actually read and placed in the buffer. This
will be less than nbyte if:

• The number of bytes left in the file is less than nbyte.

• The read() request was interrupted by a signal.

• The file is a pipe or FIFO or special file with less than nbytes immediately available for
reading.

When attempting to read from any empty pipe or FIFO:

• If no process has the pipe open for writing, zero is returned to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, -1 is returned and
errno is set to EAGAIN.

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() waits
for some data to be written or the pipe to be closed.

Page 386

When attempting to read from a file other than a pipe or FIFO and no data is available:

• If O_NONBLOCK is set, -1 is returned and errno is set to EAGAIN.

• If O_NONBLOCK is clear, read() waits for some data to become available.

• The O_NONBLOCK flag is ignored if data is available.

Reference:

P 6.4.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

The standard adopted by the International Organization for Standards (ISO/IEC 9945) has a
slightly different definition for read(). They use:

 ssize_t read(int fildes, void *buf, sizet nbyte)

where ssize_t is a new system data type used by functions that return a size in bytes or an
error code. Also, note the change of unsigned int to size_t for nbyte.

The standard does not specify the file offset after an error is returned.

If a read() is interrupted by a signal after it has read some data, it returns either the number
of bytes read or -1 with errno set to EINTR. The POSIX standard allows this to vary from

system to system or even from read to read.

Page 387

readdir()—Reads a directory.

Synopsis:

 #include <sys/types.h>
 #include <dirent.h>
 struct dirent *readdir(DIR *dirp);

Arguments:

dirp Pointer returned by opendir().

Returns:

A pointer to an object of type struct dirent or, in case of error, NULL.

Errors:

 EBADF

Description:

The readdir() function returns a pointer to a structure dirent representing the next
directory entry from the directory stream pointed to by dirp. On end-of-file, NULL is
returned.

The readdir() function may (or may not) return entries for . or .. Your program should
tolerate reading dot and dot-dot but not require them.

The data pointed to by readdir() may be overwritten by another call to readdir() for
the same directory stream. It will not be overwritten by a call for another directory stream.

Reference:

P 5.1.2.1

Conversion:

BSD used the header <sys/dir.h>. This must be changed to <dirent.h>. The BSD
struct direct must be replaced by the POSIX equivalent struct dirent. BSD also
provided the seekdir() and telldir() functions. These are not supported by POSIX.

SVR1-2 did not provide this function. SVR1-2 programs read directories as ordinary files.
Directory entries are 14-byte names and 2-byte I-node numbers. These programs must be
changed to use readdir().

Page 388

Notes:

See ''Complete Example'' on Page 77.

Filenames returned by readdir() may contain any character including spaces, tabs, and
newlines. There will be at least one character before the terminating null.

The readdir() function may not see files created after the most recent call to opendir()
or rewinddir() for this directory stream.

The readdir() function returns NULL both on error and at the end of a directory. If you
need to tell the difference, use code similar to the following:

 errno = 0; /* Zero out errno */
 ptr = readdir(dirp);
 if (ptr == NULL)
 {
 if (errno == 0)
 {
 Code to process end-of-file goes here.
 }
 else
 {
 Code to process errors goes here.
 }

Page 389

realloc()—Changes the size of a memory object.

Synopsis:

 #include <stdlib.h>
 void *realloc(void *ptr, size_t size);

Arguments:

ptr Pointer returned by a previous call to calloc(),malloc(), or realloc().

size New size.

Returns:

A pointer to the (possibly moved) allocated space.

Description:

The realloc() function changes the size of the object pointed to by ptr to size. If size
is larger than the current size of the object, the newly allocated space is not initialized. The call
realloc(NULL,size) is equivalent to malloc(size). The call
realloc(ptr,(size_t)0) is equivalent to free (ptr).

Reference:

C 4.10.3.4

Conversion:

Add to the list of headers:

 #include <stdlib.h>

BSD and SVR1-2 use unsigned for size.

Notes:

If ptr is not a pointer returned by malloc(),calloc(), or realloc() or has been
deallocated with free() or realloc(), the results are not portable and are probably
disastrous.

Page 390

remove()—Removes a file from a directory.

Synopsis:

 #include <stdio.h>
 int remove(const char *filename);

Arguments:

filename Pointer to filename to delete.

Returns:

Zero on success and non-zero on failure.

If an error occurs a code is stored in errno to identify the error.

Errors:

 EACCES, EBUSY, EMNAMETOOLONG, ENOENT, ENOTDIR, EPERM, EROFS

Description:

The remove() function comes from Standard C and has the same effect as unlink();
namely, the string pointed to by filename can no longer be used to access a file.

Use the rmdir() function to delete directories.

Reference:

C 4.9.4.1 & P 8.2.4

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See unlink() for another function to delete files.

Page 391

rename()—Renames a file.

Synopsis:

 #include <unistd.h>
 int rename(const char *old, const char *new);

Arguments:

old Pointer to a path name of an existing file.

new Pointer to a new path name for the file.

Returns:

Zero on success and -1 on failure.

If an error occurs a code is stored in errno to identify the error.

Errors:

 EACCES, EBUSY, EEXIST, EINVAL, EISDIR, EMLINK, ENAMETOOLONG, ENOENT,
ENOSPC, ENOTDIR, ENOTEMPTY, EROFS, EXDEV

Description:

The rename() function causes the file known by old to now be known as new.

Ordinary files may be renamed to ordinary files, and directories may be renamed to
directories; however, files cannot be converted using rename(). The new pathname may not
contain a path prefix of old.

Reference:

C 4.9.4.2 & P 5.5.3.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

This function is not supported in SVR1-3.

Page 392

Notes:

If a file already exists by the name new, it is removed. The rename() function is atomic. If
the rename() detects an error, no files are removed. This guarantees that the rename
("x","x") does not remove x.

You may not rename dot or dot-dot.

UNIX systems return the error code EXDEV if the file must be copied from one file system to
another. The rename() function does not do the copying. The POSIX standard allows
rename() to copy files but does not require it.

The 1990 standard adds the requirement that if rename() returns -1, the old and new files
must be unchanged.

Page 393

rewind()—Sets the file position to the beginning of the file.

Synopsis:

 #include <stdio.h>
 void rewind(FILE *stream);

Arguments:

stream File to rewind.

Returns:

No value is returned.

Description:

The call rewind(stream) is equivalent to:

 (void)fseek(stream, 0L, SEEK_SET);

except the error indicator for the stream is also cleared.

Reference:

C 4.9.9.5

Notes:

Page 394

rewinddir()—Resets the readdir() pointer.

Synopsis:

 #include <sys/types.h>
 #include <dirent.h>
 void rewinddir(DIR *dirp);

Arguments:

dirp Pointer returned by opendir().

Returns:

No value is returned.

Description:

The rewinddir() function resets the position associated with the directory stream pointed
to by dirp. It also causes the directory stream to refer to the current state of the directory.

Reference:

P 5.1.2.1

Conversion:

BSD used the header <sys/dir.h>. This must be changed to <dirent.h>. The BSD
struct direct must be replaced by the POSIX equivalent struct dirent. BSD also
provided the seekdir() and telldir() functions. These are not supported by POSIX.

SVR1-2 did not provide this function. SVR1-2 programs read directories as ordinary files.
Directory entries are 14-byte names and 2-byte I-node numbers. These programs must be
changed to use readdir().

Notes:

If dirp is not a pointer returned by opendir(), the results are undefined.

Page 395

rmdir()—Removes a directory.

Synopsis:

 #include <unistd.h>
 int rmdir(const char *path);

Arguments:

path Pointer to the path name of the directory to remove.

Returns:

Zero on success and -1 on failure. If an error occurs, a code is stored in errno to identify the
error.

Errors:

 EACCES, EBUSY, EEXIST, ENOTEMPTY, ENAMETOOLONG, ENOENT, ENOTDIR,
EROFS

Description:

If the directory named by path is empty* it is removed. If the system considers the directory
to be "in use," -1 is returned and errno is set to EBUSY. This means that you may (or may
not) be able to remove a directory that is the current working directory of a process.

Reference:

P 5.5.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

SVR1-2 do not support this function. SVR3 includes this function.

Notes:

When the path argument names a directory that is not empty, BSD gives the error ENOTEMPTY,
while System V gives the error EEXIST. The standard allows either of these errors to be
returned.

*An empty directory may contain entries for dot and dot-dot.

Page 396

scanf()—Reads formatted text from standard input stream.

Synopsis:

 #include <stdio.h>
 int scanf(const char *format, ...);

Arguments:

format Control string.

Control string.

... Variables to store into.

Returns:

EOF if an error occurred prior to any data being read. Otherwise, the number of variables
stored is returned.

Description:

The scanf() function reads from standard input under control of format. The call
scanf(format,args) is equivalent to fscanf(stdin,format,args).

The format string contains ordinary text and conversion specifiers. Each directive starts with
the % character. After the %, the following appear in sequence:

star An optional assignment-suppressing character *.

width An optional decimal integer that specifies the maximum field width.

type An optional h,1,k, or L indicating the size of the receiving object. The exact meaning
depends on the conversion. See the table on the next page.

format A character that specifies the type of conversion to perform.

Page 397

The conversions are given by the following table:

Description Meaning of size flags

d Matches an optionally signed decimal integer. The
subject is defined as the longest initial subsequence of
the input string, starting with the first non-white-space
character that is of the expected form.

The expected form is an optional plus or minus sign
followed by a sequence of the digits 0through 9.

none → int
h → short
1 → long

i Same as d except the expected form is the same as an
integer constant in Standard C. It may be a decimal
constant, an octal constant, or a hexadecimal constant.
Each may be preceded with an optional plus or minus
sign.

A decimal constant begins with a non-zero digit
followed by zero or more digits in the range 0 to 9.

An octal constant begins with a leading zero followed
by zero or more of the digits 0 through 9.

A hexadecimal constant begins with 0x or 0X followed
by one or more of the digits 0 to 9 and the letters A to
F.

Same as d.

o Same as d except only the digits 0 to 7 are allowed. none → unsigned int
h → unsigned short
l → unsigned long

u Same as d except the argument is a pointer to an
unsigned value. Note: a leading minus sign is legal.

Same as o.

x Same as d except the argument is a pointer to an
unsigned value and the letters A to F are valid. Note: a
leading minus sign is legal.

Same as o.

e Matches an optionally signed floating-point none → float

f number. The number may be in any format 1 → double

g which is acceptable as a floating constant, but no
floating suffix is allowed.

L → long double

Page 398

Description Meaning of size flags

s Matches a sequence of non-white-space characters.

Note: Use %nc to match exactly n characters.

UNDEFINED.

[Matches a sequence of characters from a set of.
expected characters. The conversion specifier includes
all subsequent characters in the format string, up to
and including the matching right bracket (]). The
characters between the brackets comprise the set of
expected characters (the scanset). If the character
following the left bracket is a circumflex (^), the scanset
contains all characters that do not appear between the
brackets. If the conversion specifier begins with [] or
[^], the right bracket is included in the scanset and the
next right bracket ends the specification.

Some systems allow specifications of the form [a-z] ,
meaning all characters between a and z. This depends
on the codeset used and is not portable.

UNDEFINED.

c Matches a sequence of characters. The field width
determines how many characters are matched. If there is
no field width, one character is matched.

NOTE: The format %nc matches n characters. The
format %ns matches up to n non-white-space
characters.

UNDEFINED.

p Matches a pointer. The only portable use is to read back
a pointer written by the %p directive to fprintf
during the execution of this program.

UNDEFINED.

n Does not match anything. The corresponding argument is
written with the number of characters read from the
input stream so far by this call to fscanf().

UNDEFINED.

% Matches a single %. UNDEFINED.

Page 399

Reference:

C 4.9.6.4 & P 8.2.3.5

Notes:

See ''Pitfalls'' on Page 47.

Page 400

setbuf()—Determines how a stream will be buffered.

Synopsis:

 #include <stdio.h>
 void setbuf(FILE *stream, char *buf);

Arguments:

stream Pointer to a freshly-opened stream.

buf Pointer to a buffer.

Returns:

No value is returned.

Description:

The call setbuf(stream,buf) is equivalent to:

 if (buf == NULL)
 (void)setvbuf(stream,NULL,_IONBF,BUFSIZE);
 else
 (void)setvbuf(stream,buf,_IOFBF,BUFSIZE);

Reference:

C 4.9.5.5

Notes:

Page 401

setgid()—Sets group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 int setgid(gid_t gid);

Arguments:

gid New group ID.

Returns:

Zero on success and -1 on failure. If an error occurs, a code is stored in errno to identify the
error.

Errors:

 EINVAL, EPERM

Description:

If the process has appropriate privileges, the real group ID, the effective group ID, and the
saved set-group-ID are set to gid.

If the process does not have appropriate privileges and the symbol _POSIX_SAVED_IDS is
defined in <unistd.h> and gid is equal to the real group ID or the saved set-group-ID, the
effective group ID is set to gid; the real group ID and the saved set-group-ID are unchanged.

If the process does not have appropriate privileges and the symbol _POSIX_SAVED_IDS is
not defined in <unistd.h> and gid is equal to the real group ID, the effective group ID is
set to gid; the real group ID is unchanged.

If the process does not have appropriate privileges and is not trying to set the effective group
ID back to the real or saved value, -1 is returned and errno is set to EPERM.

Reference:

P 4.2.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Page 402

Notes:

This function depends on the user's privileges in an implementation-defined manner. Do not use
it in fully portable programs.

Page 403

setjmp()—Saves the calling environment for use by longjmp().

Synopsis:

 #include <setjmp.h>
 int setjmp(jmp_buf env);

Arguments:

env Variable of type jmp_buf suitable for holding the information needed to restore the
calling environment.

Returns:

Zero if returning directly; non-zero if returning via longjmp().

Description:

The setjmp() macro saves the calling environment in the env argument for later use by
longjmp().

The setjmp() macro must be used in one of the following places:

• The entire controlling expression of a switch, while, if, or for statement.

• One operand of a relational or equality operator with the other operand an integral
constant, with the resulting expression being the entire controlling expression of a selection
of iteration statement.

• The operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement.

• The entire expression of a statement.

Examples of valid use:

 if (setjmp(env)) { ... }
 while (setjmp(env) != 0) { ... }
 switch (setjmp(env)) { ... }
 setjmp(env);
 (void)setjmp(env);
 if (Isetjmp(env)) { ... }

Examples of invalid use:

 x = setjmp(env) + 3;
 if (retry_flag && setjmp(env)) { ... }
 printf("setjmp returned =%d\n",setjmp(env));
 setjmp(envl) + setjmp(env2);

Page 404

Reference:

C 4.6.1.1

Notes:

setjmp()/longjmp() make programs hard to understand and maintain. Try to find an
alternative.

setjmp() is a macro and may not exist as a real function.

POSIX does not specify if setjmp() does or does not save signal masks. If you want to save
signal masks, use sigsetjmp()/siglongjmp().

Page 405

setlocale()—Sets or queries a program's locale.

Synopsis:

 #include <locale.h>
 char *setlocale(int category, const char *locale);

Arguments:

category One of the following macros:

LC_ALL for the entire locale.

LC_COLLATE affects strcoll() and strxfrm().

LC_CTYPE affects character-handling functions.

LC_MONETARY affects localeconv().

LC_NUMERIC affects the decimal point character.

LC_TIME affects strftime().

locale Pointer to a string that specifies the implementation-defined native environment.

Returns:

A pointer to the string for the new locale, or NULL if the request cannot be honored. This string
should not be modified by the program and may be overwritten by a subsequent call.

Description:

The setlocale() function is used to change or query the program's current locale or part of
the locale. If locale is "C" or "POSIX", the locale is set to the portable locale. If locale
is " " the locale is set to whatever default locale was selected for the system. The system
behaves as if setlocale(LC_ALL,"C") is called prior to calling main().

Reference:

C 4.4.1.1 & P 8.1.2.1

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

Chapter 10, Porting to Far-off Lands, covers locales and internationalization.

Page 406

setpgid()—Sets process group ID for job control.

Synopsis:

 #include <sys/types.h>

 #include <unistd.h>
 int setpgid(pidt pid, pid_t pgid);

Arguments:

pid Process to set.

pgid New process group ID.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EACCES, EBUSY,* EINVAL, ENOSYS, EPERM, ESRCH

Description:

The process group ID of the process with process ID pid is set to pgid. If pid is zero, the
current process is used. If pgid is zero, the pid of the affected process is used.

If the macro _POSIX_JOB_CONTROL is defined in <unistd.h>, the setpgid()
function works as described above. If it is not defined, setpgid() may work as described
above or may fail.

Reference:

P 4.3.3.1

Conversion:

This function is a cross between the System V setpgrp() and BSD 4.3 setpgrp().

Notes:

This function is used by special programs like the shell. It is not used by ordinary applications.

*Added in 1990 standard.

Page 407

setsid ()—Creates a session and sets the process group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 pid_t setsid(void);

Arguments:

None.

Returns:

-1 on error, or the process group ID of the caller on success.

Errors:

 EPERM

Description:

If the calling process is not a process group leader, the setsid() function creates a new
session. The calling process is the session leader of the new session, the process group leader
of the new process group, and has no controlling terminal. The process group ID of the calling
process is set to the process ID of the calling process. The calling process is the only process
in the new process group and the only process in the new session.

Reference:

P 4.3.2.1

Conversion:

This function is a cross between the System V setpgrp() and BSD 4.3 setpgrp().

Notes:

This function is used by special programs like the shell. It is not used by ordinary applications.

Page 408

setuid()—Sets the user ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 int setuid(uid_t uid);

Arguments:

uid New user ID.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EINVAL, EPERM

Description:

If the process has appropriate privileges, then the real user ID, the effective user ID, and the
saved set-user-ID are set to uid.

If the symbol _POSIX_SAVED_IDS is defined in <unistd.h> and the process does not
have appropriate privileges and uid is equal to the real user ID or the saved set-user-ID, the
effective user ID is set to uid; the real user ID and the saved set-user-ID are unchanged.

If the symbol _POSIX_SAVED_IDS is not defined in <unistd.h> and the process does
not have appropriate privileges and uid is equal to the real user ID, the effective user ID is set
to uid; the real user ID is unchanged.

If the process does not have appropriate privileges and is not trying to set the effective user ID
back to the real or saved value, -1 is returned and errno is set to EPERM.

Reference:

P 4.2.2.1

Page 409

Conversion:

Add to the list of headers:

 #include <unistd.h>

SVR1-3 and BSD used int for uid.

Notes:

This function depends on the user's privileges in an implementation-defined manner. Do not use
it in fully portable programs.

Page 410

setvbuf()—Determines buffering for a stream.

Synopsis:

 #include <stdio.h>
 int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Arguments:

stream Pointer to a freshly opened stream.

buf Pointer to a character array to use as an I/O buffer.

Pointer to a character array to use as an I/O buffer.

mode One of:

_IOFBF for full buffering.

_IOLBF for line buffering.

_IONBF for no buffering.

size Size of buf.

Returns:

Zero if the operation succeeds, nonzero if it fails.

Description:

The setvbuf() function determines how stream will be buffered and allows a buffer to
be supplied. If buf is not NULL, it points to an array of size bytes used to buffer the file. The
system may (or may not) use the buffer.

The setvbuf() function should be used only after stream has been opened and before any
other operation is performed on the stream. The mode argument determines how stream will
be buffered. The system may (or may not) honor the request.

The idea behind setvbuf() is to allow portable applications to attempt to improve
efficiency; however, the library is not required to honor the request if that would introduce
additional overhead.

Reference:

C 4.9.5.6

Page 411

Conversion:

SVR1-3 use int for size.

BSD uses the setbuffer() function.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

Page 412

sigaction()—Examines and changes signal action.

Synopsis:

 #include <signal.h>
 int sigaction(int sig, const struct sigaction *act,
 struct sigaction *oact);

Arguments:

sig Signal number.

act Pointer to a structure specifying new signal action.

oact Pointer to a structure to be filled in with the old action.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EINVAL

Description:

The sigaction() function allows the calling process to examine and/or specify the action
to be associated with a specific signal.

The sigaction structure, defined by the header <signal.h>, includes the following
members:

Member Type Member Name Description

void(*)() sa_handler SIG_DFL for the default action

or:

SIG_IGN to ignore this signal

or:

pointer to the signal-catching function.

sigset_t sa_mask Additional signals to be blocked during the execution of
the signal-catching function.

Page 413

Member Type Member Name Description

Member Type Member Name Description

int sa_flags This member is used only for the SIGCHLD signal. If the
value SA_NOCLDSTOP is used, then SIGCHLD will not
be generated when children stop.

There may be other flags defined by a particular
implementation. A portable program should not use them.

The sigaction() function sets the structure pointed to by oact to the old action for signal
sig and then takes the action indicated by the structure pointed to by act. If the act argument
is NULL, sigaction() returns the current signal status in oact, but does not change it. If
the oact argument is NULL, nothing is returned. The call sigaction(sig,NULL,NULL)
can be used to see if sig is a valid signal number on this system.

There may be additional members in a given implementation's struct sigaction.
Portable programs are guaranteed that these members will not affect them. To use
implementation-defined members, system-specific flags must be set.

Reference:

P 3.3.4.1

Conversion:

This is similar to the BSD sigvec() function. The major difference is that the BSD
sv_mask is an int, while the POSIX sa_mask is a sigset_t. This allows for more than
32 signals.

Notes:

Page 414

sigaddset()—Adds a signal to a signal set.

Synopsis:

 #include <signal.h>
 int sigaddset(sigset_t *set, int signo);

Arguments:

set Pointer to the signal set.

signo Signal number to add.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EINVAL

Description:

Adds signo to the signal set pointed to by set.

Reference:

P 3.3.3.1

Conversion:

This function is a POSIX invention. It provides a portable way to support more than 32 signals.
Replace code like:

 mask |= 1<<SIGSEGV;

with:

 sigaddset(&mask, SIGSEGV);

Notes:

Page 415

sigdelset()—Removes a signal from a signal set.

Synopsis:

 #include <signal.h>
 int sigdelset(sigset_t *set, int signo);

Arguments:

set Pointer to the signal set.

signo Signal number to delete.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EINVAL

Description:

Removes signo from the signal set pointed to by set.

Reference:

P 3.3.3.1

Conversion:

This function is a POSIX invention. It provides a portable way to support more than 32 signals.
Replace code like:

 mask &= ~(1<<SIGSEGV);

with:

 sigdelset(&mask, SIGSEGV);

Notes:

Page 416

sigemptyset()—Creates an empty signal set.

Synopsis:

 #include <signal.h>
 int sigemptyset(sigset_t *set);

Arguments:

set Pointer to the signal set.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Description:

Sets the signal set pointed to by set to empty.

Reference:

P 3.3.3.1

Conversion:

This function is a POSIX invention. It provides a portable way to support more than 32 signals.
Replace code like:

 mask = 0;

with:

 sigemptyset(&mask);

Notes:

Page 417

sigfillset()—Creates a full set of signals.

Synopsis:

 #include <signal.h>
 int sigfillset(sigset_t *set);

Arguments:

set Pointer to the signal set.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Description:

Fills the signal set pointed to by set with all valid signals.

Reference:

P 3.3.3.1

Conversion:

This function is a POSIX invention. It provides a portable way to support more than 32 signals.
Replace code like:

 mask = -1;

with:

 sigfillset(&mask);

Notes:

Page 418

sigismember()—Tests a signal set for a selected member.

Synopsis:

 #include <signal.h>
 int sigismember(const sigset_t *set, int signo);

Arguments:

set Pointer to the signal set.

signo Signal number to test.

Returns:

1 if the selected signal is a member of the set.

0 if the selected signal is not a member of the set.

-1 on error.

Errors:

 EINVAL

Description:

Tests whether signo is a member of the signal set pointed to by set.

Reference:

P 3.3.3.1

Conversion:

This function is a POSIX invention. It provides a portable way to support more than 32 signals.
Replace code like:

 if(mask & (1<<SIGSEGV)) . . .

with:

 if(sigismember(&mask, SIGSEGV)) . . .

Notes:

Page 419

siglongjmp()—Goes to and restores signal mask.

Synopsis:

 #include <setjmp.h>
 void siglongjmp(sigjmp_buf env, int val);

Arguments:

env Environment saved by sigsetjmp().

val Value to return to the caller of sigsetjmp().

Returns:

val is returned to the caller of setjmp().

Description:

The siglongjump() function restores the environment saved in env by a previous call to
sigsetjmp().

The values of variables in automatic storage that are not qualified by volatile are
indeterminate.

Reference:

P 8.3.1.1

Conversion:

This function is a POSIX invention. BSD and System V differ on saving signals with
setjmp().

POSIX Function BSD Function SysV Function

N/A _setjmp() setjmp()

N/A _longjmp() _longjmp()

sigsetjmp() setjmp() N/A

siglongjmp() longjmp() N/A

Notes:

If val is set to 0, 1 is returned instead!

Page 420

signal()—Specifies signal handling.

Synopsis:

 #include <signal.h>
 void (*signal(int sig, void(*func)(int)))(int);

Arguments:

sig Signal number.

func Pointer to a function that is called with a single integer parameter (the signal number).

Returns:

The value of func from the previous call to signal().

Description:

The signal() function comes from the C Standard. It should be used for applications which
need to be portable to non-POSIX systems. POSIX applications should use sigaction().

The sig argument is a signal number. The func argument is a pointer to a signal-catching
function or one of the following macros:

SIG_DFL To set the signal to the default action.

SIG_IGN To ignore the signal.

For example:

 signal(SIGINT,SIG_IGN);

causes the interrupt key (usually Control-C) to be ignored, and:

 signal(SIGSEGV,oops);

causes the function oops(SIGSEGV) to be called on illegal memory references.

Reference:

C 4.7.1.1

Conversion:

Change signal() to sigaction().

Page 421

Notes:

This function is required by Standard C. It is not part of the POSIX standard. Programs written
for POSIX should use sigaction() instead of signal().

Page 422

sigpending()—Examines pending signals.

Synopsis:

 #include <signal.h>
 int sigpending(sigset_t *set);

Arguments:

set Pointer to a place to return the set of pending signals.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Description:

The sigpending() function stores the set of signals that are blocked from delivery and
pending for the calling process in the sigset_t pointed to by set. Individual signals may
be tested with sigismember().

Reference:

P 3.3.6.1

Conversion:

This function is a POSIX invention.

Notes:

Page 423

sigprocmask()—Examines and changes blocked signals.

Synopsis:

 #include <signal.h>
 int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

Arguments:

how Indicates the type of change.

set Pointer to new set.

oset Pointer to a place to return the old set.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EINVAL

Description:

The sigprocmask() function is used to examine and/or change the calling process's signal
mask. If set is not NULL, it points to a set of signals to be changed. The how argument
indicates the changes to make:

SIG_BLOCK Add the signals to the process mask.

SIG_UNBLOCK Remove the signals from the process mask.

SIG_SETMASK Set the process mask to set.

If oset is not NULL, the previous signal mask is stored into the sigset_t pointed to by
oset.

If the call to sigprocmask() unblocks any signals, at least one signal will be delivered
before sigprocmask() returns.

Reference:

P 3.3.5.1

Page 424

Conversion:

This is a more general version of the BSD sigblock() and sigsetmask() functions.
Convert those functions to sigprocmask().

Notes:

It is not possible to block SIGKILL or SIGSTOP. Attempting to block them does not cause an
error.

If any of the SIGFPE, SIGILL, or SIGSEGV signals are generated while they are blocked,
the results are not portable.

If a sigprocmask() is done in a signal-catching function, returning from that function may
undo the work of sigprocmask() by restoring the original pending signal mask.

Page 425

sigsetjmp()—Saves state for siglongjmp().

Synopsis:

 #include <setjmp.h>
 int sigsetjmp(sigjmp_buf env, int savemask);

Arguments:

env Buffer to save the current environment.

savemask If non-zero, the current signal mask is saved as part of the environment.

Returns:

Zero if returning directly; non-zero if returning via siglongjmp().

Description:

The sigsetjmp() macro saves the calling environment in the env argument for later use by
siglongjmp().

The sigsetjmp() macro must be used in one of the following places:

• The entire controlling expression of a switch, while, if, or for statement.

• One operand of a relational or equality operator with the other operand an integral
constant, with the resulting expression being the entire controlling expression of a selection
of iteration statement.

• The operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement.

• The entire expression of a statement.

Examples of valid use:

 if (sigsetjmp(env)) { ... }
 while (sigsetjmp(env) != 0) { ... }
 switch (sigsetjmp(env)) { ... }
 sigsetjmp(env);
 (void)sigsetjmp(env);
 if (!sigsetjmp(env)) { ... }

Examples of invalid use:

 x = sigsetjmp(env) + 3;
 if (retry_flag && sigsetjmp(env)) { ... }
 printf("sigsetjmp returned =%d\n",sigsetjmp(env));
 sigsetjmp(envl) + sigsetjmp(env2);

Page 426

Reference:

P 8.3.1.1

Conversion:

This function is a POSIX invention. BSD and System V differ on saving signals with
setjmp().

POSIX Function BSD Function SysV Function

N/A _setjmp() setjmp()

N/A _longjmp() longjmp()

sigsetjmp() setjmp() N/A

siglongjmp() longjmp() N/A

POSIX does not specify if setjmp() does or does not save signal masks. If you want to save
signal masks, use sigsetjmp()/siglongjmp().

Notes:

Page 427

sigsuspend()—Waits for a signal.

Synopsis:

 #include <signal.h>
 int sigsuspend(const sigset_t *sigmask);

Arguments:

sigmask Pointer to signal mask.

Returns:

-1 upon being interrupted by a signal with errno set to EINTR.

There is no return value for successful completion.

Errors:

 EINTR

Description:

The sigsuspend() function replaces the process' signal mask with the set of signals

pointed to by the argument sigmask and then suspends the process until delivery of a signal
whose action is either to execute a signal-catching function or to terminate the process.

Reference:

P 3.3.7.1

Conversion:

This is the same as the BSD sigpause() function, except that sigsuspend() uses a
sigset_t for sigmask and can support greater than 32 signals.

Notes:

Page 428

sin()—Computes the sine function.

Synopsis:

 #include <math.h>
 double sin(double x);

Arguments:

 x

Returns:

The sine of x.

Description:

Computes the sine of x. The result will be between -1.00 and +1.00.

Reference:

C 4.5.2.6

Notes:

Page 429

sinh()—Computes the hyperbolic sine of x.

Synopsis:

 #include <math.h>
 double sinh(double x);

Arguments:

 x

Returns:

Hyperbolic sine of x.

Description:

Computes the hyperbolic sine of x. This function occurs in numerical solutions to partial
differential equations.

Reference:

C 4.5.3.2

Page 430

sleep()—Delays process execution.

Synopsis:

 #include <unistd.h>
 unsigned int sleep(unsigned int seconds);

Arguments:

seconds Number of seconds to sleep.

Returns:

Zero is returned if the requested time has elapsed.

If sleep() is interrupted by a signal, the number of unslept seconds is returned.

Description:

The sleep() function causes the current process to be suspended until seconds have
elapsed or a signal is delivered.

Reference:

P 3.4.3.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

sleep() may sleep for longer than the amount of time requested.

The maximum portable value for seconds is 65,535 (a little over 18 hours).

The sleep() library function may (or may not) use SIGALRM to do the work. Thus, mixing
sleep() and alarm() may cause problems. Also, blocking SIGALRM may cause your
program to oversleep.

Page 431

sprintf()—Formats a string.

Synopsis:

 #include <stdio.h>
 int sprintf(char *s, const char *format, ...);

Arguments:

s Pointer to place to store result.

format Pointer to format string.

... Variables to format.

Returns:

Length of resulting string.

Description:

The sprintf() function formats a string in the same way the printf() and fprintf()
do except that sprintf() stores the formatted string in the buffer pointed to by s instead of
writing it to a file.

The format is a character string that contains zero or more directives. Each directive fetches
zero or more arguments to sprintf. Each directive starts with the % character. After the %,
the following appear in sequence:

flags Zero or more of the following flags (in any order):

- Will cause this conversion to be left-justified. If the - flag is

not used, the result will be right-justified.

+ The result of a signed conversion will always begin with a

sign. If the + flag is not used, the result will begin with a sign

only when negative values are converted.

space This is the same as + except a space is printed instead of a plus

sign. If both the space and the + flags are used, the + wins.

sign. If both the space and the + flags are used, the + wins.

The result is converted to an alternate form. The details are

given below for each conversion.

width An optional width field. The exact meaning depends on the conversion being
performed.

prec An optional precision. The precision indicates how many digits will be printed
to the right of the decimal point. If the precision is present, it is preceded by a
decimal point(.). If the decimal point is given with no

Page 432

precision, the precision is assumed to be zero. A precision argument may

be used only with the e,E,f,g, and G conversions.

type An optional h,L, or L. The h causes the argument to be converted to

short prior to printing. The 1 specifies that the argument is a long int.

The L specifies that the argument is a long double.

format A character that specifies the conversion to be performed.

The conversions are given by the following table:

Description Meaning of width Meaning of # flag

i or d An int argument is
converted to a signed
decimal string,

Specifies the minimum
number of characters to
appear. If the value is
smaller, padding is used.

The default is 1.

The result of printing zero
with a width of zero is no
characters.

UNDEFINED.

o An unsigned int
argument is converted to
unsigned octal.

Same as i. Increase the precision to
force the first digit to be a
zero.

u An unsigned int
argument is converted to
unsigned decimal.

Same as i. UNDEFINED.

x An unsigned int
argument is converted to
unsigned hexadecimal. The
letters abcdef are used.

Same as i. Prefix non-zero results
with 0x.

X Same as x except the
letters ABCDEF are used.

Same as i. Prefix non-zero results
with 0X.

Page 433

Description Meaning of width Meaning of # flag

f A double argument is
converted to decimal
notation in the
[-]ddd.ddd format.

Minimum number of
characters to appear. May
be followed by a period
and the number of digits to
print after the decimal
point.

If a decimal point is
printed, at least one digit
will appear to the left of the
decimal.

Print a decimal point even
if no digits follow.

e A double argument is
converted in the style
[-]d.ddde dd

The exponent will always
contain at least two digits.
If the value is zero, the
exponent is zero.

Same as f. Same as f.

E Same as e except E is used
instead of e.

Same as f. Same as f.

g Same as f or e depending
on the value to be
converted. The e style is
used only if the exponent is
less than -4 or greater than
the precision.

Same as f. Same as f.

G Same as g except an E is
printed instead of e.

Same as f. Same as f.

c An int argument is
converted to an
unsigned char and the
resulting character is
written.

UNDEFINED. UNDEFINED.

Page 434

Description Meaning of width Meaning of # flag

s An argument is assumed to
be char *. Characters up
to (but not including) a
terminating null are
written.

Specifies the maximum
number of characters to be
written.

UNDEFINED.

p An argument must be a
pointer to void. The
pointer is converted to a
sequence of printable
characters in an
implementation-defined
manner. This is not very
useful for a portable
program.

UNDEFINED. UNDEFINED.

n An argument should be a
pointer to an integer which
is written with the
number of characters
written to the output stream
so far. Nothing is written
to the output stream by this
directive.

UNDEFINED. UNDEFINED.

Reference:

C 4.9.6.5

Conversion:

Change \07 in format to \a.

Notes:

See ''Pitfalls'' on Page 47.

Page 435

sqrt()—Computes the square root function.

Synopsis:

 #include <math.h>
 double sqrt(double x);

Arguments:

 x

Returns:

Errors:

 EDOM

Description:

The sqrt() function computes the square root of x.

Reference:

C 4.5.5.2

Notes:

Page 436

srand()—Sets a seed for the rand() function.

Synopsis:

 #include <stdlib.h>
 void srand(unsigned int seed);

Arguments:

seed Integer which determines the sequence of random numbers returned by the rand()
function.

Returns:

No value is returned.

Description:

The srand() function is used to seed the rand() function. If srand() is called with the
same value, the sequence of pseudo-random numbers is repeated.

A popular way to start a random sequence is with srand((unsigned int)timer(NULL));

Reference:

C 4.10.2.2

Conversion:

Add to the list of headers:

 #include <stdlib.h>

Notes:

The srand() function is not portable in the sense that different machines will generate
different random sequences for the same seed. For typical applications (games), it is not a
problem.

Page 437

sscanf()—Parses a string.

Synopsis:

 #include <stdio.h>
 int sscanf(const char *s, const char *format, ...);

Arguments:

s Pointer to string to parse.

format Pointer to control string.

. . . Variables to store into.

Returns:

The number of items assigned. If an error occurs prior to any items being assigned, EOF is
returned.

Description:

The sscanf() function is similar to scanf() and fscanf() except that input comes from
the buffer pointed to by s instead of a file.

The format string contains ordinary text and conversion specifiers. Each directive starts with

the % character. After the %, the following appear in sequence:

star An optional assignment-suppressing character *.

width An optional decimal integer that specifies the maximum field width.

type An optional h,L, or L indicating the size of the receiving object. The exact meaning
depends on the conversion. See the following table.

format A character that specifies the type of conversion to perform.

Page 438

The conversions are given by the following table:

Description Meaning of size flags

d Matches an optionally signed decimal integer, The subject
is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character that
is of the expected form.

The expected form is an optional plus or minus sign
followed by a sequence of the digits 0 through 7.

none → int
h → short
l → long

i Same as d except the expected form is the same as an
integer constant in Standard C. It may be a decimal
constant, an octal constant, or a hexadecimal constant. Each
may be preceded with an optional plus or minus sign.

A decimal constant begins with a non-zero digit followed
by zero or more digits in the range 0 to 9.

An octal constant begins with a leading zero followed by
zero or more of the digits 0 through 9.

A hexadecimal constant begins with 0x or 0X followed
by one or more of the digits 0 to 9 and the letters A to F or
a to f.

Same as d.

o Same as d except only the digits 0 to 7 are allowed. none → unsigned int
h → unsigned short
1 → unsigned long

u Same as d except the argument is a pointer to an unsigned
value. Note: a leading minus sign is legal.

Same as o.

x Same as d except the argument is a pointer to an unsigned
value and the letters A to F are valid. Note: a leading minus
is legal.

Same as o.

is legal.

e
f
g

Matched an optionally signed floating-point number. The
number may be in any format which is acceptable as a
floating constant, but no floating suffix is allowed.

none → float
1 → double
L → long double

Page 439

Description Meaning of size flags

s Matches a sequence of non-white-space characters.

Note: Use %nc to match exactly n characters.

UNDEFINED.

[Matches a sequence of characters from a set of expected
characters. The conversion specifier includes all
subsequent characters in the format string, up to and
including the matching right bracket (]). The characters
between the brackets comprise the set of expected
characters (the scanset). If the character following the left
bracket is a circumflex (^) the scanset contains all
characters that do not appear between the brackets. If the
conversion specifier begins with [] or [^], the right
bracket is included in the scanset and the next right bracket
ends the specification.

Some systems allow specifications of the form [a-z],
meaning all characters between a and z. This depends on
the codeset used and is not portable.

UNDEFINED.

c Matches a sequence of characters. The field width
determines how many characters are matched. If there is no
field width, one character is matched.

NOTE: The format %nc matches n characters. The format
%ns matches up to n non-white-space characters.

UNDEFINED.

p Matches a pointer. The only portable use is to read back a
pointer written by the %p directive to fprintf() during
the execution of this program.

UNDEFINED.

n Does not match anything. The corresponding argument is
written with the number of characters read from the input
stream so far by this call to fscanf().

UNDEFINED.

% Matches a single %. UNDEFINED.

Page 440

Reference:

C 4.9.6.6

Notes:

See "Pitfalls" on Page 47.

Page 441

stat()—Gets information about a file.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 int stat(const char *path, struct stat *buf);

Arguments:

path Path name of file to research.

buf Pointer to an object of type struct stat where the file information will be written.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EACCES, EBADF, ENAMETOOLONG, ENOENT, ENOTDIR

Description:

The path argument points to a pathname for a file. Read, write, or execute permission for the
file is not required, but all directories listed in path must be searchable. The stat()
function obtains information about the named file and writes it to the area pointed to by buf.

Reference:

P 5.6.2.1

Conversion:

System V has an st_rdev member in the stat structure. POSIX does not support this
member.

BSD and SVR4 have st_rdev, st_blksize, and stblocks members. POSIX does not
support these.

Many older programs use short or unsigned short for many stat structure members.
These must be changed to the POSIX types (dev_t, ino_t, and so on). See stat in
Appendix B on Page 551.

Page 442

strcat()—Concatenates two strings.

Synopsis:

 #include <string.h>
 char *strcat(char *sl, const char *s2);

Arguments:

s1 Pointer to destination.

s2 Pointer to source.

Returns:

 s1

Description:

The strcat() function appends a copy of the source (including the terminating null
character) to the destination. The first character of s2 overwrites the null at the end of s1. The
source and destination may not overlap.

Reference:

C 4.11.3.1

Notes:

Page 443

strchr()—Scans a string for a character.

Synopsis:

 #include <string.h>
 char *strchr(const char *s, int c);

Arguments:

s Pointer to the source string.

c Character to look for.

Returns:

A pointer to the matched character or NULL,

Description:

The strchr() function returns a pointer to the first occurrence of c in s. If c is zero, a
pointer to the terminating null character is returned.

Reference:

C 4.11.5.2

Notes:

Page 444

strcmp()—Compares two strings.

Synopsis:

 #include <string.h>
 int strcmp(const char *sl, const char *s2);

Arguments:

s1 Pointer to string 1.

s2 Pointer to string 2.

Returns:

An int that is greater than, equal to, or less than zero according to the relative order of s1
and s2; that is, if s1>s2, strcmp() returns a positive value.

Description:

Compares s1 with s2.

Reference:

C 4.11.4.2

Notes:

Page 445

strcoll()—Compares two strings using the current locale.

Synopsis:

 #include <string.h>
 int strcoll(const char *sl, const char *s2);

Arguments:

s1 Pointer to string 1.

s2 Pointer to string 2.

Returns:

An int that is greater than, equal to, or less than zero according to the relative order of s1and
s2; that is, if s1>s2, strcoll() returns a positive value.

Description:

Compares s1to s2. In the "C" or "POSIX" locale, strcoll() is equivalent to strcmp().
The LC_COLLATE environment variable determines the locale for strcoll().

Reference:

C 4.11.4.3

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

See Chapter 10, Porting to Far-off Lands, for a discussion of locales.

Page 446

strcpy()—Copies a string.

Synopsis:

 #include <string.h>
 char *strcpy(char *sl, const char *s2);

Arguments:

s1 Pointer to destination.

s2 Pointer to source.

Returns:

 s1

Description:

The string pointed to by s2 (including the terminating null character) is copied into the array
pointed to by s1. There is no checking to see if s2 is large enough. The two strings may not
overlap.

Reference:

C 4.11.2.3

Notes:

Page 447

strcspn()—Searches a string for characters which are not in the second
string.

Synopsis:

 #include <stdlib.h>
 size_t strcspn(const char *sl, const char *s2);

Arguments:

s1 Pointer to the subject string.

s2 Pointer to the set of break characters.

Returns:

The number of initial characters in s1 that are not in the string pointed to by s2.

Description:

The strcspn() function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not in the string pointed to by s2.

Reference:

C4.11.5.3

Conversion:

Add to the list of headers:

 #include <stdlib.h>

This function is not supported in BSD.

Notes:

Page 448

strerror()—Converts an error number to a string.

Synopsis:

 #include <string.h>
 char *strerror(int errnum);

Arguments:

errnum Error number.

Returns:

A pointer to the string.

Description:

The strerror() function maps the error code in errnum into an error message string.

Reference:

C 4.11.6.2

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4,

Notes:

The string returned by strerror()may be overwritten by a subsequent call.

The exact error message returned differs from system to system.

This function is required by Standard C and is not part of the POSIX standard.

Page 449

strftime()—Formats date/time.

Synopsis:

 #include <time.h>
 size_t *strftime(char *s, size_t maxsize, const char *format,
 const struct tm *timeptr);

Arguments:

s Pointer to the output character string.

maxsize Maximum number of bytes to be stored into s.

format Pointer to format string.

timeptr Pointer to a struct tm.

Returns:

The number of characters stored in s or zero if the result is larger than maxsize.

Description:

The strftime() function converts a struct tm to a string under the guidance of a format
string. The argument s points to an array of maxsize bytes. The format argument is a
pointer to a format control string and timeptr is a pointer to a structure returned by
localtime() or gmtime().

Characters are copied from the format string to the array pointed to by s. A conversion
specifier consists of a % followed by a character that determines the substitution. The list of
conversion specifiers is:strftime() conversion specifiers, as shown in the following table.

Specifier Replaced by the locales

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Date and time formatted for the current locale.

%d Day of the month as a decimal number (01-31).

%H Hour as a decimal number (00-23).

%I Hour as a decimal number (01-12).

Page 450

Specifier Replaced by the locales

%j Day of the year as a decimal number (001-366).

%m Month as a decimal number (01-12).

Month as a decimal number (01-12).

%M Minute as a decimal number (00-59).

%p Equivalent of AM/PM for use with a 12-hour clock.

%S Second as a decimal number (00-61).

%U Week of the year as a decimal number (00-53) using the first Sunday as day 1 of week
1.

%w Weekday as a decimal number (0[Sunday]-6).

%W Week of the year as a decimal number (00-53) using the first Monday as day 1 of week
1.

%x Date.

%X Time.

%y Year without a century (00-99).

%Y Year with century (e.g. 1990).

%z Time zone.

%% %.

Here are some examples of format strings and possible output in the ''POSIX" locale:

The format: May produce:

%A %B %d, %Y Friday April 13, 1990

%a %d-%b-%y Fri 13-Apr-90

%m/%d/%y 04/13/90

%Y%m%d 19900413

%H:%M 15:25

%H:%M:%S 15:25:30

%c Fri Apr 13 15:25:30 1990

%X on %x 3:25 PM on 4/13/90

The formats %c,%X, and %x produce strings for the current locale. This is an easy way to
produce a program that can be moved from country to country.

Reference:

C 4.11.6.2

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Page 451

strlen()—Computes the length of a string.

Synopsis:

 #include <string.h>
 size_t strlen(const char *s);

Arguments:

s Pointer to the string.

Returns:

The length of s.

Description:

Computes the length of the string pointed to by s, not counting the terminating null character.

Reference:

C 4.11.6.3

Notes:

Page 452

strncat()—Concatenates two counted strings.

Synopsis:

 #include <string.h>
 char *strncat(char *sl, const char *s2, size_t n);

Arguments:

s1 Pointer to a string.

s2 Pointer to a string to be appended to s1.

n Number of characters.

Returns:

 s1

Description:

Append up to n characters from s2 to the end of s1. The null character at the end of s2 and
any characters that follow it are not appended. The first character from s2 overwrites the null
at the end of s1. The strings may not overlap.

A terminating null is always appended to the result. Therefore, the maximum number of
characters that can end up in the array pointed to by s1 is strlen(s1)+n+1.

Reference:

C 4.11.3.2

Conversion:

SVR1-2 and BSD use int for n.

Notes:

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 453

strncmp()—Compares two counted strings.

Synopsis:

 #include <string.h>
 char *strncmp(char *sl, const char *s2, size_t n);

Arguments:

s1 Pointer to string 1.

s2 Pointer to string 2.

n Maximum number of bytes to compare.

Returns:

An int that is greater than, equal to, or less than zero according to the relative order of s1
and s2; that is, if s1>s2, strncmp() returns a positive value.

Description:

Compares s1 to s2. The comparison stops after n characters are compared or a null is
encountered.

Reference:

C 4.11.3.2

Conversion:

SVR1-2 and BSD use int for n.

Notes:

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 454

strncpy()—Copies a counted string.

Synopsis:

 #include <string.h>
 char *strncpy(char *sl, const char *s2, size_t n);

Arguments:

s1 Pointer to destination.

s2 Pointer to source.

n Number of bytes to move.

Returns:

 s1

Description:

Copy up to n characters from s2 to s1. The copy operation stops when a null character is
copied. The strings may not overlap.

If there is no null in the first n characters of s2, the result will not be null terminated.

Reference:

C 4.11.2.4

Conversion:

SVR1-2 and BSD use int for n.

Notes:

If s2 is shorter than n bytes, null bytes are appended to s1 until n bytes have been stored.

If a constant is used for n, typecast it to size_t, as in (size_t)13.

Page 455

strpbrk()—Searches a string for any of a set of characters.

Synopsis:

 #include <string.h>
 char *strpbrk(const char *sl, const char *s2);

Arguments:

s1 Pointer to the subject string.

s2 Pointer to the list of delimiters.

Returns:

Pointer to a character in s1 which matches one of the characters in s2 or NULL if there is no
match.

Description:

Locate the first occurrence in s1 of any of the characters in s2.

Reference:

C 4.11.5.4

Conversion:

This function is not supported in BSD.

Notes:

Page 456

strrchr()—Locates the last occurrence of a character in a string.

Synopsis:

 #include <string.h>
 char *strrchr(const char *s, int c);

Arguments:

s Pointer to the string to scan.

c Character to look for.

Returns:

Pointer to the last occurrence of c in s or NULL if there is no match.

Description:

Locate the last occurrence of c in s.

Reference:

C 4.11.5.5

Conversion:

This function is not supported in BSD.

Notes:

Page 457

strspn()—Searches a string for any of a set of characters.

Synopsis:

 #include <string.h>
 size_t strspn(const char *sl, const char *s2);

Arguments:

s1 Pointer to the subject string.

s2 Pointer to the characters to search for.

Returns:

The number of characters in the initial segment of s1 which consist only of characters from
s2.

Description:

The strspn() function computes the length of the maximum initial segment of s1 which
consists entirely of characters from s2.

Reference:

C 4.11.5.6

Conversion:

This function is not supported in BSD.

Notes:

Page 458

strstr()—Locates a substring.

Synopsis:

 #include <string.h>
 char *strstr(const char *sl, const char *s2);

Arguments:

s1 Pointer to the subject string.

s2 Pointer to the substring to locate.

Returns:

A pointer to the located string or NULL.

Description:

The strstr() function locates the first occurrence in s1 of the string s2. The terminating
null characters are not compared.

Reference:

C 4.11.5.7

Conversion:

This function is not supported in BSD.

Notes:

Page 459

strtod()—Converts a string to double.

Synopsis:

 #include <stdlib.h>
 double strtod(const char *nptr, char **endptr);

Arguments:

nptr Points to the start of the string.

endptr If not NULL, points to a place where a pointer to the final string is stored.

Returns:

The converted value.

Description:

The strtod() function converts the string pointed to by nptr to double, using the
following algorithm:

1. Remove leading white space by testing characters with the isspace() function.

2. Remove an optional + or - character.

3. Remove a nonempty sequence of digits containing an optional decimal point character.

4. Remove an optional exponent consisting of an e or E followed by an optional sign
followed by a nonempty sequence of digits.

5. If endptr is not NULL, store a pointer to the first unrecognized character (which may be
the final null character) in the pointer pointed to by endptr.

6. Convert the characters scanned in steps 2 to 4 to double and return the result.

If the locale is not ''C" or "POSIX", additional formats may be acceptable for floating point
numbers.

Reference:

C 4.10.1.4

Page 460

Conversion:

Add to the list of headers:

 #include <stdlib.h>

This function is not supported in BSD.

Notes:

See atof() for a less general case.

This function is required by Standard C and is not part of the POSIX standard.

Page 461

strtok()—Breaks a string into tokens.

Synopsis:

 #include <string.h>
 char *strtok(char *sl, const char *s2);

Arguments:

s1 Pointer to the string to search. If s1 is NULL, strtok() uses a saved pointer from the
previous call.

s2 Delimiter list.

Returns:

A pointer to the first character of the token or NULL if there are no more tokens.

Description:

Break the string s1 into tokens delimited by s2. The first call should have s1 as the first
argument. Subsequent calls should have NULL as the first argument. The separator string, s2,
may be different from call to call.

The first call scans s1 for a sequence of characters not contained in s2. If there are no such
characters, NULL is returned. If something is found, it is the first token.

The strtok() function then scans the remaining characters for a character that is in s2. If
there is no such character, there is only one token in the string. If a character is found, it is
overwritten with a null character to terminate the current token. A pointer to the following
character is saved for the next call to strtok().

Reference:

C 4.11.5.8

Conversion:

This function is not supported in BSD.

Notes:

Page 462

strtol()—Converts a string to long int.

Synopsis:

 #include <stdlib.h>
 long int strtol(const char *nptr, char **endptr, int base);

Arguments:

nptr Points to the start of the string.

Points to the start of the string.

endptr If not NULL, points to a place where a pointer to the final string is stored.

base Radix of input; if base is zero, the rules for a C language constant are used.

Returns:

The converted value.

Description:

The strtol() function converts the string pointed to by nptr to long using the following
algorithm:

1. Remove leading white space by testing characters with the isspace() function.

2. Remove an optional + or - character.

3. If base is zero, remove a constant using the rules of the C programming language (inital
0x or 0X for hex, initial 0 for octal, etc.).

4. If base is between 2 and 36, remove a series of characters in the specified radix. The
characters a (or A) to z (or Z) are used for 10 to 35.

5. If endptr is not NULL, store a pointer to the first unrecognized character (which may be
the final null character) in the pointer pointed to by endptr.

6. Convert the characters scanned in steps 2 to 4 to long and return the result.

If the locale is not ''C" or "POSIX", additional formats may be acceptable.

Reference:

C 4.10.1.5

Page 463

Conversion:

Add to the list of headers:

 #include <stdlib.h>

This function is not supported in BSD.

Notes:

See atoi().

This function is required by Standard C. It is not part of the POSIX standard.

Page 464

strtoul()—Converts a string to unsigned long int.

Synopsis:

 #include <stdlib.h>
 unsigned long int strtoul(const char *nptr, char **endptr, int base);

Arguments:

nptr Points to the start of the string.

endptr If not NULL, points to a place where a pointer to the final string is stored.

base Radix of input; if base is zero, the rules for a C language constant are used.

Returns:

The converted value.

Description:

The strtoul() function converts the string pointed to by nptr to long using the following
algorithm:

1. Remove leading white space by testing characters with the isspace() function.

2. Remove an optional + or - character. That's right, a minus sign is legal!

3. If base is zero, remove a constant using the rules of the C programming language (inital
0x or 0X for hex, initial 0 for octal, etc.).

4. If base is between 2 and 36, scan of a series of characters in the specified radix. The
characters a(or A) to z(or Z) are used for 10 to 35.

5. If endptr is not NULL, store a pointer to the first unrecognized character (which may be
the final null character) in the pointer pointed to by endptr.

6. Convert the characters scanned in steps 2 to 4 to long and return the result.

If the locale is not "C" or "POSIX ", additional formats may be acceptable for floating point
numbers.

Reference:

C 4.10.1.6

Page 465

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

This function is required by Standard C. It is not part of the POSIX standard.

Page 466

strxfrm()—Transforms strings using rules for locale.

Synopsis:

 #include <string.h>
 size_t strxfrm(char *sl, const char *s2, size_t n);

Arguments:

s1 Pointer to output string.

s2 Pointer to input string.

n Maximum number of bytes to store into s1.

Returns:

The number of bytes required to store the output string (not including the terminating null). If
this value is greater than n, sl is indeterminate.

Description:

The use of strcoll() can be quite slow if a great deal of transformation is required and
many comparisons are going to be made. The strxfrm() function performs the
transformation required by strcoll() and leaves the result in a form where strcmp() can
be used.

In the "POSIX" or "C" locale, strxfrm() merely copies the string and is almost equivalent
to strncpy(). The difference is that strxfrm() returns the length of the transformed
string which may be different from the length of the source.

In applications where many comparisons must be made, a sort, say, using strxfrm() and
strcmp() can provide a performance enhancement over using strcoll(). There is no
untransform function to recover the source string. It must be kept around if you are going to
need it again. Also, the transformation is implementation-dependent so that even two systems
operating on German may produce different transformations.

Reference:

C 4.11.4.5

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Page 467

Notes:

The expression strxfrm(NULL,s,(size_t)0)+1 returns the number of bytes required
to store the transform of s.

This function is required by Standard C and is not part of the POSIX standard.

Page 468

sysconf()—Gets system configuration information.

Synopsis:

 #include <unistd.h>
 long sysconf(int name);

Arguments:

name Symbolic constant.

Returns:

A value or -1 on error.

Errors:

 EINVAL

Description:

The sysconf() function provides a method for the application to determine the current value
for a system limit or option.

The possible values for name are shown in the following table.

Compile-Time Macro sysconf() name Description

ARG_MAX _SC_ARG_MAX The length of the arguments for the exec()
function.

_POSIX_CHILD_MAX _SC_CHILD_MAX The number of simultaneous processes per
real user ID.

CLK_TCK _SC_CLK_TCK The number of clock ticks per second.

_POSIX_NGROUPS_MAX_SC_NGROUPS_MAX
The number of simultaneous supplementary
group IDs.

group IDs.

STREAM_MAX* _SC_TREAM_MAX* The maximum number of streams that one
process can have open at one time. This is
the same as FOPEN_MAX from the C
standard.

TZNAME_MAX* _SC_TZNAME_MAX* The maximum number of bytes in a timezone
name.

* This symbol is in IEEE std 1003.1-1990 but not in IEEE std 1003.1-1988

Page 469

Compile-Time Macro sysconf() name Description

_POSIX_OPEN_MAX _SC_OPEN-MAX The maximum number of files that one
process can have open at one time.

_POSIX_JOB_CONTROL _SC_JOB_CONTROL Job control functions are supported.

_POSIX_SAVED_IDS _SC_SAVED_IDS Each process has a saved set-user-ID and a
saved set-group-ID.

_POSIX_VERSION _SC_VERSION Indicates the 4-digit year and 2-digit month
that the standard was approved.

The integer 198808L indicates the 1988
version and the integer 199009L indicates
the 1990 version.

Reference:

P 4.8.1.1

Conversion:

This function is new to POSIX. It allows a portable application to determine the quantity of a
resource, or the presence of an option, at execution time.

Older applications either use a fixed amount of resource or attempt to deduce the amount of
resource available using the error returns from various functions.

Notes:

sysconf() returns -1 without changing errno if name is not defined on the system.

See Chapter 7, Obtaining Information at Run-time, for a discussion of sysconf() and
pathconf().

Page 470

system()—Executes a command.

Synopsis:

 #include <stdlib.h>
 int system(const char *string);

Arguments:

string Pointer to the command to execute.

Returns:

An implementation-defined value.

Description:

The string argument is passed to a shell to be executed.

Reference:

C 4.10.4.5

Conversion:

Add to the list of headers:

 #include <stdlib.h>

Notes:

Programs that use the system() function are not, in general, portable.

This function is required by Standard C. It is not part of the POSIX.1 standard. The POSIX.2
standard provides several hundred pages of documentation on the arguments to system().

Page 471

tan()—Computes the tangent of x.

Synopsis:

 #include <math.h>
 double tan(double x);

Arguments:

 x

Returns:

Tangent of x.

Description:

The tan() function returns the tangent of the argument.

Reference:

C 4.5.2.7

Notes:

The tangent function produces machine-specific results for values close to .

Page 472

tanh()—Computes the hyperbolic tangent of x.

Synopsis:

 #include <math.h>
 double tanh(double x);

Arguments:

 x

Returns:

Hyperbolic tangent of x.

Description:

The tanh() function computes the hyperbolic tangent of x. This may be the least useful
function in the entire library.

Reference:

C 4.5.3.3

Notes:

Page 473

tcdrain()—Waits for all output to be transmitted to the terminal.

Synopsis:

 #include <termios.h>
 #include <unistd.h>
 int tcdrain(int fildes);

Arguments:

fildes File descriptor that must refer to a terminal.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF, EINTR, ENOTTY

Description:

The tcdrain() function waits until all output written to fildes has been transmitted.

Reference:

P 7.2.2.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Notes:

Page 474

tcflow()—Suspends/restarts terminal output.

Synopsis:

 #include <termios.h>
 #include <unistd.h>
 int tcflow(int fildes, int action);

Arguments:

fildes File descriptor which must refer to a terminal.

action One of the following symbolic constants:

TCOOFF To suspend output.

TCOON To restart output.

TCIOFF To transmit a stop character intended to cause the terminal to stop
sending data to the system.

TCION To transmit a start character intended to cause the terminal to resume
sending data.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF, EINTR, ENOTTY

Description:

The tcflow() function suspends transmission or reception of data for fildes depending
on action.

Reference:

P 7.2.2.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Page 475

Notes:

See Chapter 8, Terminal I/O, for more information.

Page 476

tcflush()—Discards terminal data.

Synopsis:

 #include <termios.h>
 #include <unistd.h>
 int tcflush(int fildes, int queue_selector);

Arguments:

fildes File descriptor which must refer to a terminal.

queue_selector One of the following constants:

TCIFLUSH To discard input data.

TCOFLUSH To discard output data.

To discard output data.

TCIOFLUSH To discard all data.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF,EINVAL,ENOTTY

Description:

The tcflush() function discards any data written to fildes but not yet transmitted and/or
data received for fildes but not yet read according to queue_selector.

Reference:

P 7.2.2.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Notes:

See Chapter 8, Terminal I/O, for more information.

Page 477

tcgetattr()—Gets terminal attributes.

Synopsis:

 #include <termios.h>
 #include <unistd.h>
 int tcgetattr(int fildes, struct termios *tp);

Arguments:

fildes File descriptor that must refer to a terminal.

tp Pointer to a structure where the information will be returned.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF, ENOTTY

Description:

The tcgetattr() gets the parameters associated with the terminal referred to by fildes
and stores them into the termios() structure pointed to by termios_p.

Reference:

P 7.2.1.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Notes.

Chapter 8, Terminal I/O, covers terminal I/O and tcgetattr()/tcsetattr() in great
detail.

Page 478

tcgetpgrp()—Gets foreground process group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 pid_t tcgetpgrp(int fildes);

Arguments:

fildes File descriptor that must refer to a terminal.

Returns:

Process ID of the foreground process group associated with the terminal or -1 on error.

Errors:

 EBADF, EINTR, ENOTTY

Description:

The tcgetpgrp() function returns the value of the process group ID of the foreground
process group associated with the terminal.

Added in IEEE Std 1003.1-1990: if there is no foreground process group, return a value
greater than 1 that does not match an existing process group.

If the macro _POSIX_JOB_CONTROL is defined in <unistd.h>, the tcgetpgrp()
works as described above. If _POSIX_JOB_CONTROL is not defined, tcgetpgrp() may
work as described above or may fail.

Reference:

P 7.2.3.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

The tcgetpgrp() function is identical to the BSD ioctl() function TIOCGPGRP; except
tcgetpgrp () requires that the terminal must be the controlling terminal for the calling process.

Page 479

Notes:

If a background process calls tcgetpgrp(), the function works; however, the information
may be changed by a foreground process.

Page 480

tcsendbreak()—Sends a break to a terminal.

Synopsis:

 #include <termios.h>
 #include <unistd.h>
 int tcsendbreak(int fildes, int duration);

Arguments:

fildes File descriptor that must refer to a terminal.

duration Length of the break.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF, ENOTTY

Description:

The tcsendbreak() function sends a stream of zero bits for a specific duration. If duration
is zero, the break is between 250 and 500 milliseconds long. The fildes argument must refer
to a terminal using asynchronous serial data transmission.

The POSIX standard does not specify the units for duration, so non-zero values are not
portable.

Reference:

P 7.2.2.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Notes:

The exact length of the break and the units of duration are implementation-defined. Zero is
the only portable value.

Page 481

tcsetattr()—Sets terminal attributes.

Synopsis:

 #include <termios.h>
 #include <unistd.h>
 int tcsetattr(int fildes, int options, const struct termios *tp);

Arguments:

fildes File descriptor which must refer to a terminal.

options One of the following:

TCSANOW To change the terminal attributes immediately.

TCSADRAIN To change them after all output has been transmitted.

TCSAFLUSH To change them after all output has been transmitted; all input that
has not been read will be discarded.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF, EINTR, EINVAL, ENOTTY

Description:

The tcsetattr() function loads the parameters for the terminal associated with fildes
from the struct termios pointed to by tp.

Reference:

P 7.2.1.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Page 482

Notes:

The tcsetattr() function returns success even if not all the requested attributes can be set.
A tcgetattr() can be used to determine the parameters that were actually changed.
Chapter 8, Terminal I/O, covers tcsetattr() in great detail.

Page 483

tcsetpgrp()—Sets foreground process group ID.

Synopsis:

 #include <sys/types.h>
 #include <unistd.h>
 int tcsetpgrp(int fildes, pid_t pgrpid);

Arguments:

fildes File descriptor which must refer to a terminal.

pgrpid New foreground process group ID associated with the terminal.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EBADF, EINVAL, ENOSYS, ENOTTY, EPERM

Description:

The tcsetpgrp() function sets the foreground process group ID for the controlling terminal
to pgrpid. The fildes argument must refer to the controlling terminal for the calling
process and the controlling terminal must be currently associated with the session of the calling
process. The value of pgrp id must match a process group ID of a process in the same session
as the calling process.

If the macro _POSIX_JOB_CONTROL is defined in <unistd.h>, the tcsetpgrp()
works as described above. If _POSIX_JOB_CONTROL is not defined, tcsetpgrp() may
work as described above or may fail.

Reference:

P 7.2.4.1

Conversion:

This is one of a group of functions designed to replace the System V and BSD ioctl()
function. The ioctl() function is very general and hard to specify in a portable way. POSIX
defines a function for each supported sub-function of ioctl(). In general, you can replace
existing ioctl() functions with one of the tc*() functions.

Page 484

time()—Determines the current calendar time.

Synopsis:

 #include <time.h>
 timet time(time_t *timer);

Arguments:

timer Pointer to a time_t. If this is not NULL, time() will store the return value.

Returns:

The current calendar time.

Description:

The time() function returns the number of seconds since 00:00 Coordinated Universal Time
(UTC) on January 1, 1970. If timer is not NULL, the time is stored into the time_t pointed
to by timer.

Reference:

C 4.12.2.4 & P 4.5.1.1

Conversion:

SVR1-2 and BSD return long and use long for timer.

Notes:

The ANSI C standard merely indicates that time_t is a numeric type capable of representing
times. POSIX adds the requirement that the time() function return the number of seconds
since 00:00 Coordinated Universal Time (UTC) on January 1, 1970.

Page 485

times()—Gets process times.

Synopsis:

 #include <sys/times.h>
 clock_t times(struct tms *buffer);

Arguments:

buffer Pointer to a structure to hold the returned information.

Returns:

Elapsed real time.

Description:

The times() function stores process times for the calling process into the struct tms
pointed to by buffer.

The struct tms structure contains at least the following members:

 Member Name Description

tms_utime User CPU time.

tms_stime System CPU time.

tms_cutime User time of terminated child processes for which a wait() or waitpid()
has been done.

has been done.

tms_cstime System time of terminated child processes for which a wait() or
waitpid() has been done.

All members have the type clock_t and can be converted to seconds by dividing by the
symbol CLK_TCK. User time is time charged for the execution of user processes. System time
is time charged for executing the system on behalf of the process. Which library functions
charge system time and the amount that they charge will vary from implementation to
implementation.

Reference:

P 4.5.2.1

Conversion:

SVR1-3 returns long.

Page 486

tmpfile()—Creates a temporary file.

Synopsis:

 #include <stdio.h>
 FILE *tmpfile(void);

Arguments:

None.

Returns:

An open temporary file. The file is open for update with the ''wb+" mode.

Description:

The tmpfile() function opens a temporary file that will be removed automatically when it
is closed or at program termination. The file is opened with "wb+" mode.

Reference:

C 4.9.4.3 & P 8.2.3.9

Conversion:

This function is not supported in BSD.

Notes:

If the program terminates abnormally, the file may not be removed.

Page 487

tmpnam()—Generates a string that is a valid non-existing file name.

Synopsis:

 #include <stdio.h>
 char *tmpnam(char *s);

Arguments:

s Pointer to an array of L_tmpnam characters or NULL.

Returns:

The argument s. If s was NULL, tmpnam() returns a pointer to a static buffer.

Description:

The tmpnam() function generates a string that is a valid filename and that is not the name of
an existing file. The tmpnam() function generates a different name each time it is called, up
to TMP_MAX times.

Reference:

C 4.9.4.4

Conversion:

The BSD mktemp() function must be replaced by tmpnam().

Notes:

POSIX does not specify the method used to generate the unique name.

Page 488

tolower()—Converts uppercase to lowercase.

Synopsis:

 #include <ctype.h>
 int tolower(int c);

Arguments:

c Character to be converted.

Returns:

If c can be converted to lowercase, the converted character is returned. If not, c is returned.

Description:

The uppercase argument is converted to lowercase and returned.

Reference:

C 4.3.2.1

Conversion:

This function is not documented in BSD 4.2. It was added in BSD 4.3.

Notes:

Page 489

toupper()—Converts lowercase to uppercase.

Synopsis:

 #include <ctype.h>
 int toupper(int c);

Arguments:

c Character to be converted.

Returns:

If c can be converted to uppercase, the converted character is returned. If not, c is returned.

Description:

The lowercase argument is converted to uppercase and returned.

Reference:

C 4.3.2.2

Conversion:

This function is not documented in BSD 4.2. It was added in BSD 4.3.

Notes:

In some non-English locales, there are lowercase letters with no matching uppercase letter; for
example, ß in German.

Page 490

ttyname()—Determines a terminal pathname.

Synopsis:

 #include <unistd.h>
 char *ttyname(int fildes);

Arguments:

fildes File descriptor.

Returns:

Pointer to a character string containing the pathname of the terminal associated with fildes
or NULL if fildes does not refer to a terminal.

Description:

The ttyname() function returns a pointer to a string containing a null-terminated pathname
of the terminal associated with fildes. The return value may point to static data that is
overwritten by each call.

Reference:

P 4.7.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

Page 491

tzset()—Sets the timezone from environment variables.

Synopsis:

 #include <time.h>
 void tzset(void);

Arguments:

None.

Returns:

No value is returned.

Description:

The tzset() function uses the value of the environment variables TZ to set the time
conversion information used by localtime(),ctime(),strftime(), and
mktime(). If TZ is absent from the environment, a default timezone is used. This is most
often Coordinated Universal Time (UTC).

The external variable tzname[0] is set to a pointer to the name of the standard timezone and
the external variable tzname[1] is set to a pointer to the name of the daylight savings
timezone.

Reference:

P 8.3.2.1

Conversion:

This function is not supported in BSD.

Notes:

Page 492

umask()—Sets a file creation mask.

Synopsis:

 #include <sys/types.h>
 #include <sys/stat.h>
 mode_t umask(mode_t cmask);

Arguments:

cmask Permission bits to turn off in created files.

Returns:

The previous mask.

Description:

The umask() function sets the process file creation mask to cmask. The file creation mask is
used during open(),creat(),mkdir(), and mkfifo() calls to turn off permission bits
in the mode argument. Bit positions that are set in cmask are cleared in the mode of the
created file.

The file creation mask is inherited across fork() and exec() calls. This makes it possible
to alter the default permission bits of created files.

Reference:

P 5.3.3.1

Conversion:

BSD and SVR1-3 return int and use int for cmask.

Notes:

The cmask argument should have only permission bits set. All other bits should be zero.

Page 493

uname()—Gets system name.

Synopsis:

 #include <sys/utsname.h>
 int uname(struct utsname *name);

Arguments:

name Pointer to a structure to hold the result.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Description:

The uname() function provides information about the system you are using. The information
is fairly minimal. The name argument is a pointer to a struct utsname to be filled in by
the uname() call.

The struct utsname is defined in the header file <sys/utsname.h> as a set of
null-terminated character arrays. The structure contains the following members:

Member Name Description

sysname Name of this operating system.

nodename Name of this node within a network. Note: There is no guarantee that this name can be
used for anything.

release Current release level of this implementation.

version Current version level of this release. While POSIX provides the release level and
version, it never defines them.

version, it never defines them.

machine Name of the hardware type the system is running on.

As with most POSIX structures, these members may be in any order and there may be other
members present.

Reference:

P 4.4.1.1

Page 494

Conversion:

This function is not supported in BSD.

Notes:

The strings returned by uname() are useful for messages; they are not useful for much else.

Page 495

ungetc()—Pushes a character back onto a stream.

Synopsis:

 #include <stdio.h>
 int ungetc(int c, FILE *stream);

Arguments:

c Character to push back.

stream Pointer to the file being read.

Returns:

c on success and EOF on failure.

Description:

Push the character c, converted to unsigned char, back onto stream. The pushed-back
characters will be returned in reverse order. The file associated with stream is unchanged.
Only one push-back is guaranteed. If ungetc() is called too many times it may fail.

If the value of c is EOF, the operation fails without doing anything to stream.

The end-of-file indicator is cleared. The value of the file position indicator after the
pushed-back characters are read is the same as before they were pushed back.

Reference:

C 4.9.7.11

Notes:

It is possible to put back a different character from the one that was read.

Page 496

unlink()—Removes a directory entry.

Synopsis:

 #include <unistd.h>
 int unlink(const char *path);

Arguments:

path Pointer to path name of file to delete.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EACCES, EBUSY, ENAMETOOLONG, ENOENT, ENOTDIR, EPERM, EROFS

Description:

The unlink() function removes the link named by path and decrements the link count of
the file referenced by the link. When the link count goes to zero and no process has the file
open, the space occupied by the file is freed and the file is no longer accessible.

Reference:

P 5.5.1.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

Notes:

See remove() for an alternate name for this function.

Page 497

utime()—Sets file access and modification times.

Synopsis:

 #include <sys/types.h>
 #include <utime.h>
 int utime(const char *path, const struct utimbuf *times);

Arguments:

path Pointer to name of file to update.

times Pointer to a structure with the new access and modification times; if NULL, the current
time is used.

Returns:

Zero on success and -1 on failure.

If an error occurs, a code is stored in errno to identify the error.

Errors:

 EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, EPERM, EROFS

Description:

The utime() function sets the access and modification times for the file named by path.
The tm argument is either NULL or a pointer to a utimbuf structure. If the tm argument is
NULL, the access and modification times are set to the current time.

If the tm argument is not NULL, it is assumed to be a pointer to a utimbuf structure. This
contains the following members:

actime Access time.

modtime Modification time.

Both members have type time_t.

Reference:

P 5.6.6.1

Page 498

Conversion:

SVR1-3 did not use <utime.h> and stated that the structure utimbuf must be defined as:

 struct utimbuf {
 time_t actime;
 time t modtime;
 };

BSD did not use a struct but an array of 2 time_t elements.

Notes:

This is one of the few functions where a structure is used as an argument and there is no
function to initialize the structure. It is a good idea to zero out the entire structure before using
it.

Page 499

va_arg()—Gets the next argument.

Synopsis:

 #include <stdarg.h>
 type va_arg(va_list ap, type);

Arguments:

ap Same variable initialized by va_start().

type Type of the return.

Returns:

The next argument.

Description:

The va_arg() macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap must be the same as the va_list ap initialized by
va_start(). Each call to va_arg() updates ap so that the next call will access the next
argument. The argument must have a type of type.

The va_arg() macro must not be called after the last argument is accessed.

Example:

 #include <stdarg.h>

 /*
 * Function to return the sum of a variable list of args
 */
 int vsum(int count, ...)
 {
 int sum = O; /* The sum */
 int i; /* Temp */

 va_list ap; /* Arg pointer */

 va_start(ap,count); /* Setup for va_arg() */
 for (i=O; i<count; i++)
 {
 sum += va_arg(ap, int);
 }
 va_end(ap);
 return(sum);
 }

Reference:

C 4.8.1.2

Page 500

Conversion:

BSD used the header <varargs.h> instead of <stdarg.h>.

Notes:

Use with va_start() and va_end().

This function is required by Standard C and is not part of the POSIX standard.

Page 501

va_end()—Ends variable argument list.

Synopsis:

 #include <stdarg.h>
 void va_end(va_list ap);

Arguments:

ap Same variable initialized by va_start().

Returns:

No value is returned.

Description:

The va_end() macro facilitates a normal return from a function with a variable argument
list. The va_end() macro must be used after a va_start() and before returning from the
function. Programs that call va_start() without calling va_end() are not maximally
portable.

Reference:

C 4.8.1.3

Conversion:

BSD used the header <varargs.h> instead of <stdarg. h>.

Notes:

In most implementations, va_end() does not do anything. However, if it is omitted the
program is non-conforming and not maximally portable.

See va_arg() for an example.

This function is required by Standard C and is not part of the POSIX standard.

Page 502

va_start()—Starts a variable argument list.

Synopsis:

 #include <stdarg.h>
 void va_start(va_list ap, parmN);

Arguments:

ap Pointer to be initialized.

parmN Rightmost parameter in the function definition (the one just before the ...).

Returns:

No value is returned. The pointer ap is set for use by va_arg().

Description:

The va_start() macro is invoked before using the va_arg() macro. The parameter
parmN is the argument just before the (...) in the function prototype. The parmN argument
may not be an array, may not have register storage class, may not be a function, or may not
be a type incompatible with default argument promotions.

Reference:

C 4.8.1.1

Conversion:

BSD used the header <varargs.h> instead of <stdarg.h>.

Notes:

See va_arg() for an example.

This function is required by Standard C and is not part of the POSIX standard.

Page 503

vfprintf()—Writes formatted text with a variable argument list.

Synopsis:

 #include <stdarg.h>
 #include <stdio.h>
 int vfprintf(FILE *stream, const char *format, va_list arg);

Arguments:

stream Pointer to file to write.

format Pointer to format string.

arg Variable argument list initialized by va_start().

Returns:

The number of characters written, or negative if an error occurred.

Description:

The vfprintf() function is equivalent to fprintf(), with the variable argument list
replaced by arg. The vastart() macro must be called for arg prior to calling
vfprintf(). The va_end() macro must be called prior to returning from the function.

Example:

 #include <stdarg.h>
 #include <stdio.h>

 /*
 * Write a message to stderr and to a log file
 */
 void errmsg(char *fmt, ...)
 {
 va_list ap;

 va_start(ap, fmt);
 vfprintf(stderr, fmt, ap);
 va_end(ap);

 va_start(ap, fmt);
 vfprintf(logfile, fmt, ap);
 va_end(ap);

 return;
 }

Reference:

C 4.9.6.7

Page 504

Conversion:

Change \07 in format to \a.

This function is not supported in BSD or SVR1.

Notes:

This function is required by Standard C and is not part of the POSIX standard.

Page 505

vprintf()—Write formatted text to standard output with a variable
argument list.

Synopsis:

 #include <stdio.h>
 int vprintf(const char *format, va_list arg);

Arguments:

format Pointer to format string.

arg Pointer to a variable argument list initialized by va_start().

Returns:

The number of characters written, or negative if an error occurred.

Description:

The vprintf() function is equivalent to printf(), with the variable argument list
replaced by arg. The vastart() macro must be called for arg prior to calling
vprintf(). The va_end() macro must be called prior to returning from the function.

Reference:

C 4.9.6.8

Conversion:

Change \07 in format to \a.

This function is not supported in BSD or SVR1.

Notes:

See vfprintf() for an example.

Page 506

vsprintf()—Write formatted text to a string with a variable argument
list.

Synopsis:

 #include <stdio.h>
 int vsprintf(char *s, const char *format, va_list arg);

Arguments:

s Pointer to array to store into.

format Pointer to format string.

arg Variable argument list initialized by va_start().

Returns:

The number of characters stored in s.

Description:

The vsprintf() function is equivalent to sprintf(), with the variable argument list
replaced by arg. The va_start() macro must be called for arg prior to calling
vsprintf(). The va_end() macro must be called prior to returning from the function.

Reference:

C 4.9.6.9

Conversion:

Change \07 in format to \a.

This function is not supported in BSD or SVR1.

Notes:

See vfprintf() for an example.

This function is required by Standard C. It is not part of the POSIX standard.

Page 507

wait()—Waits for process termination.

Synopsis:

 #include <sys/types.h>
 #include <sys/wait.h>
 pid_t wait(int *statloc);

Arguments:

stat_loc Pointer to an integer where the status will be stored.

Returns:

Process ID of the child whose status is being reported, or -1 on error.

Errors:

 ECHILD, EINTR

Description:

The wait() function suspends execution of the calling process until status information for one
of its terminated children is available, or until delivery of a signal whose action is either to
execute a signal-catching function or to terminate the process. If status information is available
prior to the call to wait(), it returns immediately.

The wait() function returns the process ID of the child. If the argument stat_loc is not
NULL, information is stored in the location pointed to by stat_loc. If the child returned a
value of zero from main() or passed a value of zero to exit(), the value stored in the
location pointed to by stat_loc will be zero. The status value can be interpreted using the
macros shown in the following table.

Macro Description

WIFEXITED(stat_value)

Evaluates to a non-zero value if status was returned for a child that terminated
normally.

WEXITSTATUS(stat_value)

Evaluates to the low-order eight bits of the status argument that the child passed to
exit(), or the value the child process returned from main(). This macro can be
used only if WIFEXITED returned a non-zero value.

WIFSIGNALED(stat_value)

Evaluates to a non-zero value if status was returned for a child that terminated due to
a signal that was not caught.

Page 508

Macro Description

WTERMSIG(stat_value)

Evaluates to the number of the signal that caused the termination of the process. This
macro can be used only if WIFSIGNALED returned a non-zero value.

WIFSTOPPED(stat_value)

Evaluates to a non-zero value if the status was returned for a child that is currently
stopped. The waitpid() function with the WUNTRACED option is the only way
this value can be returned.

WSTOPSIG(stat_value)

Evaluates to the number of the signal that caused the child process to stop. This mac
can be used only if WIFSTOPPED returned a non-zero value.

Reference:

P 3.2.1.1

Conversion:

SVR1-3 and BSD return int.

Notes:

Page 509

waitpid()—Waits for process termination.

Synopsis:

 #include <sys/types.h>
 #include <sys/wait.h>
 pid_t waitpid(pid_t pid, int *stat_loc, int options);

Arguments:

pid Child process whose status is requested; -1 for any process or zero for any member of
this process group.

stat_loc Pointer to an integer where the status will be stored.

options Inclusive OR of zero or more of:

Inclusive OR of zero or more of:

WNOHANG

WUNTRACED

Returns:

Process ID of the child for which status is being reported or -1 on error.

Zero is returned if the WNOHANG option is used and no status is available.

Errors:

 ECHILD, EINTR, EINVAL

Description:

The pid argument is either:

-1 To wait for any child process; this is the same as wait().

positive To wait for the specific child whose process ID is equal to pid.

zero To wait for any child process whose process group ID is equal to that of the
calling process.

less than -1 To wait for any child process whose process group ID is equal to the absolute
value of pid.

Process groups are normally used only by shells supporting job control and not ordinary
applications.

Page 510

The options argument is constructed from the bitwise OR of zero or more of the following
flags, defined in the header <sys/wait.h>:

WNOHANG Causes the waitpid() function not to suspend execution of the calling
process if status is not immediately available for any of the child processes
specified by pid. In this case, zero is returned.

WUNTRACED Reports to the calling process the status of any child processes specified by
pid that are stopped, and whose status has not yet been reported since they
stopped. It is normally used only by the shell program to support job control.

Reference:

P 3.2.1.1

Conversion:

his is similar to the BSD wait3() function.

Notes:

Page 511

wcstombs()—Converts a wide character string to a multibyte character
string.

Synopsis:

 #include <stdlib.h>
 size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

Arguments:

s Pointer to the resulting multibyte character string.

pwcs Pointer to the input wide character string.

n Maximum number of bytes to store in s.

Returns:

The number of bytes stored in s (including the terminating null character), or -1 if the input
string contains an invalid wide character.

Description:

The wcstombs() function converts a sequence of codes that corresponds to multibyte
characters from the array pointed to by pwcs into a sequence of multibyte characters that
begins in the initial shift state and stores these characters into the array pointed to by s. The
conversion stops after n bytes are stored or if a null character is stored. The array pointed to by
pwcs and the array pointed to by s may not overlap.

Reference:

C 4.10.8.2

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See Chapter 10, Porting to Far-off Lands, for a description of wide and multibyte characters.

This function is required by Standard C and is not part of the POSIX standard.

Page 512

wctomb()—Converts a wide character to a multibyte character.

Synopsis:

 #include <stdlib.h>
 int wctomb(char *s, wchart wchar);

Arguments:

s Pointer to the resulting string.

wchar Wide character to convert.

Returns:

The number of bytes in the resulting multibyte character, or -1 if wchar is not valid.

Description:

The wctomb() function determines the number of bytes needed to represent the multibyte
character corresponding to wchar (including any change in shift state). If s is not NULL,
wctomb() stores the multibyte character representation in the array pointed to by s. At most,
MB_CUR_MAX characters are stored. If wchar is zero, wctomb() is placed into the initial
shift state.

Reference:

C 4.10.7.3

Conversion:

This function is new in Standard C. It is not included in BSD or System V prior to SVR4.

Notes:

See Chapter 10, Porting to Far-off Lands, for a description of wide and multibyte characters.

This function is required by Standard C and is not part of the POSIX standard.

Page 513

write()—Writes to a file.

Synopsis:

 #include <unistd.h>
 int write(int fildes, const void *buf, unsigned int nbyte);

Arguments:

fildes File descriptor open for writing.

buf Pointer to the data to be written.

nbyte Number of bytes to write.

Returns:

The number of bytes written, or -1 to indicate an error.

Errors:

 EAGAIN, EBADF, EFBIG, EINTR, EIO, ENOSPC, EPIPE

Description:

The write() function writes nbyte bytes from the array pointed to by buf into the file
associated with fildes.

If nbyte is zero and the file is a regular file, the write() function returns zero and has no
other effect. If nbyte is zero and the file is a special file, the results are not portable.

If the O_APPEND flag is set, all writes are forced to the current end of file.

The write() function returns the number of bytes written. This number will be less than
nbyte if there is an error. It will never be greater than nbyte.

If a write is interrupted by a signal, it will either return -1 with errno set to EINTR or it
will return the non-zero number of bytes written. A write() to a pipe will never return
EINTR if it has transferred any data and nbyte is less than PIPE_BUF.

After a write() to a regular file has successfully returned, any successful read() from
each byte position in the file that was modified by that write() will return the data that was
written by the write(). A subsequent write() to the same byte will overwrite the file
data. If a read() of a file data can be proven (by any means) to occur after a write() of
that data, it must reflect that write(), even if the calls are made by

Page 514

different processes. A similar requirement applies to multiple write operations to the same file
position.*

When writing to a file descriptor (other than a pipe of FIFO) that supports non-blocking I/O
and cannot accept the data immediately:

1. If O_NONBLOCK is clear, write() will block until the data can be accepted.

2. If O_NONBLOCK is set, write() will write as much as possible and return the number of
bytes written. If no bytes can be written, it returns -1 with errno set to EAGAIN.

When writing to a pipe or FIFO:

1. If O_NONBLOCK is clear, write() will block until the data can be accepted. On
completion it will return nbyte.

2. If O_NONBLOCK is set, the write() will operate according to the following table.

No space is
available

Less than nbyte
available

nbyte or more
available

nbyte less than
or equal to
PIPE_BUF

Return -1 with
errno set to
EAGAIN.

Return -1 with
errno set to
EAGAIN.

Atomic write of
nbyte.

nbytes greater
than PIPE_BUF

Return -1 with
errno set to
EAGAIN.

Return a number
less than nbyte or
-1 with errno
set to EAGAIN.

Return a number
less than or equal
to nbyte or -1
with errno set to
EAGAIN.

Reference:

P 6.4.2.1

Conversion:

Add to the list of headers:

 #include <unistd.h>

* POSIX makes this requirement because some applications depend on it. It may seem obvious to the
casual reader that a write() by one process followed by a read() by another should return the
data written. On some networked file systems with caching, this may not be true. Those systems are
not POSIX-conforming. A future version of POSIX may relax this requirement and/or provide a new
function which has looser requirements for serialized operation.

Page 515

Notes:

The 1990 standard has a slightly different definition for write(). It uses:

 ssize_t write(int fildes, void *buf, size_t nbyte)

The ssize_t is a new POSIX type for a signed size_t. The nbyte argument was quietly
changed from unsigned int to size_t.

ssize_t is a new system data type used by functions that return a size in bytes or an error
code.

Page 519

Appendix A
Header Files

This appendix describes the contents of the header files found on a system that supports
Standard C and POSIX. The macros, types, structures, and functions defined in each header
file are listed.

Description of Tables

Both the C and POSIX standards are concerned with namespace pollution. Namespace
pollution is defining symbols that are not expected by an application. Applications indicate
which symbols they are expecting by defining feature-test macros. The tables in this appendix
have three columns.

• The first column lists symbols defined by the C standard. These symbols are visible
whenever the header file is included; no feature tests are required to make these symbols
visible.

• The second column lists additional symbols that will be defined when the macro
POSIX_SOURCE is defined prior to the #include statement.

• The third column lists symbols that are optional when _POSIX_SOURCE is defined.
Applications should tolerate these symbols being present but must not depend on them.*

Some headers reserve additional symbols. These symbols are indicated under Notes. POSIX
also reserves all symbols which end with _t, as in size_t.

If you do not define _POSIX_SOURCE do not include headers which contain only POSIX
symbols. A header contains only POSIX symbols if all of its symbols are in the
"_POSIX_SOURCE defined" column; for example, <termios.h>.

*The POSIX Interpretation Committee has ruled that implementations conforming to the 1988
revision of the standard may include any POSIX symbol in any POSIX header. The 1990 revision will
enforce the ''may include'' column.

Yes, there is a logical fourth column for symbols which are optional when _POSIX_SOURCE is not
defined. There are no such symbols and I have left that column out.

Page 520

assert.h
The <assert.h> header defines the assert() macro. This is used for debugging.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: assert

Notes:
Tests the macro NDEBUG.

Page 521

ctype.h
The <ctype.h> header defines the Standard C character classification functions. These may
also be macros.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Functions: isalnum()

isalpha()

iscntrl()

isdigit()

isgraph()

islower()

isprint()

ispunct()

isspace()

isupper()

isxdigit()

tolower()

toupper()

Notes:
Reserves all symbols beginning with is or to.

Page 522

dirent. h
The <dirent.h> header defines the functions and data structures used for reading
directories portably.

Always Defined When _POSIX_SOURCE Defined

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Types: DIR

Structures: dirent

Functions: closedir()

opendir()

readdir()

rewinddir()

Notes:
Any application that uses this header file should not declare any symbols that begin with d_.

Page 523

errno.h
The <errno.h> header defines all of the error codes used by an implementation. May
contain many more macros of the form Exxxxx.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros. EDOM E2BIG

ERANGE EACCES

EAGAIN

EBADF

EBUSY

ECHILD

EDEADLK

EDOM

EEXIST

EFAULT

EFBIG

EINTR

EINVAL

EINVAL

EIO

EISDIR

EMFILE

EMLINK

ENAMETOOLONG

ENFILE

ENODEV

ENOENT

ENOEXEC

ENOLCK

ENOMEM

ENOSPC

ENOSYS

ENOTDIR

ENOTEMPTY

ENOTTY

ENXIO

EPERM

EPIPE

ERANGE

EROFS

ESPIPE

ESRCH

EXDEV

Notes:
The external variable errno is declared as an int.

Applications should not declare any symbols that begin with an E followed by an uppercase
letter or digit.

Page 524

fcntl. h
The <fcntl.h> function defines the creat(), fcntl(), and open() functions along
with the macros used by those functions.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: FD_CLOEXEC SEEK_CUR

F_DUPFD SEEK_END

F_GETFD SEEK_SET

F_GETFL S_IRGRP

F_GETLK S_IROTH

F_RDLCK S_IRUSR

F_SETFD S_IRWXG

F_SETFL S_IRWXO

F_SETLK S_IRWXU

F_SETLKW S_ISBLK

F_UNLCK S_ISCHR

F_WRLCK S_ISDIR

O_ACCMODE S_ISFIFO

O_APPEND S_ISGID

O_CREAT S_ISREG

O_EXCL S_ISUID

O_NOCTTY S_IWGRP

O_NONBLOCK S_IWOTH

O_RDONLY S_IWUSR

O_RDWR S_IXGRP

O_TRUNC S_IXOTH

O_WRONLY S_IXUSR

Structures: flock

Structures:

Functions: creat()

fcntl()

open()

Notes:
Applications should not declare any symbols that start with l_.

Applications must #undef all symbols that begin with F_, S_, or O_.

Page 525

float.h
The <float.h> function defines a number of floating-point constants useful for portable
applications.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: DBL_DIG

DBL_EPSILON

DBL_MANT_DIG

DBL_MAX

DBL_MAX_10_EXP

DBL_MAX_EXP

DBL_MIN

DBL_MIN_10_EXP

DBL_MIN_EXP

FLT_DIG

FLT_EPSILON

FLT_MANT_DIG

FLT_MAX

FLT_MAX_10_EXP

FLT_MAX_EXP

FLT_MIN

FLT_MIN

FLT_MIN_10_EXP

FLT_MIN_EXP

FLT_RADIX

FLT_ROUNDS

LDBL_DIG

LDBL_EPSILON

LDBL_MANT_DIG

LDBL_MAX

LDBL_MAX_10_EXP

LDBL_MAX_EXP

LDBL_MIN

LDBL_MIN_10_EXP

LDBL_MIN_EXP

Page 526

grp.h
The <grp.h> function defines the struc group returned by the group database functions
getgrid() and getgrnam().

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Structures: group

Functions: getgrgid()

getgrnam()

Notes:
Applications shall not declare any symbols that begin with gr_.

Page 527

limits.h
The <limits.h> function defines implementation limits.

Always Defined When _POSIX_SOURCE Defined

Must contain:

Macros: CHAR_BIT ARG_MAX***

CHAR_MIN CHILD_MAX**

CHAR_MAX LINK_MAX**

INT_MIN MAX_CANON**

INT_MAX MAX_INPUT**

LONG_MIN NAME_MAX**

LONG_MAX NGROUPS_MAX**

MB_LEN_MAX OPEN_MAX**

SCHAR_MIN PATH_MAX**

SCHAR_MAX PIPE_BUF**

SHRT_MIN SSIZE_MAX*

SHRT_MAX STREAM_MAX***,*

UCHAR_MAX TZNAME_MAX*

UINT_MAX _POSIX_ARG_MAX

ULONG_MAX _POSIX_CHILD_MAX

USHRT_MAX _POSIX_LINK_MAX

_POSIX_MAX_CANON

_POSIX_MAX_INPUT

_POSIX_NAME_MAX

_POSIX_NGROUPS_MAX

_POSIX_OPEN_MAX

_POSIX_PATH_MAX

_POSIX_PIPE_BUF

_POSIX_SSIZE_MAX*

_POSIX_STREAM_MAX*

_POSIX_STREAM_MAX

_POSIX_TZNAME_MAX*

Notes:
* indicates macros added to <limits.h> by the 1990 revision to the standard.

** indicates macros that may be omitted from <limits.h> on implementations where
pathconf() must be used.

***indicates macros that may be omitted from <limits.h> on implementations where
sysconf() must be used.

Applications should not declare any symbols that end _MAX.

Page 528

locale.h
The <locale.h> function defines symbols used by the internationalization functions
setlocale() and localeconv().

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

NULL

Structures: lconv

Functions: setlocale()

localeconv()

Notes:
Applications should #undef any symbols that they #define which begin with LC_
followed by an upper-case letter.

Page 529

math.h
The <math.h> function defines the Standard C math functions.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: HUGE_VAL

Functions: acos()

asin()

atan2()

atan()

ceil()

cos()

cosh()

exp()

fabs()

floor()

fmod()

frexp()

ldexp()

logl0()

log()

modf()

pow()

sin()

sinh()

sqrt()

tan()

tanh()

Page 530

pwd.h

The <pwd.h> function defines struct passwd used by the user database reading functions
getpwnam() and getpwuid().

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Structures: passwd

Functions: getpwnam()

getpwuid()

Notes:
Applications should not declare any symbols that begin with pw_.

Page 531

setjmp.h
The <setjmp.h> function defines the symbols used by longjmp(), siglongjmp(),
setjmp(), andsigsetjmp().

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: longjmp* sigsetjmp*

setjmp* siglongjmp*

Types: jmp_buf sigjmp_buf

Functions: longjmp()* sigsetjmp()*

setjmp()* siglongjmp()*

Notes:
* May be defined as macros or functions.

Page 532

signal.h
The <signal.h> function defines both the symbols used by Standard C signals and by
POSIX signals.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Must contain: May contain:

Macros: SIG_DFL SA_NOCLDSTOP

SIG_ERR SIG_BLOCK

SIG_IGN SIG_SETMASK

SIG_UNBLOCK

SIGABRT

SIGFPE SIGARLM

SIGILL SIGCHLD

SIGINT SIGCONT

SIGSEGV SIGHUP

SIGTERM SIGKILL

SIGPIPE

SIGQUIT

SIGSTOP

SIGTSTP

SIGTTIN

SIGTTOU

SIGUSR1

SIGUSR2

Types: sig_atomic_t sigset_t

Structures: sigaction

Functions: raise() kill()

signal() sigaction()

sigaddset()

sigdelset()

sigemptyset()

sigfillset()

sigismember()

sigpending()

sigpending()

sigprocmask()

sigsuspend()

Notes:
Applications must not declare any symbols that begin with sa_. All symbols that begin with
SIG or SA_ must be #undefed prior to use.

Page 533

stdarg.h
The <stdarg.h> function defines macros to support functions with a variable number of
arguments.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: va_arg

va_end

va_list

va_start

Page 534

stddef.h
The <stddef.h> function defines a few symbols which are required by Standard C.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: NULL

offsetof

Types: ptrdiff_t

size_t

wchar_t

Page 535

stdio.h
The <stdio.h> function defines the symbols used by the standard I/O package.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: BUFSIZ L_ctermid L_cuserid

EOF STREAM_MAX

FILENAME_MAX

FOPEN_MAX

L_tmpnam

NULL

SEEK_CUR

SEEK_END

SEEK_SET

TMP_MAX

stderr

stdin

stdout

_IOFBF

_IOLBF

_IONBF

Types: fpos_t

size_t

FILE

Functions: clearerr() fdopen()

fclose() fileno()

feof()

ferror()

ferror()

fflush()

fgetc()

fgetpos()

fgets()

fopen()

fprintf()

fputc()

fputs()

fread()

freopen()

fscanf()

fseek()

fsetpos()

ftell()

fwrite()

getc()

Page 536

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

getchar()

gets()

perror()

printf()

putc()

putchar()

puts()

remove()

rename()

rewind()

scanf()

setbuf()

setvbuf()

sprintf()

sscanf()

tmpfile()

tmpnam()

ungetc()

vfprintf()

vprintf()

vsprintf()

Page 537

stdlib.h
The <stdlib.h> function defines a set of miscellaneous functions from the Standard C
library.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: EXIT_FAILURE

EXIT_SUCCESS

MB_CHR_MAX

NULL

RAND_MAX

Types: div_t

ldiv_t

size_t

wchar_t

wchar_t

Functions: abort()

abs()

atexit()

atof()

atoi()

atol()

bsearch()

calloc()

div()

exit()

free()

getenv()

labs()

ldiv()

malloc()

mblen()

mbstowcs()

mbtowc()

qsort()

rand()

realloc()

srand()

strtod()

strtol()

strtoul()

system()

wcstombs()

wctomb()

Page 538

string.h
The <string.h> function defines the Standard C string functions.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: NULL

Types: size_t

Functions: memchr()

memcmp()

memcpy()

memmove()

memset()

strcat()

strchr()

strcmp()

strcoll()

strcpy()

strcspn()

strerror()

strlen()

strncat()

strncmp()

strncpy()

strpbrk()

strrchr()

strspn()

strstr()

strstr()

strtok()

strxfrm()

Notes:
Reserves symbols that begin with mem, str, or wcs.

Page 539

sys/stat.h
The <sys/stat.h> function defines the chmod(), fstat(), mkdir(), mkfifo(),
stat(), and umask() functions and the structures and symbols used by those functions.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: S_IRGRP

S_IROTH

S_IRUSR

S_IRWXG

S_IRWXO

S_IRWXU

S_ISBLK

S_ISCHR

S_ISDIR

S_ISFIFO

S_ISGID

S_ISREG

S_ISUID

S_IWGRP

S_IWOTH

S_IWUSR

S_IXGRP

S_IXOTH

S_IXOTH

S_IXUSR

Structures: stat

Functions: chmod()

fstat()

mkdir()

mkfifo()

stat()

umask()

Notes:
Applications should not declare any symbols that begin with st_.

Applications must #undef all symbols that begin with S_ prior to use.

Page 540

sys/times.h
The <sys/times.h> function defines the times() function for reporting process
runtimes.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Types: clock_t

Structures: tms

Functions: times()

Notes:
Applications should not declare any symbols that begin with tms_

Page 541

sys/types.h
The <sys/types.h> function defines all of the POSIX fundamental types.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Must contain: May contain:

Types: dev_t

gid_t

ino_t

mode_t

nlink_t

off_t

pid_t

size_t

ssize_t

uid_t

Notes:
* ssize_t was added in the 1990 revision and is used for the value returned by read() and
write(). It is a number of bytes or an error code.

Page 542

sys/utsname.h
The <sys/utsname.h> function defines the uname() function and the struct
utsname it returns.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Structures: utsname

Functions: uname()

Page 543

sys/wait.h
The <sys/wait.h> function defines the wait() and waitpid() functions and macros to
manipulate process termination status.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: WEXITSTATUS

Macros:

WIFEXITED

WIFSIGNALED

WIFSTOPPED

WNOHANG

WSTOPSIG

WTERMSIG

WUNTRACED

Functions: wait()

waitpid()

Page 544

termios.h
The <termios.h> function defines the POSIX terminal interface.

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: B0

B50

B75

B110

B110

B134

B150

B200

B300

B600

B1200

B1800

B2400

B2400

B4800

B9600

B19200

B38400

BRKINT

CLOCAL

CREAD

CS5

CS6

CS7

CS8

CSIZE

CSTOPB

ECHO

ECHOE

ECHOK

ECHONL

HUPCL

ICANON

ICRNL

IEXTEN

IGNBRK

IGNCR

IGNPAR

IGNLCR

INPCK

ISIG

ISTRIP

IXOFF

IXOFF

IXON

NCCS

NOFLSH

Page 545

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

OPOST

PARENB

PARMRK

PARODD

TCIFLUSH

TCIOFF

TCIOFLUSH

TCION

TCOFLUSH

TCOOFF

TCOON

TCSADRAIN

TCSAFLUSH

TCSANOW

TOSTOP

VEOF

VEOL

VERASE

VINTR

VKILL

VMIN

VMIN

VQUIT

VSTART

VSTOP

VSUSP

VTIME

Types: cc_t

speed_t

tcflag_t

Structures: termios

Functions: cfgetispeed()

cfgetospeed()

cfsetispeed()

cfsetospeed()

tcdrain()

tcflow()

tcflush()

tcgetattr()

tcsendbreak()

tcsetattr()

Page 546

Notes:
Applications should not declare any symbols that begin with c_.

Applications must #undef all symbols that they #define which begin with V, I, O, TC, or
B[0-9] prior to use.

Page 547

time.h
The <time.h> function defines the Standard C and POSIX time functions.

Always Defined When _POSIX_SOURCE Defined

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Macros: CLOCKS_PER_SEC CLK_TCK

NULL

Types: clock_t

size_t

time_t

Structures: tm

Functions: asctime() tzset()

clock()

ctime()

difftime()

gmttime()

localtime()

mktime()

strftime()

time()

Notes:
This header also declares the external variable tzname.

Applications shall not declare any symbols that begin with tm_.

Page 548

unistd.h
The <unistd.h> function defines miscellaneous POSIX macros and functions.

Always Defined When _POSIX_SOURCE Defined

Must contain:

Macros: F_OK

R_OK

SEEK_CUR

SEEK_END

SEEK_END

SEEK_SET

STDERR_FILENO

STDIN_FILENO

STDOUT_FILENO

W_OK

X_OK

_PC_CHOWN_RESTRICTED

_PC_MAX_CANNON

_PC_MAX_INPUT

_PC_NAMEMAX

_PC_NO_TRUNC

_PC_PATHMAX

_PC_PIPE_BUF

_PC_VDISABLE

_POSIX_CHOWN_RESTRICTED

_POSIX_JOB_CONTROL

_POSIX_NO_TRUNC

_POSIX_SAVED_IDS

_POSIX_VDISABLE

_POSIX_VERSION

_SC_ARG_MAX

_SC_CHILD_MAX

_SC_CLK_TCK

_SC_JOB_CONTROL

_SC_NGROUPS_MAX

_SC_OPEN_MAX

_SC_SAVED_IDS

_SC_STREAM_MAX

_SC_TZNAME_MAX

_SC_TZNAME_MAX

_SC_VERSION

Types: size_t

ssize_t

Functions: _exit()

access()

alarm()

chdir()

Page 549

Always Defined When _POSIX_SOURCE Defined

Must contain:

dup2()

dup()

execl()

execle()

execlp()

execv()

execve()

execvp()

fork()

fpathconf()

getcwd()

getegid()

geteuid()

getgid()

getgroups()

getlogin()

getpgrp()

getpgrp()

getpid()

getppid()

getuid()

isatty()

link()

lseek()

pathconf()

pause()

pipe()

read()

rmdir()

setgid()

setpgid()

setsid()

setuid()

sleep()

sysconf()

tcgetpgrp()

tcsetpgrp()

ttyname()

unlink()

write()

cuserid()

Page 550

utime.h
The <utime.h> function defines the function to set file access times and the structure it uses.

Always Defined When _POSIX_SOURCE Defined

Always Defined When _POSIX_SOURCE Defined

Must contain: May contain:

Structures: utimbuf

Functions: utime()

Page 551

Appendix B
Data Structures

This section contains a list of all of the data structures defined by POSIX or by Standard C.
You must remember the following:

1. The members of these structures may be in any order. Your programs should not assume
that they are in the order given here.

2. The structures may contain additional members. Your programs should ignore these
members.

3. These structures are defined in the standard header listed. You must include this header to
declare the structure. Do not declare the structure yourself.

4. You may use these names for your own structures in files that do not include the standard
header. For example, you can have your own structure called stat in a file that does not
include <stat.h>. You should avoid this practice.

dirent Defines the directory information returned by the readdir() function.

See: Chapter 4, Files and Directories [Also examples in Chapters 2 and 7].

Header File: <dirent.h>

Member Name Member Type Description

d_name char[] Null terminated filename.

div_t Defines the result of the div() function from the Standard C library.

See: Description of div() in functions section and example in Chapter 2.

Header File: <stdlib.h>

Member Name Member Type Description

quot int Quotient.

rem int Remainder.

Page 552

flock Controls the advisory record locking operations of the fcntl() function.

See: Chapter 5, Advanced File Operations.

Header File: <fcnt.h>

Member Name Member Type Description

l_type short One of the macros F_RDLCK, F_WRRLCK or
F_UNLCK.

l_whence short Flag for starting offset. One of the macros
SEEK_CUR, SEEK_END, or SEEK_SET.

l_start off_t Relative offset in bytes.

l_len off_t Size (zero means to EOF).

l_pid pid_t Process ID of the process holding the lock.

group Defines the information returned by functions that read the group's database.

See: Chapter 7, Obtaining Information at Run-time.

Header File: <grp.h>

Member Name Member Type Description

gr_name char * The name of the group.

gr_gid gid_t The group number.

gr_mem char ** A null-terminated vector of pointers to the
member names.

Page 553

lconv Defines the internationalization information returned by the localeconv()
function.

See: Chapter 10, Porting to Far-off Lands.

Header File: <locale.h>

Member Name Member Type Description

decimal_point char * The decimal-point character for nonmonetary
quantities.

thousands_sep char * The character used to separate groups of digits

grouping char * A string whose elements indicate the size of each
group.

int_curr_symbol char * The international currency symbol.

currency_symbol char * The local currency symbol.

mon_decimal_point char * The decimal-point character for monetary
quantities.

mon_thousands_sep char * The character used to separate groups of digit
in monetary quantities.

mon_grouping char * A string whose elements indicate the size of each
group.

positive_sign char * The string for non-negative monetary
quantities.

negative_sign char * The string for negative monetary quantities.

int_frac_digits char Number of digits after the decimal point in
international monetary quantities

frac_digits char Number of digits after the decimal point in
monetary quantities.

p_cs_precedes char 1 if the currency symbol comes first in
non-negative monetary quantities.

p_sep_by_space char 1 if the currency symbol has a space between the
symbol and the number in non-negative monetary
quantities.

quantities.

n_cs_precedes char 1 if the currency symbol comes first in negative
monetary quantities.

n_sepby_space char 1 if the currency symbol has a space between the
symbol and the number in negative monetary
quantities.

p_sign_posn char Position of positive_sign

n_sign_posn char Position of negative_sign.

Page 554

ldiv_t Defines the information returned by the div() function.

See: Description of ldiv() in the Functions section.

Header File: <stdlib.h>

Member Name Member Type Description

quot long Quotient.

rem long Remainder.

passwd Defines the information returned by the functions that read the user
database.

See: Chapter 7, Obtaining Information at Run-time.

Header File: <pwd.h>

Member Name Member Type Description

pw_name char * User name.

pw_uid uid_t User ID number.

pw_gid gid_t Group ID number.

pw_dir char * Initial working directory.

pw_shell char * Initial user program.

Page 555

sigaction Defines the information given to and returned by the sigaction() function.

See: Chapter 6, Working with Processes.

Header File: <signal.h>

Member Name Member Type Description

sa_handler void(*)() A pointer to a signal-catching function or the
symbolic constant SIG_DFL or SIG_IGN.

sa_mask sigset_t Additional set of signals to be blocked during
the execution of the signal-catching function.

sa_flags int Special flags.
The only flag currently defined is
SA_NOCLDSTOP. This flag prevents a SIGCHLD
signal from being generated when children
stop.

stat Defines the file status information returned by the stat() and
fstat() functions.

See: Chapter 4, Files and Directories [also used in examples in
Chapters 2, 5, 6, 8, and 9].

Header File: <sys/stat.h>

Member Name Member Type Description

st_mode mode_t File mode.

st_ino ino_t File serial number.

st_dev dev_t ID of the device containing this file.

st_nlink nlink_t Number of links.

st_uid uid_t User ID of the file's owner.

st_gid gid_t Group ID of the file's owner.

st_size off_t The file size in bytes (may not be valid for
special files).

special files).

st_atime time_t Time of last access.

st_mtime time_t Time of last data modification.

st_ctime time_t Time of last file status change.

Page 556

termios Defines the information used to control terminals. This is returned by tcgetattr()
and used as an argument to tcsetattr().

See: Chapter 8, Terminal I/O.

Header File: <termios.h>

Member Name Member Type Description

c_iflag tcflag_t Input modes.

c_oflag tcflagt Output modes.

c_cf lag tcflag_t Control flags.

c_lflag tcflag_t Local modes.

c_cc cc_t An array of NCCS elements which define various
control characters.

tm Defines the various components of the time information returned by
localtime() and gmttime(). This is the argument to the
mktime() function.

See: Chapter 7, Obtaining Information at Run-time.

Header File: <time.h>

Member Name Member Type Description

tm_sec int Seconds after the minute.

tm_min int Minutes after the hour.

tm_hour int Hours since midnight.

tm_mday int Day of month.

Day of month.

tm_mon int Month.

tm_wday int Day of week

tm_year int Years since 1900.

tm_yday int Days since January 1.

tm_isdst int Positive: Daylight savings.
Zero: Standard time.
Negative: Unknown.

Page 557

tms Defines the information returned by the times() function.

See: Chapter 7, Obtaining Information at Run-time.

Header File: <sys/times.h>

Member Name Member Type Description

tms_utime clock_t User CPU time.

tms_stime clock_t System CPU time.

tms_cutime clock_t User time of terminated child processes.

tms_cstime clock_t System time of terminated child
processes.

utimbuf Defines the argument to the utime() function.

See: Chapter 4, Files and Directories [Also example in Chapter 2].

Header File: <utime.h>

Member Name Member Type Description

actime time_t Access time.

modtime time_t Modification time.

utsname Defines the system identification information returned by the
uname() function.

See: Chapter 7, Obtaining Information at Run-time.

Header File: <sys/utsname.h>

Member Name Member Type Description

sysname char[] Name of operating system.

nodename char[] Name of this node.

release char[] Current release level.

version char[] Current version of this release.

machine char[] Name of the hardware that the system is running
on.

Page 559

Appendix C
Error Codes

This appendix lists, in alphabetical order, the defined error codes and the functions that
must produce them. All functions may return error codes in addition to the ones presented
here, and these error codes may be returned for reasons other than the ones listed here.
This list is useful for portable applications. Debugging should be done with the
documentation for the system that is being used for the debug process.

E2BIG The number of bytes used by the new process image's argument list and
environment list is greater than the system limit of ARG_MAX bytes.

Used by: execl(),execle(),execlp(),execv(),execve(),execvp()

EACCES Search permission is denied for a directory in a file's path prefix.

Used by: access(),chdir(),chmod(),chown(),execl(),execle(),
execv(),execve(),execvp(),fcntl(),getcwd(),link(),
mkdir(),mkfifo(),open(),opendir(),pathconf(),rename(),
rmdir(),setpgid(),stat(),unlink(),utime()

rmdir(),setpgid(),stat(),unlink(),utime()

EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be
delayed in the I/O operation.

The fork() function returns EAGAIN if the system lacks the resources to create
another process.

Used by: fcntl(),fork(),read(),write()

EBADF Invalid file descriptor.

Used by: close(), closedir(), dup(), dup2(), fcntl(), lseek(),
pathconf(), read(), readdir(), stat(), tcdrain(),
tcflow(), tcflush(), tcgetpgrp(), tcsendbreak(),
tcsetattr(), tcsetpgrp(), write()

EBUSY The directory is in use.

Used by: rename(),rmdir(),unlink()

Page 560

ECHILD There are no children or a process or process group number does not
specify a child of this process.

Used by: wait(),waitpid()

EDEADLK An fcntl with function F_SETLKW would cause a deadlock.

Used by: fcntl()

EDOM An input argument was outside the defined domain of a mathematical
function.

Used by: acos(), asin(), atan2(), atan(), ceil(), cos(),
cosh(), exp(), fabs(), floor(), fmod(), frexp(),
ldexp(), logl0(), log(), modf(),
pow(),sin(),sinh(),sqrt(),tan(),tanh()

EEXIST The named file already exists.

The rmdir() function may return EEXIST on an attempt to delete a non-
empty directory. It may also return ENOTEMPTY.

Used by: link(), mkdir(), mkfifo(), open(), rename(),
rmdir()

EFAULT The system detected an invalid address in attempting to use an argument
of a function call.

Used by No functions are required to detect this condition.

Used by No functions are required to detect this condition.

EFBIG An attempt was made to write to a file that exceeds the maximum file size.

Used by: write()

EINTR Function was interrupted by a signal.

Used by: close(),dup(),dup2(),fcntl(),open(),pause(),read(),sigsuspend(),tcdrain(),tcflow(),tcflush(),tcsetattr(),wait(),waitpid(),write()

EINVAL Invalid argument.

Used by: access(), chown(), fcntl(), fpathconf(),
getcwd(), getgroups(), kill(),lseek(),
pathconf(), rename(), setgid(), setpgid(),
setuid(),sigaction(), sigaddset(), sigdelset(),
sigismember(), sysconf(), tcsetattr(),
tcsetpgrp(), waitpid()

Page 561

EIO Input or output error.

Used by: read(),write()

EISDIR Attempt to open a directory for writing or to rename a file to be a directory.

Used by: open(),rename()

EMFILE Too many file descriptors are in use by this process.

Used by: fcntl(),open(),opendir()

EMLINK The number of links would exceed LINKMAX.

Used by: link(),mkdir(),rename()

ENAMETOOLONG

Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC
is in effect.

Used by: access(), chdir(), chmod(), chown(), execl(),
execle(), execlp(), execv(), execve(), execvp(),
link(), mkdir(), mkfifo(), open(), opendir(),
pathconf(), rename(), rmdir(), stat(), unlink(),
utime()

ENFILE Too many files are currently open in the system.

Used by: creat(), open(), opendir()

Used by:

ENODEV No such device.
Attempt to perform an inappropriate function to a device; for example, reading
from a line-printer.

Used by: No functions are required to detect this error.

ENOENT A file or directory does not exist.

Used by: chdir(), chmod(), chown(), execl(), execle(),
execlp(), execv(), execve(), execvp(), link(),
mkdir(), mkfifo(), open(), opendir(), pathconf(),
rename(), rmdir(), stat(), unlink(),utime()

Page 562

ENOEXEC An attempt was made to execute a file that is not in the correct format.

Used by: execl(), execle(), execv(), execve()

ENOLCK No locks available.

Used by: fcntl()

ENOMEM No memory available.

Used by: execl(), execle(), execlp(), execv(), execve(),
execvp(), fork()

ENOSPC No space left on disk.

Used by: link(), mkdir(), mkfifo(), open(), rename(), write()

ENOSYS Function not implemented.

Used by: setpgid(), tcgetpgrp(), tcsetpgrp()

ENOTDIR A component of the specified pathname was not a directory when a
directory was expected.

Used by: access(), chdir(), chmod(), chown(), execl(), execle(),
execlp(), execv(), execve(), execvp(), link(), mkdir(),
mkfifo(), open(), pendir(), pathconf(), rename(),
rmdir(), stat(), unlink(), utime()

ENOTEMPTY Attempt to delete or rename a non-empty directory. NOTE: dot(.) and dot-dot (
.) may be present in an empty directory; no other files are allowed.

Used by. rename(),rmdir()

ENOTTY Terminal control function attempted for a file that is not a terminal.

Terminal control function attempted for a file that is not a terminal.

Used by: tcdrain(), tcflow(), tcflush(), tcgetattr(),
tcgetpgrp(), csendbreak(), tcsetattr(), tcsetpgrp()

ENXIO No such device. This error may also occur when a device is not ready, for example,
a tape drive is off-line.

Used by: open()

Page 563

EPERM Operation is not permitted. Process does not have the appropriate privileges or
permissions to perform the requested operation.

Used by: chmod(), chown(), kill(), link(), setgid(), setpgid(),
setsid(), setuid(), tcsetpgrp(), unlink(), utime()

EPIPE Attempt to write to a pipe or FIFO with no reader.

Used by: write()

ERANGE Result is too large.

Used by: getcwd()

acos(), asin(), atan2(), atan(), ceil(), cos(), cosh(),
exp(), fabs(), floor(), fmod(), frexp(), ldexp(), log10(),
log(), modf(), pow(), sin(), sinh(), sqrt(), tan(), tanh()

EROFS Read-only file system.

Used by: access(), chmod(), chown(), link(), mkdir(), mkfifo(),
open(), rename(), rmdir(), unlink(), utime()

ESPIPE An lseek() was issued on a pipe or FIFO.

Used by: lseek()

ESRCH No such process.

Used by: kill(), setpgid()

EXDEV Attempt to link a file to another file system.

Used by: link(), rename()

Page 565

Appendix D
Porting From BSD And System V

You may want to convert programs to POSIX which were written for Berkeley Software
Distribution (BSD) or AT&T UNIX System V. Chapter 2, Developing POSIX Applications,
contains a discussion of the porting process, along with an example. The Functions section
of the Reference Manual lists the differences between historic implementations and the
POSIX and C standards. What about functions that are not in Standard C or POSIX? There
are several alternatives:

1. The function can be replaced by one or more functions from the standard libraries; the
replacements are listed in this appendix. For example, the BSD hypot(x,y) function
can be written as:

 sqrt(x*x + y*y);

2. The function can be coded using ordinary C. For example, the BSD isascii() function
can be written as:

 int isascii(int c)
 {
 if ((c < 0200) || (c == EOF)) return(1);
 if (c >= 0) return(1);
 return(0);
 }

In the following pages, these functions are labeled ''Ordinary C.''

3. The function can be deleted completely, for example, nice() or endpwent() in the
following pages, these are labeled "Not Needed."

4. For many calls, there is no equivalent. These are administrative functions, such as,
mount() or sync(); functions which are not portable, such as swab() or valloc();
or functions which have no POSIX equivalent, such as symlink() or ready(). I have
not listed these functions; therefore, if you don't see a function in the following pages, you
can assume that there is no replacement.

In most cases, the replacement is not exact. Read the description of the replacement function
and decide if the changes are important to your application.

Page 566

BSD Functions

Function Replace with:

alloca() malloc() and free()

bcmp() memcmp()

bcmp() memcmp()

bcopy() memcpy()

bzero() memset()

cabs() sqrt(x*x + y*y)

ecvt() sprintf()

endgrent() Not Needed

endpwent() Not Needed

fcvt() sprintf()

ffs() Ordinary C

flock() fcntl()

gamma() Ordinary C

gcvt() sprintf()

getdtablesize() sysconf(_SC_OPEN_MAX)

getpass() Ordinary C

getpw() getpwent()

gettimeofday() localtime() and time()

getwd() getcwd()

hypot() sqrt()

index() strchr()

initstate() srand()

insque() Ordinary C

ioctl() tcsetattr(),tcgetattr(),

cfgetispeed(),cfgetospeed(),

cfsetispeed(),cfsetospeed()

isascii() Ordinary C

j0() Ordinary C

jl() Ordinary C

jn() Ordinary C

killpg() kill() with a negative process group number

kill() with a negative process group number

mknod() mkdir() or mkfifo()

nice() Not Needed

pclose() close()

popen() pipe(),fdopen(),fork(),system(),

wait()

random() rand()

Page 567

Function Replace with:

remque() Ordinary C

rindex() strrchr()

scandir() readdir(),malloc(), qsort()

seekdir() opendir() followed by n calls to readdir()

setbuffer() setvbuf()

setgrent() Not Needed

setitimer() alarm()

setlinebuf() setvbuf()

setpwent() Not Needed

setregid() setgid() and setegid()

setreuid() setuid() and seteuid()

setstate() srand()

sigblock() sigprocmask()

sigpause() sigsuspend()

sigsetmask() sigprocmask()

sigvec() sigpending()

srandom() srand()

timezone() localtime()

utimes() utime()

utimes() utime()

utimes() utime()

valloc() malloc()

vfork() fork()

vhangup() tcsetattr()

wait3() waitpid()

y0() Ordinary C

y1() Ordinary C

yn() Ordinary C

Page 568

System VFunctions

Function Replace with:

drand48() rand()

erand48() rand()

erfc() Ordinary C

erf() Ordinary C

ftw() opendir(),readdir(),closedir()

gamma() Ordinary C

getopt() Ordinary C

getw() fread() or multiple calls to getc()

hcreate() Ordinary C

hdestroy() Ordinary C

hsearch() Ordinary C

hypot() sqrt(x*x + y*y)

ioctl() tcsetattr(),tcgetattr(),
cfgetispeed(),cfgetospeed(),
cfsetispeed(),cfsetospeed()

isascii() Ordinary C

Ordinary C

j0() Ordinary C

j1() Ordinary C

jn() Ordinary C

jrand48() rand()

lfind() Ordinary C

lockf() fcntl()

lrand48() rand()

lsearch() Ordinary C

mknod() mkdir() or mkfifo()

popen() pipe(),fdopen(),fork(),system(),wait()

remque() Ordinary C

srand48() srand()

tdelete() Ordinary C

tfind() Ordinary C

tsearch() Ordinary C

twalk() Ordinary C

y0() Ordinary C

y1() Ordinary C

yn() Ordinary C

Page 569

Appendix E
Changes And Additions In Standard C

Standard C contains a number of changes from the traditional C compiler used on many
systems. Since there was no prior standard, and many compiler vendors wanted to adopt
these extensions, these changes might already exist in a compiler even if it does not
completely meet the standard.

Preprocessor

The following features were added to the preprocessor:

• ## added for concatenation of tokens.

• # added for creation of strings.

• #pragma added. Any use of #pragma is non-portable.

• #elif added.

• Parameters inside strings are not replaced.

• Splicing lines with \ is allowed everywhere.

Character Set

The following features were added to the character set:

• Trigraphs added. This may break old programs which have a string containing ??.

• wchar_t added for wide-character strings.

• char may be signed or unsigned with the use of the corresponding keyword.

Identifiers

• Minimum significance of internal identifiers increased to 31 characters.

• All names which begin with an underscore (_) followed by another underscore or a capital
letter are reserved by the system.

• Including a system header may cause some names to be reserved.

Page 570

Keywords

The following keywords were added:

• void

• const

• volatile

• signed

• enum

Operators

• The assignment operators -=, +=, and so on are treated as single tokens. No whitespace is
allowed between the characters.

• Unary + added.

• sizeof yields size_t instead of unsigned int.

• The & operator may always be applied to arrays.

• The & operator may never be used with an object declared as a register.

Strings

• List of \x escapes expanded and better defined.

• Adjacent string literals are concatenated.

• String constants may be placed in read-only memory.

Constants

• U and L added as integer suffixes

• F and L added for floating constants.

• L may be used to specify a wide-character constant or a string of wide-characters. For
example, L'å' or L"300¥".

Structures, Unions, and Arrays

• Unions may be initialized.

• Automatic structures and unions may be initialized.

• Character arrays with an explicit size may be initialized with exactly that many characters.

Page 571

switch Statements

The controlling expression, and the case labels, of a switch may have any integral type.

Headers

• <limits.h> added.

• <float.h> added.

• <stddef.h> added.

• <stdlib.h> added.

• <stdarg.h> added.

• <locale.h> and the functions it defines were added.

• No header specified by the C Standard may require that any other header be included. That
is, the headers are self-sufficient.

• Any header specified by the C Standard may be included multiple times without causing
problems. That is, the headers are idempotent.

Pointers

• void * added as the generic pointer type.

• A pointer to a function may be used without an explicit *.

• Pointers may point just beyond the end of an array.

Functions

• Structures may be passed to functions and returned by functions.

• Function prototypes and type checking added.

Arithmetic

• The usual arithmetic conversions were changed to use the smallest type which can hold the
result.

• Shifting by a long count does not coerce the shifted operand to long.

Page 573

Appendix F
Federal Information Processing
Standard 151-1

The U.S. Government has adopted IEEE Standard 1003.1-1988 (POSIX. 1) as a Federal
Information Processing Standard for use in computer systems procurement. Notice of the
adoption was published in the Federal Register, Volume 54, Number 70, Thursday, April 13,
1989. The text of the notice follows:

The IEEE P1003.1 Standard defines a C language source code level interface to an operating
system environment. IEEE Standard P1003.1-1988 refers to and is a complement to draft ANSI
standard X3J11/88-102 C Language which is under development by the Accredited Standards
Committee X3. The IEEE P1003.1 requires specific areas of the ANSI X3J11/88-102 C
Language to complete the environment specification for portable application software.

The following modifications to IEEE Standard 1003.1-1988 for Portable Operating System
Interface for Computer Environments are required for implementations for POSIX that are
acquired by Federal agencies:

• Inconsistencies with CLK_TCK exist between the IEEE Standard 1003.1-1988 and the
referenced ANSI/X3.159-198x Programming language C Standard draft 13 May 1988
(X3J11/88-102). This inconsistency shall be resolved in the ratified C Standard. Until the
C Standard is ratified, CLK_TCK is to be treated as a POSIX-only symbol.

• The implementation shall support the POSIX option _POSIX_CHOWN_RESTRICTED.

• The implementation shall support the option NGROUPS_MAX greater than or equal to eight
(8), thus providing multiple groups.

• The implementation shall support the setting of the group-ID of a file (when it is created) to
that of its parent directory.

• The implementation shall support the functionality associated with the feature
POSIX_SAVED_IDS.

• The implementation shall support the functionality associated with the feature
POSIX_VDISABLE.

• The implementation shall support the option _POSIX_JOB_CONTROL.

• The implementation shall support the functionality associated with the feature
POSIX_NO_TRUNC.

Page 574

• • In section 6.4.1.2, the sentence "If a read() is interrupted by a signal after it has
successfully written some data, either it shall return -1 with errno set to EINTR, or it
shall return the number of bytes read" shall be deleted and replaced by the sentence, "If a
read() is interrupted by a signal after it has successfully read some data, it shall return
the number of bytes read."

In section 6.4.2.2, the sentence "If a write() is interrupted by a signal after it has
successfully read some data, either it shall return -1 with errno set to EINTR, or it shall
return the number of bytes written" shall be deleted and replaced by the sentence, "If a
write() is interrupted by a signal after it has successfully read some data, it shall return
the number of bytes written."

• The environment for the login shell shall contain the environment variables HOME and
LOGNAME as defined in Section 2.7.

This standard is effective October 13, 1989. This standard is compulsory and binding for use
in all solicitations and contracts for new operating systems where POSIX-like interfaces are
required.

Page 575

Appendix G

Answers To Selected Exercises

Chapter 3

1. The program will print:

 0000017
 17
 17

2. Use the %hd format specifier when printing a short. Use the %ld format specifier when
printing a long. The use of %d can cause portability problems when you print a variable
with an implementation defined type, for example, pid_t.

4. The putc() function is equivalent to fputc(), except putc() may be a macro which
may evaluate stream more than once. The call puts(s) is not exactly equivalent to
fputs(s,stdout) because puts() adds a new line and fputs() does not.

5. On some systems, it matches all uppercase letters. It is not part of Standard C and does not
work on systems that do not use ASCII.

6. The input string can be larger than the allocated storage. If the input string is too long, it
will overwrite other variables and cause the program to fail.

7. gets() may be a macro.

8. The input string can be larger than the allocated storage. If the input string is too long, it
will overwrite other variables and cause the program to fail. However, if you can depend
on the length of the input strings, gets() can safely be used.

9. On POSIX systems there is no difference. On some operating systems, the "wb" indicates
that the file is binary and no character processing is done.

10. It allows you to check for errors.

11. It writes 100 two-byte shorts from array to outfile.

12. fwrite(array,sizeof(short),100,outfile);

13. The fsetpos() function works for files longer than LONG_MAX bytes. It can also be
faster.

14. The first case tells the person (or program) reading the source that the return value from
printf() is being explicitly ignored. There should be no difference in the operation of
the resulting program.

Page 576

Chapter 4

2. See 3.

3. This program creates the directories for Exercise 2 and then deletes them:

 #define _POSIX_SOURCE 1

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <sys/stat.h>
 #include <sys/types.h>

 /*
 * Make as may directories as possible
 */
 void make_directories(void)
 {
 long ndirs=0;
 char *cwd;

 /* First select a safe place to start */
 if (chdir("/tmp") != 0)
 {
 perror("chdir /tmp failed");
 return;
 }
 while (1) /* Loop forever */
 {
 if (mkdir("dir",0777) == -1)
 break; /* Could not create directory */
 ndirs++; /* Count it as made */
 if (chdir("dir") I= 0) /* Make new directory
 * the working directory
 */
 break; /* Could not do it */
 }
 fprintf(stderr,"\nCreated %d directories\n",ndirs);
 perror("Error was: ");
 return;
 }

 /*
 * Delete the mess we made
 */

 void zapem(void)
 {
 /* Start back at the top */
 if (chdir("/tmp") != 0)
 {
 perror("chdir to /tmp failed");
 return;
 }
 /* Loop down to the bottom */
 while (chdir("dir") == 0)

 /* Loop going up one level and delete this directory */
 while (chdir("..") == 0)
 if (rmdir("dir") != 0) return;

Page 577

 return;
 }

 int main()
 {
 make_directories();
 zapem();
 return(EXIT_SUCCESS);
 }

4. A program may need to know if two links point to the same file.

5. Applications may need to refer to the same file by different names.

6. The unlink() function deletes a file when the last user has closed it. There is no
portable way to tell when this happens.

7. See page 70.

8. It is the execute permission bit for the file's owner.

9. Macros are more portable than values.

10. No.

11. It might be possible to make the system think that files were created by someone else. On
systems that have disk quotas, you can give away files to avoid having them charged to your
disk quota. It also might be possible to cover your tracks when replacing a system file with
a Trojan Horse. The only completely portable use for chown() is to change the group of a
file to the effective group ID of the caller or to a member of its group set.

12. Some programs, for example cpio, need to set the file's access and modification times to
restore the file to a previous state.

14. The dirent structure may (or may not) contain members other than d_name. There is no
portable way to access them, however, you can look in dirent.h to see if there are any
extra members on your system.

15. Add the declaration:

 long long_ino; /* Temp to make ino_t a long */

The modified section should look like this:

 /*
 * Print out the name of the current directory with
 * leading spaces.
 */
 for (i=l; i <= indent; i++) (void)printf(" ");
 (void)printf("%s",name);

 /* Now open the directory for reading */
 current_directory = opendir(name);
 if (current_directory == NULL)

Page 578

 {
 (void)perror("Can not open directory");
 return;
 }
 if (stat(name,&status) != O) PANIC; /* Get file serial number */
 long_ino = (long)status.st_ino; /* Convert to known size */
 (void)printf(" %ld\n",long_ino); /* Print it */

16. If the files ''." and ".." were not ignored, the function would loop forever.

Chapter 5

1. Your function would, most likely, be slower than the library function. Most system vendors
have spent a great deal of time tuning the library functions for performance.

2. If the O_EXCL flag is not set, O_CREAT has no effect in this case. If O_EXCL is set, the
open() will fail.

3. If the system uses virtual memory, reading the entire file with one call to read can cause
excessive paging. The system will read and write each page several times to complete the
copying operation.

4. The first case preserves any implementation defined flag bits.

5. The fast file copy program would copy the file and ignore any record locks. Record locks
only work if all applications that access the file use them.

6. Use fseek() if you have a stream pointer. Use lseek() if you have a file descriptor.

7. You would use umask() before execing a program which creates files. If you don't
control the source of the program you are execing, the umask() function is the only way
you can modify the effect of open().

8. You would use the fileno() function if you need to perform a function which takes a file
descriptor as an argument, for example, record locking. You would use the fdopen()
function if you had a file descriptor and wanted a stream. The most common case occurs
after calling pipe().

9. The data might not be written to the file in the correct order. The proper use of the
fflush() function will eliminate the problem.

Chapter 6

1. The new process starts at the return from the fork() call. The fork() call returns a
zero to the new process and non-zero (PID of new process) to the old process.

2. It never returns on success.

Page 579

3. If you did not include the call to fclose(), the more program would never see
end-of-file and would hang waiting for more input. If you did not include the call to
wait(), the parent could exit before all of the output is displayed.

4. The waitpid() function allows you to specify the PID you want to wait for. If you are
writing a general-purpose function which does a fork() and a wait(), it is possible
that the wait() will collect status for one of your caller's children instead of the process
you created. The waitpid() function solves this problem.

5. Before performing the actions of _exit(), the exit() function calls all of the functions
registered by atexit(), flushes and closes all open streams, and deletes all files created
by tmpfile(). You should use _exit() only in case of catastrophic error.

6. A signal mask is a set of signals to be blocked. It starts out as the empty set.

7. The SIGSEGV handler can print an error message and exit. It might also attempt to restart
the program.

8. The program will be terminated when the alarm goes off.

9. No. The printf() function is not on the list of safe functions given on page 113.

10. The POSIX signals have several advantages over the Standard C signals: you can save and
restore the full signal state, you can block other signals from being delivered, and you can
pass additional flags to the system.

11. The required code is:

 sigset_t set,oset;

 . . .

 sigfillset(&set); /* All possible signals */
 sigaddset(&set,SIGINT); /* Remove SIGINT */
 sigaddset(&set,SIGHUP); /* and SIGHUP */
 sigprocmask(SIG_SETMASK,&set,&oset); /* Set the process mask */

12. The additional code is:

 sigpending(&set); /* Get the set of pending
 * signals. */
 if (sigismember(&set,SIGALRM) == 1) /* See if SIGALRM is one */
 {
 /* Executed if SIGALRM is pending */
 }

13. The use of sigsuspend() avoids a possible race condition. See Figure 6-1.

Page 580

Chapter 7

1. The getlogin() function returns the name that the user used to login to the system. The
getpwuid() function returns the name associated with a given user ID. There may be

several login names associated with a single user ID. The functions return different
information; one is not better than the other.

2. The real user ID is the one associated with the name that the user used to login to the
system. The effective user ID is the owner ID of a SETUID program that the user is running.
If the S_ISUID mode bit is not set for the program file of the current program, then the
effective user ID and the real user ID have the same value.

3. There is no return value to indicate an error.

4. POSIX does not require there to be a/etc/passwd file. Even if there is an /etc/passwd
file, it may not be readable by your process.

5. Use the value returned by getgroups() when you want to know the actual number of
groups your process can use. Use the symbol NGROUPS_MAX when you need a value at
compile time, say to allocate a static array. Use the value returned by
sysconf(_SC_NGROUPS_MAX) if you need to know the maximum possible value at
runtime.

6. The information returned by uname() can be printed in a message. There is no other
portable user for the information.

7. POSIX Section 8.1.1 requires that the timezone be known.

8. The following program works for my birthday from 1991 to 2010:

 #define _POSIXSOURCE 1

 #include <stdio.h>
 #include <stdlib.h>
 #include <time.h>
 #include <unistd.h>

 int main(int argc,char **argv)
 {
 struct tm timestr;
 int i;
 char buff[81];

 /*
 * Setup the time structure
 */
 timestr.tmsec = 0; /* Seconds */
 timestr.tmmin = 0; /* Minutes */
 timestr.tmhour = 9; /* 9:00 AM */
 timestr.tm_mday = 13; /* 13th day of month */
 timestr.tm_mon = 3; /* April */
 timestr.tm_isdst = 0; /* Not daylight time */
 for (i = 91; i < 91+20; i++) /* 1991 - 2010 */
 {
 timestr.tm_year = i; /* Put year in structure */

Page 581

 (void)mktime(×tr); /* Update day of week */

 (void)strftime(buff,(size_t)80,"%Y %A",×tr);
 (void)puts(buff); /* Print year and day */
 }
 exit(EXIT_SUCCESS);
 }

9. The %x specifier formats the date correctly for the current locale.

10. If you compile your program in one place and execute it in another place, the number of
clock ticks per second can change. Since CLK_TCK is a compile-time constant, your
program will get the wrong answers when it is moved. It is better to use
sysconf(_SC_CLK_TCK).

11. The values can be reported to the user.

12. The biggest disadvantage to using environment variables is that the names can conflict from
application to application. The number of environment variables can also get out of hand.
The biggest advantage is that they are easy to code and use.

13. It returns the maximum length filename that can be created in the /usr directory.

Chapter 8

1. First, it depends on the stat() function to return the file size and terminals do not have a
fixed file size. Second, the read() function will return when the first newline character is
read even if fewer than hunk bytes have been typed. There is no easy way to fix the
program.

2. Yes.

3. Having the computer echo characters instead of having the terminal print them directly
allows the computer to print something different than what the user typed. The ability to
control what is printed is used to suppress the printing of passwords and to allow
full-screen editors such as vi or emacs to operate.

4. You would use non-canonical I/O whenever you wanted to capture every character read
from the terminal port.

5. Process groups are normally only used by the shell. A normal application would only use
setpgid() if it were trying to simulate the shell's job control functions.

6. The setpgid() function is used to change the process group id of a process. The
tcsetpgrp() function is used to assign the terminal to a specific process group.

7. 30.

8. The only baud rates that can be set are the ones for the communications port on the
computer. The baud rate of the terminal itself cannot be changed by the application.

Page 582

9. The ISTRIP flag masks input characters to 7-bits. This is useful if an application does not
want to see the parity bit. Setting (or clearing) this flag may cause other applications
sharing the terminal to fail.

10. The OPOST flag has no defined functions in POSIX and should not be used by a portable
application.

11. The ISIG flag prevents the INTR character from generating a signal. The sigaction()
function can be used to achieve a similar effect by ignoring the SIGINT signal. The ISIG
flag affects all processes sharing the terminal while the sigaction() function only
affects the process calling it.

12. Use it whenever you want to wait for all characters to be transmitted before changing the
terminal attribute.

13. An application uses the tcdrain() function when it wants to wait for characters to be
displayed on the terminal.

14. No. Changing the c_cc array affects all processes sharing the terminal.

Chapter 9

1. They are the same thing.

2. printf("howard=%d\nharriet=%d\n",a,b);

3. It pastes two tokens together.

4. If you ever need to use one of the functions defined in <math.h>, you will have a
name/space conflict.

5. You should include system headers before any of your headers. You can then override
symbols in the system headers with your own symbols.

6. The function takes a variable number of arguments. There must be at least two arguments.
The first argument has type int. The second argument has type pointer to int. The integer
pointed to by the second argument is not modified by this function.

7. The first definition says nothing about the number or type of arguments. The second
definition says that there are no arguments.

8. Use volatile when the variable changes in a way that it cannot be predicated by the
rules of C; for example, flags set by signal catching functions or hardware device registers.

9. Multi-character constants, such as '??', do different things on different implementations.

10. The compiler may pack the structure into three bytes. The compiler may insert pad bytes.
The address of seconds must be greater than the address of minutes.

Page 583

Chapter 10

1. The term internationalization refers to making an application work independent of the
locale. The term localization means making the application work in a specific locale.

2. ''Eight bit clean" means that the application considers all eight bits of a codeset byte to be

data and does not assume that text is restricted to 7-bit ASCII.

3. The C locale is the rather vanilla locale specified by Standard C where no special
localization takes place. The default locale is the one specified by the environment
variables.

4. The strcoll() function can give a different answer from strcmp() in locales other
than the "C" or "POSIX" locale. The strcmp() function is usually faster.

5. The only use for the output of strxfrm() is as input to strcmp().

6. The question is ambiguous. One argument is that every place is in the C locale and
programs written to the C locale should work every place. The other point of view is that
no place is in the C locale (except maybe the United States and Canada).

7. The scheme has a major good point: it is easy to use and understand. The bad points are
that the function may be quite slow, and you may have difficulty with the order of format
specifiers when you translate from one language to another.

Page 585

Related Publications

This bibliography suggests some publications that you might find of interest.

The Standards

The following standards are legal documents which must exactly define the standards. They
tend to state things exactly once. Unambiguous and precise does not mean easy to read. For
legal standards, these documents are very readable. They each contain a lengthy rationale to
explain why the standard says what it does. I have attempted to include the most interesting
points of the rationale in this book.

POSIX standards are available from:

Publication Sales
IEEE Service Center
P.O. Box 1331
445 Hoes Lane
Piscataway, New Jersey 08854-1331
(201)981-0060
(800)678-IEEE

Europe:

IEEE Computer Society
Jacques Kevers
13, Ave de l'Aquilon
B-1200
Brussels, Belgium

Asia:

IEEE Computer Society
Ms. Kyoko Mikami
Ooshima Building
2-19-1 Minami Aoyama
Monato-Ku, Tokyo 107 Japan

The document numbers for the standards are:

POSIX. 1:
ISO/IEC 9945-1:1990
IEEE Std. 1003.1-1990
List Price $75.00

Page 586

POSIX.2:
ISO//IEC 9945-2:1992
IEEE Std 1003.2-1992
List Price TBD

POSIX.3:
IEEE Std. 1003.3-1991
List Price $20.00

POSIX.9:
IEEE Std 1003.9-1992
List Price $42.00

American National Standard for Information Systems—Programming Language C,
X3.159-1989; available from:

Sales Department
American National Standards Institute
1430 Broadway
New York, NY 10018
(212)642-4900

ISO 8859-1: 1987 Information Processing—8-bit single-byte coded graphic character
sets—part 1: Latin Alphabet No. 1; available from:

International Organization for Standards
1, rue de Varembe
Case Postale 56
CH-1211
Geneva, Switzerland

Other Documents of Interest

The X/Open industry group publishes a set of recommendations for portable systems:

X/OPEN Portability Guide III
Prentice-Hall
200 Old Tappan Road
Tappan, NJ 07675
(201)592-2498

Page 587

Index

569

569

#elif 174, 569

#pragma 569 & 570

A

abort() 58, 110, 211

and assert() 219

and signals 111

aborting (see terminating)

abs() 212

absolute value, computing 212, 269, 341

access time 74, 497

access() 213

accessibility, testing for 213

acos() 215

actime 75, 557

alarm() 111, 216

alarms 216

allocating memory 229, 352

alphabetic characters, testing for 328-329

ANSI C (see Standard C)

applications (see programs)

arc cosine 215

arc sine 218

arc tangents 221-222

ARG_MAX 140, 468

and executing files 254-265

and limits.h 527

argument lists 501-502

(see also variable argument lists)

arguments, obtaining next 499

arrays

and Standard C 570

reading from a stream 50, 295

searching a sorted 227

sorting 381

writing to streams 306

asctime() 137, 217, 248

Asian languages 203

asin() 218

assert() 219, 520

assert.h 20, 520

atan() 221

atan2() 222

atexit() 223

and exit(266

atof() 224, 224, 460

atoi() 225, 225

atol() 226

attributes, terminal 147

B

background process groups 167

base-ten logarithms 348

baud rates 146, 158

reading 231, 232

setting 233, 234

big-endian 189

binary files 49, 50

Page 588

blocking signals 119

breaks 160, 480

BRKINT 153, 544

BSD

functions 566-567

porting from 565-568

bsearch() 227

BUFF_MAX 56

buffers

and streams 52, 400, 410

managing 52

BUFSIZ 535

bytes

determining number per character 205, 353

scanning memory for 356

C

C (see also Standard C) 377

and POSIX 8, 171-190

common usage 171

c_, as prefix 176

c_cc 149, 156, 158, 556

c_cflag 149, 155, 556

c_iflag 149, 153, 556

c_lflag 149, 556

c_Iflags 155

c_oflag 149, 154, 556

calendar time 248, 484

calling environment

restoring 349

saving for longjmp() 403

saving for siglongjmp() 425

calloc() 229, 296

case (see also islower(), isupper())

converting 196, 488, 489

sensitivity 63

testing for 334

catclose() 200

catgets() 200

catopen() 199

cc_t 149, 545, 556

ceil() 230

cfgetispeed() 158, 231

cfgetospeed()158, 232

cfsetispeed() 233

cfsetospeed() 234

char 200

CHAR_BIT 527

CHAR_MAX 527

CHAR_MIN 527

character handling functions 195-198

character sets 184, 569

international 194

characters 434

allow disabling of special 369

allowed in filenames 63

alphabetic 328, 329

control 156-158

testing for 331

decimal digit 332

determining number of bytes in 205, 353

hexadecimal digit 339

locating last occurrence of 456

lowercase, testing for 334

multi-byte 194, 203-205, 355

numeric 328

printing, testing for 335

pushing back onto a stream 48, 495

reading

from standard output 47

from streams 47, 278, 280, 307

scanning 56

searching strings for 447, 455, 457

uppercase 338

wide 194, 203-205, 512

writing

to standard output 45, 379

to streams 293, 378

chdir() 66, 235

child processes 101

CHILD_MAX 527

chmod() 236

chown() 73, 238

clearerr() 240

CLK_TCK 141, 468, 485

CLOCAL 155, 544

clock() 137, 241

Page 589

clock_t 241, 485

and sys/times.h 540

and time.h 547

and tms 557

CLOCKS_PER_SECOND 241

close) 96, 242

closedir() 76, 243

and opendir() 367

closing

directories 76, 243

files 96, 242, 270

streams 270

commands, executing 470

communications ports 146

compilers 13, 172

concatenating strings 442, 452

configuration files 142

configuration variables 287, 368

configuration, system 140

const 181, 570

control characters 156-158

disabling 157, 288

testing for 331

control modes 155

conversion directives (see format specifiers)

conversions 432, 438

conversions, data type 183

Coordinated Universal Time 133, 484

and gmtime() 327

and setting timezones 491

cos() 244

cosh() 245

cosines 244, 245

CREAD 155, 544

creat() 87, 246, 492

creating

directories 66, 361

FIFOs 97, 362

files 87, 246, 486

pipes 96, 372

processes 101-106, 285

sessions 168, 407

CSIZE 155, 544

CSTOPB 155, 544

ctermid() 247

example 129

ctime() 137, 248

and setting timezones 491

example 17

ctype.h 20, 175, 521

cu, System V vs. POSIX 162

currency symbols 195, 200

currency_symbol 201, 553

cuserid() 249

D

d_name 551

data

floating-point 185

packing 187-190

data bits 146

data segments 188

data structures 26

alphabetical listing of 551-557

and Standard C 570

dirent 75, 551

div_t 551

flock 94, 552

group 126

grp 552

lconv 200, 553

ldiv_t 554

passwd 125, 554

sigaction 115, 555

stat 72, 555

termios 148-159, 556

compared to System V 149

flags 153, 156

tm 133, 556

tms 138, 557

utimbuf 75, 557

utsname 132, 557

data type conversions 183

date and time

formatting 449

functions 133-138

in international code 195

DBL_DIG 186, 525

DBL_EPSILON 187, 525

DBL_MANT_DIG 186, 525

DBL_MAX 186, 525

Page 590

DBL_MAX_10_EXP 186, 525

DBL_MAX_EXP 186, 525

DBL_MIN 525

DBL_MIN_10_EXP 186, 525

DBL_MIN_EXP 186, 525

deallocating memory 296

debugging 520

decimal digit characters 332

decimal_point 200, 553

dev_t 72, 541, 555

difftime() 137, 250

direction 8

directories

changing 66, 235

closing 76, 243

creating 66, 361

getting 64, 309

opening 76, 367

reading 75-76, 387

removing 67, 395

removing entries from 69, 496

root 64

testing for 71

directory trees 64

dirent structure 75, 551

dirent.h 20, 75, 175, 522

div() 251

div_t 537, 551

division 251, 283

division remainders 343

dup() 252

example 104

dup2() 253

E

E2BIG 523, 559

EACCES 523, 559

EAGAIN 523, 559

EBADF 523, 559

EBUSY 523, 559

ECHILD 523, 560

ECHO 155, 544

ECHOE 155, 544

echoing 147

ECHOK 155, 544

ECHONL 155, 544

EDEADLK 523, 560

EDOM 523, 560

EEXIST 523, 560

EFAULT 523, 560

EFBIG 523, 560

EINTR 523, 560

EINVAL 523, 560

EIO 523, 561

EISDIR 523, 561

EMFILE 523, 561

EMLINK 523, 561

ENAMETOOLONG 523, 561

end-of-file

character 156

indicators 240

testing for 275

ENFILE 523, 561

ENODEV 523, 561

ENOENT 523, 561

ENOEXEC 523, 562

ENOLCK 523, 562

ENOMEM 523, 562

ENOSPC 523, 562

ENOSYS 523, 562

ENOTDIR 523, 562

ENOTEMPTY 523, 562

ENOTTY 523, 562

environ 138

environment variables 138-140

and setting the timezone 491

restoring 349

ENXIO 523, 562

EOF 535

EPERM 523, 563

EPIPE 523, 563

ERANGE 523, 563

erase character 156

EROFS 523, 563

ermo.h 20, 175, 523

error

codes, alphabetical listing of 559-563

indicators 240, 276

messages, printing 371

numbers 448

reporting 161

Page 591

escape sequences 184

ESPIPE 523, 563

ESRCH 523, 563

examples

computer-to-computer

communications 162-166

copying files 90-92

formatted output 41

getting user and group IDs 126-127

input/output functions 53-59

porting to POSIX 16-19

printing a list of groups 128-132

reading a password 150-152

reading directories 77-83

sample POSIX program 26-38

timing a system function 116

using fork() and exec() 103-105

EXDEV 523, 563

exec() 92, 102

execl() 102, 254

portability of 105

execle() 102, 256

execlp() 102, 258

executing

commands 470

files 102-103, 254-265

execv() 102, 260

execve() 102, 262

execvp() 264

_exit() 109, 267, 266

exit() 109, 266

EXIT_FAILURE 266, 537

EXIT_SUCCESS 109, 266, 537

exp() 268

exponential functions 268

exponents, computing 373

external

functions 26

variables 26

F

F_, as prefix 175

F_DUPFD 92-95, 252, 524

and fcntl() 271

F_GETFD 92-95, 524

and fcntl() 271

F_GETFL 92-95, 524

and fcntl() 272

F_GETLK 92-95, 524

and fcntl() 272

F_OK 213

and unistd.h 548

F_RDLCK 94, 524

F_SETFD 92-95,524

and fcntl() 271

F_SETFL 92-95,524

and fcntl() 272

F_SETLK 92-95, 524

and fcntl() 272

F_SETLKW 92-95, 524

and fcntl() 272

F_UNLCK 94, 524

F_WRLCK 94, 524

fabs() 269

fclose() 49, 270

and abort() 211

example 105

fcntl() 92, 271

fcntl.h 20,175, 524

FD_CLOEXEC 524

and executing files 255-265

and fcntl() 271

FD_COLEXEC 372

fdopen() 98, 274

example 105

Federal Information Processing Standard 573-574

feof() 275

ferror() 276

fflush() 277, 284

fgetc() 47, 278, 307

fgetpos() 51, 279, 305

fgets() 280

example 54

FIFOs 96

creating 97, 362

reading from 385

testing for 71

file characteristics 72, 441

file creation masks 97, 492

Page 592

file descriptors 87

and streams 98, 274

and terminals 330

duplicating 252-253

manipulating 92, 271

mapping pointers to 98, 281

file modes

changing 73, 236

obtaining 72

file offsets, repositioning 95, 350

file ownership, changing 73, 238

file permission bits 70, 236

and directories 66

changing 73

file permissions 70, 70-74

changing 236

symbols 71, 236

file position

and offsets 95

getting 50, 279

getting indicators for 305

setting 50, 76, 302-303

to beginning of file 393

file scope variables 25

file status 304

FILENAME_MAX 535

filenames

characters allowed in 63

generating strings for 64, 487

maximum length of 287, 368

obtaining from a directory 75

portable 63

reserving 64

fileno() 98, 281

files

and configuration variables 287

binary 49, 50

changing ownership of 73, 238

closing 96, 242, 270

configuration 142

creating 87, 246, 486

creating links to 69, 344

executing 102-103, 254-265

header (see header files)

input/output 39

locking 94

obtaining status of 304

opening 49, 87, 284, 365

reading from 50, 89, 295, 299, 385

removing 69, 390, 496

renaming 69, 391

reopening 297

rewriting 87, 246

standard 39

temporary 64, 486

testing 71, 213

testing for accessibility 213

writing to 50, 89, 294, 306, 513

multiple 43

filesystems 63-83

float.h 20, 185, 525

floating-point

data 185

numbers 298, 342

flock structure 94, 552

flock(), and fcntl() 273

floor() 282

FLT_DIG 186, 525

FLT_EPSILON 187, 525

FLT_MANT_DIG 186, 525

FLT_MAX 186, 525

FLT_MAX_10_EXP 186, 525

FLT_MAX_EXP 186, 525

FLT_MIN 186, 525

FLT_MIN_10_EXP 186, 525

FLT_MIN_EXP 186, 525

FLT_RADIX 186, 525

FLT_ROUNDS 525

fmod() 283

fopen() 49, 284

example 54

FOPEN_MAX 535

foreground process groups 167-169, 478, 483

fork) 101, 285

and controlling terminals 168

and file control 92

format specifiers

and fprintf() 290

date and time 135

input 46, 299, 396-398

output 374-377

Continued on next page

Page 593

Continued from previous page

sprintf() 432-434

sscanf() 438-439

strftime() 449-450

formatting

numbers 200-202

strings 431

time 449

fpathconf() 142, 287

and disabling control characters 157

fpos_t 535

and fgetpos() 279

fprintf() 289

and fscanf() 45

and vfprintf() 44

pitfalls of 42

fputc()45, 293

and putc()378

fputs() 45, 294

frac_digits 201, 553

fractions, and floating-point numbers 298

fread() 50, 274, 295

free() 296

freopen() 297

frexp() 298, 342

fscanf() 45, 299

pitfalls of 47

fseek() 51, 302

and fopen() 284

and rewind() 393

fsetpos() 51, 284, 303

fstat() 304

ftell() 51, 305

function prototypes 178

functions

and system calls 39

baud rate 158

BSD 566-567

calling at program termination 223

character handling 195-198

date and time 133-138

defining 26

external 26

file positioning 50

input 46-50, 280, 307

library 39

line control 160-161

mixing old and new 180

output 40-45

POSIX 177

alphabetical listing of 209-515

registering at exit() 223

signal-catching 26, 112

Standard C

alphabetical listing of 209-515

reserved names 176

System V 568

fwrite() 50, 306

G

getc() 47, 307, 308

getchar() 47, 308

getcwd() 65, 309

getegid() 310

getenv() 139, 311

geteuid() 124, 249, 313

getgid() 124, 314

getgrgid() 126, 315

getgram() 127, 316

getgroups() 127, 317

getlogin() 124, 319

and cuserid() 249

example 129

getpgrp() 320

getpid() 123, 321

getppid() 123, 322

getpswd() 150

getpwnam() 125, 319, 323

getpwuid() 125, 249, 324

gets() 325

getuid() 249, 326

gid_t

and grp 552

and stat 555

and stat() 72

and struct group 126

and struct passwd 125

and sys/types.h 541

gmtime() 133, 217, 327

gr_, as prefix 175, 526

gr_gid 126, 552

gr_mem 126, 552

Page 594

gr_name 126, 552

gr_passwd 316

Greenwich Mean Time (see Coordinated Universal Time)

group IDs 124, 126, 315

effective 124, 310

multiple 127

process (see process group IDs)

real 124, 314

supplementary 317

group names 316

group structure 126

grp 552

grp.h 20, 175, 526

H

header files 20-23

alphabetical listing of 520-550

and Standard C 571

including 58

local 25

reserved names 175

system 25

hexadecimal-digit characters 339

HOME 312

HUGE_VAL 529

HUPCL 155, 544

hyperbolic cosines 245

hyperbolic sines 429

I

I/O (see input/output)

ICANON 155, 544

ICRNL 154, 544

identifiers 569

IDs

effective user 313

group 124, 126, 310

effective 124

multiple 127

real 124, 314

supplementary 317

process 123, 321, 322

IEEE Standard 2, 573-574

IEXTEN 156, 544

IGNBRK 544

IGNCR 154, 544

IGNLCR 544

IGNPAR 153, 544

INLCR 154

inot 72, 541, 555

i-nodes (see also serial numbers) 67

INPCK 154, 544

input 299

baud rates 158

discarding 160, 476

functions 46-50, 280

lines, maximum length of 287, 368

modes 153

processing 152

reading 46, 299

characters from standard 308

input/output

files 39-59

non-canonical 153

terminal 145-166

int_curr_symbol 201, 553

intfrac_digits 201, 553

INT_MAX 527

INT_MIN 527

integers

absolute value of 212, 341

computing 230

dividing 251, 283

truncating arguments to 282

international code

Asian languages 203

case conversion 196

character handling functions 195-198

message catalogs 198

multi-byte characters 203-205

numeric formatting 200-202

wide characters 203-205

internationalization 193-205

interrupt character 156, 157, 158

ioctl() 145

and tc*() functions 473-483

and terminal functions 160

_IOFBF 52, 535

_IOLBF 52, 535

Page 595

_IONBF 52

isalnum() 328

isalpha() 329

and international code 197

and isalnum() 328

and LC_CTYPE 195

isatty() 330

iscntrl() 331

isdigit() 328, 332

isgraph() 195, 333, 333

ISIG 155, 544

islower() 334

and international code 196

and isalpha() 329

and LC_CTYPE 195

isprint() 195, 335

ispunct() 195, 336

isspace() 195, 197, 337

ISTRIP 154, 544

isupper() 338

and international code 196

and isalpha() 329

and LC_CTYPE 195

isxdigit() 339

IXOFF 154, 544

IXON 154, 544

J

jmp_buf 531

job control 112, 166

K

kill character 156

kill() 110, 340

and raise() 114, 383

and signals 121

L

l_, as prefix 175

L_INCR 351

l_len 94, 552

l_pid 552

L_SET 351

l_start 94, 552

L_tmpnam 535

l_type 94, 552

l_whence 94, 552

L_XTND 351

labs() 341

LANG 139, 312

languages, Asian 203

LC_, as prefix 175

LC_ALL 139, 195

and locale.h 528

and setlocale() 405

LC_COLLATE 139, 195, 312

and locale.h 528

and setlocale() 405

LC_CTYPE 139, 195, 312

and locale.h 528

and setlocale() 405

LC_MESSAGES 195

LC_MONETARY 139, 195, 312

and locale.h 528

and setlocale() 405

LC_NUMERIC 139, 195, 312

and locale.h 528

and setlocale() 405

LC_TIME 139, 195

and locale.h 528

and setlocale() 405

lconv structure 200, 553

LDBL_DIG 186, 525

LDBL_EPSILON 187, 525

LDBL_MANT_DIG 186, 525

LDBL_MAX 186, 525

LDBL_MAX_10_EXP 186, 525

LDBL_MAX_EXP 186, 525

LDBL_MIN 525

LDBL_MIN_10_EXP 186, 525

LDBL_MIN_EXP 186, 525

ldexp() 298, 342

ldiv() 343

ldiv_t 537, 554

libraries 14

and reserved names 175

and system calls 39

POSIX 11

limits.h 20, 87, 175, 527

Page 596

line control functions 160-161

link count 287, 368

link() 69, 344

LINK_MAX 527

links

creating 69, 344

symbolic 83

listen() 162

little-endian 189

local header files 25

local modes 155

locale.h 20, 175, 528

localeconv() 202, 345

and LC_MONETARY 195

and setlocale() 405

locales 193

and environment variables 139

current 345

names of 195

setting 195, 405

localization of programs 193

localtime() 133, 346

and asctime() 217

and setting timezones 491

example 17

locking records 94

log() 347

logl0() 348

logarithms 347, 348

login name 124, 319

LOGNAME 139, 312

long integers 341

LONG_MAX 527

and file positions 51

LONG_MIN 527

_longjmp() 419

longjmp() 349, 403

lowercase 63

converting to uppercase 489

testing for 334

lseek() 95, 350

and ftell() 305

M

macro

arguments, converting to strings 173

replacement 172

macros 25, 186

main(), placement of 26

malloc() 352

and calloc() 229

and free 296

math.h 20, 175, 529

MAX, as symbol suffix 175

MAX_CANNON 527

MAX_INPUT 527

MAX_LONG 305

MB_CHR_MAX 537

MB_LEN_MAX 527

mblen() 195, 206, 353

mbstowcs() 195, 204, 354

mbtowc() 195, 204, 353, 355

mem, as prefix 175

memchr() 356

memcmp() 357

memcpy() 358

memmove() 359

memory

alignment 187

allocating 229, 352

deallocating 296

filling with constant bytes 360

scanning for a byte 356

zeroing 229

memory objects

changing size of 389

comparing 357

copying 358-359

memset() 360

message catalogs 199

messages, native language 199

mkdir() 66, 361, 492

mkfifo() 97, 362

mknod(), and mkdir() 361

mktime() 135, 363, 491

mod_t 72

mode_t 541, 555

modems 146, 153

Page 597

modes

control 155

input 153

local 155

output 154

modf() 364

modification time 74, 497

modtime 75, 557

mon_decimal_point 201, 553

mon_grouping 201, 553

mon_thousands_sep 201, 553

monetary quantities 200

multi-byte characters 194, 203-205, 355, 512

multi-byte strings 204, 354, 511

multiple programs 166

multiplying by powers of two 342

N

n_cs_precedes 202, 553

n_sep_by_space 202, 553

n_sign_posn 553

NAME_MAX 527

names

group 316

user 249

naming restrictions 174-178

NCCS 544

negative_sign 201, 553

newline character 156

NGROUPS_MAX 318, 527

nlink_t 72, 541, 555

nodename 493, 557

NOFLSH 156, 544

non-canonical I/O 153

NULL 528

numbers

floating-point 298

formatting 200-202

in international code 194

numeric characters 328

O

O_, as prefix 175

O_ACCMODE 524

O_APPEND 87, 366, 524

O_CREAT 87, 366, 524

O_EXCL 87, 366, 524

O_NOCTTY 87, 366, 524

O_NONBLOCK 88, 514, 524

and open() 366

and pipe() 372

and reading from FIFOs 385

O_RDONLY 87, 365, 524

and F_GETFL 272

O_RDWR 87, 365, 524

and F_GETFL 272

O_TRUNC 88, 366, 524

O_WRONLY 87, 365, 524

and F_GETFL 272

off_t 72, 541, 552, 555

offsets 95, 350

_IONBF 535

onedir() 78

open() 87, 365

and creat() 246

and umask() 492

OPEN_MAX 87, 527

opendir() 76, 367

and closedir() 243

and fork() 77

and readdir() 388

opening

directories 76, 367

files 49, 87, 284, 365

streams 49, 284

operators 570

OPOST 154, 545

order 125

orphaned process groups 167

output

baud rates 158

discarding 160, 476

formatted 40

functions 40-45, 294

modes 154

Continued on next page

Page 598

Continued from previous page

processing 152

suspending and resuming 161, 474

waiting until transmitted 160, 473

P

p_cs_precedes 202, 553

p_sep_by_space 202

p_set_by_space 553

p_sign_posn 202, 553

packing data 187-190

PANIC 57

parameters, terminal 147

PARENB 155, 545

parents 101

PARMRK 154, 545

PARODD 155, 545

parsing strings 437

passwd structure 125, 554

passwords 323-324

PATH 139, 312

PATH_MAX 527

pathconf() 142, 368

and chown() 239

and disabling control characters 157

pathnames

generating 247

maximum length of 287, 368

relative 64

terminal 124, 490

paths, getting configuration variables for 368

pause() 120, 370

_PC_CHOWN_RESTRICTED 142, 287, 369, 548, 239

_PC_LINK_MAX 142, 287, 368

_PC_MAX_CANNON 548

_PC_MAX_CANON 142, 287, 368

_PC_MAX_ INPUT 142, 287, 368, 548

_PC_NAME_MAX 142, 287, 368, 548

_PC_NO_TRUNC 142, 288, 369, 548

_PC_PATH_MAX 287, 368, 548, 142

_PC_PIPE_BUF 142, 287, 368, 548

_PC_VDISABLE 142, 369, 548

permissions (see file permissions)

permissions bits (see file permission bits)

perror() 371

and international code 198

example 55

pid_t 123, 541, 552

pids (see process IDs)

pipe buffers 287, 368

pipe() 96, 372

PIPE_BUF 514, 527

pipes 96, 372

pointers

and Standard C 571

mapping to file descriptors 98, 281

porting

from BSD and System V to POSIX 565-568

programs 15-20

to other countries 193-205

positive_sign 201, 553

POSIX 7

and C 8

and non-UNIX systems 8

and Standard C 171-190

and UNIX 7

companies supporting 2

design principles 7

Federal Information Processing Standard 573-574

filesystems 63-83

functions 177

alphabetical listing of 209-515

IEEE Standard 2

libraries 11, 14

omissions in 6

overview 1-11

POSIX.1 5

programs, developing 13

proposed standards for 3

template 24

_POSIX_ARG_MAX 527

_POSIX_CHILD_MAX 140, 468, 527

_POSIX_CHOWN_RESTRICTED 74, 548

_POSIX_JOB_CONTROL 141, 166, 469, 483, 548

_POSIX_LINK_MAX 527

_POSIX_MAX_CANNON 527

_POSIX_MAX_INPUT 527

Page 599

_POSIX_NAME_MAX 527

_POSIX_NGROUPS_MAX 141, 468, 527

_POSIX_NO_TRUNC 548

_POSIX_OPEN_MAX 141, 469, 527

_POSIX_PATH_MAX 527

_POSIX_SAVED_IDS 141, 401, 408, 469, 548

_POSIX_SOURCE 11, 14, 25

_POSIX_SSIZE_MAX 527

_POSIX_STREAM_MAX 527

_POSIX_TZNAME_MAX 527

_POSIX_VDISABLE 157, 548

_POSIX_VERSION 141, 469, 548

pow() 373

preprocessors 172, 569

printf() 374

and fdopen 274

and vprintf() 44

example 54

pitfalls of 42

printing characters, testing for 335

printuser() 126

process groups 166-169

background 167

foreground 167-169, 478, 483

groups of 167

IDs 320, 406-407

orphaned 167

process IDs 123, 321, 322

and sending signals 121

processes 101-122

creating 101-106, 285

delaying 120, 430

sending signals to 340

status values of 106

suspending 120, 370

terminating 106-110, 211, 267

waiting for termination 106-107, 507-510

processing input 152

processing output 152

processor time, determining 137, 241

programs

developing 13

executing 102-103

flowchart for structuring 29

internationalizing 193

localizing of 193

maintaining old 180

porting 15-20

running multiple 166

template for 24

terminating 58, 106-110, 211, 219, 266

writing new 180

punctuation, testing for 336

putc() 45, 378, 379

putchar() 45, 379

puts() 45

pw_, as prefix 175

pw_comment 323-324

pw_dir 125, 554

pw_gecos 323-324

pw_gid 125, 554

pw_name 125, 554

pw_quota 323-324

pw_shell 125, 554

pw_uid 125, 554

pwd.h 20, 175, 530

Q

qsort() 381

qualifiers 181

quit character 156, 158

R

R_OK 213

and unistd.h 548

raise() 114, 340, 383

rand() 384, 436

RAND_MAX 537

random numbers, returning 384

read() 89, 385, 513

readdir() 76, 387

and closedir() 243

andfork() 286

and opendir() 367

resetting 76

resetting pointer 394

reading 46

arrays from streams 50, 295

bytes from a file 385

Continued on next page

Page 600

Continued from previous page

characters

from standard input 308

from streams 278, 280, 307

directories 75-76, 387

from a file 50, 89, 295, 299

input 299

strings from standard input 325

real time 137, 485

realloc() 296, 389

record locking 94

remainders, computing 283, 343

remove() 390, 496

removing

directories 67, 395

directory entries 69, 496

files 69, 390, 496

rename() 69, 391

renaming files 69, 391

rewind() 51, 284, 393

rewinddir() 76, 388, 394

rmdir() 67, 395

root directory 64

run-time, obtaining information at 123-143

S

S_, as prefix 175

S_IRGRP 66, 237, 524, 539

S_IROTH 66, 237, 524, 539

S_IRUSR 66, 236, 524, 539

S_IRWXG 70, 524, 539

S_IRWXO 70, 97, 524, 539

S_IRWXU 70, 524, 539

S_ISBLK 71, 524, 539

S_ISCHR 71, 524, 539

S_ISDIR 71, 524, 539

S_ISFIFO 71, 524, 539

S_ISGID 70, 236, 524, 539

and chmod() 73

S_ISREG 71, 524, 539

S_ISUID 70, 236, 524, 539

and chmod() 73

S_IWGRP 66, 237, 524, 539

S_IWOTH 66, 237, 524, 539

S_IWUSR 66, 236, 524, 539

S_IXGRP 66, 237, 524, 539

S_IXOTH 66, 237, 524, 539

S_IXUSR 66, 236, 524, 539

SA_, as prefix 175

sa_, as prefix 175

sa_flags 115, 413, 555

sa_handler 115, 412, 555

sa_mask 115, 412, 555

SA_NOCLDSTOP 413

and signal.h 532

sample programs (see examples)

_SC_ARG_MAX 140, 468, 548

_SC_CHILDMAX 140, 468, 548

_SC_CLK_TCK 141, 468, 548

_SC_JOB_CONTROL 141, 166, 469, 548

_SC_NGROUPS_MAX 141, 468, 548

_SC_OPEN_MAX 141, 469, 548

_SC_SAVED_IDS 141, 469, 548

_SC_STREAM_MAX 141, 468, 548

_SC_TZNAME_MAX 141, 468, 548

_SC_VERSION 141, 469, 548

scanf() 396

example 56

scanning

characters 56

strings for characters 443

SCHAR 527

SCHAR_MIN 527

searching

a sorted array 227

strings for characters 455, 457

seeding rand() 436

SEEK_CUR 51, 95, 302, 524

and seek() 350

and stdio.h 535

and unistd.h 548

SEEKEND 51, 302, 524

and lseek() 350

and stdio.h 535

and unistd.h 548

SEEK_EOF 95

SEEK_SET 51, 95, 302, 524

and lseek() 350

and stdio.h 535

and unistd.h 548

seekdir() 367

and readdir() 387

Page 601

sending signals 383

serial numbers 67, 72

sessions 167-168, 407

setbuf() 400

setbuffer() 411

setgid() 401

_setjmp() 419

setjmp() 403

setjmp.h 20, 531

setlocale() 195, 405

setpgid() 406

setpgrp(), and setsid() 407

setsid() 168, 407

setuid() 408

setvbuf() 52, 410

SHRT_MAX 527

SHRT_MIN 527

SIG, as prefix 175

SIG_BLOCK 119, 532

and signal.h 532

and sigprocmask() 423

SIG_DFL 112, 114, 412

and signal.h 532

SIG_ERR

and signal.h 532

SIG_IGN 112, 114, 412

and signal.h 532

SIG_SETMASK 119

and signal.h 532

and sigprocmask() 423

SIG_UNBLOCK 119

and signal.h 532

and sigprocmask() 423

SIGABRT 111, 113

and abort() 211

and signal.h 532

sigaction structure 115, 555

sigaction() 110, 115, 412

and signal() 421

sigaddset() 118, 414

SIGALRM 111

and alarm() 216

SIGARLM

and signal.h 532

sigblock(), and sigprocmask() 424

SIGCHLD 112, 413

and exit() 267

and signal.h 532

SIGCONT 112

and signal.h 532

sigdelset() 415

sigemptyset() 118, 416

sigfillset() 118, 417

SIGFPE 111, 113

and signal.h 532

SIGHUP 111

and _exit 267

and modems 153

and signal.h 532

SIGILL 111, 114

and signal.h 532

SIGINT 111, 114

and signal 532

SIGIOT

and abort() 211

sigismember() 119, 418

and sigpending() 422

sigjmp_buf 531

SIGKILL 111

and signal.h 532

siglongjmp() 419

and setjmp() 404

and signal masks 349

signal actions 112, 412

signal masks 110, 412, 423, 427

restoring 419

signal sets 117-120

adding signals to 118, 414

creating 117, 416-417

removing signals from 415

testing for selected members 119, 418

signal() 114, 420

signal.h 20, 175, 532

signal-catching functions 26, 112

signals 110-122

adding to signal sets 414

blocking 119

changing blocked 423

examining pending 422

generated by keyboard 168

job control 112

Continued on next page

Page 602

Continued from previous page

POSIX 114

removing from a signal set 415

restoring signal masks 419

sending 121, 340, 383

Standard C 113, 420

waiting for 427

sigpause(), and sigsuspend() 427

sigpending() 422

SIGPIPE 111

and signal.h 532

sigprocmask() 110, 119, 423

SIGQUIT 111

and signal.h 532

SIGSEGV 111, 114

and signal.h 532

sigset_t 115, 412, 555

sigsetjmp() 425

and setjmp() 404

and siglongjmp 419

and signal masks 349

sigsetmask(), and sigprocmask() 424

SIGSTOP 112

and signal.h 532

sigsuspend() 110, 120, 427

SIGTERM 111, 114

and signal.h 532

SIGTSTP 112

and signal.h 532

SIGTTIN 112

and background processes 167

and signal.h 532

SIGTTOU 112

and background processes 167

and signal.h 532

and TOSTOP 156

SIGUSR1 111

and signal.h 532

SIGUSR2 111, 532

sigvec() 413

sin() 428

sines 428, 429

sinh() 429

size_t

and counted strings 452-454

and read() 89

and stddef.h 534

and stdio.h 535

and stdlib.h 537

and string.h 538

and sys/types.h 541

and time.h 547

andwrite() 515

sizeof 570

sleep() 120, 430

special characters 156 (see also control characters)

allow disabling of 288, 369

speed, terminal 146

speedt 158

and termios.h 545

sprintf() 431

and vsprintf() 44

sqrt() 56, 435

square root 435

example 53

srand() 436

and rand() 384

sscanf() 437

example 56

SSIZE_MAX

and limits.h 527

ssize_t

and read() 89, 386

and sys/types.h 541

and write() 515

st_, as prefix 175

st_atime 72, 555

st_blksize 304

st_blocks 304

st_ctime 72, 555

st_dev 72, 555

st_gid 72, 555

st_ino 72, 555

st_mode 72, 555

st_mtime 555

st_nlink 72, 555

st_rdev 304

st_size 72, 555

st_uid 72, 555

Standard C 9

and POSIX 8, 171-190

changes and additions in 569-571

Continued on next page

Page 603

Continued from previous page

functions

alphabetical listing of 209-515

reserved names 176

getting 171

libraries 14, 175

new directives in 174

preprocessors 172, 569 (see also compilers)

reserved names 174

signals 113, 420

standard input

reading 308

characters from 47

strings from 325

text from 396

writing characters to 45

standard output

writing, text to 374

standard output, writing

characters to 379

strings to 45, 380

text to 374

with argument lists 505

start character 156, 158

stat structure 72, 555

stat() 72, 441

status values 106

stdarg.h 20, 533

__STDC__ 180

stddef.h 21, 534

stderr 535

STDERR_FILENO 548

stdin 535

STDIN_FILENO 548

stdio.h 21, 535

stdlib.h 21, 204, 537

stdout 535

STDOUT_FILENO 548

stop character 157, 158

storage allocation 65

str, as prefix 175

strcat() 442

strchr() 443

strcmp() 444

strcoll() 445

and international code 197

and LC_COLLATE 195

and setlocale() 405

and strxfrm() 466

strcpy() 446

strcspn() 447

STREAM_MAX 141, 468, 527

streams

and file descriptors 98, 274

buffering 52, 400, 410

closing 270

getting position indicators for 51, 305

opening 49, 284

pushing a character back onto 48, 495

reading

arrays from 50, 295

characters from 278, 280, 307

input from 46, 299

reopening 297

setting file position for 51, 303

testing error indicators for 276

updating 277

writing

characters to 45, 293, 378

strings to 45, 294

text to 289

strerror() 448

and international code 198

strftime() 135, 449

and international code 198

and setlocale() 405

and setting timezones 491

string constants 182

string length 451

string.h 21, 175, 538

strings 570

breaking into tokens 461

comparing 444, 445

computing length of 451

concatenating 442, 452

Continued on next page

Page 604

Continued from previous page

converting

an error number to 448

macro arguments to 173

multi-byte to wide 204, 354

to double 459

to long integer 462-464

wide to multi-byte 511

copying 446

counted 452-454

formatting 431

locating last occurrence of a character in 456

parsing 437

reading from standard input 325

scanning for characters 443

searching 447

transforming 466

writing 45, 294, 380

strlen() 451

strncat() 452

strncmp() 453

strncpy() 454

and strxfrm() 466

strpbrk() 455

strrchr() 456

strspn() 457

strstr() 458

strtod() 459

and atof() 224

strtok() 461

strtol() 462

strtoul() 464

strxfrm() 466

and international code 197

and LC_COLLATE 195

and setlocale() 405

substrings 458

suspend character 158

switch statements 571

symbolic links 83

symbols, currency 195, 200

sys/stat.h 21, 175, 539

sys/times.h 21, 175, 540

sys/types.h 21-22, 123, 541

sys/utsname.h 21, 542

sys/wait.h 21, 543

sysconf() 140, 468

and job control 166

sysname 132, 493, 557

system

configuration 140, 468

header files 25

identification 132

limits 140

name, obtaining 493

system calls 39, 85, 86, 98

System V

functions 568

porting from 565-568

system(0 470

systems, calling up another 162-166

T

_t 23, 176

tan() 471

tangents 471

arc 221-222

hyperbolic 472

tanh() 472

tcdrain(0 160, 160, 473

and tcsettattr() 161

tcflag_t 149, 545, 556

tcflow() 161, 474

tcflush() 160, 476

tcgetattr() 147, 477, 482

and tcsetattr() 161

and terminal speed 231-232

tcgetpgrp() 169, 478

TCIFLUSH 161, 545

TCIOFF 161, 545

TCIOFLUSH 161, 545

TCION 161, 545

TCOFLUSH 161, 545

TCOOFF 161, 545

TCOON 161, 545

TCSADRAIN 148, 545

TCSAFLUSH 148, 151, 545

TCSANOW 148, 545

tcsendbreak() 160, 480

Page 605

tcsetattr() 147, 161, 481

and modems 153

and terminal speed 233-234

example 151

pitfalls of 161

tcsetpgrp() 169, 483

telldir() 367

and readdir() 387

template, for a POSIX application 24

TERM 139, 312

terminal

attributes 147, 477, 481

data 160, 161, 476

output, suspending and resuming 474

parameters (see terminal attributes)

pathnames 247

speed 146, 231-234

terminal functions (see line control functions)

terminals

and file descriptors 330

controlling 168

determining pathname of 490

sending breaks to 160, 480

terminating

processes 106-110, 211, 267, 507-510

programs 106-110, 211, 219, 266

termios structure 148-159, 556

and tcsettattr() 161

compared to System V 149

flags 153, 156

termios.h 21, 159, 176, 544

text

reading 396

writing

to a stream 289

to a string 44

to standard output 44, 374

with argument lists 44, 503

text strings, converting

to double 224

to integer 225

to long integer 226

thousands_sep 200, 553

time

computing differences in 137, 250

Coordinated Universal Time 133

determining current calendar 484

formats, converting 363

formatting 449

formatting calendar 248

functions 133-138

Greenwich Mean Time (see Coordinated Universal Time)

in international code 195

local 346

real 137, 485

setting access and modification 74, 497

structures 137, 217, 327

time() 133, 484

time.h 21, 547

time_t 72, 133

and stat 555

and time() 484

and time.h 547

and utimbuf 557

and utime() 75

timer values, breaking down 346

times() 137, 485

and fork() 285

timezone, setting 491

TIOCGPGRP 478

tm structure 133, 556

tm_hour 133, 556

tm_isdst 134, 556

tm_mday 133, 556

tm_min 133, 556

tm_mon 133

tm_sec 133, 556

tm_wday 133

tm_yday 133, 556

tm_year 133, 556

TMPMAX

and stdio.h 535

tmpfile() 64, 486

and exit 266

tmpnam() 64, 487

tms structure 138, 557

tms_, as prefix 175

tms_cstime 138, 485, 557

Page 606

tms_cutime 138, 485, 557

tms_stime 138, 485, 557

tms_utime 138, 485, 557

tokens, breaking strings into 461

tolower() 488

and international code 197

and LC_CTYPE 195

TOSTOP 156, 545

and background processes 167

toupper() 489

and international code 197

and LC_CTYPE 195

transforming strings 466

trigraphs 172, 184, 569

ttyname() 490

type qualifiers 181

TZ 139, 312

and tzset() 491

TZNAME_MAX 141, 468, 527

tzset() 491

U

UCHAR_MAX 527

uid_t 72, 125, 541, 555

UINT_MAX 527

ULONG_MAX 527

umask() 98, 492

uname() 132, 493

underscores 22, 175, 569

ungetc() 48, 495

and fseek() 302

and fsetpos() 303

unions 26, 570

unistd.h 21, 548

and chown() 74

and disabling control characters 157

UNIX, and POSIX 7

unlink() 69, 496

and remove() 390

updating streams 277

uppercase 63

characters 338

converting to lowercase 488

user IDs 123, 125, 324

effective 124, 313

real 326

setting 408

user name 249, 319, 323

USHRT_MAX 527

uspend character 156

UTC (see Coordinated Universal Time)

utimbuf structure 75, 557

utime() 74, 497

utime.h 21, 550

utsname structure 132, 557

V

va_arg() 499, 499

va_end() 501

and va_arg() 500

va_start() 502

and va_arg() 500

and va_end() 501

variable argument lists 501-506

writing with 503

variables

environment 138-140, 491

external 26

file scope 25

VEOF 156, 545

VEOL 156, 158, 545

VERASE 156, 545

vfork() 102

vfprintf() 43-45, 503

VINTR 156, 158, 545

VKILL 156, 545

VMIN 158, 545

void 570

volatile qualifier 181

vprintf() 43-45, 505

VQUIT 156, 158, 545

vsprintf() 43-45, 506

VSTART 156, 158, 545

VSTOP 157, 158, 545

VSUSP 156, 158, 545

VTIME 158, 545

Page 607

W

W_OK 213

and unistd.h 548

wait() 106, 507

and_exit() 267

waiting for signals 427

waitpid() 107, 509

and_exit() 267

wchar_t 355, 569

and stddef.h 534

and stdlib.h 537

wcs, as prefix 175

wcstombs() 195, 511

wctomb() 195, 205, 512

WEXITSTATUS 106, 507, 543

white space 172, 174

in international code 197

testing for 337

wide characters 194, 203-205

converting to multi-byte 512

wide strings 511

WIFEXITED 106, 507, 543

WIFSIGNALED 106, 507, 543

WIFSTOPPED 106, 508, 543

WNOHANG 108, 510, 543

working directories

changing 66

getting 64, 309

write() 89, 513

writing

arrays to streams 306

characters

to standard output 45, 379

to streams 293, 378

strings

to standard output 45, 380

to streams 45, 294

text

to streams 289

with argument lists 44, 503

writing to

files 50, 89, 294, 306, 513

multiple files 43

standard output 374, 505

strings 44

strings, with argument lists 506

WSTOPSIG 508, 543

WTERMSIG 106, 508, 543

WUNTRACED 108, 510, 543

X

X_OK 213

and unistd.h 548

xecvp() 102

Z

zeroing memory 229

Page 609

About the Author

Donald Lewine has been writing computer programs for fun and profit since 1960. He has
been teaching Computer Science in the State-of-the-Art (evening) program at Northeastern
University for the past eight years, including courses on Assembler, VAX/VMS, Pascal, C, and

UNIX. This book was written and tested over the last two years at Northeastern University.

Mr. Lewine spent 13 years with the Digital Equipment Corporation developing operating
systems and central processing units. He was Technical Director for the MicroVAX Program
when he left.

For the past nine years, Mr. Lewine has been with Data General Corporation, and is currently
Director of Engineering. In this role he has been developing the AViiON family of open
systems. He is a founder and a member of the Board of Directors of 88open, a member of the
Board of Directors of UNIX International, and Data General's representative to the Open
Software Foundation.

Page 611

Colophon

Edie Freedman designed this book. The text is set in the ITC Garamond family; examples are
Courier and figures use Helvetica Condensed. Pages are produced with FrameMaker 2.1 on the
X Windows and Macintosh platforms. Figures are produced with Aldus FreeHand 2.0 on the
Macintosh. Printing is done on a Tegra Varityper 5000.

	Writing Portable UNIX Programs with the POSIX. 1 Standard
	Acknowledgments
	Table of Contents
	Preface
	The POSIX Standard Documents
	Guide to POSIX for Programmers
	Programming Guide
	Reference Guide and Appendixes

	Assumptions
	Conventions
	Sample Programs Available on Internet

	Chapter 1 Introduction to POSIX and Portability
	Who is Backing POSIX?
	The POSIX Family of Standards
	The POSIX. 1 Standard Document
	The Design of POSIX
	POSIX and UNIX
	POSIX and Non- UNIX Operating Systems
	POSIX, C, ANSI C, and Standard C
	Why Standard C?
	Working Outside the Standards

	Finding The POSIX Libraries
	Converting Existing Programs

	CHAPTER 2 Developing POSIX Applications
	The POSIX Development Environment
	The Standard C Compiler

	POSIX and C Libraries
	Converting Existing Programs
	A Porting Example
	An Alternate Approach

	Standard Header Files
	Template for a POSIX Application
	Sample Program
	Portability Lab

	Chapter 3 Standard File and Terminal I/ O
	Libraries and System Calls
	Standard Files
	Formatted Output
	Examples
	Pitfalls

	The vfprintf(), vprintf(), and vsprintf() Functions
	Character Output Functions
	The fputs() and puts() Functions
	The fputc(), putc(), and putchar() Functions

	Reading Lines of Input
	Pitfalls
	Additional Pitfall

	Other Character Input Functions
	The fgetc(), getc() and getchar() Functions
	The fgets() Function
	The gets() Function
	The ungetc() Function

	Opening and Closing Files
	Direct Input/ Output functions
	The fwrite() and fread() Functions

	File Positioning Functions
	The fgetpos() and fsetpos() Functions
	The ftell() and fseek() Function
	The rewind() Function

	Managing Buffers
	Sample Program
	Portability Lab

	Chapter 4 Files and Directories
	Portable Filenames
	Directory Tree
	Current Working Directory
	Making and Removing Directories
	The rmdir() Function
	Simulating the mkdir() and rmdir() Functions

	Directory Structure
	Manipulating Directories
	Linking to a File
	Removing a File
	Renaming a File

	File Characteristics
	Retrieving a File's Characteristics
	Changing File Accessibility
	Changing the Owner of a File
	Setting File Access and Modification Times
	Reading Directories
	The opendir() Function
	The readdir() Function
	The closedir() Function
	The rewinddir() Function
	General Comments
	Complete Example

	Portability Lab

	Chapter 5 Advanced File Operations
	Primitive File Operations
	File Descriptors
	Opening afile
	Reading from a File
	Writing to a File
	Fast File Copy Example
	Control Operations on a File
	Setting the File Position
	The dup() and dup2() Functions
	Closing a File

	FIFOs and Pipes
	File Creation Mask
	The umask() Function

	Mixing the Levels
	The fdopen() Function
	The fileno() Function
	Pitfalls

	Portability Lab

	Chapter 6 Working with Processes
	Process Creation
	The fork() Function
	The exec() Family of Function
	Example: Piping Output Through more

	Process Termination
	The wait() and waitpid() Functions
	Terminating the Current Process
	Terminating Another Process

	Signals
	Signal Actions
	Signal- Catching Functions
	Examine and Change Signal Action
	Example: Read with a timeout
	Signal Sets
	The sigemptyset() Function
	The sigfillset() Function
	The sigaddset() Function
	The sigdelset() Function
	Using the sigset Functions
	The sigismember() Function
	The sigprocmask() Function
	The sigpending() Function
	Wait for a Signal
	Sending a Signal

	Portability Lab
	Process Identification
	User Identification
	User IDs
	Group IDs

	System Identification
	Date and Time
	The time() Function
	The localtime() and gmtime() Functions
	The mktime() Function
	The strftime() Function
	The asctime() and ctime() Functions
	The difftime() Function
	The clockO and timesO Functions

	Environment Variables
	The getenvO Function

	The sysconf() Function
	The pathconf() and fpathconf() Functions
	Portability Lab

	Chapter 8 Terminal I/ O
	Terminal Concepts
	Setting Terminal Parameters
	The tcsetattr() and tcgetattr() Functions
	The termios Structure
	System V termio and POSIX termios Structures
	Example: Reading a Password
	Input Processing
	Output Processing
	Modem Control
	Non- Canonical I/ O

	Line Control Functions
	The tcsendbreakO Function
	The tcdrain() Function
	The tcflush() Function
	The tcflow() Function

	Avoiding Pitfalls
	Example: Computer- to- Computer Communications
	Process Groups and Job Control
	Process Groups
	Session
	Controlling Terminal
	Get/ Set Process Group

	Portability Lab

	Chapter 9 Posix And Standard C
	The Standard C Preprocessor
	Translation Phases
	Macro Replacement
	Conversion of Macro Arguments to Strings
	Token Pasting
	New Directives

	Namespace Issues
	Names Reserved by the C Language
	Names Reserved by Header Files
	C Library Functions
	POSIX Library Functions
	Avoiding Pitfalls

	Function Prototypes
	Avoiding Pitfalls
	Writing New Programs
	Maintaining Old Programs
	Mixing Old and New

	Using const and volatile
	String Constants
	Data Type Conversions
	Character Sets
	Using Floating- point Data
	Using Data Structures
	Alignment
	Data Segment Layout
	Big- endian vs. Little- endian

	Internationalization
	Portability

	Chapter 10 Porting to Far- off Lands
	Some Definitions
	Internationalization
	Localization
	Locale

	Locale Control
	Character and Codeset
	Messages
	Representation of Numbers
	Currency
	Dates

	Setting the Current Locale
	Character- handling Functions
	The isalphaO, islower(), and isupper() Functions
	The toupper() and tolower() Functions
	The isspace() Function
	The strcoll() Function
	The strxfrm() Function
	The strerror() and perror() Functions
	The strftime() Function

	Native Language Messages
	Message Catalogs
	The catopen() Function
	The catgets() Function
	The catclose() Function

	Local Numeric Formatting
	Asian Languages
	Multi- byte Characters
	Wide Characters
	Working with Multi- byte and Wide Characters

	Portability Lab

	Library Functions
	Format:
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Causes abnormal process termination.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the absolute value of an integer.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Tests for file accessibility.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the principal value of arc cosine.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Schedules an alarm.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Converts a time structure to a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the principal value of the arc sine.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Aborts the program if assertion is false.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Example:
	Reference:
	Notes:

	Š Computes the principal value of the arc tangent.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Computes the principal value of the arc tangent of y/ x.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Registers a function to be called at normal program termination.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Converts a text string to
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Converts a text string to integer.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Converts a text string to long integer.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Searches a sorted array.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Example:
	Reference:
	Conversions:
	Notes:

	Š Allocates and zeroes memory.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the smallest integer greater than or equal to
	Synopsis:
	Arguments:
	Returns:
	Description:
	Conversions:
	Notes:

	Š Reads terminal input baud rate.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Reads terminal output baud rate.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Sets terminal input baud rate.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Sets terminal output baud rate.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Changes the current working directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Changes file mode.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Changes the owner and/ or group of a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Clears end- of- file and error indicators for a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Determines processor time used.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Closes a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Ends directory read operation.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the cosine function.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Computes the hyperbolic cosine function.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Creates a new file or rewrites an existing one.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:

	Š Generates terminal pathname.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Formats a calendar time.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Gets user name.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Computes the difference between two times.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the quotient and remainder of an integer division.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Duplicates an open file descriptor.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Duplicates an open file descriptor.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:

	Š Executes a file.
	Synopsis:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Executes a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Executes a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Executes a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Executes a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Executes a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Causes normal program termination.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Terminates a process.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Computes the exponential function.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference.
	Notes:

	Š Computes the absolute- value function.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Closes an open stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Manipulates an open file descriptor.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Opens a stream on a file descriptor.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests the end- of- file indicator for a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests the error indicator for a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Updates stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Reads a character from a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Gets the current file position.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Reads
	n

	characters from a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Maps a stream pointer to a file descriptor.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Computes the largest integer not greater than
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Computes the remainder of x/ y.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Opens a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Creates a process.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Gets configuration variable for an open file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Writes formatted text to a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Writes a character to a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Writes a string to a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Reads an array from a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Deallocates dynamic memory.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Closes and then opens a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Breaks a floating- point number into a fraction and integer.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Reads formatted input from a stream
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Sets file position.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:

	Š Sets the file position for a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Gets file status.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversions:

	Š Gets the position indicator for a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Writes an array to a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversions:
	Notes:

	Š Reads a character from a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Reads a character from standard input.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Gets current working directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets effective group ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets the environment variable.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets effective user ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets real group ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads groups database based on group ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads group database based on group name.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets supplementary group IDs.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Gets user name.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets process group ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	getpid() Š Gets process ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets parent process ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads user database based on user name.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads user database based on user ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads a string from standard input.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Gets real user ID.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Breaks down a timer value into a
	structure in Coordinated Universal Time (UTC).
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Tests for alphabetic or numeric character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for alphabetic character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Determines if a file descriptor is associated with a terminal.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Tests for control character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for decimal- digit character.
	Synopsis:
	Arguments:
	Description:
	Reference:
	Notes:

	Š Tests for printing character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Tests for lowercase character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for printing character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for punctuation.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for white- space character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for uppercase alphabetic character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Tests for hexadecimal- digit character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sends a signal to a process.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Computes the absolute value of a long integer.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Multiplies a floating- point number by a power of 2.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Computes the quotient and remainder of integer division.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Creates a link to a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:

	Š Gets rules to format numeric quantities for the current locale.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Breaks down a timer value into a time structure in local time.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Computes the natural log function.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Computes the base- ten logarithm function.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Restores the calling environment.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Repositions read/ write file offset.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Allocates dynamic memory.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Determines the number of bytes in a character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts a multibyte string to a wide- character string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference.
	Conversion:
	Notes:

	Š Converts a multibyte character to a wide character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Scans memory for a byte.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Compares two memory objects.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Copies non- overlapping memory objects.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Copies (possibly overlapping) memory objects.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Fills memory with a constant byte.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Makes a directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:

	Š Makes a FIFO special file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts time formats.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Breaks a value into integral and fractional parts.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Opens a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Opens a directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets configuration variables for a path.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Suspends process execution.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Prints an error message.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Creates an interprocess channel.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Computes x raised to the power y.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Notes:

	Š Writes formatted text to the standard output stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Writes a character to a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Writes a character to standard output.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Writes a string to standard output.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Sorts an array.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Example:
	Reference:
	Conversion:
	Notes:

	Š Sends a signal.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Returns a random number.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads from a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads a directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Changes the size of a memory object.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Removes a file from a directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Renames a file.
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets the file position to the beginning of the file.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Resets the
	pointer.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Removes a directory.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Reads formatted text from standard input stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Determines how a stream will be buffered.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Sets group ID.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Saves the calling environment for use by longjmp().
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Sets or queries a program's locale.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets process group ID for job control.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Creates a session and sets the process group ID.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets the user ID.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Determines buffering for a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Examines and changes signal action.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Adds a signal to a signal set.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Removes a signal from a signal set.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Creates an empty signal set.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Creates a full set of signals.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Tests a signal set for a selected member.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Goes to and restores signal mask.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Specifies signal handling.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Examines pending signals.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Examines and changes blocked signals.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Saves state for
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Waits for a signal.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Computes the sine function.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Computes the hyperbolic sine of x.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:

	Š Delays process execution.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Formats a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Computes the square root function.
	Synopsis:
	Arguments:
	Returns: Errors:
	Description:
	Reference:
	Notes:

	Š Sets a seed for the
	function.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Parses a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Gets information about a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:

	Š Concatenates two strings.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Scans a string for a character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Compares two strings.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Compares two strings using the current locale.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Copies a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Searches a string for characters which are not in the second string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts an error number to a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Formats date/ time.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:

	Š Computes the length of a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Concatenates two counted strings.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Compares two counted strings.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Copies a counted string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Searches a string for any of a set of characters.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Locates the last occurrence of a character in a string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Searches a string for any of a set of characters.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Locates a substring.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts a string to double.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Breaks a string into tokens.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Converts a string to
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts a string to unsigned long int.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Transforms strings using rules for locale.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets system configuration information.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Executes a command.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Computes the tangent of
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Computes the hyperbolic tangent of x.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Waits for all output to be transmitted to the terminal.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Suspends/ restarts terminal output.
	Synopsis:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Discards terminal data.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets terminal attributes.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes.

	Š Gets foreground process group ID.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sends a break to a terminal.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets terminal attributes.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets foreground process group ID.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:

	Š Determines the current calendar time.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets process times.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:

	Š Creates a temporary file.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Generates a string that is a valid non- existing file name.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts uppercase to lowercase.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts lowercase to uppercase.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Determines a terminal pathname.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets the timezone from environment variables.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets a file creation mask.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets system name.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Pushes a character back onto a stream.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Notes:

	Š Removes a directory entry.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Sets file access and modification times.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Gets the next argument.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Example:
	Reference:
	Conversion:
	Notes:

	Š Ends variable argument list.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Starts a variable argument list.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Writes formatted text with a variable argument list.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Example:
	Reference:
	Conversion:
	Notes:

	Š Write formatted text to standard output with a variable argument list.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Write formatted text to a string with a variable argument list.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Waits for process termination.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Waits for process termination.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts a wide character string to a multibyte character string.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Converts a wide character to a multibyte character.
	Synopsis:
	Arguments:
	Returns:
	Description:
	Reference:
	Conversion:
	Notes:

	Š Writes to a file.
	Synopsis:
	Arguments:
	Returns:
	Errors:
	Description:
	Reference:
	Conversion:
	Notes:

	Appendix A Header Files
	Description of Tables

	Appendix B Data Structures
	Appendix C Error Codes
	Appendix D Porting From BSD And System V
	BSD Functions
	System VFunctions

	Appendix E Changes And Additions In Standard C
	Preprocessor
	Character Set
	Identifiers
	Keywords
	Operators
	Strings
	Constants
	Structures, Unions, and Arrays
	switch Statements
	Headers
	Pointers
	Functions
	Arithmetic

	Appendix F Federal Information Processing Standard
	Appendix G
	Answers To Selected Exercises
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Related Publications
	The Standards
	Other Documents of Interest

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	About the Author
	Colophon

